INTRODUCTION TO ACTION!

Part 1.

by Clinton Parker

This is the first of a 2-part series that will introduce you to the Action! programming language, using a short example program that draws kaleidoscopic patterns on the screen. There's an old saying about fooling people which, unfortunately, holds true for trying to please people as well. The problem in my case is that different readers have different levels of experience. I hope this series will please all of you at least some of the time.

Action! is a true compiled language, whereas Atari BASIC is an interactive interpreter. In both cases, the ultimate goal is to translate programs from a human-readable form into something that the computer can understand. The difference is that Action! only performs this translation once, whereas BASIC does it repeatedly. The process is similar to having a speech translated from German to English once and then reading it many times in English (Action!), as opposed to having someone translate the speech to English every time it is read (BASIC). Because Action! statements don't have to be translated each time, they execute much faster.

Action! has three types of numeric variables (BYTEs, CARDinals and INTegers), which are easier for the computer to deal with than the floating-point numbers always used by Atari BASIC. This also contributes to faster program execution, but costs you in terms of flexibility (no fractions or very large numbers) and simplicity (you must declare variables so that the compiler will know what type they are).

BYTE variables can represent numbers from 0 to 255. CARDs can represent numbers from 0 to 65535, and INTs can represent numbers from -32768 to 32767. Referring to **Listing 1**, the lines:

CARD period, npts BYTE x0, y0, x1, y1, ATRACT=77 BYTE CH=764

are called variable declarations. Note that the BYTE variable ATRACT is defined to reference location 77 in memory, and that variable CH references location 764. More on these later.

In addition to the three basic types described above, Action! allows ARRAYs, POINTERs and user-defined TYPEs (records). The following line:

TYPE REC=[CARD cnt,ax,bx,cx,ay,by,cy] is a TYPE declaration named REC, and:

REC p, e

is a declaration of two variables (p and e) of type REC. Each of these variables contain all of the variable fields specified in the declaration of REC. Fields of record variables are referenced by first giving the record variable name, then a '.' (period), followed by the field name.

The lines:

are examples of assignment statements using record

tatements are very, very ments. The IF structure is Cs, with two important conditional statements offering the second

you include as many statements following the THEN as you like, because the compiler treats End-Of-Line characters the same as spaces or colons. The Action! keyword FI (IF spelled backwards) is used to end a list of statements following the corresponding THEN.

Second, Action! makes it possible to execute a list of statements if the condition following an IF is false. This is done by placing the keyword ELSE where the FI would normally go, followed by the list of statements for the ELSE, and finally an FI to terminate the structure. ELSE is not used in Listing 1, so don't be concerned if you don't see one.

Action! loops are used to execute a group of statements repeatedly. A simple loop is specified by the keyword DO, followed by a list of statements and ending with the keyword OD (DO spelled backwards). The effect is similar to a group of BASIC statements with a GOTO < first statement> as the last statement in the group. You can provide control information to specify how many times an Action! loop is to be repeated. One loop control structure — FOR/TO — is very similar to the FOR structure in Atari BASIC. The differences are that, in Action!, the end condition is always tested before the statements within the loop are executed, which means that the loop may never be executed. BASIC always executes a FOR/NEXT loop at least once. Additionally, the STEP increment may only be positive in Action!, whereas BASIC allows both positive and negative STEPs. The other two Action! control structures, WHILE and UNTIL, will be discussed later.

PROCedures.

An Action! PROCedure is roughly the same as an Atari BASIC subroutine. One distinction is that it's possible to pass arguments to an Action! PROCedure. If you've ever called a function in BASIC, then you have already used argument passing without even realizing it. In the BASIC line:

A=SIN(X)

X is the argument to the function call SIN(). The Listing 1 lines:

MoveBlock(e, p, REC)

are examples of PROC calls. Note that the Action! compiler makes no distinction between user-defined PROCs and system subroutines. Thus, the PROC calls:

Graphics(24) SetColor(1,0,14) : SetColor(2,0,0)

are similar to the BASIC statements:

GRAPHICS 24 SETCOLOR 1,8,14:SETCOLOR 2,8,8

This gives us a nice, uniform PROCedure-calling me banism and movides an easy method for users

to provide their own versions of system routines.

PROCedure declarations tell the Action! compiler the name by which the PROC can be called, the arguments and variables which are unique to that PROC, and which statements are to be executed when the PROC is called. In our Listing 1 example, everything between:

PROC Gen(REC POINTER r)

and

PROC Kal ()

constitutes the declaration for the PROCedure Gen().

Gen() has one argument, r, which is a POINTER variable of type REC (a user-defined TYPE). The line:

BYTE x0, y0, x1, y1, ATRACT=77

declares a number of local variables that are only used in Gen(). They can not be accessed by any other PROCedure in the program (Kal() in this case). However, the global variable period (which was declared at the beginning of the program) can be used by either PROCedure.

The RETURN statement at the end of the declaration for Gen() is the same as a RETURN statement in BASIC, and causes execution to jump back to the point from which the PROCedure was called. The last procedure declared in a program is the one which will be called first when the program is started (Kal() in this example). If you don't quite follow all of this, don't worry; things should get clearer as we walk through the example.

Walking through.

As stated earlier, Listing 1 draws kaleidoscopic patterns on the screen. This is done by repeatedly calling the PROCedure Gen(). The Gen() statements:

generate new values for ax and ay (fields of record r, passed to the Gen() PROCedure). These values are used to calculate x0 and y0 as follows:

Without going into details about bit arithmetic and operations, the RSH 9 statements have the effect of dividing r.ax and r.ay by 512 (but do it much faster than a "real" divide). The reason for dividing by 512 is to get values in the range 0-127, so that they can be plotted in graphics mode 24.

The IF statement:

determines if any points are to be plotted. The check for y0 < 96 assures that the points won't overlap when we calculate x1 and y1:

The value of 191 was chosen since it is the maximum y-value you can plot in graphics mode 24.

The Plot calls following these two statements display all eight combinations of x0, y0, x1, and y1. The +64 in each call centers the display on the screen, since there are 128 more points in the X direction than there are in the Y direction.

If you're curious about how this plotting algorithm works, choose your own values for x0 and y0 (21 and 55, for example). Calculate x1 and y1 from the formula above (170,136). Finally, calculate all of the points that will be plotted (don't add in the 64; it makes things easier to see). Our example would yield coordinates of (21,55), (21,136), (55,21), (55,170), (170,55), (170,136), (136,21) and (136,170). If you plot these on a piece of graph paper with 0,0 in the upper left corner and 191,191 in the lower right, you'll see that they are symmetric about the center.

The only part of Gen() not explained yet is:

The first statement decrements the **cnt** field of **r**, and the IF statement body is executed when **cnt** reaches zero.

The statements:

calculate new values for bx and by, which cause the ax and ay calculations to change in the future as well. The line:

resets cnt so that it can count down to zero again. Finally,

keeps the screen from going into attract mode. Note that ATRACT was declared to be at location 77. This is the memory location used by the OS to determine if attract mode is on or off.

A look at Kal().

Now you understand (I hope) how the Gen() procedure works. So let's look at Kal() and see how it uses Gen().

The first three Kal() statements:

```
Graphics(24)
SetColor(1,0,14) : SetColor(2,0,0)
```

set up graphics mode 24, with white dots on a black background. The next group:

```
persistence = 2500
period = 10000 p.cnt = period
p.ax = 5221 p.bx = 64449 p.cx = 3
p.ay = 57669 p.bx = 64489 p.cy = 3
```

sets the initial values that control the pattern generation of Gen(). You can change these to generate your own patterns. As stated above, ax, ay, bx, by, cx and cy are used to calculate the points to be plotted. The value for period determines how frequently the pattern will change. The value for persistence determines how much of the pattern will be on the screen at once.

You may be saying at this point, "Hold on there! If you don't erase any points, the screen will just turn white," and you would be right. That's the reason for:

MoveBlock(e, p, REC)

and why Gen() is passed a record argument. It turns out that, depending on the value of color, Gen() will either plot or erase points on the screen. The precord will be used for plotting, and the erecord will be used for erasing. MoveBlock makes a copy of p (all the fields) in e, because when a record variable is referenced without a field, the address of the record is used. When a type name is referenced, the size in bytes of the type is used. Thus, MoveBlock is being called with the address of records e and p, and the size of the record. Initially both p and e will have the same values. Here is how p and e are used:

First, color is set to one (plot points) and Gen() is called with p as an argument (remember, this passes the address of p, a POINTER, to the Gen() procedure). Next, color is set to zero (erase points) and Gen() is called with e as an argument. Since both p and e start out the same, what happens is that Gen(p) draws some points on the screen and Gen(e) erases them. That keeps the screen from turning white.

The sequence will keep repeating as long as CH equals 255. CH was declared to be at address 764, the location that the OS stores the internal value for the last key pressed. It is set to 255 by the keyboard handler after a key is processed. Thus, as long as no key is depressed, CH will equal 255. As soon as a key is depressed, it will contain the code for the last key (will no longer equal 255) and the loop will terminate, causing:

CH = 255 : Graphics(0)

RETURN

be executed. This sets CH back to 255 so that the yboard handler won't think a key has been pressed, and restores graphics mode 0 before eurning to the Action! monitor.

In bet you're wondering why I didn't mention:

color = color = 1
FOR npnts = 1 TO persistence DO
 Gen(p) UNTIL CH#255

It's there for a reason. If you execute the loop below it, only one set of points will be displayed at a time. Although this is somewhat interesting, it isn't what I intended. The FOR loop causes "persistence" sets of points to be generated without any being erased (note that only Gen(p) is called, with color equal to one). So when the WHILE loop below this is reached, the call to Gen(e) will erase points that were plotted "persistence" interactions earlier. The values of p will always be "persistence" interactions ahead of e. Thus, you'll always have at most "persistence" sets of points on the screen at any given time.

The UNTIL at the end of the loop serves the same purpose as the WHILE described earlier. The only difference is that an UNTIL loop repeats as long as the condition is false (the inverse of WHILE). That's why CH is tested to not equal 255 (inverse of equal in WHILE).

Those of you who have an Action! cartridge should try this program. It's very small and easy to enter. The first thing you'll notice is that it doesn't run especially fast. This is mainly due to the fact that it is using the Atari operating system's PLOT subroutine. In Part II of this series, I'll discuss some things you can do to speed it up. You may also wish to athem the colors on voir T larger making to the the best-looking patterns. \square

Action! listing.

KAL.ACT

ANALOG Computing #17 Copyright 1984 BY Clinton Parker All Rights Reserved

last modified January 11, 1984

; Global variables

A subscription to Games Datamag gives you more games, news & reviews for your money!

Games Datamag gives you more software value

Discover new ways to use your ATARI computer and get more for your money.

Games Datamag is a new subscription on cassette featuring in each issue:

- 1. 16K GAME that's ready to run
- 2. DISKETTE version at no extra cost
- 3. NEWS on the latest games & techniques
- 4. Game reviews and contests

The Fall issue game is a treasure hunt called Treasure Palace. This winter we feature Battle CruiserNebula. Don't miss a single issue!

\$24 a year, quarterly; or sample issue for \$8 (overseas orders add \$8) from USCS Dept. 81, 1737 Walnut Grove, Decatur IL 62526

```
TYPE REC=[CARD cnt,ax,bx,cx,ay,by,cy]
REC<sup>°</sup>p, e
CARD period, npts, persistence
PROC Gen(REC POINTER r)
```

```
BYTE x0, y0, x1, y1, ATRACT=77
; get new a
                          r.ax = (r.ax + r.bx) ! r.bx
r.ay = (r.ay + r.by) ! r.by
                                            .cnt == -1
F r.cnt = 0 THEN ; get new b
r.bx = (r.bx + r.cx) ! r.cx
r.by = (r.by + r.cy) ! r.cy
r.cnt = period
                                                          r.cnt = period
ATRACT = 0 ; turn off attact mode
                            FI
                          x0 = r.ax R5H 9
y0 = r.ay R5H 9
IF x6 <= y0 AND y0 < 96 THEN
x1 = 191 - x0
y1 = 191 - y0
Plot(x0+64, y0) : Plot(x0+64, y0) : Plot(y0+64, x0) : Plot(y0+64, y0) : Plot(x1+64, y
```

, yes

Plot(y1+64, x0)

RETURN

PROC Kal()

```
CHAR CH=764
  Graphics (24)
  SetColor(1,0,14) : SetColor(2,0,0)
; change for different patterns:
  persistence = 2500
  period = 10000
p.ax= 5221 p.
                00 p.cnt = period
p.bx=64449 p.cx=3
  p.ay=57669
               p.by=64489
; copy plot record to erase record
  MoveBlock(e, p, REC)
; handle persistence
  color = 1
FOR npts = 1 TO persistence DO
    Gen(p)
UNTIL CH#255
; draw patterns until key drepressed
  MHILE CH = 255 DO
    color = 1
color = 0
                 Gen (p)
Gen (e)
; ignore key and restore screen
```

CASADAPTER is a cassette interface that allows you use your own cassette recorder or stereo with the Atari 400/800/12008. CASADAPTER will handle motor control, audio and data channels.

***34.95**

RAM BOARD FOR: THE ATARI 400®. *115.00

Plot(x0+64, y1) Plot(y8+64, x1) Plot(x1+64, y1)

Plot(y1+64,

12 Scamridge Curve Buffalo, New York 14221 (716) 632-3441

Dealer inquiries Invited *Product of Gemini Software Add \$2.50 shipping. Send check or money order C.O.D. accepted **New York State Residents** add 7% tax

Atari is a trademark of Atari, Inc.

*MAGIC DUMP is a screen dump utility that allows you to dump a Hi-Resolution graphics picture to a printer in a variety of different sizes. MAGIC DUMP is used in the RIGHT hand cartridge slot, so it is always ready to use.

CH = 255 : Graphics(0)

RETURN

MAGIC DUMP will work with all Epson printers and Gemini printers, the Centronics 739 printer, and the Prowriter or N.E.C. printers. ***59.95**

*GTIA DRAW is a drawing program that uses all the features of Atari's new GTIA chip. GTIA DRAW will give you three extra graphics modes, Mode 9 (16 luminances and one color), Mode 10 (8 luminances and color), or Mode 11 (16 colors and one luminance).

GTIA DRAW will allow you to:

Add text to pictures

Blank horizontal or vertical lines

Shift the screen in any direction

'ZOOM' in on certain areas of a picture

Fill portions of a screen

Work on two different screens simultaneously **\$49.95**

*THE DRUMESISER is a unique sound synthesizing tool that allows the creation of sounds such as a drum, piano, organ, harpsichord, or electronic synthesizers. The different types of sounds created are limited by the user's imagination and ambition.

THE DRUMESISER comes with an Editor, which allows you to create your own sounds, a Player, which will allow you to play the different instruments, and the Memory Options, which make it possible for you to playback any sounds that you have recorded.

\$49.95

PAGE 91

Introduction Action Part 2.

by Clinton Parker

Part I of this series presented a brief introduction of Action! data types and control structures using a small example program. In this part, I will expand on that example to demonstrate the use of ARRAYs in the Action! language, and increase the speed at which

This increase in speed is accomplished by providing a specialized PLOT routine instead of using the one provided in the cartridge library. The PLOT routine in the cartridge (the same one used by the OS) was written to be very flexible so that it could handle all the different graphics modes and check for illegal values. The problem with this generality is that it doesn't plot points on the screen all that fast. Since all the points plotted in KAL are in graphics mode 24, it seems reasonable to write a PLOT routine just for that mode.

All right, we now see that having our own PLOT routine would be useful, but how do we go about writing one? First, we'll start by looking at how the Atari represents graphics mode 24 data by means of a simple example. Imagine a small piece of graph paper 24 by 12. Label the top left square 0,0 and the bottom right square 23,11. Draw a line from top to bottom between squares 7 & 8 and 15 & 16, and then number these divisions starting with 0,1,2 for the first line; 3,4,5 for the next line (1) and ending with 33,34,35 for the last line (11). What you should have is Figure 1. Except for the screen being much larger, this is exactly how the Atari generates a graphic 24 display. Each 8 square division on the graph paper represents an 8-bit byte of memory.

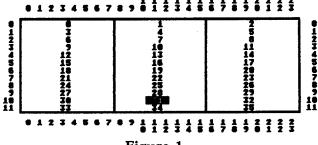


Figure 1.

If we plot point 10,10 on our sheet of graph paper, we note that it is in division 31 and is the 2nd square of that division (first square of a division is 0). The computer does a similar calculaton when we tell it to plot point 10,10. It first determines which byte of the screen memory we want and then it determines which bit in that byte is to be set.

Now this isn't as hard as it looks, because there are several tricks that can be used to make these calculations simple. We can calculate the offset of the first division (byte) of each line by multiplying the number of divisions (3 for our example, 40 for a graphics 24 display) by the line number. We can then calculate which division (byte) we want on that line by dividing the column by 8 (8 spaces per section, 8 bits per byte). Finally, we can compute which square (bit) is to be changed by the remainder of this division. Thus, for 10,10 example we have:

line offset = 30'(10*3) division offset = 1 (10/8) square offset = 2 (10 MOD 8)

We now have enough information to design our PLOT routine. Remember that we are writing our own routine to increase the speed of plotting points. Multiplication and division are slow operations, so if we avoid doing these operations when we are plotting, it will greatly increase the speed of our plot routine. As turns out, we can avoid doing these operations by precomputing the line offsets and byte offsets at the beginning of the program and then use those offsets in our plot routine. We do this by storing the precomputed offsets in ARRAYs. In the plot routine, we'll use Y as an index into the line offset ARRAY (line) and X as an index into the byte offset ARRAY (div8).

Walking through.

The PROCedure **Init()** is responsible for generating the precomputed line and byte offsets. It starts by setting up the display with:

Graphics(24) SetColor(1,0,14): SetColor(2,0,0)

The next block of code computes the line offsets (192 of them for graphics mode 24). The variable scrstart is defined to be location 88. This location contains the starting address of the screen. The variable lineloc is used for computing the address of each line. Initially it is set to the value of scrstart (address of first line), and is incremented by 40 each time through the loop (remember, there are 40 byte per line in graphics mode 24) to compute the address of the next line. The ARRAY line is used to store each value of lineloc. The next loop computes the byte offsets for all possible values of X (0 to 319), and saves them in the ARRAY div8.

PROC Plot() is passed two arguments, X and Y, which define the point to be plotted. The byte that is to be modified on the screen is computed by adding the line address of Y to the byte offset of X as follows:

pos = line(Y) + div8(X)

The BYTE POINTER pos now contains the address of the byte we want to modify. Next, we determine if we are plotting a point or erasing one by:

IF color 8 THEM

If **color** is non-zero, we want to plot a point. This is done by setting the correct bit of the byte pointed to by **pos**. This is what

pos^ == % m1 (X&7)

does. This may look very complicated, but it isn't. X&7 computes which bit is to be modified (same as

X MOD 8, but much faster). This is used as the index for the ARRAY m1. ARRAY m1 is declared to contain a set of 8 masks. Each mask represents the bit to be modified for that index. Thus, when mi(X&7) is or'ed into the byte pointed to by pos, it sets only the bit to be plotted without affecting the other bits of that byte.

In a similar manner, if color is zero

pos^ == & w2(X&7)

erases point X,Y on the screen. ARRAY m2 is declared to contain 8 masks which, when and'ed with the byte pointed to by pos, erase a single bit without effecting the other bits of that byte.

Using this **Plot** routine instead of the built-in routine increases the execution speed of **Kal** by about a factor of 3. Since none of the X values used in **Kal** exceeds 255, you can change the declaration of **Plot** to be:

PROC Plot (BYTE x, y)

This will make this version of **Kal** run about 4 times faster than using the built in **Plot** routine, but it will no longer work for all legal values of **X**.

If you haven't followed all of this, don't worry. I didn't go into any details about bit-wise operations (& and %) to keep the description brief. You can still enjoy the results (assuming you have an Action! cartridge). You can even use these two PROCs (Init and Plot) in other programs that you write yourself.

Listing 1.

KAL.ACT

```
Graphics(24)
    SetColor(1,0,14):SetColor(2,0,0)
   get starting address of each line on graphics 24 screen
   lineloc = scrstart

FOR i = 0 TO 191 DO

line(i) = lineloc

lineloc ==+ 40
   pre-calculate small values divided
   by eight
   FOR i = 0 TO 319 DO __div8(i) = i / 8
    OD
RETURN
PROC Gen(REC POINTER 4)
    BYTE x0, y0, x1, y1, ATRACT=77
; get new a
  r.ax = (r.ax + r.bx) ! r.bx
  r.ay = (r.ay + r.by) ! r.by
   r.cnt ==- 1
IF r.cnt=0 THEM ; get new b
    r.bx = (r.bx + r.cx) ! r.cx
    r.by = (r.by + r.cy) ! r.cy
    r.cnt = period
    ATRACT = 0 ; turn off attact mode
   x0 = r.ax RSH 9
y0 = r.ay RSH 9
IF x0{=y0 AND y0{96 THEN
```

```
x1 = 191 - x0

y1 = 191 - y0
        Plot(x0+64, y0):Plot(x0+64, y1)
Plot(y0+64, x0):Plot(y0+64, x1)
Plot(x1+64, y0):Plot(x1+64, y1)
Plot(y1+64, x0):Plot(y1+64, x1)
    FI
RETÜRN
PROC Kal()
CHAR CH=764
    Init()
; change for different patterns:
    persistence = 2500
period = 10000 p.cnt = period
p.ax= 5221 p.bx=64449 p.cx=3
p.ay=57669 p.by=64489 p.cy=3
; copy plot record to erase record MoveBlock(e, p, REC)
; handle persistence
    color = 1
FOR npts = 1 TO persistence DO
    Gen(p)
UNTIL CH#255 OD
; draw patterns until key drepressed WHILE CH=255 DO
       color = 1
color = 0
                               Gen (p)
                               Gen (e)
; ignore key and restore screen
CH = 255 : Graphics(0)
RETURN
```

VERY LOW PRICES GET YOUR ATTENTION VERY GOOD SERVICE KEEPS

AT RCE WE NOT ONLY PROVIDE OUR PATRONS WITH LOW PRICES . . . WE BACK THEM WITH SUPPORT!!! FACTORY AUTHORIZED SERVICE CENTER SUPPORT FOR OVER TWENTY DIFFERENT BRANDS OF HOME ELECTRONICS INCLUDING ... ATARI, FOURTH DIMENSION, MICRO-SCI, SANYO, FRANKLIN, PANASONIC AND U.S. PIONEER. APPLE WARRANTY SERVICE AVAILABLE.

FACTORY AUTHORIZED SERVICE COMBINED WITH PRICES LIKE THESE:

ATARI HARDWARE		MONITORS	PRINTERS	RCE COMMANDER 2400
LIST	RCE	GREEN SCREEN	STAR MICRONICS	SPECIFY 400 or 800 version
600XL COMPUTER \$199	\$CALL	BMC 12" \$89	GEMINI 10 \$CALL	2400 - 1 \$199
800XL COMPUTER \$299	\$CALL	ZENITH 12" \$99	GEMINI 15 \$CALL	2400 - 2 \$169
1400XL COMPUTER \$599	\$CALL	SANYO 12" \$205	MODEMS	
1450XL COMPUTER \$999	\$CALL	BLACK & WHITE	HAYES SMARTMODEM 300 \$209	OUR PRICES ARE
1010 RECORDER \$100	\$75	SANYO 9" \$145	MICROBITS MPP 1000 \$169	ALWAYS GOING
810 DISK DRIVE \$599		SANYO 12" \$189	INTERFACES	DOWN
850 INTERFACE \$219		AMBER SCREEN	MICROBITS MPP 1100 \$89	CALL FOR LATEST
1020 PRINTER \$299		ZENITH 12" \$115	DISK DRIVES	REDUCED PRICE
1025 PRINTER \$549	\$439	AMDEK 12"\$179	RANA \$319	HEBOOLD I MICE
OFAID FOR DOFIG FREE ATARI HARDINARE AND COETWARE CATALOG				

SEND FOR RCE'S FREE ATARI HARDWARE AND SOFTWARE CATALOG

WE ALSO CARRY A FULL LINE OFAPPLE/FRANKLIN AND IBM COMPATIBLE SOFTWARE!!

ORDER TOLL-FREE 800-547-2492

IN OREGON: (503)479-4711

RALSTON CLEARWATERS ELECTRONICS 536 N.E. 'E' STREET GRANTS PASS, OR 97526 ALL BRANDS ARE REGISTERED TRADE MARKS FOR CUSTOMER SERVICE CALL: (503)479-4711 or (503)479-4150

TERMS:
SHIPPING: Add 6% of total transaction for UPS brown (ground) or 9% for UPS blue (air), Parcel Post, SHIPPING: Add 6% of total transaction for UPS brown (ground) or 9% for UPS blue (air), Parcel Post, or any special arrangements. Minimum shipping charge - 56,00
PAYMENT: Cashier's checks, certified checks, money orders, and bank wires honored immediately. Viss & Master Charge accepted, Allow 20 days for personal checks to clear.
REFUNDS: 10% restocking charge on all returns or exchanges. No refunds on opened software. Call first. GUARANTEE: All products with full manufacturer's warranty. Sanyo and Apple warranty available: We have full repair and service facilities for all electronic repairs with HP. Dynacan, Floreney, Sanyo and Apple valued and certified technicians. For any technical service call them for instant advice or questions right an their life of testals on quality guaranteed discount repair and reconditioning service.

REFAIRS: Call for details on quality guaranteed discount repair and reconditioning service.