THE
e

EEE—

TOOLKIT

An Essential Aid for ALL ACTION!
Programmers.

Precision
Software Tools

ACTION! ToolKit version {.00

A Reference Manual For

The ACTION! ToolKit Diskette

The programs and manual comprising the ACTION! ToolKit
are Copyright (c) 1984 by

Optimized Systems Software, Inc.
Precision Software Tools
1221B Kentwood Avenue
San Jose, CA 95129
(408)446-3099

All rights reserved. Reproduction or translation of any part of this work
beyond that permitted by sections 107 and 108 of the United States
Copyright Act without the permission of the copyright owner is unlawful.

ACTION! ToolKit

version 1.00

Table of Contents

Introduction
ABS.ACT
ALLOCATE.ACT
CHARTEST.ACT
CIRCLE.ACT
CONSOLE.ACT
10.ACT
JOYSTIX.ACT
PMG.ACT
PRINTF.ACT
REAL.ACT
SORT.ACT
TURTLE.ACT
GEM.DEM
KALSCOPE.DEM
MUSIC.DEM
SNAILS.DEM

WARP.DEM

12

13
17
19
26
28
30
31
31
32
33

ACTION' ToolKit veri.00 Page {

Introduction
Welcome to the Programmers’ Tool Kit. This diskette contains routines
written in ACTION! which extend your ACTION! programming capabilities.
The following is a list of the files on the disk, together with a short
description of what each file does.
ABS.ACT - a routine which will return the absolute value of an INT.

ALLOCATE.ACT - routines which allow dynamic runtime memory
manipulation.

CHARTEST.ACT - routines which perform various tests and functions
on characters.

CIRCLE.ACT - a circle drawing routine using neither Sine nor Cosine.

CONSOLE.ACT - a routine which both debounces the console keys and
allows you to tie routines into them.

10.ACT - routines which implement some advanced I/0 operations.
JOYSTIX.ACT - routines which make interpreting joystick input easier.
PMG.ACT - player/missile graphics routines.

PRINTF.ACT - an extended version of the ACTION! Library ‘PrintF’.
REAL.ACT - routines which allow you to use floating point numbers.
SORT.ACT - QuickSort for BYTE, CARD, INT, and string data.
TURTLE.ACT - an implementation of turtle graphics, ala LOGO.
GEM.DEM - a four person game written in ACTION!.

KALSCOPE.DEM - a colorful demo of ACTION!'s speed.

MUSIC.DEM - a demo which creates a playable organ.

SNAILS.DEM - a two person game translated from BASIC to ACTION!.

WARP.DEM - a one person game which uses many of the advanced
constructs and abilities of ACTION!.

There are also some files with the extension ‘.DMn’) where 'n’ is a number.
These are demos of the routines in a specific file, designed to help you
better understand the procedure required to make use of the Tool Kit
routines.

Page 2 ACTION! ToolKit ver .00

Note: In most of the ACTION! source files there are global variables
and procedures which contain the underline character (’_‘). These
variables and routines are internal to the Toolkit routines, and should be
neither called nor accessed by you unless you are positive you know for
what they are used.

To Boot This Disk simply boot your DOS disk with the ACTION! cartridge
inserted, and then put this disk in your drive. THIS DISKETTE DOES
NOT HAVE DOS ON IT AND WILL NOT BOOT DIRECTLY.

INT FUNC Abs(INT n)

Purpose: To return the absolute value of an INTeger.
Params: n - the INTeger whose absolute value is returned.

Description: This function will return the absolute value of the INT
passed to it.

ACTION! ToolKit ver1.00 Page 3

ALLOCATE .ACT

The routines in this file allow you to allocate and free blocks of memory at
runtime. If you want to use this capability, you must first call the
Alloclnit routine. Alloclnit expects a global CARD variable called EndProg
to contain the address of the end of your program. To do this, compile
your program, and then type the following in the Monitor immediately after
compiling:
SET EndProg=# [RETURN]
Now you can run your program.

Technical Note: The Alloc and Free routines operate on a ‘free list’. This
list gives the location and size of every free memory block. Alloc simply
removes a block from the free list, and Free puts a block back into the list.

PROC AllocInit(CARD p)
Purpose: To set up the free list and initialize the allocation routines.
Params: p - the address of the first free memory location in memory.

Description: This routine is used to create the free list so that
Alloc and Free may be used. See the introduction to this section for
instructions on its use.

Note: If you are planning to use P/M graphics and/or bit-map graphics,
you should enable the P/Ms and be in the most memory intensive
graphics mode you plan to use when you call Alloclnit, since it
considers all memory up to MEMHI ($2E5) to be free space.
(Alternatively, you can merely change the value of MEMHI.)

Page 4 ACTION! ToolKit veri.00

CARD FUNC Alloc(CARD nBytes)

Purpose: To allocate a block of memory of a specified size, returning
the address of that block.

Params: nBytes - the size in bytes of the block to be allocated.

Description: This routine allows you to reserve a block of memory
‘nBytes’ long. The starting address of the block is returned, so, for
example, you could use it to allocate space for a large array at
runtime, after you’ve determined the size array you need:

PROC Test()
CARD size
BYTE ARRAY bigarray
Print(®*Size of Array)) *)
size=InputC()
bigarray=Alloc(size)
RETURN

Note: the smallest block you can allocate is 3 bytes.

PROC Free(CARD target,nBytes)

Purpose: To free a block of memory which has previously been reserved
using the Alloc function.

Params: target - the starting address of the block to free.
nBytes - the length in bytes of the block to free.

Description: This procedure allows you to return a block of memory
used by Alloc to the free list.

PROC PrintFreelist(

Purpose: To print out the free list.
Params: none

Description: This procedure will print out the current free list, and
should be used mostly for diagnostic debugging reasons.

ACTION! ToolKit ver1.00 Page §

CHARTEST.ACT

The routines in this file are very diverse, including:

IsAlpha - a character test
IsUpper - a character test
IsLower - a character test
IsDigit - a character test
ToUpper - a character manipulation
TolLower - a character manipulation

BYTE FUNC IsAlpha(BYTE c)

Purpose: To test a single character to see if it is a letter.
Params: c - the character to be tested.

Description: This function checks ¢ to see if it is an alphabetic
character. Ifitis, a 1 is returned; otherwise a @ is returned.

Y UNC Is! r(BYTE ¢c)
Purpose: To test a single character to see if it is an uppercase letter.
Params: ¢ - the character to be tested.
Description: This function checks ¢ to see if it is an uppercase
alphabetic character. If it is, a { is returned; otherwise a @ is
returned.

BYT ower(c)
Purpose: To test a single character to see if it is a lowercase letter.
Params: c - the character to be tested.
Description: This function checks ¢ to see if it is a lowercase

alphabetic character. 1f it is, a { is returned; otherwise a @ is
returned.

Page 6 ACTION! ToolKit ver1.00

BYTE FUNC 1sDiqit(BYTE c)

Purpose: To test a single character to see if it is a digit.
Params: c - the character to be tested.

Description: This function checks ¢ to see if it is a digit (8 - 9). If it
isy a { is returned; otherwise a @ is returned.

BYTE FUNC ToUpper(BYTE ¢)

Purpose: To change lowercase letters to uppercase.
Params: ¢ - the character to put into uppercase.
Description: This function will return the uppercase of the character

passed to it. If the character is already uppercase, or is not
alphabetic, then the character is returned unchanged.

BYTE FUNC Tolower(BYTE c)

Purpose: To change uppercase letters to lowercase.
Params: ¢ - the character to put into lowercase.
Description: This function will return the lowercase of the character

passed to it. If the character is already lowercase, or is not
alphabetic, then the character is returned unchanged.

ACTION! ToolKit ver1.00 Page 7

CIRCLE.ACT
The circle drawing routine in this file is somewhat special, since it does
not need to compute Sine or Cosine, and so is very fast. One caveat,

however, this routine does no screen bounds checking, so either make sure
your circle will fit on the screen, or add your own bounds checking.

R rele(YTE y,r;c)
Purpose: To draw a circle of specified center, radius, and color.

Params: x - the horizontal position of the center of the circle to be
drawn.
y - the vertical position of the center of the circle to be
drawn.
r - the radius of the circle.
¢ - the color of the circle.

Description: This procedure allows you to draw a circle of specified
center, radius, and color. The system variable color is set to ¢, so ¢
should not be the actual color number as wused in the
SetColor procedure, but rather the ‘color’ value in the current graphics
mode which corresponds to the SetColor register which contains the
color you want to use.

Page 8 ACTION! ToolKit ver1.00

c SO CT

The routines in this file allow you to hook the execution of a specific
routine to the pressing of one of the console keys (START, SELECT,
OPTION). Before you use this capability you must call the
InitConsole procedure as follows:
InitConsole()

Once you have done this you need simply equate the address of your
routine to one of the console Keys. You can do this in the following
manner:

1 - write your routine (it can have no parameters).
2 - call the InitConsole procedure.
3 - equate the name of the console key you wish to your routine.

The following example should help clarify this procedure:
INCLUDE "CONSOLE.ACT®

PROC DoStart()
PrintE("START Pressed®)
RETURN

PROC DoSelect()
PrintE(*SELECT Pressed")

RETURN

PROC DoOption()
PrintEC"OPTION Pressed")

RETURN

PROC Main()
InitConsole() jset up console handler
Start=DoStart ;DoStart when START
Select=DoSelect ;DoSelect when SELECT
Option=DéOption ;DoOption when OPTION
DO OD

RETURN

ACTION! ToolKit ver1.00 Page 9

19.ACT

The routines in this file allow you to do advanced disk file manipulation
from an ACTION! program. Operations implemented are:

Rename a file Format a diskette
Erase a file Block Get of data from disk
Protect a file Block Put of data to disk

Unprotect a file

Note: The first four of the above operations (those involving a disk file)
require that the file name have the ‘Dn:’ (n=1-8) device specifier
prepended to the actual file name; otherwise you will get a ‘Nonexistent
Device’ error,

PROC Rename(BYTE ARRAY filename)

Purpose: To rename a disk file.
Params: filename - the old and new file names.

Description: This routine will rename the specified disk file, and
should be used as follows:

Rename (*Di : TEMP! .ACT TEMP.ACT")
This example will rename TEMP{.ACT on drive { to TEMP.ACT. Notice
that the new name follows the old name in the file name string, with
only a space or comma separating the two. Note that the new name may
NOT have a device specifier.

rase(BYTE ARRAY filename)
Purpose: To erase a disk file.
Params: filename - the file to erase.
Description: This procedure will erase a disk file and should be used
as follows:

Erase(*D2:JUNK.ACT*)
This example will erase JUNK.ACT on drive 2.

Page 10 ACTION! ToolKit veri.00

PROC Protect(BYTE ARRAY filename)

Purpose: To protect a disk file.
Params: filename - the file to protect.

Description: This will protect a disk file, and should be used as
follows:

Protect("D:x, %)
This example will protect all files on drive 1.

PROC UnProtect(BYTE ARRAY filename)

Purpose: To unprotect a disk file.
Params: filename - the file to unprotect.

Description: This procedure will unprotect a file which has been
protected using either the Protect routine above, or the DOS XL
PRO command. It is used in the same way as Protect above.

PROC Format(BYTE ARRAY DriveSpec)

Purpose: To format a diskette.
Params: DriveSpec - the drive containing the disk to be initialized.

Description: This routine allows you to initialize disks, and should be
used as follows:

Format(*D2:*)
This example will format whatever disk is in drive 2 (unless of course
it has a write protect tab on it).

CARD FUNC BGet(BYTE chan CARD addr,len)

Purpose: To read a block of binary or text data from a specified
device.

Params: chan - the channel.
addr - the address at which to put the data.
len - the number of bytes of data.

Description: This function allows you to read a block of data,
returning the actual number of data bytes read (this will be different
from len if End-Of-File was reached before ‘len’ bytes were read).

ACTION! ToolKit veri{.00 Page {1

R ut(n CA ddr,len)

Purpose: To write a block of binary or text data to a specified device.

Params: chan - the channel.
addr - the address from which to get the data.
len - the number of bytes of data.

Description: This procedure allows you to write a block of data, and is
the complement to BGet.

Page 12 ACTION! ToolKit ver .00

JOYSTIX.ACT
INT FUNC HStick(BYTE port)

Purpose: To return the horizontal reading of a specified Jjoystick.

Params: port - the port of the joystick whose horizontal reading is
desired.

Description: This routine reads the value of a joystick and returns the
following values:
=1 = horizontal movement left
8 - no horizontal movement
1 - horizontal movement right

This routine is much easier to use than the Stick function in the
ACTION! Library,

INT FUNC VStick(BYTE port)

Purpose: To return the vertical reading of a specified joystick.

Params: port - the port of the joystick whose vertical reading is
desired.

Description: This routine reads the value of a Jjoystick and returns the
following values:
-1 - vertical movement up
- no vertical movement
1 - vertical movement down

This routine is much easier to use than the Stick function in the
ACTION! Library.

ACTION! ToolKit ver1.00 Page {3

PMG.ACT

The routines in this file allow you easy implementation of the ATARI's
player/missile (hereafter called P/M’s) graphics capabilities. To give you
a sense of the extent of this implementation, we’ll give a quick synopsis
of the routines before going into them in detail:

PMGraphics - Set up P/M graphics
PMSetColor - Set a P/M’s color

PMAdr - Give the address of a P/M
PMClear - Erase a P/M

PMMove ~ Move a P/M

PMCreate -~ Create a P/M

PMHi t - Test the P/M collision registers
PMHi tCir - Reset the collision registers
PMHPos - Horzontal positions of P/Ms
PMVPos =~ Vertical positions of P/Ms
Graphics - A modified Graphics

Introductory Notes: In several of the routines in this section you will see
the parameter num, referring to the number of the player/missile. This
number is assigned values as follows:

8 - player @ 4 - missile @
1 - player 1 5 - missile 1
2 - player 2 6 - missile 2
3 - player 3 7 - missile 3

In some cases only the values @ - 3 will be valid or make sense.

PROC PMGraphics(BYTE mode)

Purpose: To turn P/M graphics on or off.
Params: mode - determines which P/M mode.

Description: This procedure is very much like the Graphics routine in
the ACTION! Library, except that this one controls player/missile
graphics. The mode values are as follows:

@ - turn off P/Ms
{ - single line resolution P/Ms
2 - double line resolution P/Ms

Note: This procedure moves all the players and missiles off the
screen, but does not erase the P/M memory. To erase it, use PMClear.

Page {4 ACTION! ToolKit ver1.00

PROC PMSetColor(BYTE num,hue,lum)

Purpose: To set the hue and luminance of a player and its associated
missile,

Params: num - the player number (9-3).
hue - the hue for the player.
lum - the luminance for the player.

Description: This procedure is very much like the SetColor Library
routine. In fact the colors corresponding to hue and lum are exactly as
shown in the ACTION! manual under SetColor. The difference is that it
allows you to set the color of a P/M, not a playfield.

CARD FUNC PMAdr(BYTE num)

Purpose: To return the address of a given P/M‘s memory block.

Params: num - the P/M number.

Description: This function returns the starting address of the memory
block allotted to the P/M specified by num. Since the missiles all

occupy the same block of memory, num values 4 - 7 will all return the
same address.

PROC PMClear(BYTE num)

Purpose: To clear out the memory block of a specified P/M.
Params: num - the P/M number.

Description: This procedure zeroes all the bytes in the memory block
of the P/M given by num. If itis a missile, only that part of the block
allotted to the missile will be zeroed.

PROC PMMove(BYTE num,x,y)

Purpose: To move a specified P/M

Params: num - the P/M number.
x = horizontal position to which to move the P/M.
y - vertical position to which to move the P/M.

Description:This procedure allows you to move P/Ms easily and quickly.
You simply need to specify the P/M number and the i,y position to
which you want it moved.

ACTION! ToolKit ver1.00 Page {5

PMCreate(BYTE num BYTE ARRAY pm BYTE len,width,x,y)
Purpose: To allow easy creation of a P/M.

Params: num - the P/M number.
pm - the array which contains the P/M's shape data.
len - the length of the array pm.
width - the width of the player.
x - the starting horizontal position of the P/M.
y - the starting vertical position of the P/M.

Description: This routine allows you to create a P/M. You need to
pass it the P/M number, the name of the array which contains its
shape, the length of that array,the P/M’s width (1=single, 2=double,
4=quadruple), and the starting x,y position of the P/M.

BYTE FUNC PMHit(BYTE num,cnum)

Purpose: To determine whether a specified P/M has collided with a
specified player or playfield.

Params: num - the P/M number.
cnum - the player or playfield to test for a collision.

Description: This function allows you to see if a given P/M has
collided with a specified player or playfield, returning a 1 if there is a
collision, a @ otherwise. The num values are described in the beginning
of this section, but the cnum values need to be explained:

8 - player @ 8 - playfield @
1 - player 1 9 - playfield |
2 - player 2 18 - playfield 2
3 - player 3 11 - playfield 3

The playfield numbers 0-3 are the same as those used in the
SetColor Library routine to set playfield colors.

YTE PMHitClr
Purpose: To clear the P/M collision registers.

Params: Not Applicable.

Description: By using the statement: PMHitClr=0 you can clear the
P/M collision registers. You should do this just before you do
something which might result in a collision (such as PMMove), or you
may have information from previous collisions still in the registers.

Page 16 ACTION! ToolKit ver{.00

BYTE ARRAY s (8)
Purpose: To keep track of the current horizontal positions of the P/Ms.
Params: The element number of the array (same as P/M number).

Description: By accessing an element of this array you can find out the
current horizontal position of any P/M. Simply use the P/M number as
the array element (e.g. PMHPos(3) will give the horizontal position of
player 3). The values in this array should not be changed by you.

BYTE ARRAY PMVPos(8)

Purpose: To keep track of the current vertical positions of the P/Ms.
Params: The element number of the array (same as P/M number).

Description: By accessing an element of this array you can find out the
current vertical position of any P/M. Simply use the P/M number as
the array element (e.g. PMVPos(5) will give the vertical position of
missile). The values in this array should not be changed by you.

PROC Graphics(BYTE mode)

Purpose: To turn off P/M graphics whenever changing bit-map graphics
modes.

Params: mode - same as in the Graphics Library routine.

Description: This procedure simply turns off the P/M graphics every
time you change bit-map graphics modes, and replaces the normal
Graphics Library routine. This routine is necessary, for the P/M
graphics memory is allocated just below screen memory, so changing
screen modes could wipe out part of the P/M space. If you are changing
between graphics modes which use the same amount of memory, you can
comment out this procedure from the source listing and so Keep
Graphics just the way it was.

ACTION! ToolKit ver1.00 Page 17

PRINTF.ACT

The following two procedures are extensions of the Library PrintF routine,
and allow you to control field size and justification as well as the type of
data output.

The following routines are internal to the PRINTF routines, and should not
be used by you unless you are sure of their function:

BYTE FUNC PF_TolLower

BYTE FUNC PF_IsDigit

CARD FUNC PF_Nbase

ROC PrintF(ARRAY control CARD ci,c2,c3,c4,c5,c4)
Purpose: To allow formatted output of data.

Params: control - the string which determines the format of the
following data.
ci thru cé - the data to be output

Description: This procedure is an upgrade to the PrintF routine in the
ACTION! Library. The difference lies in the controls available and the
modifcations which can be made to the controls. The controls
themselves are:

/D - Decimal Notation

70 - Octal Notation

7%H - Hexadecimal Notation

7ZU - Unsigned CARD Notation

7%C - Character

%8 - String (BYTE ARRAY)

ZE - Carriage Return/End-of-Line
77/ - the “%’ character

So far this looks very similar to the ‘normal’ PrintF routine. However,
the best is yet to come. Between the '%’ and the control character
(except ‘E’ and '%’) you may insert some field size and justificaticn
information as follows:

A minus sign: this indicates left justification of the data within its
field (right justification is the default).

A number: determines the minimum field size for the data. The data
will be printed in a field at least number wide, and wider if the
data is too long. If the data is shorter than the field size it will
be right justified in the field unless the ‘-’ modifier has been used.

A ‘. f{ollowed by a number: indicates the maximum number of
characters of data to print into the field.

Page {8 ACTION! ToolKit ver 1.00

Example: The following list of control strings show how the different
modifiers affect the printing of the string "ACTION'™ (we have placed
broken bars to show the field size):

%S IACTION! ¢
758 IACTION! ¢
7168 i ACTION!:
7-16S IACTION! i
710.4s8 ACTI
7%-10.4S8 IACTI H
%.48 IACTL

PROC PrintFD(BYTE chan BYTE ARRAY control CARD ci,c2,c3,c4,c5,c8)

Purpose: To allow formatted output of data to a specified channel.

Params: chan - the channel number (8-7)
control - same as PrintF
ci thru cé - same as PrintF

Description: This procedure is exactly like the above PrintF, except
that it allows you to direct the output to a specific channel (device).

ACTION!'! ToolKit ver1.00 Page 19

REAL.ACT

This file contains routines which allow you to access the ROM floating
point routines from ACTION!, thus making the ACTION! language more
useful when writing numerically oriented programs.

To use the floating point routines (hereafter called the Real routines), you
must declare variables of the type REAL, for example:

REAL x,y,z

The type REAL is actually a record type, so the name of the variable is a
pointer to the record itself. This makKes it very similar to an array,

You cannot use the assignment statement to assign a value to a real, since
the ACTION! Compiler does not internally understand reals. You must
instead use RealAssign, ValR, IntToReal, InputR, or InputRD.

Alsc included in this file are some mathematical routines to manipulate
reals, as well as routines to print out reals.

Following each routine’s description section are some examples of that
routine’s usage. For these examples, assume the following declarations:

REAL xreal,yreal,zreal
BYTE ARRAY astring
INT xint,yint,zint
BYTE channel

The following routines are internal to the ACTION! real routines, and
should not be used by you:

PROC ROM_AFP PROC ROM_FASC
PROC ROM_IFP PROC ROM_FPI

PROC ROM_FSuB PROC ROM_FADD
PROC ROM_FMULT PROC ROM_FDIV
PROC ROM_EXP PROC ROM_EXP18@
PROC ROM_LOG PROC ROM_LOG1@

PROC ROM_INIT

Note: You will often see the type REAL POINTER in the declaration of the
parameters of a routine. This simply means that you should use the name
(identifier) of the real, since the name alone is a pointer to the real.

Page 20 ACTION! ToolKit ver{.00

C version Routines
ROC IntToReal(INT i REA NTER r)
Purpose: To put an INT value into a REAL variable.

Params: i - the INT value to be assigned to the REAL.
r - the REAL to which the INT value is assigned.

Description: This procedure allows you to assign the value of an INT
to a REAL variable. If the ACTION! compiler could manipulate reals,
this routine would be the equivalent of: r=i.
Examples:
xint=453
IntToReal(xint,xreal) ;xreal now equals 453
IntToReal(2534,yreal) ;yreal now equals 2534

INT FUNC RealToInt(REAL POINTER r)
Purpose: To return the INT value of a REAL variable.

Params: r - the REAL variable.

Description: This function will return the INT value cf the REAL
passed to it as a parameter.

Examples:
xint=RealTolnt(xreal) ;xint now equals the INT value of xreal
ROC StrR(REAL POINTER r B A s)
Purpose: To convert a REAL to a string.
Params: r - the REAL to convert.
s = the string in which to store the character representation

of the REAL.

Description: This procedure converts a REAL into its character
representation,

Examples:
InToReal(3926,xreal) ;xreal = 3924
StrRixreal,astring) ;astring now contains "3925"

ACTION! ToolKit ver1.00 Page 21

C ValR(BYTE AYsR OINTER r)
Purpose: To convert a string to a REAL.

Params: s - the string to convert.
r - the REAL to which the value of s will be assigned.

Description: This procedure will convert as much of the string as
possible into a REAL variable (i.e., if the string is “abcde", this
routine will put @ into the REAL).

Examples:
astring="45.274"
ValR(astring,xreal) ;same as xreal=45.276
ValR("2,7E-4",yreal) ;same as yreal=2,7#16-4
ValR("70.2agr",zreal);same as zreal=70.2

REAL Mathematical Routines
PROC RealAssign(REAL POINTER a,b)
Purpose: To assign the value of one REAL variable to another.

Params: a - the REAL value to assign.

b - the REAL to which the value a is assigned.
Description: This procedure allows you to assign the value of one
REAL to another one. If the ACTION! Compiler could manipulate reals,
the equivalent would be: b=a.

Examples:

RealAssign(xreal,yreal) ;same as yreal=xreal
RealAssign(zreal,yreal) ;same as zreal=yreal

PROC RealAdd(REAL POINTER a,b,c)

Purpose: To add two REALs

Params: a - an addend

b - an addend
¢ - the sum
Description:

This procedure allows you to add two REALs. If the

ACTION! Compiler could manipulate reals, this routine would
equivalent to: c=a+b.

Examples:
RealAdd(xreal,yreal,zreal) ;same as zreal=xreal+yreal

Page 22 ACTION! ToolKit ver1.00

PROC RealSub(REAL POINTER c)
Purpose: To subtract two REALs

Params: a - the subtrahend
b - the minuend
¢ - the difference

Description: This procedure allows you to subtract two REALs. If the

ACTION! Compiler could manipulate reals, this routine would
equivalent to: c=a-b.

Examples:
RealSub(xreal,yreal,zreal) ;same as zreal=xreal-yreal

PROC RealMult(REAL POINTER a,b,c)
Purpose: To multiply two REALs

Params: a - the multplicand
b - the multiplier
¢ - the product

Description: This procedure allows you to multiply two REALs. If the

ACTION! Compiler could manipulate reals, this routine would
equivalent to: c=a#b.

Examples:
RealMult(xreal,yreal,zreal) ;same as zreal=xreal#yreal

PROC RealDiv(REAL POINTER a,b,c)
Purpose: To divide two REALs

Params: a - the dividend
b - the divisor
¢ - the quotient

Description: This procecure allows you to divide two REALs. If the
ACTION! Compiler could manipulate reals, this routine would
equivalent to: c=a/b.

Examples:
RealDiv(xreal,yreal,zreal) ;same as zreal=xreal/yreal

ACTION! ToolKit ver1.00 Page 23

PROC Exp(REAL POINTER a,b)

Purpose: To raise e to the a power.

Params: a - the power to which to raise e.
b - the result of raising e to the a power.

Description: This procedure allows you to get the base e exponential
of a REAL. The equivalent of this is: b=ea,

Examples:
Exp(xreal,yreal) ;yreal=exreal

Expi6(REAL POINTER a,b)

Purpose: To raise 19 to the a power.

Params: a - the power to which to raise 19.
b - the result of raising 18 to the a power.

Description: This procedure allows you to compute the base 10
exponential of a REAL. Its equivalent is: b=18a,

Examples:
Expiéixreal,yreal) ;yreal=19xreal

PROC Power(REAL POINTER ab,c)

Purpose: To raise a REAL to a REAL power.

Params: a - the base of the power.
b - the power to which to raise a.
¢ - the result of raising a to the b power.

Description: This routine allows you to raise one REAL to a power
specified by another REAL, and is equivalent to: c=ab,

Examples:
Power(xreal,yreal,zreal) ;zreal=xrealyreal

Page 24 ACTION! ToolKit veri.00

PROC Ln(REAL POINTER a,b)
Purpose: To take the natural logarithm of a REAL.

Params: a - the REAL whose natural log is taken.
b - the result of taking the natural log of a.

Description: This procedure allows you to take the natural (base e)
logarithm of @ REAL, and is equivalent to: b=1n(a).

Examples:
Ln(xrealyyreal) jyreal=In(xreal)

PROC Logi@(REAL POINTER a,b)

Purpose: To take the common (base 18) logarithm of a REAL.

Params: a - the REAL whose common log is taken.
b - the result of taking the common log of a.

Description: This procedure allows you to take the common (base 19)
logarithm of a REAL, ard is equivalent to: b=log(a).

Examples:
Logi@(xreal,yreal) ;yreal=log(xreal)

1/0 Routines
PROC PrintR(REAL POINTER a)

Purpose: To output a REAL to the default device.
Params: a - the REAL to be output.

Description: This procedure outputs a real number to the default
device without a RETURN.

PROC PrintRD(BYTE channel REAL POINTER a)

Purpose: To output a REAL to a specified channel (device).

Params: channel - the output channel
a - the REAL to be output.

Description: This procedure outputs a real number to the device
specified by channel without a RETURN.

ACTION! ToolKit ver1.00 Page 25

PrintRE(R POINTER a)
Purpose: To output a REAL to the default device with a RETURN.
Params: a - the REAL to be output.
Description: This procedure outputs a real number to the default
device with a RETURN.
P Print (BYTE channel REAL POINTER a)

Purpose: To output a REAL to a specified channel (device) with a
RETURN.

Params: channel - the output channel.
a - the REAL to be output.

Description: This procedure outputs a real number to the specified
device with a RETURN.

PROC InputR(REAL POINTER a)

Purpose: To input a REAL from the default device.
Params: a - the REAL variable in which to store the input value.
Description: This procedure inputs a real number from the default
device and stores it in the specified REAL variable.

R nputRD(BYTE chann AL POINTER a)
Purpose: To input a REAL from a specified channel (device).

Params: channel - the input channel.
a - the REAL variable in which to store the input value.

Description: This procedure inputs a real number from the specified
device and stores it in the given REAL variable.

Page 26 ACTION! ToolKit ver .00

SORT.ACT

The following four sort routines all use the QuickSort algorithm. This
algorithm was used because it is very fast (order N log N). In the best
case QuickSort is, in fact, among the fastest sorting algorithms Known.
For comparison, both the Bubble and the Shell algorithms are of order N2,
The QuickSort can deteriorate to this speed when sorting presorted data.

If you take a look at the SORT.ACT source you will see that you can create
your own routines to sort REALs or complex record TYPEs simply by
writing your own Compare and Swap routines.

Usage Note: Before using any of these routines you should first change
the source line which reads

DEFINE SortMax="10008"
to the maximum size of the data array you expect to encounter. An
alternative is to change the sort routines so that they
INCLUDE ALLOC.ACT and dynamically create the ‘List’ array.

PROC SortB(BYTE ARRAY data CARD len BYTE order)

Purpose: To sort one-byte data in either ascending or descending
order.

Params: data - the array containing the data to be sorted.
len - the length of the data array.
order - determines order of sort (9=ascending, {=descending)

Description: This procedure allows you to sort one-byte data very
quickly.
PROC SortC(CARD ARRAY data CARD len BYTE order)

Purpose: To sort two-byte unsigned data in either ascending or
descending order.

Params: data - the array containing the data to be sorted.
len - the length of the data array.
order - determines order of sort (8=ascending, {=descending)

Description: This procedure allows you to sort two-byte unsigned data
very quickly.

ACTION! ToolKit ver 1.00 Page 27

PROC SortI(INT ARRAY data CARD len BYTE order)

Purpose: To sort two-byte signed data in either ascending or
descending order.

Params: data - the array containing the data to be sorted.
len - the lehgth of the data array.
order - determines order of sort (@=ascending, {=descending)

Description: This procedure allows you to sort two-byte signed data
very quickly.

R rtS(CARD ARRAY data CARD len BYTE order)
Purpose: To sort string data in either ascending or descending order.

Params: data - the array containing the addresses of the strings to
be sorted.
len - the length of the data array.
order - determines order of sort (8=ascending, 1=descending)

Description: This procedure allows you to sort strings very quickly.
Notice that the addresses of the strings to be sorted must be the
elements of the CARD ARRAY data.

Page 28 ACTION! ToolKit ver .00

TURTLE .ACT

The routines in this file implement turtle graphics ala LOGO.

These routines require that the screen be in a bit-map graphics mode in
which Plot and DrawTo are useable. Also, the length of a line drawn
depends on the graphics mode, and there is no screen bounds checking.
Also, the color of the line drawn by the turtle depends entirely upon then
current value of the system variable color, so you should use SetColor and
color to choose the color you want.

The following routines are internal to the turtle graphics and should not
be called by you

CARD FUNC TG_ISin CARD FUNC TG-ICos

PROC Right(INT theta)
Purpose: To turn the turtle right (clockwise) theta degrees.
Params: theta - the angle to turn the turtle clockwise.
Description: This procedure allows you to turn the turtle clockwise a

specified number of degrees.

PROC Left(INT theta)

Purpose: To turn the turtle left (counterclockwise) theta degrees.
Params: theta - the angle to turn the turtle counterclockwise.
Description: This procedure allows you to turn the turtle counter-
clockwise a specified number of degrees.

PROC Turn(INT theta)
Purpose: To turn the turtle either clockwise or counterclockwise.
Params: theta - the angle to turn the turtle.
Description: This routine allows you to turn the turtle either
clockwise or counterclockwise, depending on the sign of the angle. If

theta is positive, the turtle will turn counterclockwise, otherwise it
will turn clockwise.

ACTION! ToolKit ver .00 Page 29

ward(INT length)
Purpose: To move the turtle forward a specified length.
Params: length - the length to move forward.

Description: This procedure allows you to move the turtle forward a
specified length. This length depends entirely upon the current
graphics mode.

ROC SetTurtle(INT x,y,theta)

Purpose: To move the turtle to a specified x,y position at a given
angle.

Params: x - the horizontal position at which to set the turtle.
y = the vertical position at which to set the turtle.
theta - the angle at which to set the turtle.

Description: This procedure allows you to move the turtle to an
absolute x,y position and point it in a specific direction. At theta=ec
the turtle points right, at 962 it points up, at 120C it points left, and
at 2700 it points down. In essence, increasing positive values of
theta turn the turtle counterclockwise, and increasing negative
theta values turn it clockwise.

Page 30 ACTION! ToolKit ver1.00

GEM.DEM

Gem is a game which was written by Joel Gluck after having the
ACTION! cartridge for only 2 days. If you look at the code, you will notice
how similar it is to BASIC. This reflects Joel’s previous programming
experience (BASIC only) and is not due to its being originally written in
BASIC (which it was not). Enough of its history. Gem is designed for { to
4 players, each using a joystick. The object is to steal the gem in the
center of the screen and return to your home base before one of the robots
or other players zaps you. However, before the game itself begins, you
are prompted for some information, specifically:

How many points to win the game?
How many robots in the final round?

Winning Points - to win a point, you must get the Gem and return with it to
your corner.

Robots - the number of robots increase each round. Although they seem to
die off, whenever the gem is picked up they all come back. If one of the
robots is destroyed while one of the players is carrying the gem, it is
reincarnated immediately.

Zapping - to zap a robot or another player, press the joystick trigger while
pointing the joystick in the direction of the target. While you are zapping
you cannot move. You can also zap by running into the target, but this
also zaps you, so only use this method when on a kamikaze run to keep
another player from getting the gem home.

Getting Zapped - when you get zapped, you are reincarnated back at your
home base and the gem is taken from you if you are carrying it. There is
no limit to the number of times you can be reincarnated.

Winning - when one of the players has accumulated the required number of
points, he wins the game, and you may either play again, or quit and go to
the ACTION! monitor.

Technical Notes - to use this game, do not read it into the ACTION! Editor
and then compile it, since there is not enough memory to do both. Instead,
RUN it from the ACTION! Monitor directly from disk. (This note does not
apply if you are using DOS XL, since you have more memory and can have
the game in the Editor while compiling it).

The maximum recommended number of robots is 168, Bugs will appear in
the program if you use many more, but do not fret. The most robots
survived to date is 45 in a one player game.

ACTION! ToolKit ver1.00 Page 31

K oP E

This demo program uses advanced math and display list algorithms to
achieve the effect of a kaleidoscope on your TV. When you run it you will
be amazed by its speed. You can even change the Kaleidoscope’s speed and
persistence (amount of time a point remains on the screeni by moving
joystick @ vertically or horizontally, respectively. After playing with it a
while you will be surprised by the number and variety of the different
patterns it can create.

P.S. - you can freeze the picture by pressing the trigger.

MUSIC.DEM

This demo program uses a couple of the ToolKit utilities and knowledge of
the Atari’s keyboard matriz to projuce an organ which will play as you
press the keys.

The letters on the keyboard represent the notes, and the letters above and
below the Kkeyboard represent the actual computer keys you must press to
get the note. By pressing {SHIFT <note> you can access the middle
octave, and by pressing <CONTROL><note> you can access the high octave.

This organ is special (for Atari‘s) in that it only plays a note as long as
you Keep the Key depressed. Few people know how to determine how long a
key is pressed (unless they’ve deciphered the Type-a-Tune demo in the
BASIC reference manual, or waded through the hardware manual), so if you
look at the source code you can discover something useful (possibly).

Page 32 ACTION! ToolKit ver1.00

SNAILS.DE M

Games similar to “SNAILS’ TRAILS" have been around for a long time. A
version called "SURROUND" was one of the first games available for the
Atari 2600. But, in the tradition of the video game industry, we present a
storyline:

You are a giant, mutant snail. Wherever you travel, you leave a trail of
radioactive slime behind. So poisonous and impenetrable is this slime that
should any being (including you yourself) touch it, it dies instantly. (Yes,
yes. If it's that poisonous, how could you lay the trail in the first place?
How should we know...YOU are the mutant.)

Further, the scientists of far off H'tra~E have discovered your Kind and
have imprisioned you and another of your race in a large rectangular arena.
Unfortunately, both of you are neither male or female. Instead, you are
each a St‘i, specially bred to do battle until death! You don’t know the
meaning of the word "STOP".

So, as the scientists release you from stasis (you hear three bells as the
stasis field is lifted), you begin by charging straight toward your
opponent. But wait! A bit of intellingence enters your crazed brain. If
vour slime trail is so deadly, perhaps you can entice your enemy to run
into it, thus killing the other S’ti without damage to yourself. Great
strategy!

What’s this, though? Your opponent has developed the same strategy.
Now you and the other S’ti must race around the arena, with the strategic
goal of forcing each other to touch a poisonous trail or to run into the
electrified outer fence. (Well, we had to keep you in the arena somehaw,
didn’t we?) But tactics can be important as well. Look, you are running
straight across the arena. At the last second, you veer in front of your
enemy! He can‘t avoid your trail in time! He’s going to...Oops. You forgot
about the wall. Too bad. R.I.P.

To make a long story into a short game, you and another human opponent
must each use a joystick (plugged into ports 1 and 2) to control your snail.
The first snail to run into a slime trail or a wall loses, and the other snail
scores a point. The first snail to score 10 points wins the game. Also, if
both snails die at the same instant, neither scores a point. Good Luck!

P.S. This game was converted from BASIC XL to ACTION! in about two
hours. The original BASIC XL version is in Chapter 29 of Thirty Days to
Understanding BASIC XL and is on the BASIC XL ToolKit diskette.

ACTION!'! ToolKit ver1.00 Page 33

WARP.DE M

Warp Attack is a game for only the most daring interstellar pilots. You
have been chosen as one of this special breed and are sent on a surface
patrol over the planet Stripes. You can move you ship left or right and you
can dive or climb as in an airplane, but your on-board navigational
equipment won’t allow you to crash into the planet surface. As you are
flying along minding your own business, an Hospites (your sworn enemy)
Stellar Fortress warps right into your path, and she’s armed to the teeth
with Seeker PlasmaBalls. One touch of them and you’re dust. And all you
have are puny pulse cannons.

Now you know why only the best were chosen for this assignment: very few
know how to destroy a Stellar Fortress, and you are one of them. You
first must destroy its right engine (on your left as it approaches), then its
left engine, and finally its main engine, and each must be a direct hit.
While completing this feat of precision marksmanship you must remember
to avoid those PlasmaBalls. Piece of Cake!

Technical Notes: Warp Attack uses quite a few advanced programming
techniques, including a modified display list, display list interrupts,
vertical blank interrupts, and a block fastdraw. The DLI and VEBI together
create the scrolling planet surface, and the fastdraw is used to move the
Stellar Fortress (it‘s not a player!).

THE ACTION! TOOLKIT

Helps You Write ACTIONI Programs FASTI

Save your valuable programming timel THE ACTIONI
TOOLKITI saves you time by giving you a ready-to-
use library of ACTIONI source code for:

Advanced I/O Functions .. Player/Missile Graphics

Turtle Graphics Floating Point Numbers
Sort Routines Memory Allocation
AND MORE

THE ACTIONI TOOLKIT shows you how to write
functional ACTIONI programs, by giving you fuli
source code to a music maker, complete arcade
games, and several demonstration programs.

Requires an Atari Computer with 40KB
Memory, Disk Drive, and an ACTIONI
SuperCartridge.

OSS PRECISION SOFTWARE TOOLS
FOR ATARI HOME COMPUTERS

BERERL ... 4. \. U - - - The most powerful Basic

THE BASIC XLTOOLKIT:... Programming Alds

ETEINE . B Fastest structured language
THEACTIONITOOLKIT ProgrammingAlds

MACIES e . e Fastest macro-assembler
THE MAC/65 TOOLKIT Programming Aids

ST WY TN e Asmall C language compller
BESEE .\ .. N . Now with BUG/65

THE WRITER'STOOL Writing was never so natural

Optimized Systems Software, Inc.
A e R R R N
12218 Kentwood Avenue, San Jose, California 95129 (408) 446-3099

© 1984 Optimized Systems Software, Inc.

