RamXE and RamXL DOC

This is the documentation to RamXE, and RamXL. The
CIS files are RAMXL.ACT, RAMXL.ASM, XLEBAS. XMO, RAMXE.ASH,
RAMXL . XMO, RAMXE.XMO, and XEBAS. XMO.

RAMXL . XMO is an USR routine for Atari BASIC. The file
should be renamed RAMXL.OBJ and (L)oaded from the DOS menu.
(It could alsc be named AUTORUN. SYS, which will cause it ta
automatically load when DOS is booted.) RAMXL is actually
an interrupt handler that allows programs to bank the 0S
cut on XL/XE computers without crashing the system.
Normally when the 0% is banked any interrupts will crash
the system, RAMXL takes the place of the normal 0S
interrupt code when the 0S8 is cut. When an interrupt
cccurs RAMXL is called, then it banks the 0S5 back in and
calls the 0S8 interrupt routine. This allows VBLANK,
keyboard, and DLI interrupts to occur when the 03 is banked
cut. The first USR routine in RAMXL is called to init the
new interrupt code. This is done by the statement:

A=USR(1608)
Once the new interrupt routines are installed you may call
the cother routine to move data to and from the RAM under
the 05. The format of the moveblock call is:

A=USR(1877, <scurce address)>, <destination

address’, <length of movelr).
There are three RAM blocks under the 08 that are usabile,
they are:

$CO00 to $CFFF 43182 ta 53247

$DR00 to $DFFF 55296 ta 57343

$E400 to $FFF9 58368 to €5529
This adds 13k to the usable RAM on XL/XE computers. The
file XLBAS. XMD is & short BASIC program that shows one use
for RAMXL. It reads in a text file from the disk, the
stores it in the RAM under the 0S. When you press a consol
key, the screen is loaded from the extra RAM by RAMXL.
This allows very fast screen redraws.

NOTE: RAMXL will NOT wark with 0S/4+ DOSXL, since DOSXL
also uses the RAM under the 0S.

RAMXL.ACT is an Action! equivilant tc RAMXL. It
allows use of the RAM under the 05 from Action! by adding =&
new MoveBlock routine.

RAMXE. XMO is alsc an USR for Atari BASIC, but it
allows access to the 64K of banked RAM in the 130XE. To
use RAMXE first check to see if the computer is a 130XE, by
the statement:

A=USR(1536) .

If A=0 then the program is running on a 130XE, otherwise it
is NOT & 130XE. The extra RAM is accessed by the
statement:

A=USR(1577, <scurce addressr, <scource bank’,
<destination address?>, Jdestinatiocn bank?>, <length of
moverd .

The RAM in the 130XE is organized into 5 banks numbered ©
to 4. Each bank is 16K (16384 bytes) long and is located
in the middle 16K of RAM ($4000 to $7FFF, 16384 to 32767).
Bank O is the "normal” RAM that is available when the
machine is turned on, the other 4 banks are accessable by
using RAMXE. The file XEBAS.XMO is a short demonstation of
how to use RAMXE. It reads in a text file, then saves it
into the banked RAM. When the conscl keys are pressed, you
page thru the text, as it is moved from the banked RAM to
the screen RAM. '

NOTE: RAMXE is NOT compatible with Atari DOS 2.5, since
both use the banked RAM in the 130XE.

MODULES RAMXL . ACT

i Copyright 1385 by Daniel L. Moore.
§ RAMXL may not be =cld, bwt may be
i freely copied and distributed.

Suppart routines for the Yextra
14K of FAM in Xis that iz located
undeyr the O3 ROM.

When an interrupt cccurs and the 05
is banked cut, the RAMXL will bkank
the 0% in, and then call the ROM OX
interrupt handler. UWhen contral
returns from the ROM 05, the 0% is
tanked cut, and control is returned
toe the criginal program.

R WER IR VN R WE AR R e R

finly the NMI and IRQ vectors are
supported, since the XL hardware banks
the O0S ROM in automatically when &
chip reset oaccurs (the RESET button).

-y ex wn e

DEFINE INT_VECTOR = “$FFFQ”

CARD NMI_Vector = $FFFA,
RES_Vectar $FFF(,
IRQ_Vector = $FFFE,

Return_Addr

BYTE Forti = $D30O1,
NMIEN = $D40E,
X_Storage

PROC OS_In=%() ; ROM 05 resident

§

$AD PoriR § LDA PortR

$0% $01 i ORA #¥01 toggle 05 bit toa ON
$8D Farth § STA PortBR

60 i RTS

FPROC O5_Out=%(); ROM 0% not resident

$AD PortR 3 LDA PortiB

2% $FE i AND #$FE toggle 05 bit to OFF
3D PortR i STA Portk

$60 $ RTS

FROC JIMP_Vectar=¥{)
$4C $FFFF 3 JIMP $FFFF

FROC Handle_Interrupt=¥()
i Handle the interrupt that just accured.

$8E X _Storage
+AA
$20 05 _In

ZTX X_Storage
TAX A=the interrupt number
JaR 05 _In

‘@ ey E=

Get the address of the desired interrupt routine
$BD INT_VECTOR LDA INT_VECTOR, X
$80 IMP Vecteor+d ST WP VECTOR

-n

-a

$BD INT_VECTOR+1 5 LDA INT_VECTOR, X
8D JIMP_Vector+2 § STA JIMP_VECTOR+1

Setup the stack to fake an interrupt and cxll
the 0% ROM interrupt code.

wn en

i First the return zddress
$AD Return_Addr+1l; LDA Return_Addr+l

$4& 3 PHA
$AD Return_Addr 3§ LDA Return_Addr
$4& 3 PHA
i Then the proccessor status register
58 5 L1 enable IRQs, for Stage Z VBLANK
08 3 PHF

$4C IMP Vectar i JMP IMP_Vector

PROC Return_ Here=#(i

Return here after the ROM 0S interrupt code runs
Bank the 05 out, the return ta the

criginal program.
$20 05 _0Out

$AE X_Stormge
%68

$40

R WR eR

JER 05_0ut

LDX X_Stcrage

PLA fram NMI.Handler or IRQ.Handler
RTI

WR Gy R ws

PROC NMI_Handler=¥%{()

Handle NMIs that occur while the 0% is
banked cut. Save the A reg, then get

the vector number and call Handle_Interrupt.
43 5 PHA

$AS $0A $ LDA #8048

$#4C Handle_Interrupt 3§ IMP Handle_Interrrupt

wa wu ma

PROC IRQ_Handler=%()
$4& i PHA
$AT $0E 3 LDA #$04
$4C Handle_Interrupt § IMP Handle_Interrrupt

End of actual interrupt code.
All thet is left is installing
the vectors to the routines.

Mtz cE R Wk

FPROC Install_CharSeti}
Copy the ROM char set atl $E000 to $EIFF
to the FAM bank, so that characters dao
et flicker when the RAM il accessed.
If this i=s done, do not use the FHAM
Trom $EO000 to SEIFF (A7344 to BRI&ET).
BYTE FOINTER where
BYTE tewmp

WR R WD R ceB

FOF where=$E000 TO $EIFF
0o

3 _Ind

temp=where”

e Out o

whiere " =temm
iy

% _Indo
RETURN

FROC Install Interruptsd)

Feturn_Addr=Return_Hereji Set the return address pointer

NMIEN=0 3§ Turn ail MMI interrupts off.
78 $ SEI Turn 1l IRQ interrupts off.
05_0Outdd

Install the new interrupt routines
vectors at $FFFA to $FFFF under the
05 ROM.
NMI _Vector = NMI_Handler

IRQ_Vector = IRQ_Handler

way ex -z

0S_In()

$5& $ CLTI Turn IRQs back on.
NMIEN=%$4035 Turn NMIs back on.

Install_CharSet()
RETURN

50000 eee0s apaon somen aeees Teese Seest wme Sesse boues Sorme $S4es Tesse SUSS deven Bebas Seabe Seess Seten LA Feueh Sewe sommd Feaee ey S Gmer SHére Miye Seurd Souim oS e Gdbrn SHMNS Soben Sabea

Now the routine that lets you get to
the RAM that is under the 0S.
There are actuslly Z memcry areas
present.:
4k at $CO00 to $CFFF, 491582 to 8§
10K &t $DA0O to $FFFF, 55296 to &

-

4
3

in i
i R
n~

The lust & bytes of the 10K area are not
usable, since that is where the interrupt
rautines are located. Therefore do not
use any RAM above $FFFS (65829) or you
will crash the system.

eveet e mmacd Savas Senen Semes et 000n dmms MR I 48000 BOVSS SHONE Shues Seete b SeETE SHS SHFES S e Sbbem SeSes Seses See Subin SISt deiet saree Seeee Sede Seve Sbei G s PelS

W ME VR WS R 6 R WE @R R WE MR e

FROC MoveRlockXL(BYTE POINTER dest,scurce, CARD size)
$ This is & version of MaveRlack that lets
3 you use the extra RAM in XLs.

035 _0utdl
FOR dest=dest TO dest+size
DG
dest."=scurce”
SCUT Ce==+]1
oD
Q5 _1Inc
RETURN

MODAULES For user.

