ISSUE 17

INTRODUCTION
10
ACTION!
. Part 1.

This is the first of a 2-part series that will
introduce you to the Action! programming language,
using a short example program that draws
kaleidoscopic patterns on the screen. There’s an old
saying about fooling people which, unfortunately,
holds true for trying to please people as well. The
problem in my case is that different readers have
different levels of experience. I hope this series will
please all of you at least some of the time.

Action! is a true compiled language, whereas Atari
BASIC is an interactive interpreter. In both cases, the
ultimate goal is to translate programs from a human-
readable form into something that the computer can
understand. The difference is that Action! only
performs this translation once, whereas BASIC does
it repeatedly. The process is similar to having a
speech translated from German to English once and
then reading it many times in English (Action!), as
opposed to having someone translate the speech to
English every time it is read (BASIC). Because
Action! statements don’t have to be translated each
time, they execute much faster.

Action! has three types of numeric variables
(BYTEs, CARDinalsand INTegers), which are easier
for the computer to deal with than the floating-point
numbers always used by Atari BASIC. This also
contributes to faster program execution, but costs
you in terms of flexibility (no fractions or very large
numbers) and simplicity (you must declare variables
so that the compiler will know what type they are).

BYTE variables can represent numbers from O to
255. CARDs can represent numbers from O to
65535, and INTs can represent numbers from -32768
to 32767. Referring to Listing 1, the lines:

CARD period, npts)
BYTE x0, y@, x1, yi, ATRACT=77
BYTE CH=764

are called variable declarations. Note that the BYTE
variable ATRACT is defined to reference location
77 in memory, and that variable CH references
location 764. More on these later.

In addition to the three basic types described
above, Action! allows ARRAYs, POINTERs and
user-defined TYPEs (records). The following line:

YYPE REC=ICARD cnt,ax,bx,cx,ay,by,cyl
is a TYPE declaration named REC, and:

REC p, e
is a declaration of two variables (p and €) of type
REC. Each of these variables contain all of the
variable fields specified in the declaration of REC.
Fields of record variables are referenced by first
giving the record variable name, then a .’ (period),
followed by the field name.

The lines:

p.ax = 5221 p.bx = 64449 p.CX
p.ay = 57669 p.by = 64489 p.cy

3
3

are examples of assignment statements using record

fields.

ANALOG COMPUTING

PAGE 59

tements are Very, Very
ents. The IF structure is
with two important

> conditioral statements
you include as many statements following the THEN
as you like, because the compiler treats End-Of-Line
characters the same as spaces or colons. The Action!
keyword FI (IF spelled backwards) is used to end a
list of statements following the corresponding
THEN.

Second, Action! makes it possible to execute a list
of statements if the condition following an IF is false.
This is done by placing the keyword ELSE where the
FI would normally go, followed by the list of
statements for the ELSE, and finally an FI to
terminate the structure. ELSE is not used in Listing
1, so don’t be concerned if you don’t see one.

Action! loops are used to execute a group of
statements repeatedly. A simple loop is specified by
the keyword DO, followed by a list of statements
and ending with the keyword OD (DO spelled
backwards). The effect is similar to a group of
BASIC statements with a GOTO <first statement>
as the last statement in the group. You can provide
control information to specify how many times an
Action! loop is to be repeated. One loop control
structure — FOR/TO — is very similar to the FOR
structure in Atari BASIC. The differences are that, in
Action!, the end condition is always tested before the
statements within the loop are executed, which
means that the loop may never be executed. BASIC
always executes a FOR/NEXT loop at least once.
Additionally, the STEP increment may only be
positive in Action!, whereas BASIC allows both
positive and negative STEPs. The other two Action!
control structures, WHILE and UNTIL, will be
discussed later.

PROCedures. -

An Action! PROCedure is roughly the same as an
Atari BASIC subroutine. One distinction is that it’s
possible to pass arguments to an Action!
PROCedure. If you've ever called a function in
BASIC, then you have already used argument
passing without even realizing it. In the BASIC line:

A=SIN(K)

X is the argument to the function call SIN().
The Listing 1 lines:

MoveBlock(e, p, REC}
Gcen(pl

are examples of PROC calls. Note that the Action!

compiler makes no distinction between user-defined
PROCs and system subroutines. Thus, the PROC
calls:

Graphics(24)
setColor(i,8,142 : SetColor(2,8,8)

are similar to the BASIC statements:

GRAPHICS 24
SETCOLOR 1,8,14:SETCOLOR 2,8,0

This gives us a nice, uniform PROCedure-calling

1o provide their own versions Ut ToUTES.
PROCedure declarations tell the Action! compiler
the name by which the PROC can be called, the
arguments and variables which are unique to that
PROC, and which statements are to be executed

- when the PROC is called. In our Listing 1 example,

everything between:
PROC Gen(REC POINTER r)

and
PROC Kal O

constitutes the declaration for the PROCedure
Gen(). :
Gen() has one argument, r, which is a POINTER
variable of type REC (a user-defined TYPE).
The line:
BYTE x8, v@, xi, yi, ATRACY=77

declares a number of local variables that are only
used in Gen(). They can not be accessed by any
other PROCedure in the program (Kal() in this
case). However, the global variable period (which
was declared at the beginning of the program)can be
used by either PROCedure.

The RETURN statement at the end of the
declaration for Gen() is the same as a RETURN
statement in BASIC, and causes execution to jump
back to the point from which the PROCedure was
called. The last procedure declared in a program is
the one which will be called first when the program is
started (Kal() in this example). If you don’t quite
follow all of this, don’t worry; things should get
clearer as we walk through the example.

Walking through.
As stated earlier, Listing 1 draws kaleidoscopic
patterns on the screen. This is done by repeatedly
calling the PROCedure Gen(). The Gen()

statements:

r.ax = (r.ax + r.bx) ! r.bx
r.ay = (r.ay + r.hyd ! r.by

generate new values for ax and ay (fields of record r,
passed to the Gen() PROCedure). These values are
used to calculate xO and yO as follows:

x0 r.ax RsH 9
1 yo r.ay RSH 9

-
-

Without going into details about bit arithmetic and
operations, the RSH 9 statements have the effect of
dividing r.ax and r.ay by 512 (but do it much faster
than a *‘real”’ divide). The reason for dividing by 512
is to get values in the range 0-127, so that they can be
plotted in graphics mode 24.

The IF statement:

1

PAGE 60

ANALOG COMPUTING

ISSUE 17

IF x8 {= y8 AND y@ { 96 THEN
FI'

determines if any points are to be plotted. The check
for yO < 96 assures that the points won’t overlap
when we calculate x1 and y1: :

xi = 191 - x@
Y1 - 191 - yo

The value of 191 was chosen since it is the maximum
y-value you can plot in graphics mode 24.

The Plot calls following these two statements
display all eight combinations of x0, y0, x1,and y1.
The +64 in each call centers the display on the
screen, since there are 128 more points in the X
direction than there are in the Y direction.

If youre curious about how this plotting
algorithm works, choose your own values for x0 and
yO (21 and 55, for example). Calculate x1 and y1
from the formula above (170,136). Finally, calculate
all of the points that will be plotted (don’t add in the
64; it makes things easier to see). Our example
would yield coordinates of (21,55), (21,136),
(55,21), (55,170), (170,55), (170,136), (136,21)
and (136,170). If you plot these on a piece of graph
paper with 0,0 in the upper left corner and 191,191 in
the lower right, you'll see that they are symmetric
about the center. ' -

The only part of Gen() not explained yet is:

r.cnt == -1
IF r.cnt = 8 THEN

FI

The first statement decrements the ent field of r, and
the IF statement body is executed when cnt reaches
zero. .
The statements:
F.bX = (Pr.bXx + r.cX) ! P.CX
r.by = (r.by + r.cyl ! r.cy
calculate new values for bx and by, which cause the
ax and ay calculations to change in the future as well.
The line: .
r.cnt = period

resets cnt so that it can count down to zero again.
Finally,

ATRACT = ©

keeps the screen from going into attract mode. Note
that ATRACT was declared to be at location 77.
This is the memory location used by the OS to
determine if attract mode is on or off.
A look at Kal().

Now you understand (I hope) how the Gen()
procedure works. So let’s look at Kal() and see how
it uses Gen(). ‘

The first three Kal() statements:

Graphics(24)
SetColor(1,8,14) : 5SetColori2,0,8)

éet up graphics mode 24, with white dots on a black
background. The next group:

persistence - 2560 .
period - 18668 p.cnt = period
p.ax %221 P.bx = 64449 p.CX

3
p.ay 57669 p.bXx = 64489 p.cy 3

sets the initial values that control the pattern
generation of Gen(). You can change these to
generate your own patterns. As stated above, ax, ay,
bx, by, cx and cy are used to calculate the points to
be plotted. The value for period determines how
frequently the pattern will change. The value for
persistence determines how much of the pattern will
be on the screen at once.

You may be saying at this point, “‘Hold on there! If
you don’t erase any points, the screen will just turn
white,” and you would be right. That’s the reason
for: -
MoveBloctkie, p, REC)

and why Gen() is passed a record argument. It turns
out that, depending on the value of color, Gen() will
either plot or erase points on the screen. The p
record will be used for plotting, and the e record will
be used for erasing. MoveBlock makes a copy of p
(all the fields) in e, because when a record variable is
referenced without a field, the address of the record
is used. When a type name is referenced, the size in
bytes of the type is used. Thus, MoveBlock is being
called with the address of records e and p, and the
size of the record. Initially both p and e will have the
same values. Here is how p and e are used:

WHILE CH = 255 DO
color = 1 Gen(p)
oDCOIOI‘ = 8 Gen(el

First, color is set to one (plot points) and Gen() is
called with p as an argument (remember, this passes
the address of p, a POINTER, to the Gen()
procedure). Next, color is set to zero (erase points)
and Gen() is called with e as an argument. Since
both p and e start out the same, what happens is that
Gen(p) draws some points on the screen and
Gerni(e) erases them. That keeps the screen from
turning white.

- The sequerice-will keep repeating as long as CH
equals 255. CH was declared to be at address 764,
the location that the OS stores the internal valtie for
the last key pressed. It is set to 255 by the keyboard
handler after a key is processed. Thus, as long as no
key is depressed, CH will equal 255. As soon as a
key is depressed, it will contain the code for the last
key (will no longer equal 255) and the loop will
terminate, causing:

ANALOG COMPUTING

PAGE 63

CH = 255 ! Graphics(@}

RETURN

executed. This sets CH back to 255 so that the
board handler won’t think a key has been
sressed, and restores graphics mode O before
Bturning to the Action! monitor.

Il bet you’re wondering why [didn’t mention:

color = 1

FOR . npnts - 1 TO0 persistence DO
Gen(p)
UMTIL CHB25S

oD

P It’s there for a reason. If you execute the loop
" below it. onlv one se~ oF Tz v e TaT el
sme. Although this is somewhat interesting, it isn’t
what 1 intended. The FOR loop causes
“persistence” sets of points to be generated without
any being erased (note that only Gen(p) is called,
with color equal to one). So when the WHILE loop
below this is reached, the call to Gen(e) will erase
points that were plotted “‘persistence” interactions
earlier. The values of p will always be “persistence”
interactions ahead of e. Thus, you'll always have at
most “‘persistence” sets of points on the screen at
any given time.

The UNTIL at the end of the loop serves the same
purpose as the WHILE described earlier. The only
difference is that an UNTIL loop repeats as long as
the condition is false (the inverse of WHILE). That’s
why CH is tested to not equal 255 (inverse of equal
in WHILE).

Those of you who have an Action! cartridge
should try this program. It’s very small and easy to
enter. The first thing you’ll notice is that it doesn’t
run especially fast. This is mainly due to the fact that
it is using the Atari operating system’s PLOT
subroutine. In Part I of this series, I’ll discuss some
things you can do to speed it up. You may also wish

- e g et o '/‘, - - - -
DT TI TNT T TN L Y RO At S At g

- =

tne best-looking patterns. Ui

Action! listing.

KaL .acT
ANALOG Computing 17
Copyright 1984 BY Clinton Parker
All Rights Reserved
last modified January 11, 1984

Global variables

LT T TR R

-

e

Meet
the
Family

ANEWDATA STORAGE SYSTEM
FOR THE 48K 800

instruction book and

SIX PACK

A GENERAL PURPOSE
EPROM PROGRAMMER
Stored programs run at ROM
speed. 16K bytes in two 8K
blocks. Programs 2764 or
27128 at 8K bytes/minute.
Either can be transparent or
active under program control

Aprom with disk software,

Textool ZIF socket

APROM

SIX PACK

SI);gff“ll)aI?ecks A subscription to Games Datamag gives you

switched for more games, news L reviews for your money!
2764 or =

s10aernom | Games Datamag gives

youmore software value

Discover new ways to use your ATARI
computer and get more for your money.

Games Datamag is a new subscription
on cassette featuring in each issue:

1. 16K GAME that's ready to run
99.50 2. DISKETTE version at no extra cost
44.95 3. NEWS on the latest games & techniques

DATARASE
Erases two EPROMS

Send money order or check to:

WALLNG CO

DATARASE —.oorrer
Eproms not included 2764

Plus $2.00 shipping & handling
Arizona residents add 6% tax

4. Game reviews and contests

The Fall issue game is a treasure hunt
called Treasure Palace. This winter we
feature Battle CruiserNebula. Don't
miss a single issue!

$24 a year, quarterly; or sample issue

Makers of Aprom. for $8 (overseas orders add $8) from

7756 E Evans * Suite 400 « Scottsdale, AZ 85260 » (602) 998-7550

A New Data Storage System USCS Dept. 81, 1737 Walnut Grove,

Decatur IL 62526

PAGE 64

ANALOG COMPUTING

:zgs REC=[CARD c¢nt,ax,bx,cX,ay,by,cy]
p, €
CARD period, npts, persistence

PROC Gen(REC POINTER 1)

BYTE x0, y8, x1, yi, ATRACT=7?
: get new a

r.ax = (r.ax + r.bx) ! r.bx

r.ay = (r.ay + r.byd ! r.by

r.cnt == -1

IF r.cnt - @ THEN ; get new b
r.bx = (r.bx + r.cx) ! r.cx
r.by = (r.by + r.cy) ! r.cy
r.cnt = period

ATRACT = @ ;
X

turn off attact mode

X8 = r.ax RSH 9
y8 = r.ay RSH 9
IF x8 {= yo AND y8 { 96 THEN
x1 = 191 - x0 .
gl = 191 - ye
lot(xa+64, y8) : Plot(x8+64, y1)
Plot(yet64, x8) : Plot(ye+e4, xX1)
Plot(xit64, y8) : Ploti(xi+64, vyl)
FIPlot(91+54, x8) : Plot(yi+64, xi}3
RETURN
PROC KalQ)

CHAR CH=764

Graphics(24)
5etColor(1,06,14) : SetColor(z,e,0)

change for different patterns:

persistence = 2500

period = 18000 p.cnt - period
p.ax= 5221 p.bx=64449 p.cx=3
p.ay=57662 p.by-6448% p.cy=3
copy plot record to erase record
MoveBlock{e, p, REC)

; handle persistence

.e

color = 1
FOR npts = 1 TO0 persistence DO

Gen{pl
ODHNTIL CH®25S

draw patteras until‘key drepressed
MHILE CH - 255 DO

LT}

color = 1 Gen(p)
color = 8 Gen(e)
ob
;5 ignore key and restore screen.
CH = 255 : Graphics(8)
RETURN

CASADAPTER

“IT REALLY WORKS!”

CASADAPTER is a cassette interface that al-
lows you use your own cassette recorder or
stereo with the Atari 400/800/1200®.
CASADAPTER will handle motor control, audio
and data channels.

$34.95

*MAGIC DUMP is a screen dump utility that allows
you to dump a Hi-Resolution graphics picture to a
printer in a variety of different sizes. MAGIC DUMP
is used in the RIGHT hand cartridge slot, so it is
always ready to use. ’
MAGIC DUMP will work with all Epson printers and
Gemini printers, the Centronics 739 printer, and the
Prowriter or N.E.C. printers. $59.95

4 BK RAM BOARD FOR:

THE ATARI 400°©.
$115.00 -

" Buffalo, New York 14221

5 SAR-AN

COMPUTER PRODUCTS

Add %2.50 shipping.

Send check or money order
C.0.D. accepted

New York State Residents
add 7% tax

®Atari is a trademark of
Atari, Inc.

12 Scamridge Curve

(716) 632-3441

Dealer inquiries Invited
*Product of Gemini Software

*GTIA DRAW is a drawing program that uses all the
features of Atari's® new GTIA chip. GTIA DRAW wili
?ive you three extra graphics modes, Mode 9 (16
uminances and one color), Mode 10 (8 luminances
and c?lor). or Mode 11 (16 colors and one lumi-
nance).

GTIA DRAW will allow you to:

® Add text to pictures -

Blank horizontal or vertical lines

Shift the screen in any direction

‘ZOOM'’ in on certain areas of a picture
Fill portions of a screen

Work on two different screens simultaneously -

$49.95

*THE DRUMESISER is a unique sound synthesizing
tool that allows the creation of sounds such as a
drum, piano, organ, harpsichord, or electronic syn-
thesizers. The different types of sounds created are,
limited by the user's imagination and ambition.
THE DRUMESISER comes with an Editor, which
allows you to create your own sounds, a Player,
which will allow you to play the different instru-
ments, and the Memory Options, which make it pos-
sible for you to playback any sounds that you have

recorded.
$49.95

ISSUE 17

ISSUE 18

ANALOG COMPUTING PAGE 91

Introduction

Action!
Part 2.

by Clinton Parker

Part I of this series presented a brief introduction
of Action! data types and control structures using a
small example program. In this part, I will expand on
that example to demonstrate the use of ARRAYs in
the Action! language, and increase the speed at which
it runs.

This increase in speed is accomplished by provid-
ing a specialized PLOT routine instead of using the
one provided in the cartridge library. The PLOT
routine in the cartridge (the same one used by the
OS) was written to be very flexible so that it could
handle all the different graphics modes and check for
illegal values. The problem with this generality is that
it doesn’t plot points on the screen all that fast. Since
all the points plotted in KAL are in graphics mode
24, it seems reasonable to write a PLOT routine just
for that mode. -

All right, we now see that having our own PLOT
routine would be useful, but how do we go about
writing one? First, we’ll start by looking at how the
Atari represents graphics mode 24 data by means of
a simple example. Imagine a small piece of graph
paper 24 by 12. Label the top left square 0,0 and the
bottom right square 23,11. Draw a line from top to
bottom between squares 7 & 8 and 15 & 16, and
then number these divisions starting with 0,1,2 for
the first line; 3,4,5 for the next line (1) and ending
with 33,34,35 for the last line (11). What you should
have is Figure 1. Except for the screen being much
larger, this is exactly how the Atari generates a gra-
phic 24 display. Each 8 square division on the graph
paper represents an 8-bit byte of memory.

11111111122222
012343567890 123486678%86123

. (] 1] .
1 3 4 s 1
2 H 7 8 2
3 9 10 1 3
4 12 13 14 4
s 15 16 17 s
1 18 19 26 6
? 21 22 3 ?
8 24 28 26 8
’ H
16 ®
11 1

91234856789 9%12111111212
012345678

Figure 1.

SN

&N
ol
| o

2222
0123

!

If we plot point 10,10 on our sheet of graph paper,
we note that itis in division 31 and is the 2nd square
of that division (first square of a division is 0). The
computer does a similar calculaton when we tell it to
plot point 10,10. It first determines which byte of the
screen memory we want and then it determines
which bit in that byte is to be set.

Now this isn’t as hard as it looks, because there are
several tricks that can be used to make these calcula-
tions simple. We can calculate the offset of the first
division (byte) of each line by multiplying the
number of divisions (3 for our example, 40 for a
graphics 24 display) by the line number. We can then
calculate which division (byte) we want on that line
by dividing the column by 8 (8 spaces per section, 8
bits per byte). Finally, we can compute which square
(bit) is to be changed by the remainder of this
division. Thus, for 10,10 example we have:

PAGE 92

ANALOG COMPUTING

ISSUE 18

line offset = 30°(10%*3)
division offset = 1 (10/8)
square offset = 2 (10 MOD 8)

‘We now have enough information to design our
PLOT routine. Remember that we are writing our
own routine to increase the speed of plotting points.
Multiplication and division are slow operations, so if
we avoid doing these operations when we are plot-
ting, it will greatly increase the speed of our plot
routine. As turns out, we can avoid doing these
operations by precomputing the line offsets and byte
offsets at the beginning of the program and then use
those offsets in our plot routine. We do this by
storing the precomputed offsets in ARRAYs. In the

plot routine, we'll use Y as an index into the line

offset ARRAY (line) and X as an index into the byte
offset ARRAY (div8).

Walking through.
The PROCedure Init() is responsible for gener-
ating the precomputed line and byte offsets. It starts by
setting up the display with:

Graphics(z4)
SetColor(1,0,14) : SetColor(2,0,8

The next block of code computes the line offsets
(192 of them for graphics mode 24). The variable
scrstart is defined to be location 88. This location
contains the starting address of the screen. The vari-
able lineloc is used for computing the address of
each line. Initially it is set to the value of scrstart
(address of first line), and is incremented by 40 each
time through the loop (remember, there are 40 byte
per line in graphics mode 24) to compute the address
of the next line. The ARRAY line is used to store
each value of lineloc. The next loop computes the

byte offsets for all possible values of X (0 to 319),

and saves them in the ARRAY div8.

PROC Plot() is passed two arguments, X and Y,
which define the point to be plotted. The byte that is
to be modified on the screen is computed by adding
the line address of Y to the byte offset of X as
follows:

pos = line(y) + div8(x)

The BYTE POINTER pos now contains the
address of the byte we want to modify. Next, we
determine if we are plotting a point or erasing one by:

IF color 8 THEN

If color is non-zero, we want to plot a point. This is
done by setting the correct bit of the byte pointed to
by pos. This is what

POasA == 7, mi(X&7)

does. This may look very complicated, but it isn’t.
X&7 computes which bit is to be modified (same as

XMOD 8, but much faster). This is used as the index
for the ARRAY m1. ARRAY m1 is declared to
contain a set of 8 masks. Each mask represents the
bit to be modified for that index. Thus, when
mi(X&7)is or’ed into the byte pointed to by pos, it
sets only the bit to be plotted without affecting the
other bits of that byte.
In a similar manner, if color is zero

POSA == & w2(X&7)

erases point X,Y on the screen. ARRAY m2 is
declared to contain 8 masks which, when and’ed
with the byte pointed to by pos, erase a single bit
without effecting the other bits of that byte.

Using this Plot routine instead of the built-in
routine increases the execution speed of Kal by
abouta factor of 3. Since none of the X values used in
Kal exceeds 255, you can change the declaration of
Plot to be:

PROC Plot (BYTE x, Y3

This will make this version of Kal run about 4 times
faster than using the built in Plot routine, but it will
no longer work for all legal values of X.

If you haven’t followed all of this, don’t worry. I
didn’t go into any details about bit-wise operations
(& and %) to keep the description brief. You can still
enjoy the results (assuming you have an Action!
cartridge). You can even use these two PROCs (Init
and Plot) in other programs that you write yourself.
O

Listing 1.

KoL .act

H
; Copyright 1984 8Y Clinton Parker
5 All Rights Reserved

H

1ast nodified February 18, 1984

;E:E nsc-tcano cnt,ax,bx,cx,ay,by,cyl
P,
canp perxod, npts, persistence

CARD ARRAY line(192)

BYTE ARRAY div8(3I28)

BYTE ARRAY n1(8)=[128 64 32 16 8
sv;snagggv n2{83=IS7F SBF SDF $EF $F7 SF

PROC Ploti(CARD x, BYTE)
BYTE POINTER pos

; get address of byte to modify
POS = line(y) + div8(x)

H uod:f* only one blt of that byte
IF colorite THEN l
posA ==V, mi{x 3
ELSE ; erase
posA ==& n2(x & 7

FI
RETURN
PROC InitQ)

CARD i, scrstart=88
BYTE POINTER lineloc

PAGE 94 ANALOG COMPUTING ISSUE 18

Graphics(24) x1 = 191 - x8 _
s5etColor(l,0,14):5etColor(2,6,0) : yi = 191 - ye
Plot(xn+64, yoB):Plot(x8+64, Y1)
: get starting address of each line on Plot(ya+64, x0):Plotl(yo+64, x1)
; graphics 24 screen Plot{x1+64, yB):Plotix1+64, yl) ;
Plot(yi1+64, x0):Plotiyi1+64, x1) H
lineloc = scrstart FI i
FOR i = 86 TO0 191 DO RETURN
1ineli) = lineloc) :
lineloc ==+ 490 PROC KalQ) ;
D CHAR CH=764
;3 pre—calculate small values divided InitQ)
; by eight

Cchange for different patterns:
FOR i = ;! 10'3}9800 persistence = 2580

~e

dive (i i period = 16888 p.cnt - period

a0 P.ax= 5221 p.bx=64449 p.cx=3
RETURN P.3ay=57669 Pp.by-64489 p.cy=3
PROC Gen(REC POINTER &) ; Copy plot record to erase record

BYTE x8, y@, xi, y1, ATRACT=77 MoveBlock(e, p, REC) '
; get nevw a ; handle persistence

r.ax = (r.ax + r.bx) ! r.bx color - 1

r.ay = (r.ay ¢+ r.byd) ! r.by Fos-ngtf = 1 TO persistence DO

. en
r.cnt ==- 1 UNTIL Enuzss oD

IF r.cnt=@ THEN ; get new b

r.bx = (r.bx + r.cx) ! r.cx draw patterns until key drepressed

r.cnt = period , color - 1 Gen{(p)
IoTRM:T = @ ; turn off attact mode OI,1:olm- =8 Gente)
X8 = r.ax RSH 9 ; ignore key and restore screen
ye = r.az RSH 9 CH = 285 : Graphics(8)
IF x8{=y8 AND y8{96 THEN o RETURN
)

t

VERY LOW PRICES GET YOUR ATTENTION
VERY GOOD SERVICE KEEPS IT

AT RCE WE NOT ONLY PROVIDE OUR PATRONS WITH LOW PRICES ... WE BACK THEM WITH
SUPPORT!!! FACTORY AUTHORIZED SERVICE CENTER SUPPORT FOR OVER TWENTY DIFFERENT
BRANDS OF HOME ELECTRONICS INCLUDING . .. ATARI, FOURTH DIMENSION, MICRO-SCI, SANYO,
FRANKLIN, PANASONIC AND U.S. PIONEER. APPLE WARRANTY SERVICE AVAILABLE.

FACTORY AUTHORIZED SERVICE COMBINED WITH PRICES LIKE THESE:

ATAR!I HARDWARE . MONITORS PRINTERS RCE COMMANDER 2400
LIST RCE GREEN SCREEN STAR MICRONICS SPECIFY 400 or 800 version

600XL COMPUTER ... $199 SCALL : $89 GEMINI 10 SCALL 2400-1
200XL COMPUTER ... $209 SCALL ZENITH12".... $99 GEMINI 15

1400XL COMPUTER .. $599 S$CALL SANYO 12" MODEMS

1450XL COMPUTER .. $CALL BLACK & WHITE HAYES SMARTMODEM 300 .. $209 OUR PRICES ARE
1010 RECORDER $100 $75 SANYO 9~ MICROBITS MPP 1000 ALWAYS GOING
810 DISK DRIVE $429 SANYO 12" INTERFACES DOWN

850 INTERFACE $165 AMBER SCREEN MICROBITS MPP 1100 CALL FOR LATEST
1020 PRINTER $239 ZENITH 12" DISK DRIVES

1025 PRINTER $439 AMDEK 12" REDUCED PRICE

SEND FOR RCE'S FREE ATARI HARDWARE AND SOFTWARE CATALOG
WE ALSO CARRY A FULL LINE OFAPPLE/FRANKLIN AND I1BM COMPATIBLE SOFTWARE!!

ORDER TOLL-FREE .
TERMS:

800-547-249 2 SHIPPING: Add 6% of total transaction for UPS brown {ground) or 9% for UPS blue (air}, Parcel Post,
or any spacial arangements. Minimum shipping charge - $6.00

IN OREGON: (503)479-4711 \'fc.l: gg':l;‘g::;‘.‘::;ﬁm::‘:‘;52::' Tor persorat checksto choa, 1 er™ "“"'"“"c"" .
R D$: 10% restocking charge on all returns or .nchanus. No refunds on opened software. Call first,
RALSTON CLEARWATERS ELECTRONICS e S A by
. . . Apple trained and certified technicians. For any technical service call them for instant advice or questions
ALL BRANDS ARE REG ISTE R ED TR ADE MAR Ks 2‘5"?‘::‘!‘5":‘("4rmh;:l::l:s&nq:;’li,l:‘gﬁg;amud discount repair and reconditioning service,

FOR CUSTOMER SERVICE CALL: {503)479-4711 or (503)479-4150 - We have been repairing electronic equipment for 12 years and love it!

CIRCLE #148 ON READER SERVICE CARD. !

