ASSEM. DOC - dOcumentation for
ASSEM. ACT
NOT copyrighted at any time.

Frogrammed by
Allen D. Doum

Downloaded from
THE SOFTWARE CELLAR
(714) 772-9671

ASSEM. ACT is a psuedo—assembler
designed as a coding and
daocumentation aid for machine
language coding within the
ACTION! programming language.
Use of ASSEM will require
knowledge of machine language and
the ACTION! language. -
I recommend:

PROGRAMMING THE &502

by Rodney Zaks (Sybex)

IR AEE VR R VR VIR BR HR AR S MR AR BB CHR WR MR SR ER WK ER R a3

IMPORTANT: The ACTION! compiler
should be set to CASE SENSITIVE: Y
ASSEM. ACT will NOT work otherwise.
ACTION! compiler will flag
incarrectly spelled op-codes and
addess codes. It will NOT flag
invalid combinations or addresses.

WE WE AER R R EE R

PASSEM. ACT” is the recommend file
name for the psuedo-assenmbler.

MR R

This documentation file contains
PTYOSE” , an example program. Just
compile this file and RUN. The
START button will return you to the
ACTION! moniter.

R MR WR R R

For the instuctions below you
should print a copy of ASSEM to
refer to.

Wy WR SE

- Example #13

51 INCLUDE “DIi:ASSEM.ACTY
12 BYTE a,b,result

s2 CODE

s d Lda AR a 13 1st addend
iS5 Clc $1 clear carry
) Adc AB L 33 2Znd addend
7 Sta AB result i3 store sum
18 ENDC

IN example #1 line one loads ASSEM.
The word "CODE” in line three
starts ASSEM; the word “ENDC” in
line eight stops it.

Lines four thru seven contain
psuedo—-assember instuctions that
the ACTION! compiler will convert
to machine language.

WE VR AER SR N N AR SR

Sytax of ASSEM may be free—form.
However, that misses the point.
The syntax of the example is

ma AR R

IR WS BE VIS W WS WIR IR AR MR WE SR AR AR R MR MR R SR SR ME R B SR

MR WA AR IR R WR WR eR an -

s a ms wR

s wn

an as an uz

N WE ER eR

W VR RE MR AES R EE AN WE WA EE WS WE Wk

should e 1ndented withilin
a CODE —~ ENDC pair.

(2) Each line should have only
cne instuction.

(2) Op-codes should appear in a
single column.

(4) Addessing codes (if required)
appear after the op code
separated by a space.

(5) Arguments follow op—codes and
addressing codes separated by
a space. Arguments can be
a variable name or & numeric
censtant. HEX values may be
used, but negative numbers may
not.. Arguments may take the
farm ?x+n” where » is &
numeric constant or & variable
and n is a numeric constant.

(&) Each instruction should have
a comment which begins with
the number of bytes used in
the instruction €1,2,3)

(7) Additional comments may (and
should?) follow the byte count.

ADDRESSING notes:

For absclute, page zerc, and all
indexed and indirect modes an
ACTION variable name or & numeric
address may be used as an argument.
POINTER values and array names
should used with caution since the
value of the pointer will be
change, not where the pointer
points. If an array is to be used
by ASSEM (but not in the ACTION
code itself) it may be defined as
fallows:

Example #2

BYTE xarray = A 01 2 245 6 0
BYTE indew

CODE ‘
Ldx AB index | 3
l.da ABx xarray 3
ENDC

This will load the accumulator with
value from “sarray” pointed to hy
Yindex” as will: Lda AB xarray+n,
where n is & numeric constant.

Relative addressing is harder to
use. For forward branches the

of bytes in the instuctions skipped
(including neither the target

nar the branch instruction itself)
must be the argument. This is the
reason the the byte count for each
instruction should be included in
the comments. Backwards branching
should include both the target and
branch instructions in its
argument, however as negative
numbers may not be used, this
should be presented as the one byte

T3

-z

WE WE R BN WE MR MIR SR RS \EE B8 SR e

IR VT VIR ARE R R MIE CEE WS XX CED AR SN SR Wl s

IR MR R RSB SR @R

g ww

e e we ey

PROGRAMMING NOTES

Case sensitive is reqgquired since
the word “AND” is both an ACTION!
reserved word and an assembler
instruction. Op—codes are all
standard assembler instuctions
with the lst letter capitalized
and the other two lower—case.
Addessing codes are two upper—case
letters that may be followed by
a single lower—case modifier.
Without this distincticon the
instruction ”"Increment X7 (Inx)
woluld conflict with the address
code "Indirect X7 (INx).

Abberations:

1. The Ldx instruction has &
seperate address code for "Abscolute
indexed Y” (ABi instead of ARy).

2. The address code *IMiY is used
for immediate mode on four
instructions (Ldx,Ldy,Cpx, Cpy).
These abberations are due to the
imture of the €502 machine

language and of the

psuedo-assembler itself.

A single mode (PZ2i) was included
for page zero indexed since it
covered all uses of that mode.

PZx and F2y have been included for
completeness.

One final note. ASSEM is not by any
means, and is not ment to be, &
full assembler. It is an aid to
documenting and coding of code
blacks. Hopefully future versions
of ASSEM (and of ACTION!) will
allow expanded use.

Example #32 - Compile this file
and RUN.

TWOSE —~ program to cutput 256 colors
ta the screen at cne time.
NOT copyrighted at any time by
Allen D. Doum ar ACAOC.

INCLUDE “D1:ASSEM.ACT” jpsuedc—assembler

MODULE

BYTE dlic=%$FQ, sDLI counter
wsync=%D404, sDLI line sync
sdmec t1=8$22F , sDMA control (shadow?
dmactl=%D400, sDMA cantral thardware)
nmien=%D40E, s NMI enable
consal=8DOLF, sconsale buttons
colbk=¢$D0O1A, jbackgroud calor
gprior=$26F ipriority & GTIA modes

CARD vdslst=$200, $DLI vector
vvblkd=$224, svBl deferred vector
sdlstl=%230, sdisplay list pointer (shadow?
dlist=8D402, sdisplay list pointer (hardware)
savvbd, isave area VBI vector

savdl jsave area display list pointer

BYTE POINTER dl=$202& sdisplay list

FROC builddl (2 3 build display list & screen memory
CARD POINTER ¢
BYTE FOINTER b
CBYTE 1,11,
jscreen memary (40 bytes!)
b=screen
FOR i=0 TO 14 STEFP 2 DO
j=i+i LSH 4 '
b=
b==+1
bt=j
ba==+1
il=i+1
J=il+i LSH 4
b=
(et 3]
j=il+il LBH 4
b=
b==+1
b=
h==+1
QD
jdisplay list (582 bytes!!)
be=cil
b =470 124 blank lines
ey g
b =%70
==+
b =$70
bisseg
FOR i=0 TO 15 DO
FOR j=0 TO 10 DO

b =%64F sscreen memory LME
c=b+1
c"=screen
b=c+2
oD
b =$CF f$interupt call + LMS
c=h+1
C =screen
b=c+2
oD
b =%41 iVE jump
c=b+1
' ¢ "=dl
RETURN
PROC VRI() svertical bklank interrupt
CODE
Ldsx IM O i2 reset DLI counter
Sta FPZ dlic $2
Jwmp IN savvbd 13 exit VBI
ENDC
FPROC DLIC) idisplay list interrupt
CODE
Phia i1 save accum.
Inc P2 dlic $2 increment counter
Lda PZ2 dlic i2
Asl AC 31 multiply ¥ 16
Asl AC 51
Asl AC $1
fsl AC B!
Sta AB wsync $3 wait end of line
Sta AB colbk i3 change color
Pla il restore accum.
Rti 31 exit DLI

ENDC

PTG twabe()
- builddl()

Some L =0
dmactl=0

aavvbd=vvhlid

savdl=sdlstl
gprior=64
nmien=192
scdlstl=dl
dlist=dl
vadslst=DL.1
vvhblkd=VEI
sdmctl=$22
dmactl=%$22

RETURN

FROC noascreen()

sdmctl1=0
dmactl=0
gprior=0
nmien=64
sdlstl=savdl
dlist=savdl

vvh:lkd=savvbd

sdmctl=%22
dmactl=%$22

RETURN

goscreent()
Do
conscl=8

]

»Lurn QT T screen

isave VBRI address
isave display list
$GTIA mode

jenabdle interrupts
idisplay list

sdisplay list interrupt
svertical blank interrupt
$turn on screen

restore system screen
sturn of screen

jstop GTIA mode
sstop DLI
jrestore display list

svertical blank interrupt
fturn on screen

imain proc

UNTIL consol$7

oD
noscreen()

RETURN

