

A Reference GUIDE to Using

The ACTION! Run Time Package

with Atari Computers

This manual revised March, l984

Copyright Notices

The ACTION! Run Time Package is
Copyright 1984, Action Computer Services

This documentation is
Copyright 1984, Optimized Systems Software, Inc.

All rights reserved. Reproduction or translation of any
part of this work beyond that permitted by sections 107
and 108 of the United States Copyright Act without the
permission of the copyright owner is unlawful.

Trademark Acknowledgements

DOS XL and MAC 65 are trademarks of Optimized Systems
Software, Inc.

Atari, Atari Computers, and Atari Home Computers are
trademarks of Atari, Inc.

INTRODUCTION

The Action! Run Time Package (which we will call simply "RunTime" from
here on) is designed to aid users of the OSS ACTION! cartridge-based
language. Specifically, by using RunTime, you can compile an ACTION!
program in such a way that the Action! cartridge is no longer needed
when running the compiled program.

The primary advantage of using RunTime is that it allows you to give
copies of your efforts to your friends, user group members, etc.
Remember, though, that you OR your publisher MUST purchase the
Commercial License for RunTime if you wish to SELL programs written in
Action!

A secondary advantage of using RunTime is that you may produce
extrinsic commands (i.e., programs with a ".COM" file name extension)
for use with OS/A+ or DOS XL. Again, you could use these new commands
at any time, not just when your ACTION! cartridge is installed.

Section 1 of this guide describes how ACTION! compiles programs, how
it builds its symbol tables, and other information you may find useful
when compiling programs written in ACTION! We suggest you read Section
1 very carefully.

This documentation then presents you with four possible ways to use
RunTime. We suggest that you write and compile a short program using
the methods described in Section 2 first. Then you can read the first
few
paragraphs of each of Sections 3, 4, and 5 to see if the methods
described in each of those sections will be useful to you.

Finally, Section 6 provides a memory map of the most useful and
interesting memory locations used by either the compiler or the
RunTime system. Many of these locations are discussed in detail in
other sections, so section references are provided, if appropriate.

--1--

Section 1: How ACTION! Works

1.1 Compiling a Program

When the Action! monitor receives a compile request, it initializes
certain of its tables, sets and uses certain memory pointers, and then
begins producing 6502 machine code directly into memory, it pays
attention to certain system variables which will be described here.

In the discussions which follow, we use square brackets to indicate
memory which is pointed to by the named or addressed location. Thus,
[$02E7] means "the memory location(s) pointed to by the contents of
location $02E7". In general, words which are printed in all capital
letters are labels given in the memory map of Section 6.

1.1.1 Memory Allocation

Unless you tell it otherwise, Action! uses memory as follows:

The edit buffer starts at [APPMHI] ([$0E]). This pointer is itself
derived as an offset (of about $700 bytes) from [LOMEM] ([$2E7]).
The space between [LOMEM] and the initial location of [APPMHI] is used
for various semi-fixed buffers, tables, etc.

As you edit your program, Action! changes APPMHI as appropriate.

When you ask to compile your program, APPMHI is copied to CODEBASE
($0491). Also, CODESIZE is cleared to zero.

Symbol table space is allocated from the top of memory downward. The
symbol table itself contains symbols for both global and local
variables (which part of the table is used for what is controlled by
the "hash tables", part of the "semi-fixed" memory mentioned above).
The amount of space allocated is determined by STSP ($0495), which
may be changed by the user (see Section 3).

--2--

As your code is compiled, Action! adjusts [APPMHI] to reflect the top
of the compiled code. Also, CODESIZE is incremented to reflect the
amount of code generated.

After the code is compiled, the monitor's 'W' command uses CODEBASE
and CODESIZE to determine what part of memory to write to the object
file.

Note the most important implication of the above: if you do NOT have a
program in memory, your code will be generated at the lowest
practicable memory address. Supposition: If it can be compiled at the
lowest address, or at a higher address determined by the top of the
edit buffer, perhaps it can be compiled anywhere. Actually, that
supposition is almost true.

The only real limitation is that Action! 's semi-fixed buffers, your
compiled program, and your symbol table must, somehow, fit in the
memory between the top of DOS ([LOMEM]) and the bottom of the screen
memory ([HIMEM]).

Note that if you use DOS XL (the version titled "DOSXL.SUP" on the
version 2.3 and above distribution disk), you will automatically be
using a LOMEM value, which gains you a significant amount of memory.
Unfortunately, the program thus compiled may not then be able to run
without the Action! cartridge installed, since it will overlay part of
the lowest memory used by any non-DOSXL.SYS version of DOS. However,
see Section 4 for information on compiling with an offset and more
notes on this subject.

1.1.2 Symbol Table Searches

Whenever the Action! compiler encounters a symbol (e.g., a variable
name, a DEFINEd name, a TYPE name, or a PROC name) it always searches
for the symbol in three places.

First, the local symbol table is searched. All symbols defined after
the keywords PROC or FUNCTION are encountered (except, of course, the
actual name of the PROC or FUNCTION) are considered locals. This would
include even the parameters to a PROC or FUNCTION.

Second, the global symbol table is examined. All PROC and FUNCTION
names are placed in the global table as well as all names encountered
before the first occurrence of a PROC or FUNCTION and all names
encountered between a MODULE keyword and the next succeeding PROC or
FUNCTION.

--3--

[May we suggest that you refer to the Action! reference manual if you
are not sure whether a given name is a global or local name.]

Finally, if a name is not found in either the local or global symbol
tables, it is assumed to be a system library name. The library built
into the Action! cartridge is searched for a matching name. Only if
the name is not found here will Action! issue an "undefined symbol"
error.

1.1.3 Symbol Table Allocation

When you first boot the Action! cartridge, it allocates certain tables
and buffers (which we have called "semi-fixed"). These semi-fixed
locations are allocated starting at [LOMEM] and occupy approximately
$700 bytes. Of these $700 bytes, $400 bytes are used for two 512—byte
"hash" tables-—one which will hold up to 255 local symbol pointers and
a similar one for global symbol pointers. Action! searches for and
stores symbols using a "hashing" algorithm, which significantly speeds
up such searches but which necessitates these extra hash pointer
tables. ("Hashing" is simply a means of using a mathematical formula
on a symbol to produce an index-—a hash pointer——into a specially
structured table.)

When you ask Action! to begin a compilation, Action! first allocates
memory for the symbol tables and their associated pointers. It uses
location STSP ($0495) to determine how many pages (of 256 bytes each)
to allocate to the main symbol table and allocates roughly from the
top of free memory (i.e., just under the display memory) downwards.

Note that, even though there are two hash tables, there is only a
single symbol table. This is possible for two reasons. First, since a
symbol is never actually searched for directly in the symbol table
(because Action! always searches via the hash table pointers), the
global and local symbols could actually be mixed with no ill results.

But, second, Action! never adds to both tables at the same time.
Action! begins by processing global names, adding all variables, etc.,
which it finds to the global hash table and thus increasing the size
of the symbol table. However, when Action! compiles the name of a
FUNCTION or PROC, it automatically switches modes--now all new names
are added to the local hash table and, as a consequence, to the END of
the symbol table. When a subsequent MODULE, PROC, or FUNCTION keyword
is

--4--

encountered, Action! wipes out the local hash table and allows the
symbol table space it accessed to be reused. Since the local names are
always at the end of the global names, this procedure ensures that
maximum use is made of the available symbol table space.

A last comment on this subject: this methodology explains why the
monitor is able to access the local names of only the last compiled
PROC or FUNCTION (as well as all global names, of course).

1.2 Running an Action! Program

Since the Action! compiler produces absolute machine-level code,
running a compiled Action! program under any DOS for Atari computers
is simplicity itself. One need simply invoke any of the normal loaders
(including those built into DOS XL, OS/A+, and Atari DOS), being sure
to properly pass the "run address" of the compiled program.

The "run address" may be determined by using the '?' monitor command
after compiling the program. For example, assume that the name of the
last PROC in your program is MAINPROC. Then using '? MAINPROC' from
the Action! monitor will produce a display of the address of MAINPROC
(in both hex and decimal, as well as its contents, which are not
relevant here).

Note, however, that the 'W' command of the Action! monitor
automatically writes not only the compiled code but a properly
structured INIT vector (see your DOS manual for definition and
clarification) as well. Thus, you normally do not need to concern
yourself with knowing the starting address.

Since how a program is loaded and run varies from one DOS to another,
we will not try to further describe the process here. We would like to
note, however, that giving your compiled program a name with ".COM" as
the extension will result in a valid DOS XL or OS/A+ command file,
which may then be invoked from the 'Dl:' prompt by using just its
name.

--5--

1.3 When Your Program is Running

Regardless of whether you compile your program using this RunTime
package or not, when your program runs it needs to access a host of
library routines. Some of these you know about: they are the various
library PROCs and FUNCTIONs listed in your Action! manual.

Others, however, are essentially invisible to you. In an attempt to
produce a reasonable compromise between code size and code speed,
Action! automatically compiles into your program numerous calls (JSRs)
to various support routines. Examples of routines thus provided
include multiply, divide, and shift routines.

When your program is compiled with the RunTime package, these routines
are supplied from the built—in routines in the Action! library "bank".
When you use the RunTime package, you actually compile a set of these
routines right along with your own code.

A comment: you have probably heard or read about how the OSS
SuperCartridge works and may be aware of the fact that it is
constantly switching memory banks as it works. When your program runs,
though, it uses only a single bank (where the memory resides), and
thus the transition to a RAM-based RunTime package is made easier.

--6--

Section 2: Compiling a Program with RunTime

You will recall from Section 1.1.2 that Action! always searches for
symbols first in the current "local" library, then in the "global"
library, and finally in the built-in system library. This sequence is
the secret to being able to produce a RunTime Action! program.

As an illustration, early versions of Action! (3.0 and 3.1) had a bug
in the system divide routine. Our (temporary) solution was to provide
a listing of an Action! routine (which actually consisted of a set of
machine code blocks). By including this subroutine (either directly or
via INCLUDE) in your program, you could force the compiler to use the
new divide routine instead of the built-in one.

Similarly, the RunTime actually consists of a series of Action!
PROCedures and FUNCtions (which in turn consist of mainly machine code
blocks) which you include with your program so that the compiler will
find their names (in your global symbol table) instead of the built-in
names.

2.1 A Simple Compile

The simplest method of compiling of a RunTime version of your program
is to use a line of the form

INCLUDE "D1:SYS.ACT"
as the first line of your program.

The file "SYS.ACT" on your RunTime disk contains the Action! source
code (mostly in the form of cone blocks) for ALL the routines in the
standard system library. Therefore, by compiling this file at the
beginning of your program, you are essentially providing the Action!
compiler with a full set of global names which will come before and
therefor take precedence over the same names in the built-in system
library.

As a trial case, may we suggest that you read in and examine the
program called "SAMPLE.ACT" which you will find on your RunTime disk.
Notice how it INCLUDEs the file "SYS.ACT". If you wish (and only if
you are working on a COPY of your RunTime disk), you may go to the
monitor and compile this program. After it compiles, simply use the
"Write" command in the monitor to write the object code to disk.

--7--

Actually, we have already done this for you. We named our object file
"SAMPLE.COM". If you are using OS/A+ or DOS XL, you may now exit to
DOS (via the "Dos" monitor command) and (when the "D1:" prompt
appears) simply type in "SAMPLE". If you are using Atari DOS, you will
have to use the DOS "L" option to load the file "SAMPLE.COM". In
either case, the program should run and give the expected results.

Simple, isn't that. May we suggest that you try this technique with
one or two of your own programs.

2.2 Selective Use of Libraries

In addition to the complete system library provided as "SYS.ACT", your
RunTime disk includes several other library files. They are:

SYSLIB.ACT SYSIO.ACT SYSGR.ACT
SYSMISC.ACT SYSBLK.ACT SYSSTR.ACT

(There is an additional file, "SYSALL.ACT", which simply INCLUDEs all
of the above files. This is equivalent to INCLUDEing "SYS.ACT" as we
did in Section 2.1.)

Each of these library files contains a part of the complete RunTime
library. To use them, simply INCLUDE the ones you need in the same
fashion as we INCLUDEd "SYS.ACT" in Section 2.1. Do not INCLUDE the
files which contain only routines you do not use.

Thus if, for example, you knew that your program used no graphics
routines, you would not INCLUDE "SYSGR.ACT". Virtually all programs
need to INCLUDE "SYSLIB.ACT".

For a complete list and short description of all routines included in
each of these libraries, you may read or print the file "SYS.DOC" on
your RunTime disk (CTRL—SHIFT—R from Action!'s editor to read the file
or

TYPE SYS.DOC P:
from DOS XL or OS/A+).

Unfortunately, there is no easy way of determining which system
library routines your program is using. If you omit a RunTime library,
it will get "filled in" from the built-in ROM routines. Thus you will
simply have to carefully check your program for library routine calls.

--8--

In this vein, there is a program on the RunTime disk which can help
you. If you compile AND run the program called "ST.ACT", it will hook
itself into the Action! compiler in a unique and useful way: As each
PROCedure or FUNCtion is compiled, it automatically then and there
prints a list of ALL name references made by the PROC or FUNC. You
will still have to check the listing by hand for all references, but
at least you don't have to search through lines and lines of source
code. (See also the file "ST.DOC" on the RunTime disk.)

Finally, note that the file "SAMPLE2.ACT" on the RunTime disk is
another version of "SAMPLE.ACT" which we compiled and ran in the
previous section. "SAMPLE2.ACT", though, INCLUDEs only those library
routines which it needs. If you compile it and Write it to disk, you
will notice there is some (albeit not a terribly large) savings in
disk (and, consequentially, memory) space.

Again, we have written the compiled file to disk using the file name
"SAMPLE2.COM". Follow the instructions above for running the program.

--9--

Section 3: Compiling With Large Symbol Tables

You will recall from Section 1 we mentioned that, by default, Action!
supports only up to 255 Global symbols (as well as up to 255 Local
symbols). The limit on the length of any given symbol (name) is
greater than the limit on the length of a line, so virtually any name
is valid. However, the total space occupied by names and Action!'s
associated type bytes, values, etc., cannot exceed the space reserved
via STSP ($495).

This section will discuss how to bypass two of the three limitations
noted above. Note that there is currently no way to have Action!
recognize more than 255 different local symbols. We do not feel that
this is a limitation: if you have a PROCedure or FUNCtion which uses
this many symbols, it should probably be broken into two or more
subroutines anyway.

3.1 Increasing Your Symbol Table Space

By default, Action! reserves 2K Bytes (2048 bytes, Eight "pages" of
256 bytes each) of RAM for its symbol table. To change the space
reserved, you need simply change the contents of STSP (location $495).
You must change STSP before you do a compile, since Action!
initializes its symbol table pointers, etc., when you give the Compile
command from the monitor.

For example, to allow up to 3K Bytes of symbol table space, simply
give the command

SET $495=12
to the Action! monitor and then Compile.

Remember, the contents of STSP is the number of 256—byte pages to be
reserved.

HINT: If you have a program which you know will need a particular
amount of symbol table space, simply place a SET similar to the one
above at the beginning of the program. The program will NOT compile
the first time, because it will run out of symbol table space.
However, the SET will have taken place, and if you simply compile it
again the proper amount of space will then be reserved for you.

--10--

3.2 Increasing the Number of Global Symbols

Your RunTime disk contains a file named "BIGST.ACT". Simply compile
and run this program and you may then use up to 510 global symbols.

Action! has a flag (BIGST, $4C4) which tells it that you wish to allow
an expanded global symbol table. The mechanism Action! uses to
accomplish this is very simple: When BIGST is set, Action! splits the
global symbol table into two parts, using two separate hash tables,
based solely on the first character of each symbol. Action! uses the
contents of location FRSTCHAR(location $4AD) to determine which
character defines the splitting point.

After determining which character you wish to split your symbol table
on (usually either 'a' if you keep upper and lower case distinct or
'M' if you don't), simply Read the file "BIGST.ACT" into the editor
and change it to reflect your choice. Then compile and run the
program. So long as you do not reBoot Action!, the big symbol table
option will be in effect.

By the way, note that Action! uses [STG2] ([$CE]) as the hash table
for the other 255 globals. You can set STG2, BIGST, and FRSTCHAR
yourself, but letting "BIGST.ACT" do it for you is generally easier
and safer.

--11--

Section 4: Compiling at a Particular Address
--

In Section 1, we noted that Action! places your compiled code directly
in memory. Normally, it places the object code directly above the edit
buffer, which in turn is above Action!'s "semi-fixed“ RAM and thus
above DOS. In this section we discuss methods for telling Action!
where you wish to place your code.

4.1 Directing the Code Storage Address

So long as you have no program in the edit buffer, you may think of
the memory from the top of Action!'s semi-fixed RAM to the bottom of
the symbol table space as your "free" RAM. You may ask Action! to
place your object code anywhere in this space.

You may determine exactly what the bounds of this space are from the
monitor. Simply use a '? $E' command to determine the bottom of this
space. Remember that [$0E] ([APPMHI]) define the current "code
pointer" for Action! If you haven't compiled anything yet, then APPMHI
points to where code WILL be stored.

The top of this space may be determined via a '? $B0' command.
Actually, location $B0 (STBASE) contains a single BYTE value (so be
sure and look at the least significant byte of the contents of $B0
after using '?'). This byte value is the page number of the start of
the symbol table (less 1, actually).

Now, if you compile your program and then again look at the contents
of APPMHI (or at CODESIZE), you know how big your compiled program is.
If it does not occupy all of the "free" memory, you may, if you wish,
move it upward within the free memory.

Basically, Action! needs both APPMHI (otherwise labeled CODE) and
CODEBASE (location $491) SET to the initial code address. You do this
by simply including two SETs at the very beginning of your program.
For example, if I would like my object code located at location $5000,
I would put these two lines as the first two lines of my program:

SET $E=$5000
SET $491=$5000

ONCE MORE: The important thing to remember, here, is that your
compiled object code MUST fit between [$0E] and the bottom of the
symbol table.

--12--

4.2 Compiling With an Offset

Since the Action! cartridge, DOS, and Action!'s buffers and tables
occupy fixed or semi-fixed RAM locations, you often cannot place your
Action! code in the actual memory locations that you want to use. For
example, if you wanted to write a program which replaced all or part
of DOS, you could not do it by simply SETting location APPMHI.

But have no fear. Action! has provided for you. Action! allows you to
compile code into one set of memory locations even though it is
designed to run at a different set of locations!

The mechanism Action! uses is simple: there is a location called
CODEOFF ($B5) which contains a 16-bit address offset. By default,
CODEOFF contains a zero, so code is generated which is designed to run
at the same addresses at which it is stored. When you change CODEOFF,
though, strange and wonderful things can happen.

Everytime Action! generates an address for a PROC, FUNC, variable,
etc., it uses the actual location defined by [APPMHI]. However, every
time Action! compiles a REFERENCE to such an address, it adds CODEOFF
to the address. For example, suppose that as Action! compiles it sees
the following source code fragment:

SET $B5=$1000 ; set CODEOFF to 4K Bytes
; assume that APPMHI contains $4000 at this point
PROC P()
 …
PROC Q()
 P()
 …

The compiler "knows" that the PROCedure named "P" is located at
address $4000. Yet, when it compiles PROCedure "Q" and encounters the
reference to "P", it generates the equivalent of

JSR P+[CODEOFF]
 or
JSR P+$1000
 or
JSR $5000

Since Action! ignores any overflow/carry which results in adding
CODEOFF to an address, we could 'SET $B5=$F000' and effectively
subtract $1000 from each address instead (remember, Action! does not
allow negative compiler constants except via this mechanism).

--13--

As an example, then, let us suppose that we do indeed wish to replace
DOS. Thus we want a program which will run at location $700. Let us
further suppose that we are using Action! with a DOS which causes a
LOMEM of $2100. Thus the initial contents of APPMHI will be
approximately $2800 (plus a little). We might, then, start our Action!
program with the following lines:

SET $E=$2F00 ; just to make the setting ...
SET $491=$2F00 ; ...of CODEOFF easier
SET $B5=$D800 ; equivalent of $B5= —$2800

And, lo and behold, if we dumped the compiled code we would find that
we had indeed generated code designed to run at location $700.

Now, if we use the Write command from the Action! monitor, Action!
automatically adjusts the starting and ending addresses for our object
code file so that it will be LOAded in (via LOAD in DOS XL, the L
option of Atari DOS, etc.) at the offset address! In other words,
Action! has done all the hard work for us.

Special Note: Sometimes, though, you do not want the code you have
generated loaded into its intended running address. In our example, we
certainly wouldn't want DOS to try and Load our program at $700: we
would wipe out part of DOS and surely do nasty things to our system.
Presumably, we would want our code to Load in where it was generated.
Then we would have a small routine which would move the code to its
intended address and run it.

You may accomplish this purpose by simply noting the values of
CODEBASE and APPMHI at the end of your compile. Then go to DOS (via
the 'D' command of the monitor) and SAVe that part of memory. It will
now LOAd where it was compiled, so you will have to somehow have a
routine which will move it and run it (may we suggest simply appending
such a routine--written in assembly language and placed, say, in page
6--to your main program).

FINAL NOTE: This offset technique may also be useful if you have an
Action! program which almost, but not quite, fits in its allotted
"free" RAM. Since arrays (other than small BYTE arrays) are allocated
semi-dynamically after the end of your program (and may thus occupy
the symbol table's space, for example), they do not affect the size of
your compiled code. Thus you may "recover" the $700 bytes "lost" to
Action!'s semi-fixed RAM by coding an offset of $F900. The space thus
gained is not huge (1700 bytes or so), but it may make all the
difference to you.

--14--

On this same note, remember that using DOS XL can save you up to 5K
bytes of RAM during a compile. Then, if you remove the Action!
cartridge to run your program, DOS will have to move LOMEM higher
(since it will now all reside at $700 up), but HIMEM will have moved
up by 8K bytes. Some work with offsets, etc., here could be very
beneficial when you are working with very large programs.

4.3 Using Large Assembly Language Modules

Since you can direct Action!'s code generation, you can obviously
"tell" it to reserve any given area of memory. This implies that you
may assemble code for some specific address range, make a list of the
subroutine entry points and/or variables to be accessed from Action!,
and compile an Action! program which avoids the assembly language
area. If the Action! program equates PROCedures, FUNCtions, and
variable names to locations within this area, the assembly language
routines, etc., may be used interchangeably with Action! routines.

Here is a small example of what we are discussing:

Assembly language:

*=$3000
LSH3 ; FUNCTION: left shift argument by 3

ASL A
ASL A
ASL A ; left shift 3 times
STA $A0 ; put where Action! puts function
LDA #0 ; ...return values
STA $A1
RTS

MASK .BYTE 1,2,4,8,l6,32,64,l28 ; set of bit masks

Action!:
BYTE FUNC LSH3=$3000 (BYTE N)
BYTE ARRAY MASK(0) = $300A

For this particular example, you would probably be better off putting
the small routine and array directly in your Action! program, via code
blocks. But for larger, more complex operations, etc., this technique
is very workable.

--15--

Section 5: Compiling ROMmable Code

If you have just finished reading Section 4, you should have a pretty
good idea of how to ask the Action! compiler to produce code which
will run in the normal cartridge space (i.e., $A000 to $BFFF, where
Action! itself resides). Presumably, you know how to compile your code
somewhere safe in RAM with CODEOFF set such that the code will run in
ROM space (e.g., compiling to $6000 in RAM with CODEOFF set to $4000).

However, there is still a rather sticky problem: what do we do about
variables? Normally, Action! compiles in such a way that global
variables, PROCedures, FUNCtions, and local variables all share the
same address space (i.e., they are all mixed up together, according to
Action!'s own schemes). What we need is some way to tell Action! to
keep programs and variables separate.

5.1 RAM and ROM Variables

Actually, there is one very simple way: simply assign addresses to ALL
your variables. When you make a declaration such as

BYTE Temp = $D4
Action! assumes you know what you are doing. All references to "Temp"
actually become references to location $D4.

There is a second class of variables which need no special care: those
which aren't really "variable". If you initialize the contents of a
variable or array (or string) and then never change its contents, then
you actually want that variable in ROM. A declaration of the form

BYTE ARRAY Bits(0)=[1 2 4 8 16 32 64 128]
will generate and initialize an 8-element byte array. Presuming that
you never store into Bits(n), the array actually should be in ROM.

But the vast majority of variables in most programs fall into neither
of the above two categories. They are variables which we intend to
change and which we want the compiler to assign space for.

Truthfully, Action! was not designed to produce code with variables
and program separated. But the workings of the SET compiler
instruction let us access a sophisticated method which we feature
here.

--16--

Before reading further, it might be a good idea to read or print the
listing of the file "KALROM.ACT", supplied on your RunTime disk. This
is a somewhat smaller version of the famous Action! Kaleidoscope demo,
but this version is designed to be compiled into ROM!

We call your attention to the two DEFINEs at the head of the program:

DEFINE RAM = "SET $682 = $E^
 SET $B5 = $C800
 SET $E = $680^"

DEFINE ROM = "SET $680 = $E^
 SET $B5 = $5800
 SET $E = $682^"

Note also the various SETs a little further in the program:

SET $E=$6000 SET $491=$6000
SET $B5=$5800 SET $680=$5800

And then let us note, before explaining how all this ties together,
that this program will compile at address $6000, where APPMHI and
CODEBASE ($E and $491), are initially set. The code will be compiled
to run at address $A800, the sum of APPMHI and CODEOFF ($E and $B5).

The RAM used by this program will be compiled at $5800 (the initial
value of location $680, see below) and be placed, when the ROMmed code
is run, at location $2000 ($5800 + $C800, the alternative value for
CODEOFF, ignoring the overflow from the addition).

HOW IT WORKS: The initialSETs (not the ones in the DEFINEs) are given
values which will start Action! producing code designed to reside at
$A800, as we noted. When the compiler reaches the label "RAM", though,
it executes the SETs defined thereby. Specifically, it saves the
current value of the code pointer (APPMHI) in a "spare" location
($682) via "SET $682=$EA". Did you remember that you can use constant
pointers in a SET? "$E^" simply means "the contents of location $E".

The expansion of the RAM definition also causes CODEOFF ($B5) to be
changed and APPMHI ($E, also called CODE) to be loaded from the
contents of location $680, another "spare" chunk of memory. (Did you
remember that $680 was initialized to $5800, just for this purpose?)

When Action! encounters and expands a "ROM" definition, the effective
opposites happen: APPMHI is saved in $680, CODEOFF is changed to the
value needed for ROM generation, and APPMHI is reloaded from $682,
where it had been saved by the "RAM" definition.

--17--

Whew! It all seems complicated, but once you have set up the DEFINEs
for "ROM" and "RAM" the rest is easy.

The only other thing to watch out for is just WHEN do you use these
ROM and RAM definitions? Generally, you simply code "RAM" just before
you define some variables you want to reside in RAM. In the case of
local symbols, then, you code "RAM" just before defining them and
"ROM" just after doing so.

There is just one place which is a little tricky: after compiling some
ROM-based definitions of global variables, you need to code "RAM" to
cause the parameters and local variables of the next PROCedure or
FUNCtion to be compiled in RAM. However, due to the method by which
Action! generates code and address references, you must code "RAM"
after the keyword PROC or FUNC.

Again, we refer you to the listing of "KALROM.ACT" for further
examples and techniques. You will note the BYTE ARRAYs in the
beginning being generated in ROM. These are invariant masks, as we
discussed above. Also, note that it does not matter whether "ROM" or
"RAM" was last coded when you define variables which are assigned to
specific addresses.

PROCedures and FUNCtions which receive no parameters and have no local
variables may be considered completely ROM-resident. Code block PROCs
and FUNCs which use only the parameters passed in the registers
(remember, the first three bytes of parameters are passed in A, X, and
Y) may include the notation "=*", as shown in several PROCs in the
example, and will generate no actual variable storage.

5.2 Other Considerations

Once you have tackled the general problem of separating RAM and ROM
space, there are a few other things to watch out for when producing
ROMmable Action! code.

5.2.1 FOR loops

In general, you cannot use FOR loops in Action! code which is to be
placed in ROM. When Action! encounters a statement of the form

FOR LoopVar=Begin TO Finish STEP Increment
it realizes that it needs space to store the "Finish" and "Increment"
values. If these values are not constants, they are evaluated at run
time and stored in-line among the compiled code!

--18--

This is not a major matter: you can easily modify the above FOR loop
to be a WHILE loop instead. For example:

LoopVar=Begin
WHILE LoopVar <= Finish
DO
 …
LoopVar ==+ Increment
OD

A little lengthier than the equivalent FOR loop, but actually no less
efficient in most cases.

5.2.2 PROCedure variables

Action! allows PROC names to be used in expressions, including
assignments to a PROC name. For example, you are allowed and
encouraged to handle your own errors via the following (paraphrased
from the Action! reference manual):

PROC HandleError()
…

RETURN

…

SaveError = Error
Error = HandleError

…

Action! handles PROC names in this fashion thanks to a usually
invisible mechanism: Each PROC or FUNC is compiled to start with a JMP
instruction. Normally, the target of the JMP is the byte immediately
following the JMP, the actual code for the PROC or FUNC.

When you assign a value to a PROC (as in 'Error = HandleError',
above), the code generated actually modifies the last two bytes of the
JMP instruction, the target address.

Unfortunately, when a PROC or FUNC is in ROM, you obviously can NOT
modify the target of the JMP instruction. If you desparately need this
capability, may we suggest the following scheme:

--19--

PROC HandleError = $600 ()

; or any other "safe" address
BYTE Hjmp = $600 ; same address
…
PROC RealHandler()

…
RETURN

…
MAIN()

Hjmp = $4C ; a JMP instruction
HandleError = Realflandler
…
; and now you can assign to 'HandleError'
; as and when you wish

The important part of this "trick" is that you MUST set the JMP
instruction in place "by hand", as we did in the first line following
MAIN().

5.2.3 Action!'s System DEVICE

Many of the I/O routines in the Action! library (both the cartridge
library and the RunTime version) perform their operations to a channel
(file) defined by the contents of a location called DEVICE. For
example, PRINT() and INPUTS() both use DEVICE.

Normally, Action! initializes the contents of DEVICE to zero. You can
thus easily change the default output channel by simply OPENing a file
on another channel and placing a new channel number in DEVICE.

When using the RunTime package, you must take responsibility for
initializing DEVICE. You may do this by coding

DEVICE = 0
in your code. Or, if you intend to never change the contents of
DEVICE, you might code a declaration of

BYTE DEVICE = [0]
as an early global variable. See the file "SYS.DOC" on the RunTime
disk for other comments.

5.2.4 File Names

The library in the Action! cartridge automatically adds a "D:"
filename prefix to a filename if the filename does not begin with a
device name (e.g., “D2:", "P:",etc.). The RunTime library does NOT do
so.

Be sure that your Action! programs include sufficient filename
validation.

--20--

Section 6: Action! Memory Map

The important locations used by the Action! compiler and RunTime are
given here in memory location order. The address, label used by
internal routines, and a short description of each location are all
given. If changing a location might be useful to you, the description
will say so and possibly point you to another Section for more
information.

The labels given here are shown in mixed upper and lowercase, as used
by Action!'s author. In other Sections of this document, these labels
are shown in all upper case, simply to make them easy to distinguish
from surrounding text.

In the listing which follows, a period between the address and the
label indicates a system location which is two bytes long, in normal
6502 low/high format. It may, of course, thereby be an address
pointer.

Addr Label Description
---- ----- -----------
000E.code The "location counter" used by Action!

or (Also Atari OS's "application program
 APPMHI high memory".) Points to where next

byte of code will be stored during an
Action! compile. Generally should only
be changed before a program is compiled
(Section 4.1), but can be changed with
caution to produce ROMmable object code (Section 5.1).

009B.buf Address of Action!'s edit buffer. More

importantly, though, this buffer is also
used by the library OPEN procedure to
validate the filename it is passed. It
must be initialized to a valid address
when a compiled program is run with the cartridge.
CAUTION!! OPEN in the RunTime library
does NOT validate filenames.
See Section 5.2.4 and comments about the
use of locations $500-$5FF, below.

00A0 args This portion of zero page is used to
 to store function and procedure parameters
00AF and as temporaries for evaluation of

many expressions. Parameters start at
$A0 and work up. Temporaries start at
$AF and work down.

00B0 stBase High byte of address of start of symbol table.

--21--

00B1.stGlobal Location of 512-byte hash table for global symbols.

00B3.stLocal Location of 512-byte hash table for local symbols.

00B5.codeOff Offset between compiled-at address (as determined
by "code", location $0E) and compiled-for
address (e.g., when compiling code to be placed in
ROM or in place of the DOS code). See Section 4.2.

00B7 device Current default device number. If changed to a
valid OPENed file number, all library output
normally sent to the screen will go to that
file instead. Described in the Action! reference
manual, but see also the source code
comments on the RunTime disk and warning
in Section 5.2.3 re ROMmable code.

00CE.stG2 Used only if the "big symbol table flag" (bigST, $4C4)
is set. This is the address of the 5l2-byte hash table
used for the second half of the global names. See the
file BIGST.ACT on the RunTime disk and Section 3.2.

0491.codeBase The first address used to store code in the current
compile. It is preserved for later use with
the "Write" monitor command. See Sections 1.1 and 4.1.

0493.codeSize The number of bytes of code generated by
the current compile. See Section 1.1.

0495 stSp Symbol Table SPace. Simply the number of 256-byte
pages available for the symbol tables (both locals
and globals). May be easily altered as needed by
the user. See Section 3.1.

049A list Action!'s "List the program as it is compiled" flag.
Changed by the "LIST?" query in the Options. Can also
be changed at any point in a compile via a SET.

04AD frstChar When a big symbol table is in use (see $04C4), this
character determines the division point between the
lower and upper halves of the global symbol table.
See also Section 3.2 and the file "BIGST.ACT".

--22--

04C0 bckgrnd Background color. Use at your own risk.

04C4 bigST A flag. If set, the global symbol table
is divided into two parts (see also
$04AD). Thus you may use a total of 510
global symbols. See also Section 3.2
and the file "BIGST.ACT" on the RunTime disk.

04CB Error A JMP to the current error handling
routine. As far as the compiler is
concerned, this is the address of the
Error procedure. See the Action!
reference manual for a method of
substituting your own error handler. See
section 5.2.2 for comments re ROMmable code.

0500—05FF A buffer used by the RunTime library
OPEN routine. When OPEN is passed a
filename, it moves the name here and
appends a RETURN ($9B) character. The
cartridge routines do this differently,
using a buffer pointed to by BUF
(location $9B, see above) instead. You
can easily change the location of this
buffer by changing the DEFINEs at the
beginning of the RunTime library.

--23--

	The ACTION! Run Time Package - Cover
	INTRODUCTION
	Section 1: How ACTION! Works
	1.1 Compiling a Program
	1.1.1 Memory Allocation
	1.1.2 Symbol Table Searches
	1.1.3 Symbol Table Allocation

	1.2 Running an Action! Program
	1.3 When Your Program is Running

	Section 2: Compiling a Program with RunTime
	2.1 A Simple Compile
	2.2 Selective Use of Libraries

	Section 3: Compiling With Large Symbol Tables
	3.1 Increasing Your Symbol Table Space
	3.2 Increasing the Number of Global Symbols

	Section 4: Compiling at a Particular Address
	4.1 Directing the Code Storage Address
	4.2 Compiling With an Offset
	4.3 Using Large Assembly Language Modules

	Section 5: Compiling ROMmable Code
	5.1 RAM and ROM Variables
	5.2 Other Considerations
	5.2.1 FOR loops
	5.2.2 PROCedure variables
	5.2.3 Action!'s System DEVICE
	5.2.4 File Names

	Section 6: Action! Memory Map

