ADVAN LANGUAGE DESIGNS

BASIC COMPILER

Tutorial
and
Reference Manual

WARNING

This software and manual are both protected by U.S, Copyright Law (Title 17
United States Code). Unauthorized reproduction and/or sales may result in
imprisonment of up to one year and fines of up to $10,000 (17 USC 506).
Copyright infringers may also be subject to civil 1liability.

BASIC documentation
(C) Copyright 1985 William Graziano
All Rights Reserved

BASIC software _
(C) Copyright 1985 William Graziano
All Rights Reserved .

ATART is a trademark of ATARI, Inc.

DISCLAIMER OF WARRANTY

THIS SOFTWARE AND MANUAL ARE SOLD "AS IS" AND WITHOUT WARRANTIES AS TO
PERFORMANCE OR MERCHANTABILITY. THE SELLER'S SALESPERSONS MAY HAVE MADE
STATEMENTS ABOUT THIS SOFTWARE. ANY SUCH STATEMENTS DO NOT CONSTITUTE
WARRANTIES AND SHALL NOT BE RELIED ON BY THE BUYER IN DECIDING WHETHER TO
PURCHASE THIS PROGRAM. ’

THIS PROGRAM IS SOLD WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER. BECAUSE OF THE DIVERSITY OF CONDITIONS AND HARDWARE UNDER
WHICH THIS PROGRAM MAY BE USED, NO WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE IS OFFERED. THE USER IS ADVISED TO TEST THE PROGRAM THOROUGHLY
BEFORE RELYING ON IT, THE USER MUST ASSUME THE ENTIRE RISK OF USING THE
PROGRAM, ANY LIABILITY OF SELLER OR MANUFACTURER WILL BE LIMITED
EXCLUSIVELY TO PRODUCT REPLACEMENT OR REFUND OF THE PURCHASE PRICE.

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

CONTENTS

GETTING STARTED

Preparation.
Entering programs.
Disk commands.

VARIABLE TYPES

1

5

Advantages of integers.

Strings. Arrays.
Integerexpression.
Stringexpression.
Realexpression.

INPUT, READ, and DATA

INPUT. INPUTLINE
READ and DATA.

BRANCHING COMMANDS

GOTO and GOSUB.

IF THEN ELSE.

IF DO ELSE ENDIF.
ON GOTO. ON GOSU

B.

10

CASE. Advanced topics.

LOOPS 14

FOR NEXT STEP.
WHILE WEND.

REPEAT UNTIL.

DISK INPUT AND OUT
OPEN. CLOSE.
PUT. GET. EOF.
NOTE and POINT.
SPECTIAL COMMANDS

WAIT. RTIME.

PUT

22

OFFDISPLAY and ONDISPLAY.

DEG and RAD.

POKE and POKEW.
EXG. TRAP.
LOADST and POPST.

FUNCTIONS AND NAMED SUBROUTINES

Built-in functions
User-defined funct
Named subroutines.

ions,

-iii-

8

17

25

Chapter 9. MORE ON PRINTING 28

PRINT and LPRINT,
PRINT USING and LPRINT USING.
WIDTH.

Chapter 10, MORE ON STRINGS 29

String functions.
INSERTB. INSERTW.

Chapter 11. MORE ON SYSTEM COMMANDS 31

SAVEC and EXEC.
Compiling and executing long programs.,
KILL, RENAME, LOCK, and UNLOCK.

Chapter 12, SOUND 34

SOUND.
ASOUND and SCONTROL.

Chapter 13. GRAPHICS 37

Graphics modes.

PLOT and COLOR.

_SETCOLOR and PSETCOLOR.
DRAWTO and FILL. DFILL.
POS and LOCATE.

Chapter 14, PLAYER-MISSILES 43

PSIZE. PDISPLAY.
PRATE. PCONTROL.,
Automatic modification.

Chapter 15. DISPLAY LIST INTERRUPTS 50
SETINT@. CINT@.

Chapter 16. MACHINE LANGUAGE SUBROUTINES 53
MACHINE. CODE. CODEL.

Chapter 17. UTILITY PROGRAMS 56

CLEAN.COD,
STATPROG.COD.
CHECKSUM.COD.
COPYDISK.COD.
COPYFILE.COD.
FORMAT.COD.
FORMAT1.COD.
RAMDISK.COD.
SIEVE.BAS

-jv-—

REFERENCE MANUAL

System commands 59
Variables and operators 65
BASIC commands 68

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

INDEX

118

ASCII code 109

Reserved words 110

Error messages 111

Memory map 113 .

6502 assembly language mnemonics 114
Reporting problems or errors 117

INTRODUCTION

Advan BASIC has many features not available in ATARI BASIC and because
Advan is a compiler, your programs will normally run faster. To get the
most out of Advan BASIC you need to read the tutorial section of this

manual. There is also a reference section that describes each command and
built-in function.

Main Features

1. Although Advan BASIC is a compiler, it has many of the user frlendly
features of an interpreter.

a) You enter programs using the BASIC, not an editor.

b) Program lines are checked for syntax errors as you enter them; any
errors detected are immediately displayed. .

c¢) In most cases, error messages are given, rather than error numbers.

d) In most cases, Advan shows the line and position in the line where
the error occurred,

e) Several disk commands are built-in. You can get a directory, or kill,
lock, unlock, and rename a file without leaving the BASIC or effecting the
program in memory.

2, Advan BASIC supports integer, real, and string variables.
a) Variable names may be any length.

b) Strings don't need to be dimensioned.

c) - Strlng arrays, as well as integer and real arrays, are available (up
to 64 dimensions).

d) Real and integer numbers may be mixed in expressions.

e) The ability to use integers is especially important since they take
up only 1/3 as much space, and calculations are at least 3 times faster
than those with real variables and real numbers.

3. REPEAT-UNTIL, WHILE-WEND, CASE, IF-THEN-ELSE, and multi-line IF
commands are available., Also, program lines can be indented. These
commands make it easier to program, and allow many of the techniques used
in structured programming.

4. There are special commands for player-missiles.

a) You can define a figure and insert the figure into a player or
missile.

b) You can set up the program to automatically move a player
horizontally or vertically at specified rates. Once started, their
positions will be changed automatically during the vertical blank
interrupt, so that the program can do other things during their movement.

c) You can set up the system to automatically change a displayed figure
as well as automatically move it. This allows player-missile animation

-vi-—

without the need for machine language code.

5. Advan BASIC uses three commands to take advantage of the ATARI sound
capability. One of them lets you set up a tune or a sequence of sounds
which the system plays automatically (the program can do other things
while the sound is being generated). You can even specify whether the
sound will be repeated continuously, played once, or played a given number
of times.

6. There are two commands which use the ATARI display list interrupt
capability. One lets you insert or remove a display list interrupt. The
other lets you change what is done at the interrupt.

7. Functions and named subroutines are available. From zero to four
arguments may be used.

8. An assembler is built into Advan BASIC.
a) Mnemonics can be used for 6502 commands.

b) You can use line numbers to specify the destinations of jumps and
branches.

c) You can directly access and use BASIC variables in the assembly
language code.

d) The assembly language code can be inserted into a BASIC program. You
do not have to worry about where to place the machine language code.

9. There are several utility programs on the Master disks:
a) Programs to copy files or disks and to format disks.

b) A program which allows 64K of the 130XE computer's memory to be used
as a RAM disk.

c) A program to check if a variable has been used only once. This is
useful in catching misspelled variables.

d) A checksum program which is useful if you are sending program
listings to friends, newsletters, or magazines.

10. Several optional packages are available:

a) A group of utility programs, including renumber, cross reference, and
a program to produce special execute only system disks. You can compile
one or more programs to one of these system disks and then run the program
without loading Advan BASIC. This means you can give or sell programs to
people who don't have Advan BASIC.

b) A screen design program that lets you design a display which uses
several different graphics modes, and even allows you to design alternate
character sets. What's more, there are special named subroutines on this
disk which you can append to your program. They give you commands for
horizontal and vertical fine scrolling and a special plot command for
plotting data to these custom displays.

-vii-

1. GETTING STARTED

Preparation

You will find two Master disks for Advan BASIC in the center of the manual.
You should put one away in a safe place; it's your back up disk. You will
use the other one to bring up Advan BASIC. Make sure that the write
protect tabs are in place on the Master disks so that they can't be erased
accidentally,

Before inserting the Master disk the computer should be off and the disk
drive on. Also the disk drive busy light should be off. Insert the Advan
Master disk and then turn on the computer. After about 35 seconds you will
see the message

-

Advan BASIC

(C)Copyright 1985 William Graziano
All Rights Reserved

Ready

Advan BASIC is now waiting for you to enter a program. Type in the
following lines: '

10 PRINT "HELLO"
20 END

Of course you will need to press the RETURN key at the end of each line.
You can use the standard ATARI editor keys to correct errors (see the
manual that came with your computer for a description of how these keys
work). To make sure everything has been entered correctly, type LIST or L
(not L.) and then the RETURN key. This command lists your program and then

prints Ready. Now type RUN. Because Advan is a compiled BASIC, the RUN
command actually does four things:

1. It compiles your program.

2, If you have an XL or XE computer, it moves about 14 K bytes of the BASIC
into high memory. This increases the amount of memory available to the
program.

3. It executes the compiled code.
4. It returns the BASIC to its normal location.
If you do not have an XL or XE computer, Advan will skip steps 2 and 4.

You will notice a blanking of the screen at the start and, if you have an XL
or XE, at the end of the RUN. Blanking the screen increases execution
speed, reducing compile time by about 30%. Advan BASIC has special
commands to blank and restore screen display. You can use them to speed up
the execution of your program (see Ch. 7). At the completion of RUN, you
should see on the screen:

HELLO
Ready

Entering Programs

Here is a list of facts to keep in mind when entering programs:
1. Line numbers must not exceed 32767.

2. Since long names are used in Advan BASIC, you must use spaces between
key words and variable names. For example, 10 FORT=1 TO 3 will give a
syntax error. There must be a space between the FOR and T. Normally if you
use more than the number of spaces needed, the system will delete the extra
spaces. Of course spaces in string expressions (inside quotes) are not
affected. Also, spaces at the start of a line are retained. This allows you
to indent programs for readability.

3. Multiple statements can be entered on a line; the colon symbol is used
to separate statements:

-

10 A=B: PRINT A

4. After you enter a line the compiler will check the line for syntax
errors. If it finds an error it will print out an error message and then
print out the line up to the point where it identified the error. In many
cases this will help locate the mistake. If the line is long you might
actually have typed a few characters of the next line before the error is
detected. The system will make a short buzzing sound to alert you that an
error has occurred. When it displays the error message it will overwrite
any characters you have typed. Normally you'll not lose more than a few
characters. Appendix C has a list of the error messages.

5. If you want to stop what the system is doing, press the BREAK key. For
example, if a program gets into an infinite loop, press the BREAK key to
return to the BASIC. You can also use the BREAK key to stop a listing or a
compile. Note that the BREAK key will not stop a disk save or load.

6. Like the ATARI BASIC, Advan BASIC uses CONTROL 1 to stop and restart
the display. Press the CONTROL key together with the 1(one) key to halt the
display. Press the two keys a second time to restart the display. Be sure
to press the CONTROL key and then the 1 key. The 1 key should be released
before the CONTROL key.

7. As mentioned above, you can use the ATARI edit keys to correct or

modify program lines. And just like ATARI BASIC, after you have corrected

a program line you must move the cursor onto the line and then press the
RETURN key.

8. Do not forget to type NEW before entering a program.

9. WARNING: Do not use the RESET key, or you will lose your program and
have to reload the BASIC.

Disk Commands

Before you can use a disk you must format it. You can use ATARI DOS 2.0 to
format disks, but it is usually easier to use the Advan format program. Of
course you will need a blank disk or a disk whose data you don't want to
save, With the Master disk still in drive 1, type EXEC FORMAT.COD. This
will load the format program into the computer. When the program is ready

-2

to format, it will give the following message:

Insert the disk to be formatted
and then enter the drive number,

After this message appears remove the Master disk and insert the disk to
be formatted into drive 1. Next type 1, but don't press RETURN. You will
see the following message:- : :

Type Y to format drive 1 disk
Type N to abort

This gives you a last chance to make sure you have the right disk in the
drive. Type Y without pressing RETURN. The formatting will take about 30
seconds and then you will be asked if you want to format another disk. Type.
N .without pressing RETURN. The system should respond with Ready. If you
have a multiple disk drive system you can leave the Master Disk in drive 1
and insert the disk to be formatted in drive 2. Then type 2 and the disk
will be formatted.

Advan BASIC has several commands to control the transfer of programs to
and from disks. The three main ones are LOAD, SAVE, and DIR. DIR is used
to list the names of the files on a disk. It is a built~in command, so you
can use it without harming any program you may have in the computer. To
check the disk you just formatted, type DIR. If you have a multiple drive
system, type DIR D2:. Don't forget the RETURN key. You should get the
message:

707 Free Sectors

Now let's do a sample program so you can see how to save and load. You will
have to enter a new program, because the EXEC FORMAT.COD command erased
your former program. First type NEW. Then type in the following:

10 REM TEST PROGRAM
20 SUM=0

30 SUM1=0

40 FOR T=1 TO 10
50 SUM=SUM+l1

60 FOR Y=1 TO 1000
70 SUM1=SUM1+1
80 NEXTY

90 NEXT T

100 PRINT SUM,SUMI1
110 END

List the program to make sure you entered it correctly. Correct any errors
and type RUN. While ATARI BASIC executes this program in about 56 seconds,
Advan BASIC takes less than 16 seconds. If you had used integers, it would
take only 6 seconds. 1I'll discuss integers in the next chapter. The
program should print 10 10000 followed by Ready.

To save the program on your disk, type SAVE TEST.BAS if the formatted disk
is in drive 1. Type SAVE D2:TEST.BAS if the formatted disk is in drive 2.
The screen will be blanked to maximize the speed of the transfer. After a
few seconds the display will return and the system will print Ready. To
check the disk, type DIR (or DIR D2: .if the disk is in drive 2). You should

-3-

mo

get:

TEST . .BAS 2
705 Free Sectors
Ready

The 2 after TEST.BAS tells you that the program is occupying only 2 sectors
on the disk. Neither SAVE nor DIR affects the program in memory. To
verify this, type L or LIST. You should find the program unchanged.

Now type LOAD TEST.BAS (or LOAD D2:TEST.BAS if using drive 2). The LOAD
command first erases any program in memory and then brings in the program
whose name is specified. In this case it will load TEST.BAS. The load will
take a few seconds and the screen will be blanked to minimize load time.
After the load is completed, the display is restored and Ready appears on
the screen,

LIST the program again to make sure it has been loaded correctly. You can
now make changes in the program and then save it ‘using the same name or a
new one., If you use the same name the previous file will be erased.

If you just want to RUN the program you don't need to load it. Type
RUN TEST.BAS (or RUN D2:TEST.BAS if using drive 2). This will erase any
program in memory, load the specified program, compile it, and execute it.
After a few seconds it should again print 10 10000 followed by Ready.

2. VARIABLE TYPES

The Advantages of Integers

Advan BASIC can store numbers in either integer or real (floating point)
form. Integers have no fractional part, and their values range from a
maximum of 32767 to a minimum of -32768. Real numbers vary from 1099 to
-10%99; 9 or 10 significant digits will be kept, depending on the number.

Speed and space are the reasons to use integers., Calculations using
integers are about 3 times faster than those using real numbers. Also each
integer uses two memory bytes, while a real number needs 6 bytes. So if you
have a big program and want it to fit into the eomputer and run as fast as
possible (and who doesn't), you should use integers wherever you can,

Names of real and integer variables can be as many characters long as you
desire. Only capital letters, numbers, and decimal points may be used in
the name. Integer variables must end with a Z symbol. Here are some
examples of valid names:

Integer Variables Real Variables

AZ A
BETA.ALPHAZ BETA.ALPHA
BETA.ALPHA17Z BETA.ALPHAl
C1237% C123
BETA1.GAMMAZ BETA1l .GAMMA

Unlike some BASICs, all the characters in Advan BASIC variable names are
significant. Thus, BETA.ALPHAl is not the same variable as BETA.ALPHA or
as BETA.ALPHA1%Z. Numerical constants are set to integer form if they end
in a % sign and to real form if they do not:

Integer Constants Real Constants

17 1.32
-53277% 5

07 -17E8
317657 5.27E-3

In Advan BASIC you can use all the standard arithmetic operators (+, -, ¥,
/, ") with either integer or real variables. In the integer mode the divide
operator (/) discards the remainder (it does not round). Thus 9%/5% will
yield one. For integer variables there is also a MOD operator. 9% MOD 5%
will divide 9 by 5 and return the remainder (in this case, 4).

You can mix integer variables and constants with real variables and
constants without causing any errors, but you will reduce execution speed.

I1f a computation must be performed involving a real number and an integer,
the integer is converted to a real number before the calculation is
carried out.

If an integer variable is set equal to a real number, the real number is
first rounded and then converted to an integer. For example in A%=5.7, A%

-5-

will be set equal to 6. In A%=B+27Z, suppose B equals 9.8. First, the 2% is
converted to a real number and then added to 9.8. This gives 11.8. Then
11.8 is rounded to 12 and A%Z is set equal to 12, Note the difference
between this and the divide command. There the remainder was discarded;
here the answer is rounded.

Appendix B is a list of words reserved by Advan BASIC. If you use a
reserved word for a variable name, you will get a syntax error. Also,
unless you are defining a function routine, real and integer variable names
must not start with FN,

Strings

Advan BASIC handles strings quite differently from ATARI BASIC. In ATARI
the length of each string must be given in a dimension statement and there
are no string arrays. This makes strings harder to use. In Advan BASIC,
however, you do not need to specify the length of strings. You use
dimension statements only to set up arrays (including strings). The
maximum string length is 256,

String variable names must end with a $ symbol. You may combine
(concatenate) strings using the plus operator. For example, the following
program will print ABCDEFG:

10 A$="ABC"

20 B$="DEF"

30 GB52%$="G"

40 C$=A$+B$+GB52$
50 PRINT C$

There are a number of useful built-in functions to help you work with
strings, such as LEFT, RIGHT, MID, INSTR, STR$, LEN, CHR$, ASC, and others.
See Chapter 10 for additional material.

You will get a syntax error if you use a string name reserved by Advan
BASIC (See Appendix B.) Also, unless you are defining a string function,
string variable names must not start with FN.

Arrays

The DIM statement indicates that a variable is the name of an array. The
number of subscripts can vary from 1 to 64. For example:

10 DIM A%Z(5,3),B$(6,8,2),A(5)

This line indicates that A%, B$, and A are arrays. The numbers in
parentheses are the maximum values of the subscripts. The minimum value of
a subscript is always zero. The DIM statement must always be in a line
which precedes the use of the variable.

Special Note: In many BASICs you do not have to dimension an array if the
maximum value of a subscript is 10 or less. This will not work with Advan
BASIC. All arrays must be dimensioned. Also, all variables and all arrays
are zeroed at the start of a program execution.

Integerexpression, Stringexpression, Realexpression

Throughout this manual, commands are usually described by first giving the
general format. For example, the command GRAPHICS is used to set the
screen display mode. If AZ equals 4% and BZ equals 2%, then each of the
following statements will set the display to mode 8.

10 GRAPHICS 8%

10 GRAPHICS AZ+47
10 GRAPHICS BZ+67
10 GRAPHICS AZ*BZ%

Rather than give a series of examples, the general format is given like
this:

GRAPHICS integerexpression

Integerexpression is simply a short way of describing an expression which
yields an integer. In the same way, the general term stringexpression is
used in some formats. Here are some examples of stringexpressions?

"EIGHT"
A$
A$+"ABC".

An expression with only real numbers and real variables or one with a
mixture of real and integer will be called a realexpression. Remember that
in a mixed expression the integers are converted to real numbers.

If the format for a command specifies an integerexpression, in almost all
cases a realexpression can be used in its place. The system will convert
the real number to an integer; however, this will slow down the execution
of the command to some extent. For example, the following statements
involving the GRAPHICS command are acceptable even though the expressions
following the command are not integerexpressions:

10 GRAPHICS 8

10 GRAPHICS A+47
10 GRAPHICS B+6

10 GRAPHICS A*B,

3. INPUT, READ, AND DATA STATEMENTS

INPUT

You can use the INPUT command with or without a prompting statement. For
example, the command INPUT AZ,B$ will print a question mark on the screen
and then let the user type in data for A% and B$. If you want to give the
user 'some instruction about what to enter, you can use the INPUT command
with a prompting message:

10 INPUT "Enter date in form DD-MMM-YY "T$

The above line will print---Enter date in form DD-MMM-YY---and then let
the user type in the date. Note that a question mark is not printed; if you
want one, you must put it in the message. The command INPUT ""TZ will print

neither a question mark nor a prompting message.
INPUTLINE

The INPUT command is limited to strings without commas, because commas are
already used to separate data items. For example, if you give the command
INPUT A$,B$ and the user enters SMITH, JOHN then A$ will be set to SMITH
and B$ to JOHN. Or if you give the command INPUT A$ and the user enters
SMITH, JOHN then A$ will be set to SMITH and JOHN will be ignored. The
INPUTLINE command solves this problem. It brings in all of the data
entered by the user (except the carriage return) and sets it equal to a
string. For example:

10 INPUTLINE A$

If the user types SMITH, JOHN in response to this request for data, A$ is
set equal to SMITH, JOHN. Note that you must always input the data into a
single string variable. All the following commands will give syntax
errors: INPUTLINE A INPUTLINE A$,B$§ INPUTLINE A$,BZ.

A promptimg message may be used with INPUTLINE:

INPUTLINE "ENTER NAME "T$

READ and DATA

Advan BASIC READ and DATA commands work about the same way as they do in
ATART and most other BASICs. Note that string information in DATA
statements should not be enclosed in quotation marks:

10 READ AZ,A$,B

20 DATA 5,ABC,2.7
30 PRINT AZ,A$,B
RUN

5 ABC 2.7

One problem in data statements is how to get a comma into a string; the
same problem as with the INPUT command. Since commas are used to separate
data items, if you want to use one or more commas in a string you need to do
something special. In Advan BASIC you can enter a comma in INVERSE mode.

-8-

When the system reads a string from a DATA statement, it converts an
INVERSE comma to a’ regular comma. To enter an INVERSE comma, hit the
INVERSE key and then the comma. Hit the INVERSE key one more time to get
out of the INVERSE mode and back to normal mode.

If you should want to use an actual inverse comma as part of a data string,
you've got a real problem. Let's hope you never want to do this,

Special Note: Unlike ATARI BASIC, Advan BASIC allows you to INPUT, READ
or INPUTLINE to an array variable:

10 INPUT AZ(5%)

4, BRANCHING COMMANDS

GOTO and GOSUB

Advan BASIC has the standard BASIC commands, GOTO and GOSUB. Also
available are named subroutines with arguments. They can simplify the
writing of programs and make them easier for someone else to understand.
That "someone" could be you if you need to modify a program you wrote some
time ago. Chapter 8 is devoted to functions and subroutines.

IF THEN ELSE

The IF THEN ELSE command lets you take different actions depending upoh
whether or not a specified condition is true or false:

10 IF DATE$="1 JAN" THEN PRINT "1st" ELSE PRINT "Not 1st"

The IF command is always followed by a conditional expression, which may

contain integers, real, or string expressions. Conditions can also be
combined with the AND and OR commands:

10 IF DAYZ=31% AND MONTH$="DEC" THEN PRINT "IT'S NEW YEAR'S EVE"

If you are using both AND's and OR's, the AND's will always be executed
first unless you use parentheses. In the next example, the OR commands in
parentheses are executed before the AND. :

10 IF (T%<3% OR YZ<>2Z%) AND (Z%>5% OR J%<=17%) THEN 100

You can have a line number or one or more statements after THEN. ELSE is
optional; if used, it can be followed by a line number or by one or more
statements. IF THEN ELSE must fit on one BASIC line (no more than 3 screen
lines).

IF DO ELSE ENDIF

IF DO ELSE ENDIF is a multi-line version of IF THEN ELSE. Just as in IF
THEN, a conditional expression must always follow IF. DO replaces THEN and
tells the compiler that it's a multi-line IF. In IF THEN, the end of the
BASIC line is also the end of the IF. In the DO form, the IF continues
until the ENDIF command is reached. ELSE is optional:

10 IF MONTH$="JAN" AND DAYZ=1Z DO
20 YEAREXPENSES=0

30 YEARINCOME=0

40 YEARTAX=0

50 ENDIF

In the above example} if it's Jan lst, lines 20, 30, and 40 are executed and

the three variables zeroed. If it's not Jan lst, the program will skip
lines 20, 30, and 40, Here is another example:

~-10-

10 IF INCOME >20000 DO .
20 TAX=0.2*%(INCOME-DEPENDENTS*1000-4300)

30 WITHOLDING=TAX/12

40 ELSE

50 TAX=0.1*(INCOME-DEPENDENTS*1000-2000)

60 WITHOLDING=0

70 ENDIF

If INCOME is greater than 20000, lines 20 and 30 are executed and the
program skips to the statement after the ENDIF. If INCOME is less than or
equal to 20000, lines 20 and 30 are skipped and lines 50 and 60 are
executed.

ON GOTO

While the IF command gives you two options, ON GOTO gives you many options.
The ON must be followed by a real or integer expression. If it is real it
will be converted to an integer (rounded). This expression is followed by
GOTO and a list of linenumbers:

10 ON T%Z+1% GOTO 100,50,200,400

You can have as many line numbers following the GOTO as will fit on the
BASIC line. The system evaluates the numerical expression, If it equals 1,
the program executes a GOTO to the first line number in the list. If it's a
2, the GOTO is to the second line number, etc. In the above example, if
T%=3, the system will evaluate T%+1%Z and get 4. The program will then GOTO
line 400. Note that you cannot use calculated line numbers, such as ON TZ
GOTO 100+10,20.

ON GOSUB

ON GOSUB works the same way as ON GOTO, except that a GOSUB to a line is
executed instead of a GOTO, When the subroutine is finished, the program
returns to the command immediately following ON GOSUB:

10 ON TZ%/3%+1% GOSUB 90,10000,100,200
CASE

The CASE command provides another way to do a multi-way choice. The
following diagram shows the general format of the CASE command:

CASE condition
(statements)

& condition
(statements)

& condition
(statements)

CASE ELSE

(statements)
CASE END

~11-

A conditional expression always follows the CASE command. If the condition
is true, the statement(s) between it and the & symbol are executed and the
program skips down to the statement immediately following CASE END.

If the first condition is false, the program jumps to the & symbol and
checks the condition following it. If that condition is true, the
statement(s) between it and the next & are executed, and the program jumps
to the statement immediately following CASE END. If the second condition
is false, the program skips to the next & symbol, and repeats the process.
In the above format, only two & conditions are shown. You may use as many
as you want.

The CASE ELSE and statement(s) following it are optional. If all the
previous conditional expressions are false, the program will execute the
statement(s) immediately following CASE ELSE (if it is present); if it is
not present, the program jumps to the statement immediately following CASE
END. The following example shows how to use the CASE command to determine

the number of days in a specified month: :

10 CASE MONTHZ=27%

20 DAYS%=28%

30 & MONTHZ%=4% OR MONTHZ=6% OR MONTH%=9% OR MONTHZ=117%
40 DAYS7%=307%

50 CASE ELSE

60 DAYS7Z=317%

70 CASE END

Advanced Topics: (Programmers with limited experience should probably
move on to the next chapter.) ’

IF THEN, IF DO, and CASE commands can be nested. For instance, you can use
an IF THEN within an IF THEN, an IF DO or a CASE. The one requirement for
IF THEN is that everything must fit into one line. Here is an example of an
IF THEN within an IF THEN: ‘

10 IF TZ%Z>27% THEN IF Y%>2% THEN 100 ELSE 200

Note that if there are two IF'S and only one ELSE, the ELSE goes with the
nearest preceding IF. In the above example, ELSE goes with the IF YZ>2Z.
If there had been another ELSE at the end of the line, however, you would

have gotten a syntax error. An ELSE may refer only to the nearest
preceding IF,

?f TZ is less than or equal to 2%, the program goes to the next line. If TZ
is greater than 27 and Y% is greater than 27, the program goes to line 100.

1f TZ is greater than 2%, but YZ is not greater than 2%, the program goes to
200. Here is another example:

10 IF TZ>27% THEN 100 ELSE IF Y%>27 THEN 200 ELSE 300

If TZ is greater than 27, the program goes to 100. If T% is not greater
than 2%, but Y7 is greater than 2%, the program goes to 200, If neither TZ
nor YZ are greater than 27, the program goes to 300.

When the program evaluates a conditional expression, it returns an integer
equal to one if the expression is true and zero if it is false. You can

sometimes use this fact to your advantage. Suppose you want to add 5 to T%

-12-

if Y7 is greater than 2Z. The following statement will achieve this:

10 TZ=TZ+(YZ%>27%)*5%

If YZ is greater than 27, the expression in parentheses will be set equal
to 1 and multiplied by 5. If YZ is not greater than 2%, the expression is
set to zero and TZ will still equal TZ. Consider the following example:

10 IF T% THEN 100

If T% is non-zero (plus or minus), the program jumps to line 100, since

Advan BASIC assumes any non-zero number to mean true. If TZ equals zero,
the system considers the expression to be false and goes to the next line.

-13-

5. LOOPS

FOR NEXT STEP

FOR NEXT is the main looping technique in most BASICs. Advan BASIC allows
two kinds of FOR loops, integer and real. The name of the loop variable
determines the loop type. The lower limit, upper limit, and step can be
integer or real, whether or not the FOR loop is integer or real. If there
are differences in type, the system will convert so that the lower limit,
upper limit and step are of the same type as the loop variable.

In some BASICs you do not need a variable name with the NEXT statement. In
Advan BASIC you must include the variable name with each NEXT, and the
system will check to make sure that corresponding FOR and NEXT statements
have the same variable name. As in most BASICs, FOR NEXT loops may be
nested. Here a real loop is nested inside an integer loop:

10 FOR T%=1% TO 5%
20 FOR Y=1 TO 3

30 PRINT TZ,Y
40 NEXT Y
50 NEXT TZ

And here an integer loop is nested inside a real loop:

10 FOR T=57% TO 1% STEP -1
20 FOR YZ=1 TO 3 STEP 2

30 PRINT T,YZ
40 NEXT YZ
50 NEXT T

The 5% and 1% in line 10 will be converted to real numbers, and the 1, 3, and
2 of line 20 will be converted to integers.

If you are writing programs to move data around inside the computer, you
generally want to work with integers because they are faster. Remember,
the largest value of an integer is 32767. Advan BASIC however, will let you
use FOR loops and POKEs with integers up to 655357 It simply stores them
as negative numbers. Consider the following program, which stores zeroes
in the bottom line of a mode O text display (memory locations 40920 to
40959):

10 FOR TZ=409207% TO 40959%
20 POKE TZ% ,0%
30 NEXT TZ%

As far as the program is concerned, it is executing a loop from -24617%
(same as 40920%) to -24577% (same as 40959%).

WHILE WEND

If you know how many times you are going to repeat a loop, FOR NEXT
statements work very well; if you do not, FOR NEXT is not so easy to use.
For example, suppose you write a program in which the user enters numbers
to be summed, with -1 entered after the last number. Here you have no idea
how many numbers will be entered. A WHILE WEND or REPEAT UNTIL 1loop,

~14-

however, allows you to write the program easily. The following shows the
standard form for a WHILE WEND loop; WEND stands for WHILE END:

WHILE condition
" (statements)
WEND

When the program reaches the WHILE command, it evaluates the condition. If
false, it jumps to the statement after the WEND. If true, it executes the
statements up to the WEND, jumps back to the WHILE, and again evaluates the
condition. As long as the condition is true, the program will stay in the
loop. The following program uses WHILE loops to solve the problem posed
above (input and sum numbers until -1 is entered):

10 SUM=0

20 INPUT NUMBER '

30 WHILE NUMBER<>-1 : :
40 SUM=SUM+NUMBER

50 INPUT NUMBER

60 WEND

70 PRINT SUM

Note that you have to use two INPUT NUMBER commands; once so that the loop
can get started, and again in the main body of the loop. This is not
unusual for WHILE loops. One of the more common errors with WHILE loops is
forgetting to do something to change the condition. For example, if we had
forgotten the INPUT on line 50, then NUMBER would never be changed and we
would have had an infinite loop. Because of their upper and lower limits,
FOR loops do not have that problem. The following is an alternate form of
the WHILE loop:

WHILE condition DO
(statements)
WEND

Both forms work in the same way. You might prefer the appearance of the
latter.

REPEAT UNTIL

The format is:

REPEAT
(statements)
UNTIL condition

When the program reaches the REPEAT, it continues past it and executes the
following statement(s). When it reaches UNTIL, it evaluates the condition.
If true, it leaves the loop and goes to the statement following UNTIL. If
false, it jumps back to the statement after REPEAT and goes through the
loop again.

REPEAT UNTIL serves about the same role as the WHILE loop, except that the
condition is at the end of the loop instead of at the beginning.
Therefore, the loop in a REPEAT is always executed at least once, while the
statements in a WHILE loop are not executed at all if the initial condition
is false.

-15-

There is another difference between the REPEAT and WHILE loops. The
program stays in a WHILE loop until the condition becomes false; it stays
in a REPEAT loop until the condition becomes true. The following shows
another way to input and sum numbers until -1 is input:

10 SUM=0:NUMBER=0
20 REPEAT

30 SUM=SUM+NUMBER
40 INPUT NUMBER
50 UNTIL NUMBER=-1
60 PRINT SUM

-16-

6. DISK INPUT AND OUTPUT

You already worked with disk files when you saved and loaded programs in
Chapter. 1. This chapter deals with disk data files. Advan BASIC uses
essentially the same file structure as ATARI DOS 2.0; you can use that DOS
to copy files, delete files, rename files, etc. The Advan disk commands,
however, differ from those used by ATARI BASIC.

OPEN

Before you can work with any disk file, you must first give an OPEN
command. Here is the general format:

OPEN stringexpression,integerexpression,stringexpression

The stringexpression immediately following the OPEN command must be I, O,
A, or R,

I--inputs data only from the file to the computer
O--outputs data only from the computer to the file. If a file wth the same
name already exists on the disk, using an O will destroy that file. If you

want to add to a file, use A (append).

A--sends data from the computer and adds it to the file specified in the
file name,.

R--opens a file in the so-called random mode. I, O, and A are essentially
sequential modes. They transfer data only in sequence, from the beginning
to the end. In the R mode, however, you can get and put data anywhere in

the file. Unfortunately, the ATARI disk format makes the R mode somewhat
difficult to use; more on that later in the chapter.

The integerexpression is used to assign a channel number to the file. This
number must be 0, 1, 2, or 3. All the other Advan BASIC commands use this
channel number when working with the file. Note that two files may not
have the same file number simultaneously.

The last stringexpression gives the filename, which has three parts:

1. A'D' followed by the disk number (1 to 4) that the file is on or will be
on, and then a colon. If the file is on disk 1, you can omit this part.

2. The main file name, which must be 1 to 8 characters long.

3. An optional filename extension, which is a period followed by 1 to 3
characters.,

The following are valid file names: ADDFIL. ADDFIL.DAT D3:BETA
D2:NEWFILE1.C13

The following are legal OPEN statements: OPEN "I",0%,"ALPHA.DAT"

OPEN "0",17Z,"D2:B" OPEN "R",3Z,"C.DT" OPEN "A",2%,"D3:BETAONEA.FIL"

-17-

CLOSE

After you have finished working with a file, you need to give a CLOSE .

command for it. This frees the channel number 8o that it can be used with :

other files. Also, it puts the final pieces of information on the disk if
any output was made to the file. If you have written to a disk and do not
close the file, you may lose some of the information. 10 CLOSE 17 will
close the file that was opened on channel 1.

PUT

Use the PUT command to write information into a file. The file must have
been opened .in the O, A, or R mode. Also, the disk must not have a write
protect tab on it, and the file must not be locked (see LOCK command in
reference manual). The general format for a PUT command is

-«

PUT integerexpression,variablename

The integerexpression is the channel number and must be 0, 1, 2, or 3. The
variable is what is being stored on the disk. It can be an element of an
array:

10 PUT 0% ,N7%(2%)

In the following example, 100 names and associated salaries are input from
the keyboard and saved to a file:

50 OPEN "0",17%,"SALARY.DAT"
100 FOR NUMBERZ=1Z TO 100%
110 INPUTLINE NAME$

120 INPUT SALARY

130 PUT 17%,NAME$

140 PUT 17Z,SALARY

150 NEXT NUMBERZ

160 CLOSE 17

I should mention that the maximum length string which you can store on a
disk is 255 bytes (not 256).

GET

Use the GET command to read information from a file. The file must have
been opened in the I or R mode. The general format for the GET command is

GET integerexpression,variablename
The integerexpression is the channel number and must be 0, 1, 2, or 3. The

variable will contain what is read from the disk; it can be an element of
an array.

In the following example, the 100 names and associated salaries stored in

the above program are read back from the file into two arrays, and then
printed:

18-

50 OPEN "I",0%,"SALARY.DAT"

60 DIM NAME$(100),SALARY(100)

100 FOR NUMBERZ=1Z TO 100%

110 GET 0% ,NAME$ (NUMBERZ)

120 GET 0Z,SALARY(NUMBERZ)

130 NEXT NUMBERZ

140 CLOSE 0%

200 FOR NUMBERZ=1% TO 100%

210 PRINT NAME$(NUMBERZ),SALARY(NUMBERZ)
220 NEXT NUMBERZ

Suppose you want to change one of the salaries? You can use the R mode to
read through the file searching for the name, and then change the salary.
The following program will do this: |

10 PRINT "ENTER NAME OF PERSON"

20 INPUTLINE "WHOSE SALARY IS TO BE CHANGED " T$

30 INPUT "ENTER NEW SALARY " T

50 OPEN "R",27%,"SALARY.DAT"

60 FOR T%=1Z TO 100%

70 GET 27% ,NAME$

80 IF NAME$=T$ THEN PUT 2%,T: GOTO 110 ELSE GET 2%,SALARY
100 NEXT TZ%

110 CLOSE 2%

EOF

You use the EOF command to check whether or not you have read all of the
data from a file; that is, whether you are at the end of the file. Use it
when you do not know the length of a file. For example:

10 TZ%Z=EOF(1%)

If you are at the end of the file for channel 1, EOF will be set to the
integer 1 and, thus, T7Z will be set to 1. If there is still data to be read
(that is, you are not at the end of the file), T% will be set to 0. The
following segment reads the names and salaries from the file, but does not
assume that the number of items is known:

50 OPEN "I",2%Z,"SALARY.DAT"
100 WHILE EOF(2%Z)<>1% .

110 GET 27 ,NAME$

120 GET 27 ,SALARY

130 PRINT NAME$,SALARY
140 WEND

150 CLOSE 27

The remaining material in this chapter is somewhat more difficult.
Programmers with limited experience should probably skip to the next

chapter.,
NOTE and POINT

The NOTE command is used to remember where a given piece of data is located
in the file. The POINT command is used to return to that location. The
format of the two commands is similar:

-19-

NOTE channelnumber,integer variable,integer variable
POINT channelnumber,integerexpression,integerexpression

Consider the following program segment. The NOTE command on line 10 stores
the sector number of the file opened on channel 1 in the variable, SECTORZ.
The current position in the sector is stored in SECTORPOSZ:

10 NOTE 1% ,SECTORZ ,SECTORPOS7

éO POINT 1% ,SECTORZ ,SECTORPOSZ

Suppose several disk operations have occurred between lines 10 and 90.
When line 90 is executed, the disk operating system returns to the file
position it was at when line 10 was executed.

10 OPEN "O",1Z,"TEST"
20 FOR TZ=1% TO 5%

30 IF T%=37% THEN NOTE 1% ,SECTORZ,SECTORPOSZ
40 T1Z=T%+5%:PUT 1%,T1%
50 NEXT T%

60 CLOSE 1%

100 OPEN "R",1%,"TEST"

110 POINT 1%,SECTORZ,SECTORPOSZ
120 GET 1%,TESTZ

130 PRINT TESTZ%

The above program creates the file named "TEST" on disk 1, and stores in it
the numbers 6, 7, 8, 9, and 10, SECTORZ and SECTORPOSZ will contain the
information on where the third number of the file is located. Line 100
opens the file in the random mode so that we can get just the third number.
The POINT command positions us at the start of the third number, and the
following command gets the number and stores it in TESTZ. Line 130 prints
'8', the third number of the file.

With POINT and NOTE you can set up a file, and GET and PUT to it without
reading or writing the whole file. The trick is to use the NOTE command
for, say, every sixteenth file element, and to store the sector and sector
position data in an array. Then, when you want to get to an element, you
use the data in the array with a POINT command to position as close as
possible to the element. Finally, you use GET commands to reach the
particular data element. If you have a big file and need to access records
quickly, this is one way to do it. You can even store the array in a file,
and when you want to work with the main file, you first read the array from
the disk. See reference manual section on NOTE for an example.

GET and PUT (alternate form)

There is an alternate form of GET and PUT which allows you to specify the
number of bytes to be transferred. For example, GET 1%,A%(0%),50% will
read 50 bytes from the file into the array AZ. Since an integer is two
bytes long this will read values for AZ(0Z) through A%Z(24%). This is much
faster than getting the integers one at a time. PUT 1%,A(10%),20% will put
AZ(10%) through AZ(19%Z) into the file. On a GET you need to be careful
that the array is large enough to hold all the bytes. For instance, if AZ

-20-

had been dimensioned only to 20, then GET 1%,A%Z(0%),50% would crash the
program. In an extreme case you could even crash the system.

If you try to get more bytes than are in the file, you will get an end of
file error message. An integer representing the number of bytes not
transferred will be stored at location 1238 (low order) and 1239. Thus, if
you try to get 30 bytes and there are only 10 bytes in the file, location
1238 will be set to 20 and 1239 to zero. Use PEEKW(1238%) to find the
number of bytes not transferred.

You can also use this alternate form to GET and PUT one byte. For example,
PUT 2% ,NZ,1Z will put a byte of value equal to N% to the file. NZ must have
a value less than or equal to 255 and greater than or equal to zero. GET
2% ,NZ,1Z will get a byte from the file and place it in the low order byte of
N%. Note that the high order part of N%Z will not automatically be zeroed.
In many cases, it is a good idea to set the variable to zero before getting
a single byte. This forces the high order byte to zero.

-21-

7. SPECIAL COMMANDS

WAIT

The WAIT command forces the computer.to pause for a specified time. Its
format is

WAIT integerexpression

The value of the integerexpression will tell the computer how long to wait
in sixtieths of a second. The first example below will cause a 15/60
second pause:

10 WAIT 15%

10 WAIT TZ+2%

RTIME

The RTIME command resets the clock to zero:

10 RTIME

This command is normally used with the TIME function. See Chapter
8--Functions and Subroutines.

OFFDISPLAY and ONDISPLAY

Maintaining the display slows down the CPU. In mode O, the normal text
mode, the system will run about 30% faster with the display off. If you
want to go as fast as possible and don't need the display, use the
OFFDISPLAY command; the ONDISPLAY command turns it back on:

10 OFFDISPLAY

20 SUMZ=0%

30 FOR TZ%Z=17 TO 30000%
40 SUM%=SUMZ+17%

50 NEXT TZ%

60 ONDISPLAY

70 PRINT SUMZ

DEG and RAD

When the BASIC is loaded, it is initialized so that angles used with trig
functions must be in radians. The DEG command changes the trig functions

so that they work with degrees. The RAD command switches the system back
to radians.

10 DEG

50 RAb

-22-

POKE and POKEW

POKE is a commonly used command; it stores a byte in a specified memory
location. POKEW stores a 16 bit word in a specified memory location. The
low order 8 bits are stored at the memory location, and the high order bits
are stored at memory location plus one., This is the normal way to store an
integer on the ATARI. In the following example, O is stored in 40959, and
289 is stored in 40957 and 40958:

10 POKE 409597 ,07%
20 POKEW 40957%,2897%

EXG

The EXG command exchanges two strings. Its format is:

«

EXG(stringvariable,stringvariable)
10 EXG(T$,A$)
10 EXG(Y1$(5%,2%),C$(1%Z))

In the first example, if A$ equals 'A' and T$ equals 'ZZ' before the EXG
command is executed, then A$ will equal 'ZZ' and T$ will equal 'A' after
EXG is executed. Note that you cannot use EXG with integers or real
variables.

TRAP

Normally, if an error occurs during the execution of a program, the system
immediately returns to BASIC. Sometimes this is undesireable. For
example, suppose a user enters and misspells a file name; the program
cannot find the file and returns to BASIC with a file not found error.
Wouldn't it be better to give the unfortunate person another chance? The
TRAP command lets you do this. Its format is

TRAP linenumber

In case of an error, TRAP causes the system to go to the specified
linenumber. Memory location 1240 will have the error number. You can use
a PEEK command to get it. Appendix B has a list of the error codes.
Suppose you come to a section of the program where you would prefer an
error to force a return to BASIC. TRAP O will cause subsequent errors to
do this. Of course, you can always issue another TRAP command and again
take over error control,

LOADST and POPST

LOADST lets you save strings or numbers to the stack used by the system.
POPST lets you remove strings and numbers from the stack and store them in
variables., The formats are

LOADST(expression)

POPST(variablename)

For example, suppose you have a subroutine which takes a number and

~23-

returns a string equal to the hex value of the number. The question is, how
to supply the subroutine with the number, and how to get the string
information back from the subroutine. One way is to use the LOADST command
to put the number on the stack. The subroutine uses the POPST command to
store the number in a variable that it can work with. When the subroutine
finishes evaluating the string, it loads the string on the stack and then
returns. The main program now uses the POPST command to store the string
in a variable:

10 LOADST(TZ)
20 GOSUB 100
30 POPST(T$)

100 POPST(HEXZ)) .

200 LOADST(HEX$)
210 RETURN

—24-

8. FUNCTIONS AND NAMED SUBROUTINES

Built-in Functions

Advan BASIC provides a number of built-in functions. In addition, it
allows user-defined functions and named subroutines with O to 4 arguments.
Most of the built-in functions are listed or described in the chapter
covering the pertinent topic. The remaining functions are described in
this chapter. Table 8-1 lists the functions that deal with real variables;
Table 8-2 those dealing primarily with integers.

Table 8-1
ABS(X) returns the absolute value of X
ATAN(X) returns the arctan of X
COS(X) returns the cosine of X .

EXP(X) returns e"X :

FINT(X%Z) treats X% as an unsigned integer from 0% to 65535% and
converts it to a real number

FIX(X,YZ) rounds X to YZ decimal places.

INT(X) returns the integer part of X

LOG(X) returns the natural logarithm of X

RND(X) returns a random number with a value between 0 and X

SIN(X) returns the sine of X

SGN(X) returns 1 if X>0, 0 if X=0, and -1 if X<O

SQR(X) returns the square root of X '

TAN(X) returns the tangent of X

VAL(X$) translates a string into the number that it represents
Table 8-2

ABSZ(X%) returns the absolute value of X%

GETKEY returns the ASCII code for a key that has been
pressed, returns O if no key has been pressed

PEEK(X%Z) returns an integer equal to the value at the
memory location X7

PEEKW(X7%Z) returns an integer equal to the value of the word
at memory location X7 and X%Z+1%; (low order 8 bits at
X% and high order 8 bits at XZ+1%

RNDZ(X%) returns a random integer of value greater than O and
less than or equal to XZ. XZ must be less than 2567%.

STICK(XZ%Z) returns an integer whose value depends upon the
position of joystick numbered XZ (see reference
manual)

STRIG(X%) returns O if the X7 joystick firebutton is pressed;
otherwise returns 1%

TIME returns an integer whose value equals the number of
sixtieth of seconds since last RTIME command

The reference manual gives additional information on all the functions
listed in Tables 8-1 and 8-2.

User-Defined Functions

If there is an expression which you evaluate several times in a program, a
user-defined function may be helpful. The format is

~25-

DEF functionname(variablename,...,variablename)=expression

The functionname must start with FN. The variablenames in parentheses are
optional; there may be no more than four. Suppose that in several places
you need to determine the larger of two integer numbers. The following
function will do this:

DEF FNLARGERZ(XZ,YZ)=XZ*(XZ>YZ)+YZ*(YZ>=XZ)

If X7 is greater than YZ, then XZ>YZ yields one and YZ>=X% yields zero;
thus the right side equals XZ. If YZ is greater than or equal to X%, then
the right side equals YZ. The values of X% and YZ are determined when the
function is used. Here is an example:

10 G%=37%: A%=67%

20 PRINT FNLARGERZ(GZ*3%,A%))
30 DEF FNLARGERZ(XZ,YZ)=XZ*(XZ>YZ)+YZ*(YI>=XZ
RUN

9

At line 20 we use the functionname. X7 takes the value of GZ*37 (i.e., 92),
and Y% takes the value of AZ (i.e., 6%Z). Since XZ is greater than YZ, the
function returns the value of 9%. Thus, at line 20, FNLARGERZ is set to 972
and this is what is printed.

The variables X7 and Y% are called dummy variables. Their values are set
by the expressions in the parentheses following the use of the
functionname in the program. These values hold, however, only in the
definition of the function. If X7 and YZ had been used elsewhere in the
program, their value would have been unchanged by what -happened to X% and
Y% in the function. That is, the X7 and YZ in the function would not be the
same variables as X% and YZ used elsewhere in the program.

Functionnames can be real, integer (ends in %), or string (ends in §$).
String functions always return string expressions; thus, by definition,
the right side of a string function must be a string expression.

Named Subroutines

Named subroutines are similar to ordinary subroutines, except they can
have 0 to 4 dummy variables, and they are called in a different way. To
call a named subroutine, just use its name; if dummy variables are used,
set up expressions for each one., Subroutine names must end with a @
symbol. The command SUB followed by the subroutine name, defines the start
of the routine. The command SUBEND defines the end of the named
subroutine. If you want to exit from the middle of a named subroutine, you
can use a RETURN command. Any number of RETURNS may be present; however,
you may use only one SUBEND and it must be the last statement in the
subroutine.

-26-

5 A%=77%

10 PRINTLARGER@(5%,3%)

15 PRINTLARGER@(-3%,A%+17%)

20 SUB PRINTLARGER@(XZ%,YZ)

30 IF X%>YZ THEN PRINT X% ELSE PRINT YZ
40 SUBEND

RUN

5

- 8

In the above example, the PRINTLARGER@ subroutine is called first at line
10. The subroutine starting at line 20 is executed with X7 equal to 5% and
'YZ equal to 3%; a 5 is printed. The subroutine is again called at line 15,
with X7 now equal to -3% and YZ equal to A%Z+1%, that is, 8%Z. An 8 is
printed.

The variables X7 and YZ are called dummy varigbles. Their values are set
by the expressions in the parentheses following the use of the subroutine
name in the program. These values hold, however, only in the subroutine.
If X7 and YZ are used elsewhere in the program, their values remain
unchanged by what happened to X% and Y7 in the subroutine. In effect, the
dummy variables XZ and YZ in the subroutine would be different from the X7
and YZ used outside of the subroutine.

Special note: 1In most situations the system will automatically convert
between real and integer numbers. In user defined functions and named
subroutines, however, the argument must be the same in the definition and
when the function or subroutine is used. For instance, the following -
program gives an argument error when compiled. This is because the
definition at line 20 shows an integer argument, but a real argument is
used at line 10,

10 PRINT FNT(A)
20 DEF FNT(BZ)=2

The system will go around a function or subroutine definition
automatically, just as it goes around DATA statements. So you may place
functions and subroutines anywhere in the program. Note that the
definition of a function or a subroutine does not need to precede its use.

-27-

9. MORE ON PRINTING

PRINT and LPRINT

The PRINT command is used to display information on the TV or monitor
screen. Note that the system considers a ? to be the same as a PRINT
command. Using a ? will cut down on your typing and save space on a display
line. LPRINT works the same as PRINT, except that the output is sent to
the printer. Like most BASICs, Advan BASIC uses commas and semicolons to
control print spacing. See the reference manual if you are not familiar
with this,

TAB

Use the TAB function to specifiy the column you want to print in. It can be
used with either the PRINT or LPRINT command. For example:

PRINT TAB(15%); "HELLO"

The far left column is O, the next is 1, etc. TAB(15%) will shift the print
position to column 15, the semicolon will keep it at 15, and the H in HELLO
will be printed in column 15.

PRINT USING and LPRINT USING

These commands allow the programmer much greater control of output than do
PRINT and LPRINT commands. For example, you can:

1. specify the number of decimal points (the number will be rounded).

2. right justify numbers

3. align decimal points

4. insert $ and/or * before numbers

5. insert trailing or leading minus signs

6. do some string operations

The details of using the command are described in the reference manual. I

should remind you, however, that to use these two commands the PUSING.APP
file must be appended to your program before it is compiled.

WIDTH

This is a system command (you cannot use it in your program) which sets the
printing width. Typing WIDTH 80 causes the system to assume that the
printer is set for 80 characters. If you do not use this command, the
system assumes a printer width of 75 characters. If you want to set the
printer width in your program, you must POKE the new width into memory
location 1251. For example, POKE(1251%,80%) sets the printer width to 80.

—28-

10. MORE ON STRINGS

String Functions

There are a number of Advan BASIC functions which are helpful when working
with strings. Each is described here briefly and in more detail in the
reference manual.

CHR$(XZ) generates a one character string; the ASCII code for this
character is given by the value of XZ.

CHRW$(XZ%Z) generates a two character string; the ASCII code for the first
character is X%Z MOD 256Z. The ASCII code for the second character is
X7%/256%. .

INSTR(X%Z,A$,B$) searches A$ to see if B$ is included in it. The search
starts at the XZ character position of A$. If no match is found, it

returns an integer equal to 0%Z; otherwise, it returns an integer equal to
the character position in A$ at which the match was found.

INSTR1(A$,X7,YZ) searches A$ to see if the character whose ASCII code
equals Y7 is present. The search starts at the X% character position of
A$. If no match is found, an integer equal to 0% is returned; otherwise, it
returns an integer equal to the position in A$ at which the match occurred.
LEFT(A$,X%Z) returns a string equal to the first X% characters of A$.
LEN(A$) returns ah,integer equal to the length of A$.

MID(A$,X%,YZ) returns a string of length YZ composed of the characters of
A$ from position X7 to XZ+Y7-1%.

NUM$(X%Z) returns a string representing the value of the integer X7

RIGHT(A$,X%Z) returns a string composed of the characters of A$ from
position X% to the end of the string.

STRING(X%,YZ) returns a string of length X%, all of whose characters have
the ASCII code equal to YZ.

STR$(X) returns a string representing the value of the real number X.

In additon to these functions, there are two Advan BASIC commands designed
to work with strings:

INSERTB

10 INSERTB(A$,XZ,YZ)

This command inserts a character into A$ at the X7 position. The ASCII
code of the character will be YZ.

—29-

INSERTW
10 INSERTW(A$,X%,YZ)
This command inserts two characters into A$; one at the X% position and

the other at X7%+1%Z. The ASCII code of the character at the X7 position is
YZ MOD 256%. The ASCII code of the character at the XZ+1Z position is

YZ/256%.

-30-~

11. MORE ON SYSTEM COMMANDS

SAVEC and EXEC

Here is how to run a regularly used program without having to compile it
first each time. Use the LOAD command to bring the program into the
computer and then type COMPILE. After the COMPILE is completed, the
system will respond with Ready. Now type SAVEC and follow this with a
space and filename. This will save the compiled code on the disk. When you
want to run the program, type EXEC followed by the filename of the compiled
code.

The following example shows how to compile and save the code for a program
named ALPHA .BAS:

-

LOAD ALPHA.BAS
Ready

COMPILE

Ready

SAVEC ALPHA.COD
Ready

Next time you want to run the program, type EXEC ALPHA.COD.

Compiling and Executing Long Programs

If you do enough programming in Advan BASIC, you will eventually write a
program which is too long for the normal RUN command, and you will get a
MEMORY EXCEEDED message. This means that either there isn't enough room
for the compile, or there isn't enough room for the program and its data
during execution. Take heart; in many cases you can still run the program.
It just takes a slightly different technique.

When you type RUN, Advan BASIC will keep both the compiled code and the
program in memory. This is very convenient if you want to modify the
program, because it's right in memory. You simply make the changes and
then run it again; however, it does limit the size of a program you can run.

If you type RUN 1, the system will delete each line of the program as the
line is compiled. At the end of the compile, the program will have been
erased. This lets you run much larger programs. Be sure to save the
program before you try this, or you will be very sad indeed. You can also
use this technique with programs you run directly from a disk. For
example:

RUN D2:ALPHA.BAS 1

This command loads the program from disk 2, compiles it, and then executes
it. The program lines are deleted as they are compiled. You can also use
this option with the COMPILE command: '

COMPILE 1

This command compiles the program in memory and deletes each line after it
has been compiled.

-31-

If you can now compile, but still cannot execute, you can squeeze out a
little more memory by typing RUN 3. If you do not have an XL or XE
computer, this will gain about 17K of space. The system thinks of this as a
1 plus a 2. The 1 tells it to delete the program; the 2 tells it to remove
the BASIC. On an XL most of the BASIC is put in special high RAM before
execution, and the gain is rather small (about 3K). If it allows the
program to execute, however, don't knock it. You can also use the 3 option

when running programs from a disk. The following command is equivalent to
loading ALPHA.BAS from disk 1 and then giving a RUN 3.

RUN ALPHA.BAS 3

If you can compile using a RUN 3, but still cannot execute, you have one of
three possibilities:

1. rewrite the program .
2. use a different BASIC, computer, or language
3. use the optional Advan BASIC optimizing compiler

What if you cannot even compile with the COMPILE 1 option? Then you will
need to do a disk to disk compile. This will bring in the parts of the
program only as they are needed, and will put the output code back on the
disk. With it, you can compile quite long programs. Note that your program
name must not end in .COD or .WRK, or you will lose it. There are two
formats possible:

(1) COMPILE ALPHA.BAS

This command compiles the program named ALPHA.BAS on disk 1 and stores the
compiled code on drive 1 under the name ALPHA.COD. A file named ALPHA.WRK
will be created and then erased at the end of the compile.

(2) COMPILE ALPHA.BAS/D2:GAMMA.002

This command compiles the program named ALPHA.BAS on disk 1 and stores the
compiled code on drive 2 with the name GAMMA.002. The / symbol tells the
system that you want to specify the location and name of the compiled code.
After the disk to disk compile is completed, you can execute the compiled
code with the EXEC command. The following command executes the code
generated by the previous command:

EXEC D2:GAMMA.002

If you add a space and a 2 at the end of either of the above options, the
BASIC will be removed when the program is executed:

COMPILE ALPHA .BAS/D2:GAMMA.002 2

If you remove the BASIC to execute a program, you must restore the BASIC at
the end of the program. The system will print the message 'INSERT BASIC
DISK&RETURN'. You can then insert the Master disk into drive 1 and press
RETURN. Or you can use FORMAT1.COD (see Ch. 17) to format a disk with the
BASIC on it and use this as your working disk. If your working disk has the
BASIC and is in drive 1, just press RETURN. Either way, it takes about 16
seconds to reload the BASIC.

-32-

Entering long programs

When entering a long program you might get a NO ROOM error message. If
that happens, you should save the program to the disk and then reload it
using the following special format:

LOAD filename 1

The 1 after the filename instructs the system to keep the main part of the
program on the disk., Then you can continue typing in your program. LIST,
DEL, etc. will work as before; however, when you next save, you must use a
different name. Also you will need to keep this disk in the computer
during the save. If you have a one disk drive system, you must save back to
the same disk. However, you can use COPYFILE.COD to move the program to
another disk.

KILL, RENAME, LOCK, and UNLOCK

Descriptions of the above commands are in the reference manual. Each one
can be called directly from the BASIC without affecting the program in
memory. ‘

-33=

12, SOUND

SOUND
Consider the following format:
SOUND VOICEZ ,FREQUENCYZ ,DISTORTIONZ ,VOLUMEZ

ATARI computers have four independent sound channels called voices; they
are numbered O, 1, 2, and 3. The value of VOICEZ determines which voice you
are issuing a command to. The value of FREQUENCYZ (1 to 255) determines
the sound frequency. For example, 121% is middle C. (See reference manual
for a complete table). The value of DISTORTIONZ ranges from 0% to 15%. It
controls the amount and type of noise output; 10% produces a pure note,
The value of VOLUMEZ also ranges from 0% (sound off) to 15% (highest
volume). Once started, a channel will continue to emit the same sound
until another command is given to that channel, or until the program ends.

ASOUND and SCONTROL

You can use ASOUND and SCONTROL to set up a series of notes and then allow
the computer to play the series automatically without any further
commands. For example, the program starts a tune and then does something
else, like manipulate a player, while the system is playing the specified
tune. The formats for these commands are:

ASOUND VOICEZ,ADR(1linenumber)
SCONTROL integerexpress,integerexpress,integerexpress,integerexpress

In ASOUND the value of VOICEZ specifies which voice you are issuing a
command to (0, 1, 2, or 3). The number after ADR is the linenumber where
the data for the voice is located. The data may extend over several
successive lines and specifies frequency, duration, distortion, and volume,
ASOUND does not start a voice; it only specifies what is to be played.

SCONTROL starts and stops the voices. The four numbers following SCONTROL
correspond to the four ATARI voices. If the number is one, the voice is
started or continued. If it is zero, the voice is stopped or not started.
Thus you use ASOUND commands to specify the data for the voices and
SCONTROL to simultaneously start them. This allows you to synchronize the
voices. Consider the following program, which plays two notes and stops:

10 ASOUND 0%,ADR(1000)

20 SCONTROL 1%,0%,0%,0%

30 WAIT 60%

40 GOTO 5000

1000 CODE"5,1121,1168,7,1243,1170,0,FF"
5000 END

The 0% following ASOUND specifies that the sound will be produced on voice
0. Line 1000 is where the data for the voice is located. The CODE command
at line 1000 is a special way of entering data into a program. It is used
mainly with assembly language code. Here we are using it to enter a series
of ‘numbers. separated by commas. If preceded by ! the numbers are in

—34-

decimal; otherwise, they are in hexadecimal, Fear not, however; you don't
need to understand hex numbers to enter data. You do need to know that any
number from O to 9 is the same in hex and decimal; thus, you don't need to
use ! in front of them. '

The data most commonly used with ASOUND is a three number group; look at
the first group on line 1000 above. The first number must be from 1 to
254; it specifies duration in sixtieths of a second. It's a 5, meaning 5/60
. of a second., The second number specifies frequency (1 to 255). It is 121,
or middle C, (See reference manual for complete table.) The third number
is a combination of two values (each ranging from O to 15) representing
distortion and volume. To get the third number, multiply distortion by 16
and add the volume. Remember that a distortion of 10 produces a pure note.
168 equals 10*16+8, and thus gives a pure tone at about half volume. Since
15 produces maximum volume, 8 gives about half volume.

Now look at the second group of three numbers on line 1000. The 7 means
that this sound will play for 7/60 of a second. The 243 means it is a low C.
The 170 (10*16+10) means it is a pure tone of slightly over half volume.

Notice that the last group on line 1000 starts with a zero. Since it does
not make any sense to play a note for 0/60 second, this zero is a signal
that what follows is a special command. There are three of these: O,FF
tells the system to stop the sound on that channel, O,FE stops all
channels, and O,FD is explained later in this chapter. Back to line 1000
again; O,FF turns off the sound after the 7/60 second low C.

If you need to know where you are in the sound sequence, give an RTIME at
the start, and use the TIME function to determine how many sixtieths of a
second have elapsed.

The SCONTROL on line 20 starts the sound. The WAIT 60% on line 30 prevents
the program from reaching the END before the tune has been played. Note
that all voices are turned off by the END command.

It is easy to play a "tune" just once, as in the previous program. But how
do you play a tune a limited number of times or repeat it continuously?

And how do you put attack and decay into notes? You can use the tools
described above, but it will be rather painful. Advan BASIC solves these
problems with another special command. Consider the following example:

1000 CODE"FF,#2000,FF,#2000,FF,#2000,0,FF"
2000 CODE"5,!121,'168,7,!170,0,FD"

Line 1000 has three special commands which act somewhat like a GOSUB. Each
command starts with FF, followed by a comma, a # symbol, and a linenumber.
means that the next number is a linenumber. FF is the hexadecimal form
of 255; we use it because it's shorter. When the system detects a group
starting with FF, it switches to the line specified by the number after #
(in this case, line 2000). The data may lie on just one line or extend over
several successive lines., O0,FD (at the end of line 2000) acts like a RETURN
and causes the system to return to line 1000 and continue on that line,
where it will again be sent to line 2000. Thus, the three special commands
in line 1000 cause the sound pattern in line 2000 to be played three times.
Here is another example:

~35-

10 ASOUND 0% ,ADR(1000)

20 SCONTROL 1%,0%,0%,0%

30 WAIT 60%

40 GOTO 5000

1000 CODE"FF,#2000,FF,#3000,FF,#2000,0,FF"

2000 CODE"1,!121,!'164,2,1121,!'168,1,!121,!164,0,FD"
3000 CODE"1,1243,1164,2,1243,1168,1,!1243,1164,0,FD"
5000 END

ASOUND and SCONTROL cause the data in the CODE statements to be used. On
line 1000, the first FF switches control to line 2000--a middle C with
varying volume. The O,FD in line 2000 returns control to line 1000, where
the next FF switches control to line 3000--a low C of varying volume. The
0,FD in 1line 3000 returns the system to line 1000, where the third FF
switches control to line 2000 for the second time. The final O,FF turns
off voice 0. The WAIT command prevents the program from ending before the
sound ends. One more example:

100 ASOUND 0% ,ADR(1000)

110 SCONTROL 1%,0%,0%,02

120 GOTO 120

1000 CODE"5,!121,!168,7,1243,1170,FF,#1000"

This is the same type of program as the first example in this chapter, In
that example, we ended with O,FF which stopped the channel. Here we end
with FF,#1000. This will send the system back to the start of line 1000 and
cause the sound to be repeated continuously. To stop the sound, you will
need to insert into the program SCONTROL and 0% for that channel. To stop
the program press BREAK. :

Warning: The CODE command is a very powerful and efficient way to provide
data for ASOUND, but it is also very dangerous. You can crash the system
if you allow the program to try to execute CODE lines. Before the CODE
statement, use END or GOTO, to go around it.

~36-

13. GRAPHICS

Graphics Modes

If you use the optional screen design and fine scrolling package, Advan
BASIC will support most of the large number of ATARI graphics modes; this
includes the 16 supported by the ATARI operating system, as well as many
more. Without this optional package, Advan BASIC supports the same 16
graphics modes as ATARI; these are briefly described in Table 13-1.

Table 13-1
MODE SIZE TYPE # OF COLORS
0 40x24 text 2 (1 color and 2 luminance values)
1 20x24 text* 5
2 20x12 text* 5
3 40x24 graphics 4
4 80x48 graphics 2
5 80x48 graphics 4
6 160x96 graphics 2
7 160x96 graphics 4
8 320x192 graphics 2 (1 color and 2 luminance values)
9 80x192 graphics 16 (1 color and 16 luminance values)
10 80x192 graphics 9
11 80x192 graphics 16
12 40x24 text** 4
13 40x12 text** 4
14 160x192 graphics 2
15 160x192 graphics 4

*With alternate character sets, these modes can provide good graphics
**Works like a text mode, but much more useful with alternate character
sets in a graphics display.

The GRAPHICS command is used with a number which specifies the graphics

mode. For example, the following line switches the display to graphics
mode 4

10 GRAPHICS 4%

By adding special numbers to the desired mode, however, you can specify any
of the following conditions:

A. An alternate character set (add 128 to mode number).
B. Player-missiles are used (add 64 to mode number).

C. The display is not to be cleared when it is opened (add 32 to mode
number),

D. There is to be no text window at the bottom of the display (add 16 to
mode number),

And you can combine several of the above options:

-37-

10 GRAPHICS 857

Since 85=5+16+464, the display will be opened in mode 5 with no text window
and with player-missiles activated,

Special note for users who do not have an XL or XE:

The system will remove the BASIC whenever you use the GRAPHICS command.
This frees the memory needed for the graphics. When the program comes to
an end, you will receive the message: INSERT BASIC DISK&RETURN. At this
point, you can insert the Master disk into drive 1 and press RETURN. It
takes about 16 seconds to reload. Or you can format a disk with the BASIC
on it and use this as your working disk. In this case, you would not have
to switch disks. To format a disk with BASIC use the utility FORMAT1.COD
(See Ch. 17).

PLOT and COLOR

Both PLOT and PRINT are used to display information; PLOT is normally used
for graphics data and PRINT for text data. If you are using a graphics
mode with a text window, PRINT will put characters into the text window and
PLOT will send data to the main display. The format for PLOT is

PLOT integerexpression,integerexpression

The first integerexpression specifies the column (horizontal position),
and the second specifies the line (vertical position). Remember, column O
is the left most column, and line O is the top line. The following line
plots a point at the 6th column and the 3rd line:

10 PLOT 5%,27%

The color of the point is set by the COLOR command. Here is its format with
an example:

COLOR integerexpression

10 COLOR 27

In a text mode, the number following the COLOR command specifies the
character to be displayed and, in some text modes, also gives some color
information. In a graphics mode, the number following COLOR determines the
color that the succeeding plot commands will place on the screen, Once the
color has been set, it will remain until you give another COLOR command or
a PRINT command. So to display a figure with only one color, you normally
give a COLOR command and a series of PLOT commands.

SETCOLOR and PSETCOLOR

The actual colors which appear on the display are determined by what is in
a set of registers called color registers (also called play fields). The
ATARI operating system sets up these registers for certain colors when the
mode is opened. In mode 4 for example, COLOR 1% gives an orange. There are
five color registers for the main display and four for players and
missiles. SETCOLOR changes the color that is produced by the main display
color registers, while PSETCOLOR changes the player-missile registers.
Here is the format and an example:

-38-

SETCOLOR integerexpression,integerexpression,integerexpression
10 SETCOLOR 1%,8%,4%

The first integerexpression after SETCOLOR specifies the main display
color register and must be 0, 1, 2, 3, or 4. PSETCOLOR has the same format
and works the same way, except that the first integerexpression refers to
the player-missile color register and must be O, 1, 2, or 3. The second
integerexpression specifies the color, as shown in the following table:

Table 13-2

NUMBER COLOR

0 gray

1 gold

2 orange

3 red orange

4 pink

5 purple

6 purple blue
7 cyan

8 blue

9 light blue
10 turquoise

11 blue green
12 green

13 yellow green
14 orange green
15 light orange

The third integerexpression gives the luminance (brightness) and must be
an even number from O (darkest) to 14 (brightest). Note that luminance has
a big effect on color. For example, zero hue is called gray, but zero hue
with O luminance is black and zero hue with 14 luminance is white.

To illustrate how these commands work, consider mode 3, a 4 color graphics
mode. In this mode the number following COLOR must be 0,1, 2, or 3. If you
use a COLOR 1% command, the color plotted is specified by color register O
(note: not register 1), COLOR 2% displays what is specified by color
register 1, COLOR 37 displays what is specified by color register 2, and
COLOR OZ%Z what is specified by color register 4. The border is also
controlled by color register 4., Unless you use SETCOLOR to change them,
the colors registers will have:

Color register 0 orange
1 1light green
2 Dblue
4 black

Now, if you want to shift from light green to purple for COLOR 2% (i.e.,
color register 1) you need to give the following command:

SETCOLOR 1%,5%,8%

Modes 5, 7, and 15 work just like mode 3 in the way the COLOR command works
with color registers.

-39-

Modes 4, 6, and 14 are graphics 2 color modes. Thus, the number following
COLOR must be O or 1. COLOR 1% refers to color register 0 and COLOR 0%
refers to color register 4.

Graphics mode 8 is a one color mbdé with two luminances. COLOR 07
specifies the color and luminance from color register 2. COLOR 1%
specifies the color from register 2 and the luminance from color register
1.

Mode 9 is a one color mode with 16 luminances. The color comes from color
register 4, The luminance comes directly from the number in the color
command. Thus, COLOR 15% will give the color from color register 4 at
maximum brightness, while COLOR 07 gives the same color at minimum
brightness.

Mode 11 is a one luminance mode with 16 colors. The luminance comes from
the luminance of color register 4., The color comes directly from the
number in the color command using the coding shown in Table 13-2. Thus,
COLOR 8% will give BLUE with a luminance specified by color register 4.

Mode 10 is a 9 color mode. It uses the 4 player-missile registers as well
as the 5 main display color registers, Table 13-3 shows how this works.

Table 13-3
Number in Color Command Color Register
0 player-missile
. " "

" "

14] "
main display

1" "

" "

" "

" "

ONOUNEHWN -
PONROWNEO

Modes 1 and 2 are normally text modes. If you use an alternate character
set, however, they can produce effective graphics displays. The
characters displayed are double width (compared to mode 0) and can be in
one of four colors. Mode 2 characters are double the height of mode 0
characters. You can display all characters with ASCII codes from 32 to 95.
(See Appendix A). One way to work with these modes is to use the +16
option in the GRAPHICS command and then use the PRINT command. For
example, the command PRINT "A" will display a capital A using the color
specified by color register O. PRINT "a" will also display a capital A;
however, the color is determined by color register 1. The following chart
shows how to get capital letters with different colors: '

Letter entered Color from color register
upper case 0
lower case 1

2

3

inverse upper case
inverse lower case

~40-

In all cases a capital letter will be displayed. Numbers and symbols are
tougher since we don't have lower case for them. Numbers and symbols
entered in inverse mode will use the color from color register 2, while
those entered in the normal mode use color register O,

If you need numbers and/or symbols with color registers 1 or 3, use the
following chart: '

ASCITI Code Color Register Color to plot

32 to 63 1 ASCII code -~32
32 to 63 3 ASCII code +96
64 to 95 1 ASCII code +32
64 to 95 3 ASCII code +160

For example, to display an @ (ASCII code=64).using color register 3, you
could use:

PRINT CHR$(224%Z); or COLOR 224%
PLOT XZ,YZ

Modes 12 and 13 are called character modes, but with an alternate

character set they are effective graphics modes. The best way to use them
is with the Advan optional screen design package, which lets you design a
custom alternate character set.

DRAWTO and FILL

The DRAWTO command will draw a line from the last point displayed to the
point specified. The format is

DRAWTO integerexpression,integerexpression

The first integerexpression gives the column and the second the linenumber
of the point you are drawing to. In the following program, lines 10 and 15
set the graphics mode and color. Line 20 plots a point at 5,5. Lines 30-60
draw the sides of a square:

10 GRAPHICS 3%

15 COLOR 27

20 PLOT 5%,5%

30 DRAWTO 10%,5%
40 DRAWTO 10%,10%
50 DRAWTO 5%,10%
60 DRAWTO 57 ,5%
70 WAIT 160%

You can use the FILL command to fill up the square. It works like DRAWTO,
except that as it plots a point, it also fills in all the points to its
right until it runs into the screen edge or another plotted point. Its
format is the same as DRAWTO. To fill in the above square, change line 60
to:

60 FILL 5%,5%

This causes the system to draw a line from 5,10 to 5,5 and to fill in the
area to the right of the line,

41—

DFILL

You can use DFILL to fill the entire screen, a player, or a missile with a
given number. Its format is

DFILL integerexpression,integerexpression
The second integerexpreésion equals the number which is used to fill the.
screen, player, or missile. The first integerexpression determlnes what is
filled. The following table shows how this works,

Table 13-4

Value of integerexpression Object filled

0 player O
1 . " 1
2 " 2
3 " 3
4 missile O
5 " 1
6 " 2
7 " 3
16 main display screen

Normally, filling with a zero will clear the screen, player, or missile.
For example, the following line will clear the display screen:

100 DFILL 16%,0%

POS and LOCATE

The POS command is used to position the cursor. In mode O the cursor is
visible; in the other modes it is not. This command is normally used
before a PRINT command and determines the location of the characters
printed. The LOCATE function lets you determine what is on the main
display screen at a given point. See the reference manual for more
information on these two commands.

42~

14. PLAYER-MISSILES

The ATARI operating system sets all player-missile color registers to
black, so until you give a PSETCOLOR command, your player-missiles will be
invisible. PSETCOLOR and DFILL were described in the previous chapter.
Remember that you must add 64 to the mode in the GRAPHICS command to-
activate player-missiles. You control the four players and four missiles
by using a group of Advan BASIC special commands. Table 14-1 shows how the
first integerexpression in each command determines the player-missile
number.

Table 14-1

Integerexpression # Player-missile #

0 player O
1 " 1
2 " 2
3 " 3
4 missile O
5 " 1
6 " 2
7 " 3

PSIZE

Players at normal width are twice as wide as a mode O character. They have
8 points which can be turned on or off. If on, they will have the color you
set for the player. If off, they will be transparent; that is, the color
will be that of the main display. Missiles at normal width are 1/2 the
width of a mode O character, and they have 2 points which can be turned on
or off, Their color is the same as that of the player with the same number
(e.g., missile 2 and player 2 have the same color). Use the PSIZE command
to change a player-missile's size. Note that this changes the width of
each point, but not the number of points. The format is

PSIZE integerexpression,integerexpression
The first integerexpression determines which player or missile size is
being set. (Table 14-1). The second integerexpression determines the size

according to the following chart:

Integerexpression Player-missile

Value Size
0 normal size
1 doubled
3 quadrupled

For example, the following line sets missile 2 to quadruple size:

10 PSIZE 6%,3%

HPOS

You can set the horizontal position of a player with HPOS, which has the

43—

following format:
HPOS integerexpression,integerexpression

The first integerexpression determines the player or missile number (Table
14-1). The second integerexpression sets the horizontal position of the
player or missile. The left and right boundaries of most displays are

approximately 40 and 216.

PDISPLAY

Use the PDISPLAY command to place a figure in a player or missile. The
format is

PDISPLAY integerexpression,ADR(linenumber),integerexpression

The first integerexpression specifies the player-missile number. The
second integerexpression specifies the vertical location of the top of the
figure. 128 is the center of the screen, zero is the top, and 255 the
bottom. The linenumber is where the data defining the figure is located.

Suppose you are defining a figure for a player. Remember that players are
8 display points wide and they may be from 1 to 253 vertical lines long.
Actually, on an average TV monitor, the top and bottom will be cut off. The
first piece of data must be the number of vertical lines your figure will
occupy. Then you need to give data for each line, starting with the top
line. You have to specify which points are on and which are off. To do
this for each line, you can use a & symbol followed by 8 characters, each a
0 or 1. (Since missiles are only 2 display points wide, they require only 2
characters after the & symbol). Each 'l' means that the corresponding
point in the player is on (its color is that of the player's color
register). Each '0O' means that the point is transparent. The CODE command
is used to enter the data. The following line is an example of how this
works; it has the data for a box, 4 lines high.

CODE"4,&11111111,&10000001,&10000001,8&11111111"

The '4' tells how many lines and is followed by the data for each line,
Note that commas are used to separate data items. The first and fourth
data items have all ones, thus representing solid horizontal lines. The
second and third data items have the end points on and the other points
off, thus forming part of the left and right edges. Here is the data
statement used in a complete program:

10 PSETCOLOR 1%,3%,8%

20 PSIZE 1%,0%

30 GRAPHICS 67%

35 DFILL 1%,0%

40 PDISPLAY 1%,ADR(100),128%

50 HPOS 1%,128%

60 WAIT 160%: GOTO 200

100 CODE"4,&11111111,&10000001,&10000001,&11111111"
200 END

This program sets player 1 to red orange at normal size. Line 30 sets
GRAPHICS mode 3+64 which activates the player-missiles. Line 35 clears
the player and then line 40 puts the data on line 100 into the player. The

_b4—

top of the figure is set at approximately mid screen (128). Line 50 sets
the player horizontal position to 128 (about mid screen). The WAIT 160%
gives you time to look at it. Note that you must go around the CODE
command. If the BASIC runs into the CODE command, the system will probably
crash, and you will have to reload it. Note that the system waits until the
vertical blank interrupt to insert the data into a player or missile.

You might recognize the fact that the & symbol tells the system that the
following data is in binary. If you know hex, you can convert binary to hex
and save some typing, plus squeeze more into a line. However, compiled
code length is the same. Note that in a CODE statement, hex numbers do not
need to be preceded by any special symbol. The following is how line 100
looks with hex numbers:

100 CODE"4 ,FF,81,81,FF"

You can move a player or missile with a series of HPOS or PDISPLAY
commands. Also the system has a built-in mechanism for automatically
moving a player or missile, and even for automatically changing the figure.

I should mention that PDISPLAY places the figure into the player or missile
at the specified vertical location. It does not erase the rest of the
player or missile. So, if you are moving a player vertically, you need to
erase the part of the figure which is not overwritten. One way to do this
is to put extra blank lines on the top and bottom of the figure. For
example, you can define the box in the previous program with the following
line. The length of the player is changed from 4 to 8. Note that you don't
need to use a & symbol for a blank line; a zero will do:

100 CODE"8,0,0,£11111111,&10000001,&10000001,811111111,0,0"

The following example will move the box across the screen from the upper
left to the lower right. Note that each time the figure is put into player’
1, it will erase the previous figure:

10 PSETCOLOR 1%,3%,8%

20 PSIZE 17,0%

30 GRAPHICS 67%

35 DFILL 1%,0%

40 FOR T%=0% TO 240% STEP 2%

50 PDISPLAY 1%,ADR(100),T%
60 HPOS 1%,T%

70 NEXT TZ

80 END

100 CODE"8,0,0,FF,81,81,FF,0,0"
DFILL

DFILL (described in Ch.13) was used in.line 35, above, to clear the player.
Filling a player-missile with 1% turns on only the first point on the
right. Filling with.2% turns on the second point, 4% the third point, 8%

the fourth point, etc. You can add together the numbers shown above to turn
on groups of data points. For example, DFILL 1%,3% will turn on the first

two data points on the right and turn off the others for player 1. The net
effect is a vertical bar one quarter the width of the player.

45~

Automatic Horizontal and Vertical Player-Missile Movement

PRATE

To use the built-in mechanism for automatically moving a figure, you need
to specify its horizontal and vertical speed using the PRATE command. Its
format is

PRATE integerexpress,integerexpress,integerexpress,integerexpress

The first integerexpression determines which player-missile you are
working with (Table 14-1). The second integerexpression sets the
horizontal speed and the third integerexpression sets the vertical speed.
The fourth integerexpression sets the rate at which changes are made in
the figure itself. I will discuss this later in the chapter. For now, let's
just keep it 0. Speeds around 256 provide moderate and smooth motion.
32767 is the maximum. Motion is so fast for speeds greater than a few
thousand, that the effect is rather weird. Speeds which divide evenly into
256 (e.g., 128, 64, etc.) and speeds which are multiples of 256 (e.g., 512,
768, etc.) give the smoothest motion. Positive horizontal speeds give
motion to the right and negative give motion to the left. Positive
vertical speeds give downward motion and negative give upward motion.
Note that figures going off one edge of the screen will reappear at the
opposite edge.

Sometimes you want motion to begin immediately after the PRATE command and
sometimes you want to wait. For example, you may be trying to synchronize
the motion of several figures. If you want the PRATE command to start the
motion, you must add 256 to the first integerexpression. The following
line sets movement rates for player 1 and then actually starts the motion:

100 PRATE 257%,256%,256%,07

You can also use PRATE to stop the automatic motion of a player or missile
by adding 512 to the first integerexpression. The following line stops the
automatic motion of player 1:

100 PRATE 513%,0%,0%7,0%,

I should mention that you can use PRATE to change the speed of a player
already moving. For example, the following line changes the horizontal
speed of player 1 to 512:

100 PRATE 1%,512%,256%,0%
PCONTROL

PCONTROL lets you synchronize the movement of players and missiles. You
must first give PDISPLAY and PRATE commands for each player and missile
you want to move. (In the PRATE commands, do not add 256.) Then you can
use the PCONTROL command to simultaneously start or stop all players and
missiles, The format of PCONTROL is

PCONTROL integerexpress,integerexpress,integerexpress,integerexpress

The first integerexpression controls player-missile O, the second controls
player-missile 1, etc. The following chart shows how the value of the

—46-

integerexpression determines the motion.

Value of
Integerexpression Effect
0 both player and missile cease motion
1 player starts and missile stops
2 missile starts and player stops
3 both player and missile start

Here is the box program again; as before, the box will be moving down and
to the right. To vary the speed, change the numbers in the PRATE command.
To end the program press the BREAK key.

10 PSETCOLOR 1%,3%,8%

20 GRAPHICS 67%

30 DFILL 1%Z,0%

40 PDISPLAY 1Z,ADR(100),128%
50 HPOS 1%,128%

60 PRATE 1%,256%,256%,0%,

70 PCONTROL 0%,1%,0%,0%

80 GOTO 80

100 CODE"8,0,0,&11111111,&10000001,&10000001,&11111111,0,0"

COLL

If you are firing bullets or rockets across the screen, automatic missile
movement is very handy. Often, however, you want to know if the missile has
hit anything. The COLL (collision) command provides this information. See
the reference manual for a description of COLL.

Locating players and missiles

If you are automatically moving a player or missile, the following table
gives the memory locations for their horizontal and vertical positions.
For example, PEEK(1134) gives the horizontal location of missile 2.

Table 14-2
memory location memory location
horiz, position vert. position
player O 1128 1152
1 1129 1153
2 1130 1154
3 1131 1155
missile O 1132 1156
1 1133 1157
2 1134 1158
3 1135 1159

Automatic modification of a player or missile figure

Suppose you want to use a player to display a moving stick. If the stick is
rotating end over end, you need to change the figure as well as have it
move horizontally and vertically. The same is true of a person running. In
the case of the stick, you could show it in a horizontal position for 2/60

A

second, at a 45 degree angle for 2/60 sec., vertical for 2/60 sec., at a 135
degree angle for 2/60 sec., and then repeat the sequence. You can do this
with the PRATE command and appropriate data. The last integerexpression
in the PRATE command tells how long in sixtieths of a sec. to keep each
figure before changing the display (maximum is 255)., However, zero is

special and means no change. Thus, if you set the last integerexpression
to 2Z, each figure will remain on the screen for 2/60 sec.

Of course, now you'll need data for each of the figures. The way you do
this is to put the data for one figure right after the data for the
previous figure. For the stick problem, you'll need four sets of data.

Each set follows the previous set, and each starts with the vertical
length. They can be on one or several lines. Each line must start with a
CODE command. Suppose you plan to use the following four figures for the
stick. The one's represent the turned on part of the player:

00000000 00000000 00011000 00000000
00000000 01100000 00011000 00000110
00000000 00110000 00011000 00001100
11111111 00011000 00011000 00011000
11111111 00001100 00011000 00110000
00000000 00000110 00011000 01100000
00000000 00000000 00011000 00000000

Here is the rotating stick program. Note that you don't need to use

leading zeroes with the & symbol:

10 PSETCOLOR 1%,3%,6%

20 GRAPHICS 67%

30 DFILL 1%,0% |

40 PDISPLAY 1%,ADR(100),128%
50 HPOS 1%,128%

60 PRATE 1%,256%,256%,2%

70 PCONTROL 0%,1%,0%,0%

80 GOTO 80

100 CODE"'12,0,0,0,0,0,&11121111,&11111111,0,0,0,0,0"

110 CODE"'12,0,0,0,&1100000,&110000,&11000,&11000,&1100,&110,0,0
,O"

120 CODE"!'12,0,0,&11000,&11000,&11000,&11000,&811000,&11000,

&11000,&11000,0,0"

130 CODE"!112,0,0,0,&110,&1100,&11000,&11000,&110000,&1100000,0
,0,0"

140 CODE"FF,#100"

This is the same as the previous program, except for the data and the last
integerexpression in PRATE. First, the system displays the data from line
100 and after 2/60 second, the figure defined on line 110. After another
2/60 second, it displays the figure from line 120 and then the figure from
line 130. After displaying the line 130 data for 2/60 second, the system
will go to line 140 for the next figure. Line 140 begins with a special
code, FF (=255 in dec1mal) Because in Advan BASIC the vertical length of
player missiles may not exceed 253, the system interprets the FF as a
special command and will look at the data right after it as a linenumber.
The linenumber must have a # symbol in front of it. The system will switch
immediately to the specified linenumber and continue on from there. Thus,
the system displays the data from lines 100, 110, 120, and 130 as a
repeating series.

-48—

Note that there is a ! symbol in front of the 12. This tells the system
that the following number is in decimal, just as a & symbol indicates
binary. Why didn't we use a ! symbol in front of the 8 in the previous
example? Because the system expects hex numbers in a CODE command, and
the numbers O through 9 are the same in hex and decimal.

Suppose you want to display lines 100, 110, 120, 130, 120, 110, 100 as a
repeating series. You can do this by making a new line, say 134, the same
as line 120, and making 138 the same as 110, and so forth. A more
convenient way is to use another special command, FE (=254 in decimal).
Again, because in Advan BASIC the vertical length of player-missiles may
not exceed 253, the FE command is a signal; what follows must be a comma, #
symbol, and linenumber. At the FE command, the system goes to the
specified linenumber only for one figure and then returns to the data
right after the FE command for the next figure's data. So to display the
lines as a repeating series, change lines 40 and 140 in the previous
program to:)

40 PDISPLAY 1%,ADR(140),128%
140 CODE"FE,#100,FE,#110,FE,#120,FE,#130,FE,#120,FE,#110,FF,#140"

Finally, suppose you want to display this set of lines only once; that is
display 100, 110, 120, 130, 120, 110, 100 and then stop. You can do this by
using the special command, zero:

140 CODE"FE,#100,FE,#110,FE,#120,FE,"130,FE,#120,FE,#110,FE,#100,0"

If you do use this special command, the following table lets you determine
if a player or missile has been stopped.

Table 14-3

0 PEEK(1075%Z) and 1%
1 PEEK(1075%Z) and 4%
2 PEEK(1075Z) and 16%
3 PEEK(1075Z) and 64%
missile 0 PEEK(1075%) and 2%
1 PEEK(1075%Z) and 8%
2 PEEK(1075Z) and 32%
3 PEEK(1075Z) and 1282

If the expression in the right hand column is zero, the player or missile
is not moving. For instance, if PEEK(1075%) and 32% is zero, then missile 2
is at rest; otherwise it is moving.

49

15. DISPLAY LIST INTERRUPTS

ATARI computers have a nice feature called display list interrupts. I know
of no other moderately priced personal computer that has anything like it.
Using these interrupts, you can modify the display at the start of one or
more screen lines. For example, at a given line you can change the value of
a color register or the horizontal position of a player or switch to an
alternate character set. Something this good shouldn't go to waste, and so
Advan BASIC has two special commands designed to take advantage of these
display list interrupts.

SETINT@

The format of a SETINT@ command is

SETINT@ integerexpress,integerexpress,integerexpress,integerexpress

The first integerexpression gives an identifying number (0 to 7) to the
interrupt, so that you can refer to it. The second integerexpression
specifies the display list line on which the interrupt is to occur. The
third integerexpression specifies the location of what you would like to
change and the fourth integerexpression gives the new value for this
location. Table 15-1 lists some locations you might want to change at an
interrupt.

TABLE 15-1

Memory Location Function of Location

*

53266 color register of player missile
53267

53268

53269 ‘ ‘

53270 color register (play field)
53271 '

53272

53273

53274 color register (background)
53248 horizontal position of player
53249

53250

53251

53252 horizontal position of missile
53253

53254

53255

54281 location of alternate character set

FWNNFFROWNMFOPAPWNEFEFOWNER=O

*

*color number times 16+luminance is stored here

** must be a multiple of 1024; i.e., 1024*%30=30720. The value stored at
54281 should be the alternate character set address divided by 256. See
Appendix D for a memory map and possible locations for an alternate
character set.

-50-

I should mention that you can only put one interrupt at a given line. The
following program draws and fills in a square. It uses mode 4 which has
only two colors. But by changing color register 0 at two interrupts, you
can have a tri-colored square. Actually, you can put 8 colors plus the
background on the screen,

10 GRAPHICS 4%:COLOR 1%

20 PLOT 10%,5%

30 DRAWTO 60%,3%

40 DRAWTO 607 ,45%

50 DRAWTO 10%,45%

60 FILL 10%,5%

70 SETINT@ 07,16%,53270%,7%*16%+8%
80 SETINT@ 1%,32%,53270%,12%%16%+8%
90 GOTO 90

Lines 10 through 60 set the graphics mode and draw a rectangle. Lines 70
and 80 set two display list interrupts. For all of the graphic modes, the
first three display list lines (0, 1, and 2) are blanks. That is, the 16% at
line 70 sets a display list interrupt at display list line 16, which is
screen line 13, At that line, color register 0O is switched from red to
blue. At screen line 29, color register O is again changed; this time to
green. Note that the change does not occur until the end of the line on
which the interrupt is set. This is to avoid making a change during a line.
The change from red to blue occurs at the start of line 14, and the switch
to green at the start of line 30.

You might wonder why you didn't need to reset the color back to
reddish-orange. The reason is that during a vertical blank (at the end of
a display frame), all the color registers, as well as the alternate
character set locations, are reset from special memory locations.

Before trying the above example, you will need to append the display list
interrupt subroutines. Like PRINT USING, there isn't enough room to fit in
these special routines. To use them, insert a Master disk (or another disk
with the program) and then type APPEND DLISTINT.APP.

To remove an interrupt, set the last three integerexpressions to zero., The
following command removes interrupt 1:

SETINT@ 17,0%,0%,0%

CINT@

Format:

CINT@ integerexpression,integerexpression

The first integerexpression is the identifying number of the interrupt.
CINT@ is used to change the value which is stored when the interrupt
occurs, You can use CINT@ only after SETINT® has been used., The second

integerexpression gives the new value to be stored by the interrupt. You
could use SETINT@ itself to change this value; however, SETINT@ has to wait
until just the right point in the display to put the interrupt into place.
CINT@ is much faster because it can make an immediate change.

-51-

10 GRAPHICS 68%
20 PSIZE 2%,0%

30 DFILL 2%,0%

40 PDISPLAY 2% ,ADR(200),60%

50 PDISPLAY 2%,ADR(200),120%

60 PDISPLAY 2%,ADR(200),180%

70 SETINT@ 0%,3%,53268%,3%*16%+8%
80 SETINT@ 1%,4%,53250%,0%

90 SETINT@ 2%,10%,53268%,7%*16%+8%
100 SETINT@ 3%,17%,53250%,0%

110 SETINT@ 4%,31%,53268%,127%16%+8%
120 SETINT@ 5%,32%,53250%,0%

130 FOR TZ=0Z TO 255%

140 CINT@ 1%,T%

150 CINT@ 3%,255%-T%

160 CINT@ 5%,TZ+128%

170 NEXT TZ .
180 GOTO 130

200 CODE"4,8&100100,8100100,FF ,FF"

The above program puts the figure defined in line 200 into player 2 at
three different vertical sections. Six display list interrupts are set.
Three are used to change the player color and three to change the
horizontal position. The FOR loop modifies the horizontal player position
and causes two sections of the player to move right and one to move left.

Special Note: Because of timing problems, display list interrupts in modes

8, 9, 10, 11, 14, and 15 cannot be in adjacent display list lines. There
must be at least one display list line between interrupts in these modes.

-52—

16. MACHINE LANGUAGE SUBROUTINES

Advan BASIC allows you to insert assembly language codes easily into a
BASIC program. You can even use mnemonics for the various 6502 commands.
Another nice feature is that you can access program variables by name in
your assembly language code. If you don't know how to program in assembly
language, much of the following information will be difficult to
understand. Probably you should pick up a book on 6502 assembly language
programming before attempting to write an assembly language program.

Since Advan BASIC is compiled, most programs written in it will run
considerably faster than in a non-compiled BASIC. There are situations,
however, where you want maximum possible speed. Then you need the Advan
BASIC machine language subroutine capability.

MACHINE

The MACHINE command tells the compiler that the information which follows
will be machine or assembly language code. Its format is

MACHINE linenumber

When the machine language program comes to an end, normally with an RTS
command, control transfers back to the BASIC code. Execution resumes at
the linenumber specified in the MACHINE command.

CODE

The CODE command is used in several ways in the BASIC, It provides a way to’
enter data for the sound routines and for the PDISPLAY command. Its
primary purpose, however, is to allow the entry of assembly language code.
For example, LDA is the standard mnemonic code to load a number from a
given source into the accumulator. Appendix E lists the 6502 mnemonics
used by the Advan compiler.

CODE"LDA ,FF ,9F"

In the above line, the compiler translates LDA into machine code. FF and
9F are hex numbers which give the address of the number loaded into the
accumulator. Note that, as is standard in 6502 code, the FF is the least
significant part of the address, while 9F is the most significant part
(i.e., the address is 9FFF). The following program will store an S in the
lower right hand corner of the display screen:

100 MACHINE 200
110 CODE"LDAIM,33,STA,FF,9F ,RTS"
200 END

The LDAIM assembly language code causes the 6502 to load the next number
(33) into the accumulator. The STA causes the 6502 to store the
accumulator (33) into memory location 9FFF, which corresponds to the lower
right hand corner of the screen. In an ATARI computer, the hex number 33
is the screen code for an S. The RTS signals the end of the assembly
language subroutine and causes control to transfer to line 200, as
specified by the 200 in the MACHINE command. The following segment

-53-

illustrates another feature of the CODE command:

100 MACHINE 200

110 CODE"LDA,FF,9F ,CMPIM,34,BEQ,@120,LDAIM,34,STA ,FF,9F"
120 CODE"RTS"

200 END

At line 110 the number at memory location 9FFF is loaded into the
accumulator. The CMPIM is the assembly language mnemonic for comparing
the accumulator with the following number (34). BEQ is the code for
"branch if equal". @ followed by a linenumber gives the location to go to
if the accumulator equals 34, The program will check what is in location
9FFF. If it is 34, it will branch to line 120 and execute the RTS. If it is
not, it will load 34 into the accumulator, store the 34 into location 9FFF,
and execute the RTS. Whenever you use a branch command (e.g., BNE,BCC), it
should be followed by a comma and then @ followed by a linenumber. Here is
another example: .

100 MACHINE 200 :

110 CODE"LDA FF,9F,CMPIM,34,BEQ,@120,LDAIM,34,JMP,#130"
120 CODE"LDAIM,33"

130 CODE"STA,FF,9F ,RTS"

200 END

The above program is similar to the previous one. First it compares the
number in 9FFF with 34, If they are equal, it goes to line 120 and loads 33
to the accumulator, executes the code on line 130 which stores the 33 to
9FFF, and finally returns. If they are not equal, it loads 34 to the
accumulator and executes the JMP command. This is the assembler mnemonic
for JUMP, and the next two bytes must specify where it is to jump. Normally
you follow JMP, JSR, and JMPI with comma, # sign, linenumber. The compiler
inserts two bytes which represent the address of the first command on the
given line. Thus, after loading 34, it jumps to the STA,FF,9F on line 130,
which stores the 34 to 9FFF, and executes the RTS command.

Warning: The value of the X register must not be changed by the routine.
If you must use the X register, it must be saved and then restored before
the final RTS. TXA,PHA saves the X register and PLA,TAX restores it.

CODEL

The CODEL command is normally used to specify the address of a variable.
When used in this way, there are several possible formats:

CODEL(variablename)

CODEL(variablename+integernumber)

CODEL(variablename+"L")

CODEL(variablename+"H")

Integernumber is a positive integer without a Z sign at the end. You can
also use CODEL to specify the address of a line number. (See the reference

manual for information on this option.) The following program inputs a
number, adds one to it, and prints the result:

~54-

100 INPUT TZ

110 MACHINE 200

120 CODE"INC":CODEL(TZ):CODE"BNE,@130,INC":CODEL(TZ+1)
130 CODE"RTS" :
200 PRINT TZ

Let's see how it works. On line 120, INC adds one to the number at the
memory location specified by the following two bytes. CODEL generates the
two byte address of the lower order 8 bits of TZ. Thus, the lower order
part of TZ is increased by one. If the result is non zero, we are done and
BNE causes a branch to line 130, If INC causes a zero, we have a carry and
must add one to the high order part of T#Z. The CODEL(TZ+1) generates the
two byte code for one plus the address of TZ (for the high order part of
T%Z). In another example, the program stores zero in all elements of the
array AZ:

100 DIM AZ(5) .

110 TZ=ADR(AZ(0%))

120 MACHINE 200

130 CODE"LDYIM,!11,LDA":CODEL(TZ):CODE"STAZ,EQ,LDA"
140 CODEL(TZ%+1):CODE"STAZ,E1,LDAIM,O"

150 CODE"STAIY,EO,DEY,BPL,@150,RTS"

200 END

At line 110 we set TZ equal to the address of AZ(0%Z), which is the first
element of the array. There are six elements in the array and therefore,
12 locations that we must zero. Remember, each integer takes up two bytes
of memory. At line 120 we first load the Y register with 11. Note the !
symbol in front of the 11. Normally, the CODE command expects assembly
language mnemonics or hex numbers. Any number preceded by !, however, is
assumed to be a decimal number.

Next we load the low order part of T%Z (the low order part of the address of
A%Z (0%)), and then store it in the zero page location EO. Note that any
mnemonic ending in a 'Z' refers to a zero page location and needs only one
hex byte following it to specify the location. Next we get the high order
byte of TZ and store this in zero page location El. Finally on line 140, we
load the accumulator with O.

At line 150, STAIY is a store indirect command. The EO immediately
following it tells us the address where we are to store the accumulator;
the address is the value in the Y register plus the number stored in EO
(low order part) and El. In line 140 we stored T%, and thus the address of
A%Z(0%Z) in EO and El1. The Y register starts at 11 and therefore, we will
store zero in the address of AZ(0%Z)+11. The loop at 150 stores zero in all
12 bytes of the array A%Z. Note that an assembly language subroutine may
use only the zero page locations from D4 to FF.

WARNING: If you make a mistake in assembly language code, the system might

hangup. Even BREAK may not get you out of it. Therefore, be sure to save
your program before running it.

-55_

17, UTILITY PROGRAMS

There are several helpful utility programs available on the Advan BASIC
disks. To use them, first insert the Master disk into drive 1 and then type
EXEC followed by a space and then the program name. Remember that any
program you have in memory will be erased when you execute one of these
utility programs. So if you don't want to lose a program in memory, save
it.

CLEAN.COD

As you enter a program, Advan BASIC converts it to token form. For
example, each command and most variables are assigned single byte codes,
reducing the amount of room needed to save a program. In addition, a list
is created of the variables entered. If a program is modified, a given
variable may no longer be needed, but the variable is still in the variable
tables. Also, other unused variables might be created if errors are made
in entering lines,

As long as the maximum number of variables (255) is not exceeded, the
unused variables will not cause problems and will not affect the length of
the compiled program. They will, however, take up extra space on the disk
and in the computer during a compile, although the difference is usually
not great. Executing CLEAN.COD will produce a new file with the unused
variables removed.

STATPROG.COD

This program finds the program length (not including data length), the
number of program lines, and the number of variables used. It will also
tell you how many unused variables are in the variable table (see CLEAN.COD
for information on unused variables). One quite useful function of
STATPROG.COD is to check if a variable has been'used only once. This can
happen if you misspell a variable name. Sometimes these errors are hard to
spot; if STATPROG.COD finds one, it will give you the variable name and line
number.

CHECKSUM.COD

This program is helpful if you want to send a program listing to a friend
or a magazine. Also it provides a valuable hard copy (on paper) backup for
your important programs. CHECKSUM.COD allows you to print out a copy of a
program with a checksum for each line. The checksum appears as a ! symbol
followed by four characters. It also prints out the number of lines and a
checksum for the whole program.,

To produce a program listing with checksum data, insert the Master disk and
type EXEC CHECKSUM.COD; then choose option 1. Note that the WIDTH system
command can be used to set the printer width.

If someone wants to enter your program from the listing with the checksum
data, he types it in and saves it to the disk. Next, he types EXEC
CHECKSUM.COD and chooses option 2, which checks a program. After he
inserts the program disk and gives the program name, CHECKSUM.COD will
provide a count of the number of program lines. If this does not agree

—-56-

with the number on the listing, CHECKSUM.COD can display a list of the line
numbers. This can be checked against the program listing.

If the number of lines is correct, CHECKSUM.COD will calculate a checksum
for the total program. If this agrees with the total program checksum on
the listing, he has probably entered the program correctly. Of course, no
error check is perfect. The calculated checksum will catch things 1like
reversed letters, but there are errors it will miss. If the checksum is
correct, it's probably worth trying to run the program.

If the total program checksum is not correct, he can check one line at a
time. When he finds a mistake, he will be asked to enter the correct
checksum for that line, He will then be told if correcting this line brings
the total program checksum into agreement with the listing checksum.
Either way, he can continue checking lines.

COPYDISK.COD :

This program allows you to duplicate a disk. If you have a one disk system,
the program will tell you when to shift disks. Note that for one disk
systems, you may have to switch disks several times before a disk is
completely copied.

COPYFILE.COD

This program allows you to copy one or more files from one disk to another.
If you have a one disk system, the program will tell you when to switch
disks. When the program asks for the names of the files to be copied, you
can specify a given file or use a wildcard option to specify several files.

There are two wildcards which you can use to substitute for the symbols in
a file name; they are * and ?. The ? in a file name means that, when
searching for matching files, the program will accept any symbol in the ?
character position. For example, if you specify filename D2:ALPHA.??,
files on disk 2 with names like ALPHA.l11l or ALPHA.A7 will be copied. The *
symbol is equivalent to a series of question marks filling in that section
of the filename. For example, D1:ALPHA.* is the same as D1:ALPHA.??? and
will copy all files on drive 1 starting with ALPHA. Also *.COD is the same
as D1:7?77772?.COD and will copy all files on drive 1 ending in .COD, If
you are using wildcards in the input filename, you should use wildcards in
the output filename, or you may get several files with the same name.

Special note: One way you can use this program is to copy all of these
utility programs to another disk. Then you won't need to use the Master
disk when you want to run a utility program.

FORMAT.COD
This program allows you to format single density disks.

FORMAT1.COD

This program allows you to format a disk in single density or in 1050 (so
called 1 1/2 density) mode. In 1050 mode, the disk operating system allows
you to use 940 of the possible 1040 sectors. FORMAT1.COD also gives you
the option of putting a copy of the BASIC on the disk. This is useful
mainly if you do not have an XL or XE computer. In that case, you will need

-57-

to remove the BASIC before running a long program or one with graphics, and
then reload the BASIC after the program is executed. The system will ask
you to insert a disk with the BASIC into drive 1 and then press RETURN. If
you already have the BASIC on your working disk, however, you will not have
to switch disks; just press RETURN and after about 16 seconds the BASIC
will be reloaded. This will also reduce wear and tear on your Master disk.

RAMDISK.COD

This program allows 130XE owners to use the extra 64K of RAM as a RAM disk.
After executing RAMDISK.COD, all references to disk four will access the
RAM disk. In most cases, you can use this extra memory just like an
ordinary disk. For instance, DIR D4: will give you a directory of the RAM
disk without effecting any program in memory. Do not forget, however, that
when you turn off the computer, or if the system locks up, you will lose
anything in the RAM disk. Be especially careful with untested machine
language code. ’

Note that RAMDISK.COD will automatically copy COPYFILE.COD from drive one
to the RAM disk, if COPYFILE.COD is on the drive one disk. If you need more
room in the RAM disk, you can delete this program using the KILL command.

SIEVE.BAS

This program demonstrates the speed of Advan BASIC. Type RUN SIEVE.BAS.

-58-

REFERENCE MANUAL

List of System Commands

APPEND LLIST RENAME
COMPILE LMARGIN RUN
DEL LOAD SAVE
DIR LOADS SAVEC
EXEC LOCK SAVES
KILL NEW UNLOCK
LIST PEEK : WIDTH
POKE

NOTE: Filename is frequently used in the description of the system
commands. Here are some examples of legal filenames.

ALPHA ALPHA.1C2 D2:BETA D3 :BETA.COD D4 : ABCDEFGH.111

If the file is not on disk one, the filename must start with D followed by
the disk number (1 to 4) and then a colon. Next comes the main part of the
filename. This can be from 1 to 8 characters long. If you wish you may add
a period and 1 to 3 symbols after the main part of the filename.

APPEND
Format: APPEND filename

Description: The program on the disk is appended to the program in memory.
The program on the disk must be in source code form (i.e., the SAVES
command was used to place the program on the disk). Note that if two lines
in the programs have the same linenumber, the line from the appended
program will overwrite and eliminate the line in the current program.

Examples:

APPEND ALPHA appends the program named ALPHA on disk drive 1 to the
current program.

APPEND D2:BETA appends the program named BETA on disk drive 2 to the
current program,

COMPILE

Formats: COMPILE COMPILE filename/filename
COMPILE n COMPILE filename n
COMPILE filename COMPILE filename/filename n

(n must be 1, 2, or 3)
Description: Used to compile a program. If no filename is specified, the
program is assumed to be in the computer. If a filename is specified, the
system assumes that the program is too large to compile entirely in the
computer. The system then brings parts of the program from the disk as
needed and sends the compiled code back to the disk. This makes the
compile significantly slower, but allows very large programs to be
compiled. If filename/filename is used, the second filename determines the
disk and name to which the output code is stored. If only one filename is

~59-

]
[T,

given, the system uses that filename with a .COD extension as the compiled
code filename.

Examples:

COMPILE compiles the program in memory. The resulting code can be stored
with a SAVEC command.

COMPILE 1 causes the system to delete each program line after it has been
compiled. This almost doubles the size of a program which can be compiled
entirely in memory. Be sure to save the program first.

COMPILE 2 When the program is executed, the BASIC is removed. This
increases available memory by about 17K in a non XL and by 3K or 4K in an
XL. When the program ends, the BASIC has to be reloaded.

COMPILE 3 The N=3 option is the same as N=1 combined with an N=2 compile.

COMPILE ALPHA.BAS compiles the program on disk 1 named ALPHA.BAS. The
compiled code will be stored on disk 1 with the name ALPHA.COD.

COMPILE ALPHA.BAS/D2:ALPHA.COD 2 compiles the program on disk 1 named
ALPHA.BAS. The compiled code is stored on disk 2 with the name ALPHA.COD.
The BASIC is removed when the program is executed, allowing the maximum
possible amount of memory.

DEL
Format: DEL linenumber,linenumber

Description: Deletes all linenumbers between and including the two listed.
The first linenumber must be less than the second linenumber. To delete
the special subroutines PUSING.APP and DLISTINT.APP use the command
DEL 32768,65535.,

DIR

Formats: DIR Dn: (n is the drive number and must be 1,2,3,0r 4)
DIR

Description: Lists the directory for the specified disk. If no disk is

specified, lists the directory for disk 1. Note that using DIR does not

effect any program in memory. So if you are ready to save a program to a

disk, you can use the DIR command to check the disk before you save the

program, :

Examples:
DIR 1lists directory of disk 1.

DIR D2: 1lists directory of disk 2.

—60-

EXEC
Formats: EXEC

EXEC 1

EXEC filename
Description: Executes a previously compiled program. If a filename is
specified, the code is loaded from the file on the specified disk.
Otherwise, the system assumes that a program in the computer has just been
compiled. If a space and a one follow the EXEC command, any program in the
computer will be deleted before execution begins. This increases the
amount of memory available. Be sure to save the program before doing this.
If the program is loaded from a file, any program in the computer will also
be automatically deleted before the execution.

Examples:

EXEC
EXEC ALPHA.COD)

KILL
Format: KILL filename

Description: Deletes a file from the specified disk.
Examples:
KILL ALPHA.DAT deletes the file ALPHA.DAT from disk 1.

KILL D2:BETA.D1 deletes the file BETA.D]1 from disk 2.

LIST or L
Formats: LIST (or you can use just L but not L.)

LIST linenumber

LIST linenumber,linenumber
Description: LIST without linenumber lists the entire program. LIST
followed by one linenumber 1lists only that line. LIST followed by two
linenumbers lists all the lines between and including the two linenumbers;
however, the first linenumber must be less than the second linenumber. You
can use the abbreviation L for LIST, but not L followed by a period.

LLIST
Formats: LLIST
LLIST linenumber
LLIST linenumber,linenumber
Description: Works like LIST, ‘except that the output is to the printer
instead of the screen. See LIST and WIDTH.

LMARGIN
Format: LMARGIN number

Description: Sets left margin to value of number. Minimum is O and
maximum is 39,

—61-

LOAD
Formats: LOAD filename

LOAD filename 1
Description: Loads a program which has been stored in token form (i.e.,
saved with SAVE command). The name and disk are specified in the filename.
The second option (adding a space and 1) is used for programs too large to
totally fit in the computer. Only a portion of the program is held in the
computer; the remainder stays on the disk. This gives you a way to work
with very large programs, because you can edit and add to the program as
if it were entirely in the computer. See Chapter 11,

LOADS
Format: LOADS filename

Description: Loads a program which has been stored in non-token form.

Example: LOADS PHI.SR loads the program named PHI.SR stored on disk 1.

LOCK
Format: LOCK filename

Description: Sets the specified file to read only. Used to protect a file.

NEW
Format: NEW

Description: Deletes any previous program and prepares for the entry of a
new program.

PEEK
Format: PEEK number

Description: Prints the value of the memory location specified by the
number, which must be in decimal.

POKE
Format: POKE number,number

Description: Stores the value of the second number into the memory
location specified by the first number. Be careful with this command. If
you should change a key location, the BASIC will lock up and you will have
to turn off the computer and reload.

RENAME
Format: RENAME filename/filename

Description: Changes the name of the file from the first (left) filename
to the second (right) filename.

RUN
Formats: RUN ' RUN filename

RUN n RUN filename n (n=1, 2, or 3)
Description: Compiles and executes a program. If a filename is used, the
program is loaded from the disk; otherwise, the program is assumed to be in
the computer. The number serves as a command to the computer:

—62-

l-~each program line is compiled and then deleted. This is used for
programs which are too large to compile or execute in the available RAM.
Be sure to save your program before using this option.

2--the BASIC is removed before progfam execution, This greatly increases
the space available in a non-XL computer and gains several thousand bytes
in an XL.

3--the BASIC is removed and the program lines deleted as they are compiled,
providing the maximum amount of memory for program execution. Note that
if the BASIC is removed, you will have to insert a disk with BASIC on it and
reload the BASIC at the end of the program run. The system will issue a
message telling you what to do.

Examples:
RUN compiles and executes the program in memory.

RUN 1 compiles (deleting program lines as they are compiled) and executes
the program in memory.

RUN ALPHA loads, compiles, and executes the program named ALPHA on disk
1.

RUN D2:BETA 1 loads, compiles (deleting program lines as they are

compiled), and executes the program named BETA on disk 2.

SAVE
Format: SAVE filename

Description: Saves the program in memory onto a disk using the name
specified in filename. The program is stored in token form. If the disk
already has a file with the same name, the first file will be destroyed.
Examples:

SAVE ALPHA saves a program onto disk 1 using the name ALPHA.

SAVE D2:ALPHA saves a program onto disk 2 using the name ALPHA.

Special note: The SAVE command should not be used with .COD or .WRK,

because these names are used in some compile options and the program might
be overwritten and lost.

SAVEC
Format: SAVEC filename

Description: Saves the compiled code to a disk using the name specified in
filename. An EXEC command can then be used to execute this code without
having to recompile it.

Example:

SAVEC CGCA saves the compiled code to disk 1 using the name CGCA.

—63-

SAVES
Format: SAVES filename

Description: Saves the program in memory onto a disk using the name
specified in filename. The program is not stored in token form, and thus
takes longer to load and uses more disk space than the SAVE command. The
main reason to use SAVES is because you plan to append the program to
another program.

Example:
SAVES GAMMA 1lists the program-to the screen and simultaneously saves it

in non-token form.

UNLOCK

Format: UNLOCK filename .

Description: The LOCK command tells the DOS that a file is read only, thus
protecting the file. The UNLOCK command removes this protection and
allows the system to write to a file,

WIDTH

Format: WIDTH number

Description: Sets the printer width. The default value is 75. If you have
a 40 column printer, you use the command WIDTH 40. Whatever width is set
will remain until a new WIDTH command is given or the system is turned off.

—64—

Variables and Operators

Variables

Variables in Advan BASIC may be integer, real, or string. Integer
variables must end with a 7 sign and string variables with a $ sign. All
other characters must be capital letters, numbers, or periods. No spaces
are permitted. The following are valid names:

Integers Real String
ALPHAZ TAX NAMES$

BZ AMOUNT ADDRESSS$
BETA.C2% C LAST.NAMES$

All characters in a name are significant, including the % and $ symbols.
Thus, NAME$ and NAMEZ are different variables. Appendix B contains the
reserved words which may not be used as variables. Also note that because
names starting with FN are reserved for functions, no variable names may
begin with FN,

Integers have a maximum value of 32767 and a minimum value of -32768
(however, the smallest integer constant is -32767). Integer constants
must end with a Z sign. Each integer variable requires two bytes of memory
space. The following are valid integer statements:

AZ=BZ+2% CZ=(CZ+30000%)/(-3%)

Each real variable requires six bytes of memory and, depending on the
number, nine or ten significant digits are held. The absolute value of a
real number must be zero or greater than 10"-99 and less than 10799, The
following are valid real statements:

A=B+5 COUNT=(COUNT+3)/(-6)

Note that real and integer variables can be mixed in a statement. The
program will have to make conversions, however, resulting in some loss of
speed. These are legal expressions:

A=B%+27 B%=(A+2%)/3

If integer and real variables and/or constants are mixed in an expression,
the program will convert an integer to a real number when forced to do a
numerical operation between them. If an integer variable is set equal to a
real number, the real number is converted to an integer (it is rounded, not
truncated) and the variable is set equal to the integer. For example:

10 A%Z=3.7
20 PRINT AZ
RUN

4

String variables have a maximum length of 256 bytes. Unlike ATARI BASIC,
strings in Advan BASIC do not have to be dimensioned.

—65-

—

oy
. k]

wn

w

[

Arrays

Arrays may be integer, real, or string. The maximum number of subscripts
is 64. A DIM statement must appear in the program for a variable before it
is used. The subscripts used in arrays may be integer or real numbers;
however, the program will convert the real numbers to integers (rounding,
not truncating), thus reducing execution speed.

Functions and Named Subroutines

User-defined one line functions are available. There may be 0O to 4
arguments and they may be integer, real, or string. All function names
must start with FN, Functions may be integer, real, or string. They can be
anywhere in the program and don't need to precede the use of the function.
For example:

100 DEF FNA$(T$)=T$+".COD" .

User-defined multi-line named subroutines are available. There may be O to
4 arguments and they may be integer, real, or string. All subroutine names
must end with an @ symbol. See SUB command for more information.

Special note: In most cases the system will automatically convert between
real and integer numbers. In user-defined functions and named
subroutines, however, the argument must be the same in the definition and
when the function or subroutine is used.

Operators

The following arithmetic operators are available for integers and real
numbers: +, -, ¥, /, ", For integers, the MOD operator causes a division and
its result is the remainder. In the following example, 50 is divided by 8
and T7Z is set equal to the remainder.

100 T%=50% MOD 8%
110 PRINT TZ%

RUN

2

The plus sign may be used to concatenate strings, For example:

100 A$="ABC": B$="DEF"
110 C$=A$+B$: PRINT C$
RUN

ABCDEF

The following relational operators are available: >y 0=, =, <=, <, <>, In
the following line, if T% is greater than A%, the program will branch to
line 100:

50 IF TZ>A% THEN 100

Relation conditions can be combined using AND and OR operators. In the
following line, if T% is greater than A%, or Bl$ is less than NAME1$, the
program will branch to line 100:

50 IF TZ>A% OR B1$<NAME1$ THEN 100

—66-

If AND and OR operators are mixed in a condition, AND will be evaluated
first.:

100 IF AZ>57% OR BZ>6Z AND C5>7% THEN 200
The above line is equivalent to
100 IF AZ>57% OR (BZ>6% AND C%>7%) THEN 200

AND and OR can be used to perform binary operations on the bits of two
integers:

10 T%Z=AZ AND 1%

AND is performed between the binary bits of A% and those of 1%, and the
resulting number placed in T%Z. For example, bit O of 1% is compared with
bit O of AZ; if both are one, a 1 is placed in bit O of TZ. Otherwise O is
placed in bit O of TZ. The other bits of A% and 1% are compared in the same
way. The above example has the interesting property that T% will equal 1
if AZ is odd and zero if AZ is even (a simple way to test whether a number
is odd or even). Consider the next line:

10 T%Z=AZ OR B7Z
This works like the previous example, except that here an OR is performed
between the binary bits of AZ and the binary bits of B%Z and the result

placed in TZ. For example, bit 5 of A% is compared with bit 5 of BZ. If
either bit is 1, then bit 5 of T% is set to 1; otherwise it is set to zero.

Special operators: +=, >>, and <<

There are many statements where something is added to a variable. For
example:

TZ=T%+3% AZ(5%)=A%Z(5%)+CT+2%
B$=B$+"," B(2%)=B(2%Z)+EXP(2)
C%=C%-1%

Using the += command, these statements can be rewritten in the following
way, in many cases resulting in faster program execution:

TZ+=3% AZ(52)+=C%+2%
B$+="," B(27Z)+=EXP(2)
Ci+=-1%

The >> and << commands are used only with integers. In the following line,
the bits of A% are shifted three places to the right. For a positive
number this is the same as dividing by 8 (that is, by 2°3).

10 TZ=A%Z>>3%

In the next example, the bits of AZ are shifted three places to the left.
This is the same as multiplying by 8 (by 2°3).

10 TZ=A%<<37%

-67-

oo
i

Fro

General Commands

Advan BASIC Commands

ADR ‘
Wnn < FEsweERY RETURN
S8hRk GOSUB REEME
DATA GOTO SBEARRAY
i o S¥B
DEG L ;
DIM LET
END
. 1
Decision Loops I/0 DISK
FOR NEXT STEP GETKEY CLOSE
REBBBAT:UNTEL INPUT HoBy
WHEEE - WEND NPUTFLINE GET
LPRINT NOTE
FR<PHEN-ELSE BBRENBUSING OPEN
EP- DO ERSmeR PRINT POINT
ON GOSUB PRINT -USING PUT
ON GOTO STICK
STRIG
TAB
Graphics/Sound Integer Functions Real Functions String
Functions
KSOUND kBeE ABS CHR$
GENT@ ASC ATAN CHRWS
COLOR RGEBs COS ENSERTB
EOLL ASEW EXP "INSERTW
PFILL KND% PENT INSTR
DRAVWTO VAEZ BEX INSTR1I
FILEL INT BEFT
QRAPHICS LOG LEN
HPOS RND Mib:
LOCATE SIN NUMS$
' ESCREEN SQR RTEHT
PCONTROL TAN STRING
PDISPLAY VAL STR$
PLOT
POS
PRATE
‘PSETCOLOR
PSIZE
SCONTROL
SETCOLOR
SETINE@
SOUND

—68—~

Note: In the following descriptions of commands, the terms
integerexpression, realexpression, stringexpression, expression, and
condition are used. These are valid integerexpressions:

AZ ALPHA2Z (T%Z+3%)/8%

These are valid realexpressions:

ALPHA BETA+3 4 BETA"2+ALPHA+27%+C%

Note that integers can be used in real expressions; however,'program
execution will be slower because they have to be converted to regl

numbers.

These are valid stringexpressions:

ALPHA$ "ABC" ALPHA$+BETA$+"A" .

If the general term 'expression' is used, it includes any of the three

types mentioned above,

Conditions are expressions with relational operators. These are valid
conditions:

AZ>BZ A$<="ABC"

Special Note: If a realexpression is used instead of an integerexpression
or vice-versa, in almost all cases the system will accept the expression
and convert it to the correct form.

—69-

-
H

SN L ‘;V\"\w

PR

s

ABS
Type: real function

Format: ABS(realexpression)

Description: Takes the absolute value of a real number.
Example:

10 Y=-5.2

20 PRINT ABS(Y),ABS(-3.12),ABS(2.1),ABS(3%)

RUN

5.2 3.12 2.1 3

ABSZ
Type: integer function

Format: ABSZ(integerexpression)

Description: Takes the absolute value of an integer.
Example:

10 T%Z=-37%

20 PRINT ABS%(TZ),ABSZ(—ZZ),ABSZ(SZZ),ABSZ(—2.7)
RUN

3 2 52 3

ADR
Type: integer function

Formats: ADR(variable)
ADR(linenumber)

Description: Returns an integer equal to the address of the specified
variable or linenumber. Used mainly in machine code subroutines.

Example:

10 DIM AZ(20%)

20 PRINT ADR(BZ%) ,ADR(C) ,ADR(D$)
30 PRINT ADR(AZ(2%)),ADR(20)

ASC
Type: integer function

Format: ASC(stringexpression)

Description: Returns an integer equal to the ASCII code for the first

character of the specified string.

Example:

10 A$="ABC"

20 PRINT ASC(AS$),ASC("CD")
RUN

65 67

-70-

ASCB
Type: integer function

Format: ASCB(stringexpression,integerexpression)

Description: Returns the integer equal to the ASCII code of the Nth
string character, where N equals the integerexpression.

Example:
10 A$="ABC" :TZ=2%
20 PRINT ASCB(A$,T%Z),ASCB("ABC",37%)

RUN
66 67

ASCW
Type: integer function

Format: ASCW(stringexpression,intexpresson)
Description: Returns an integer equal to the ASCII code of the Nth string
character+256 times the ASCII code of the (N+1l)th string character, where

N equals the integerexpression.

Examples:

10 A$="AB" :

20 PRINT ASCW(A$,17%)
RUN

16961

10 A$=CHRW$(627)+CHRW$(3127%)

20 PRINT ASCW(A$,17%) ,ASCW(A$,37%)
RUN

62 312

ASOUND
Type: BASIC command

Format: ASOUND integerexpression,ADR(linenumber)

Description: The integerexpression equals the voice number and must be O,
I, 2, or 3. This command lets you set up a sequence of notes that the
computer plays automatically; that is, the computer does not have to issue
a new command for each note. ADR(linenumber) tells the compiler where the
data is. The data determines the frequency, duration, amplitude, and
distortion of each note. Note that the sound will not start until an
SCONTROL command is given. This allows all four voices to be synchronized.
See SOUND and Chapter 12 for a more complete discussion.

~-71-

i
e

s
e

ATAN
Type: real function

Format: ATAN(realexpression)

Description: Calculates the arctan of the realexpression. The answer is
in radians unless you have given the DEG command.

CASE, CASE ELSE, CASE END, &

Type: BASIC command

Format: CASE condition
(statements)
& condition
(statements)
& condition .
(statements)

CASE ELSE
(statements)
CASE END

Description: CASE ELSE is optional. You can use as many & conditions as
you like. If the condition following CASE is true, the statements between
that condition and the & condition are executed and the program skips down
to the statement following CASE END. If the condition following one of the
&'s is true, the statements between that conditon and the next case-type
(&, CASE ELSE, or CASE END) command are executed, and the program skips to
the statement following CASE END. If none of the conditions are true, the
program executes the statements following CASE ELSE if it is present;
otherwise the program skips to the statement following CASE END. See
Chapter 4. '

CHR$
Type: string function

Format: CHR$(integerexpression)

Description: Generates a one character string. The integerexpression
equals the ASCII code of the character generated.

Example:
10 B$=CHR$(657%)+CHR$ (49%)
20 PRINT B$

RUN
Al

-72-

CHRW$

Type: string function
Format: CHRW$(integerexpression)

Description: Used mainly to save integers in strings. Generates a two
character string. The first character equals the ASCII code for the
remainder after the integerexpression is divided by 256. The second
character equals the ASCII code for the integerexpression divided by 256.

Example:

10 A$=CHRW$(65%+2567*667)

20 B$=CHRW$(515%)+CHRW$(5%)

30 PRINT A$,ASCW(B$,1%),ASCW(B$,3%)

RUN

AB 515 5 .

CINT@
Type: BASIC command

Format: CINT@ integerexpression,integerexpression

Description: Designed to work with ATARI's display list interrupt
capability, SETINT@ specifies the screen line where an interrupt is to
occur and also specifies a value and a location where the value is to be
stored. CINT@ changes the value stored at the interrupt. The first
integerexpression gives the identifying number of the interrupt (this is
set by SETINT@) and the second integerexpression gives the new value.
Because it changes the value stored without having to reset an interrupt,
CINT@ is much faster than SETINT@. Note that you must append DLISTINT.APP
before using this command. See SETINT@ and Chapter 15.

CLOSE
Type: BASIC command

Format: CLOSE integerexpression

Description: Ends disk operations for the channel number equal to the
integerexpression. Note that when a program ends or the BREAK key is
pressed, all open channels are automatically closed.

Example:
10 OPEN "I",1Z,"T.DAT"

20 GET 1%Z ,N7%
30 CLOSE 17

CODE
Type: BASIC command

Format: CODE"assembly language data"

Description: Allows assembly language code to be inserted into a program.

—73-

See Chapter 16 for specific data. Special assembly language mnemonics may
be used. Note that all machine language code must be preceded by the
command MACHINE followed by a linenumber. See MACHINE and CODEL.

Examples:

1000 MACHINE 1100
1010 CODE"LDA,F2,2,STA,DF,4 ,RTS"
1100 END

The number in memory location 2F2 is loaded into the accumulator and then
stored in memory location 4DF. Note that the memory locations are in hex,
and that all machine language code must end in RTS, Also the X register
must not be altered by the machine language code. If you use the X
register, you must first save it and then restore it before the RTS. If
you want to use a decimal number in a CODE statement, it must not exceed
255 and it must be preceded by !. .
100 MACHINE 200

110 CODE"LDAIM,!15,STA,DF,4 ,RTS"

Here, the decimal number 15 is loaded into the accumulator (LDAIM stands
for LOAD immediate--see Appendix D for a list of mnemonics). The 15 is
then stored in 4DF.

Linenumbers can be used in the CODE command. They must be preceded by @ if
used with branch commands, or by # if used with JMP or JSR. 1In the
following example, if the number in 2F2 is non-zero, the program goes to
120 and returns; otherwise 1 is loaded to the accumulator and stored in
2F2 before the program returns. The last example illustrates the use of
the # symbol.

100 MACHINE 200

110 CODE"LDA,2F,2,BNE,@120,LDAIM,1,STA,2F,2"
120 CODE"RTS"

200 END

100 MACHINE 200

110 CODE"LDA,2F,2,BNE,@120,LDAIM,1,STA,DF,4,JMP,#130
120 CODE"LDAIM,0,STA,DF,4"

130 CODE"INC,2F,2,RTS"

200 END

CODEL

Type: BASIC command

Formats: CODEL(variablename) , CODEL(variablename+"L")
CODEL(linenumber) CODEL(variablename+"H")
CODEL(variablename+integer) CODEL(linenumber+"L")
CODEL(linenumber+integer) CODEL(linenumber+"H")

Description: Generates code for the address of a linenumber or a variable.
If you use the +integer option (e.g., CODEL(T%42)), the compiler adds the
integer to the address of the linenumber or variable. If you use the +"L"
or +"H" options, the compiler generates the low order or high order byte of

—Th—

the addresé. For example, if the variable TZ is at address 8E2, the
CODEL(TZ+"L") generates the hex byte E2. See MACHINE and CODE.

COLL
Type: integer function

Format: COLL(integerexpression,integerexpression)

Description: Returns an integer whose value depends upon whether or not
collisions have occurred between players, missiles, or playfields. If the
second integerexpression is zero, collisions with playfields are examined;
if it is 16%, collisions with players are examined. The following chart
shows how the value of the first integerexpression is used:

Value of first Collision
integerexpression examined with

o player O

1 " 1

2 " 2

3 " 3

4 missile 0O

5 " 1

6 " 2

7 " 3

Adding 128 to the first integerexpression will clear the specified
collision register.
Examples:

T%Z=COLL(0%,0%) returns an integer whose value depends upon whether or
not player O has collided with the playfield.

T%=COLL(5%,0%) returns an integer whose value depends upon whether or
not missile 1 has collided with the playfield.

T%=COLL(2%,16%) returns an integer whose value depends upon whether or
not player 2 has collided with other players.

To determine which player or playfield the collision was with, you can AND
the returned integer with 1%, 2%, 4%, or 8%. 1% corresponds to player or
playfield O, 2% corresponds to player or playfield 1, 4% to player or
playfield 2, and 8% to player or playfield 3.

T%Z=COLL(2%,16%) AND 82 returns 1 if player 2 collided with player 3.
TZ=COLL(5%,0%) AND 2% returns 1 if missile 1 collided with playfield 1.

T%=COLL(133%,0%Z) resets the collision register between missile 2 and the
playfield (133=128+5).

Special note 1: The collision registers are not updated until the vertical
blank occurs. Thus, there can be a delay between the resetting of a
collision and when it is next set.

Special note 2: If the collision still exists, resetting the register will
not clear it,.

-75-

Special note 3: You should clear any colllslon registers that you plan to
use at the start of a program.

COLOR
Type: BASIC command

Format: COLOR integerexpression

Description: The integerexpression determines the color which will be
placed on the screen by any succeeding PLOT statements. The following
example plots a point in the upper left portion of the screen; the color is
determined by color register 1.

10 GRAPHICS 37

20 COLOR 2%
30 PLOT 5%,3% .

COS
Type: real function

Format: COS(realexpression)

Description: Returns the cosine of the value of the realexpression.
Radians are assumed unless you have given the DEG command.

Example:
10 A=0.32
20 PRINT COS(A)

DATA
Type: BASIC command

Format: DATA data items

Description: Used with READ statements to enter data. DATA statements
are non-executing and may be placed anywhere in the program, but must be
the first statement on a line. See READ. If you want to put a comma in a
string, use the inverse key to enter an inverted comma (a black comma in a
white background). During the compile, Advan BASIC automatically switches
inverted commas in data statements to normal commas.

Example:

10 READ A,A$,A%

20 PRINT A,A&,AZ

30 DATA 5.2,ABC!,-5
RUN

5.2 ABC! -5

~76-

DEF
Type: BASIC command

Formats: DEF FNvariablename .
DEF FNvariablename(variablename,...,variablename)

See Chapter 8 for a detailed description. The variablename can be
integer,string, or floating point, and there may be no more than four
variablenames in parentheses.

DEG
Type: BASIC command

Format: DEG
Description: Causes the BASIC to assume degrees for all trig functions.

Example:

10 A=30
20 DEG
30 PRINT SIN(A)

DIM
Type: BASIC command

Format: DIM Variablename(number),variablename,(numbér,.”,number),".

Description: The variablename can be integer, real, or string. All arrays
must be dimensioned, even those whose dimension is less than 10; all arrays
are set to zero at the start of program execution. The DIM statement must
precede the use of the array. If it doesn't, you will get two error
messages: array redefined error at the DIM statement and argument error
when you use the array. The number in the DIM statement gives the maximum
value of the subscript. The minimum value is zero. The maximum number of
subscripts is 64.

Special note: The DIM statement in Advan BASIC serves a completely
different role for strings than in ATARI BASIC. Remember, in ATARI BASIC
you do not have string arrays and DIM is used to indicate the length of a
string. In Advan BASIC, however, you do not need to specify the length of a
string, and dimensioning a string sets up a string array.

DFILL

Type: BASIC command

Format: DFILL integerexpression,integerexpression

Description: Used to fill the entire screen, player or missile with a

particular value. The most common use is to clear the screen, player, or
missile. The value of the first integerexpression determines what will be
filled according to the following chart:

-77-

e

e

L]
a0

P

w.«,..-,.q"

Py

e

Value of 1st
Integerexpression Area filled

player
"

ANV =O

=]

[N

n

7]

[N

[

0]
WNHOWN~O

[a

entire screen
The value of the second integerexpression is stored in the filled area.

Examples:
DFILL 16%,0% clears the entire screen much faster than the GRAPHICS
command does,

DFILL 0%,255% turns on all the data points of player O; that is, player O
will be a uniformly colored bar.

Special note: DFILL 167%,integerexpression can cause problems in mode O if
you are using the editor to input data from the screen. This is because
DFILL does not reset the cursor position nor some of the other variables

used by the editor. You can rapidly clear the screen in mode O with the
command PRINT CHR$(125%).

DRAWTO
Type: BASIC command

Format: DRAWTO integerexpression,integerexpression

Description: Draws a line from the last plotted point to the point whose
column (horizontal position) equals the first integerexpression and whose
vertical position equals the second integerexpression. The color of the
line is determined by the last color command. Note that this command does
not work in mode 0. The following program draws a line on the screen and
then waits about 4 seconds before it clears the screen and returns to the
text mode.

100 GRAPHICS 3%
110 COLOR 2%
120 PLOT 2%,3%
130 DRAWTO 8%,37%
140 WAIT 240%
150 END

END
Type: BASIC command

Format: END
Description: Stops program execution and returns control to BASIC. Note

~78-

that END can appear anywhere in the program. In fact, several ENDs may be
in a program. The compiler always inserts an END after the last program
statement. The following program inputs numbers and prints the numbers
until -1 is entered, which returns control to BASIC.

Example:

100 INPUT AZ
110 IF A%=-17% THEN END
120 PRINT A%: GOTO 100

EQF
Type: integer function

Format: EOF(integerexpression)

-

Description: Tests whether you are at the end of a disk file. The
integerexpression equals the file number and must be 0, 1, 2, or 3. The
function returns 1 if you are at the end of the file and O if not. The
following program opens the disk file named DATA, which is located on disk
1. It reads and prints all the strings from the file.

Example:
100 OPEN "I",1%,"DATA"

110 IF EOF(1%)=0% THEN GET 1Z,A$: PRINT A$: GOTO 110
120 CLOSE 17%: END

EXG
Type: BASIC command

Format: EXG(stringvariable,stringvariable)
Description: Exchanges the two strings.
Example:

100 A$="ABC": B$="ZYXW"
110 EXG(A$,B$)

120 PRINT A$,B$

130 END

RUN
ZYXW ABC

EXP
Type: real function
Format: EXP(realexpression)

Description: Calculates the value of e’x where x equals the value of the
realexpression.

-79-

ey

[Saaeat §

ey

[EP——

i, [T e,
s :

.

[anten |

o]

Example:

100 X=3
110 PRINT EXP(X+1)
120 END

FAST and FAST END
Type:: BASIC command

Format: FAST

FAST END

Description: For the parts of the program .between FAST and FAST END,
Advan's optional optimizing compiler produces machine language code, which
is faster but takes up more room than pseudo code. The optimizing compiler
also reduces the length of the pseudo code regions (those not bracketed by
FAST-FAST END) by about 20 to 25%. Because only about 10% of many programs
is speed critical, the optimizing compiler can often significantly improve

speed without changing program length. These commands are ignored by the
standard Advan BASIC, :

FILL
Type: BASIC command

Format: FILL integerexpression,integerexpression

Description: Draws a line from the last plotted point to the point whose
column (horizontal position) equals the first integerexpression and whose
vertical position equals the second integerexpression (where 0 equals the
top line). As each point in the line is drawn, the system fills in empty
points to the right of the point until the screen edge or a plotted point
is encountered. Note that FILL does not work in mode O.

Example:

10 GRAPHICS 3%
20 COLOR 27

30 PLOT 5%,10%

40 DRAWTO 10%,15%
50 DRAWTO 0%,15%
60 FILL 4%,11%

The point at 5,10 is plotted. Line 40 draws a line from 5,10 to 10,15, Line
50 draws a line from 10,15 to 0,15. The FILL command draws a line from 0,15
to 4,11 and fills in the triangle as it draws the line.

-80-

FINT
Type: Real function ; 1

Format: FINT(integerexpression)

Description: Integers can take on values only from -32768 to 32767. If
you consider the integers as unsigned numbers, the range is 0 to 65535. In
some cases, such as memory locations, unsigned integers are more helpful,
FINT assumes the integer to be an unsigned number and converts it to a
floating point number for printing or testing.

Example:

100 FOR TZ=50000% TO 50004%

110 - PRINT T%,FINT(TZ)

120 NEXT TZ

RUN , .
-15536 50000

-15535 50001

~15534 50002

~15533 50003

-15532 50004

FIX
Type: Real function

[—

Format: FIX(realexpression,integerexpression)

Description: Returns the real number specified by realexpression rounded
to the number of decimal points specified by integerexpression.

Example:
10 T=FIX(4.372,2Z):PRINT T

RUN
4.37

FOR NEXT STEP
Type: BASIC command

Format: FOR variablename=expression TO expression STEP expression

NEXT variablename

Description: Used to loop through a sequence of statements a fixed number
of times. Variablename must be an integer or a real number; it must not be
an array element. The variablename with FOR must match the variablename
with NEXT. STEP is optional and if not present, the third expression is
assumed to be 1. All three expressions may be either real or integer;
however, the program runs faster if they are the same type as the
variablename.

-81-

e

GET
Type: BASIC command

Format: GET integerexpression,variablename

Description: Reads data from a file. The file number equals the
integerexpression. The variablename can be integer, real, or string. See
PUT. The following program reads and prints a string, an integer, and then
two real numbers from a file called "DATA.FIL", See Ch. 6 for alternate
form of GET.

Example:

100 OPEN "1",17,"DATA.FIL"
110 GET 1%,A$: GET 1Z ,N%: GET 1%,B: GET 1%,C

120 PRINT A$,NZ,B,C
130 CLOSE 1%]

140 END

GETKEY
Type: integer function

Format: GETKEY

Description: Returns ASCII code (See Appendix A) for character entered at
keyboard. Returns zero if no character, or if you already used GETKEY to
get that character.

GOSUB

Type: BASIC command

Format: GOSUB linenumber

Description: Transfers control to a subroutine located at the specified

linenumber. When the program reaches a RETURN, control returns to the
statement immediately after the GOSUB.

GOTO

Type: BASIC command

Format: GOTO linenumber

Description: Transfers control to the specified linenumber,

GRAPHICS

Type: BASIC command

Format: GRAPHICS integerexpressioﬂ

Description: Sets the graphics mode., See Chapter 13 for a complete
discussion. There are 16 graphics modes (0 through 15). Many of the modes
can be opened with or without a text window at the bottom of the screen,

Also you can have graphics with or without player-missiles and with or

-82-

without alternate character sets. First you must pick your graphics mode.
(See Table 13-1, Ch. 13) If you don't want a text window, add 16. If you
don't want the screen cleared when you open the display, add 32. If you
want player-missiles, add 64. If you want an alternate character set, add
128.

Example:
100 GRAPHICS 84

84 equals 4+16+464, so this command produces graphics mode 4 with no text
window and with player-missiles.

HPOS
Type: BASIC command

Format: HPOS integerexpression,integerexpression

Description: Sets the horizontal position of a player or missile. The
first integerexpression determines which player or missile is set
according to the following chart.

Value of first
Integerexpression Player-missile

0 player O
1 " 1
2 " 2
3 " 3
4 missile O
5 " 1
6 " 2
7 " 3

The value of the second integerexpression determines the horizontal
position. 40 places the player or missile near the left screen edge and
216 near the right screen edge.

IF DO ELSE ENDIF
Type: BASIC command

Format: IF condition DO

ELSE

ENDIF

(Note that ELSE is optional)

-83-

| NN

Description: This is a multi-line version of IF THEN ELSE. If ELSE is used
and the condition is true, the statements between DO and ELSE are executed
and those between ELSE and ENDIF are skipped. If the condition is false,
the statements between ELSE and ENDIF are executed and those between DO
and ELSE are skipped. If ELSE is not used, the statements between DO and
ENDIF are executed if the condition is true, and skipped if the condition

is false. You may use as many lines as necessary between DO and ELSE and
between ELSE and ENDIF, Also you may nest IF DO ELSE ENDIF,

IF THEN ELSE
Type: BASIC command

Formats: IF condition THEN statement(s) ELSE statement(s)

IF condition THEN linenumber ELSE statement(s)

IF condition THEN statement(s) ELSE linenumber
IF condition THEN linenumber ELSE linenumber

(Note that ELSE is optional in all cases.)

Description: If the condition is true, the statements after ELSE are
skipped and those after THEN executed. If the condition is false, the
statements after THEN are skipped and those after ELSE are executed.

INPUT
Type: BASIC command

Formats: INPUT variablename
INPUT "message'variablename,...,variablename

Description: Allows data to be entered from the keyboard and assigned to
a variable. For the first option a question mark is printed. If the second
option is used, the message is printed with no question mark unless there
is one in the message. (See Ch. 3)

INPUTLINE
Type: BASIC command

Formats: INPUTLINE stringvariable
INPUTLINE "message"stringvariable

Description: Inputs a line of string data from the keyboard. The final
carriage return will not be a part of the string. The advantage of this
command over INPUT is that strings with commas can be input. In the INPUT
command, a comma means the end of the string. In the first option, a
question mark is printed. In the second option, the message is printed

without a question mark, unless one is included in the message. See
Chapter 3.

84—

INSERTB
Type: BASIC command

Format: INSERTB(stringvariablename,integerexpress,integerexpress)

Description: Inserts a byte into the string specified by the
stringvariablename. The byte inserted equals the value of the second
integerexpression, and its position in the string is determined by the
value of the first integerexpression. In the following example, the first
integerexpression equals 3 and the second integerexpression equals 65
(ASCII code for A), and thus, the third character of the string is set to
65.

Example:

100 A$="ABCD"

110 INSERTB(A$,3%,65%)
120 PRINT AS$

RUN

ABAD

INSERTW
Type: BASIC command

Format: INSERTW(stringvariablename,interexpress,integerexpress)

Description: Inserts a word (two bytes) into a string. The word inserted
equals the value of the second integerexpression and its location is
determined by the value of the first integerexpression. In the following
example, the second integerexpression equals 65+66%256 and the first
integerexpression equals 2. Thus, the second character of the string is
set ta 65 (the law arder part af the ward) and the third character of the
string is set to 66 (the high order part of the word). Note that 65 is the
ASCIT code for A and 66 for B,

Example:

100 A$="2222"

110 INSERTW(A$,2%,65%+66%%256%)
120 PRINT A$

RUN

ZABZ

INSTR
Type: integer function

Format: INSTR(integerexpression,stringexpression,stringexpression)

Description: Searches the first stringexpression for a match with the
second stringexpression. The value of integerexpression determines the
position in the string where the search begins. Because INSTR1 is much
faster than INSTR, it should be used wherever possible (see INSTR1). In
the first example, INSTR starts at the second character searching for the
string "CD". At the third character, it finds a match, and so the function
returns a 3. If INSTR does not find a match, it returns zero.

—-85-

ey

Examples:

100 A$="ABCDE"

110 PRINT INSTR(2%,A$,"CD"),INSTR(1%,A$,"D")
120 END

RUN

3 4

100 A$="AB,DE,FG": T$=" F"

110 PRINT INSTR(1%,A$,T$),INSTR(3Z,A$,"B")
120 END

RUN

6 0

INSTR1
Type: integer function

Format: INSTRl(stringexpression,integerexpression,integerexpression)

Description: Searches the stringexpression for the byte whose value
equals the second integerexpression. It starts at the string location
equal to the first integerexpression. At line 110 in the following
example, the function starts at the second location in the string and
searches for 69 (the ASCII code for E)., It finds 69 in the fifth string
location and returns 5. If the byte is not found, it returns zero.

Example:

100 A$="ABCDE"

110 PRINT INSTR1(A$,27%,69%)

120 PRINT INSTR1(A$,4%,ASC("C"))
130 END

RUN

5

0

INT
Type: real function

Format: INT(realexpression)

Description: Returns the integer part of a real number. Thus, INT(4.7)
equals 4 and INT(4) equals 4. A negative number is treated as a negative
integer plus a positive fraction, and the negative integer is returned.
For example, -16.2 equals -17+.8 and so the function returns -17.

Example:
100 PRINT INT(2),INT(6.8),INT(-5),INT(~6.4)

RUN
2 6 -5 -7

86—

LEFT
Type: string function

Format: LEFT(stringexpression,integerexpression)

Description: Returns a string equal to the left part of the string,
starting with the first character and including the character at the
string location equal to the integerexpression. If the integerexpression
equals zero, a zero length (null string) is returned, as in the example
below.

Example:

100 A$="ABCDEF"

110 PRINT LEFT(A$,3%)

120 PRINT LEFT(A$,0%)

130 END :

RUN
ABC

LEN
Type: integer function

Format: LEN(stringexpression)

Description: Returns an integer equal to the length of the
stringexpression.

Example:

100 A$="ABC": B$="22"

110 PRINT LEN(A$),LEN"CD",LEN(A$+B$)
120 END

RUN
3 2 5

LET
Type: BASIC command
Format: LET variable=expression

Description: Assigns the value of the expression to the variable. Note
that LET is optional.

Example:

100 LET A$="ABC"

110 B$="ABC"

LOADST

Type: BASIC command

Format: LOADST(expression)

-87-

wmery

B

Description: Loads the value of the expression to the stack. (The BASIC
stack, not the hardware stack). The expression can be integer, real, or
string. LOADST and POPST are normally used to pass a value to a subroutine
or to return a value from a subroutine. They can also be used to make
subroutines recoursive. See POPST,

Examples:

100 TZ=5%: LOADST(TZ+2%)

110 GOSUB 200: POPST(T$)

120 PRINT T$

130 END

200 POPST(YZ)

210 IF Y%=12% THEN LOADST("DEC"): ELSE LOADST("NOT DEC")
220 RETURN

100 HEX@(T%): POPST(TZ)

110 PRINT CHR$(TZ)

120 END

130 SUB HEX@(XZ)

140 IF X%<10% THEN LOADST(48%+X%) ELSE LOADST(55%+X%)
150 SUBEND

LOCATE
Type: integer function

Format: LOCATE(integerexpression,integerexpression)

Description: Returns the value of the display point at the screen
location specified by the integerexpressions. The first is the column
number of the point (far left column is 0), and the second is the vertical

line number (top line is 0),

LOG
Type: real function

Format: LOG(realexpression)

Description. Returns the natural log of the realexpression.

LPRINT
Type: BASIC command

Format: LPRINT expression,...,expression

Description: The same as PRINT, except the output is to the printer
instead of the screen (see PRINT).

LPRINT USING
Type: BASIC command

Format: LPRINT USING stringexpression,expression,...,expression

—88-—

Description: The same as PRINT USING, except the output is to the printer
instead of the screen (see PRINT USING).

LSCREEN
Type: BASIC command

Format: LSCREEN integerexpression,stringexpression

Description: Loads the display screen with data from the disk file whose
name is given by the stringexpression. The filenumber is set equal to the
integerexpression and must be 0, 1, 2, or 3. At the end of the load, the
file will be closed automatically. This command is designed to work with
the optional screen design package.

MACHINE N
Type: BASIC command

Format: MACHINE linenumber

Description: Normally the BASIC compiler generates pseudo code, which is
executed by the execution module. There are situations demanding absolute
maximum speed, which is only possible with assembly language code. Although
Advan's optimizing compiler can compile to machine code, carefully
constructed assembly language routines will usually do better. The
MACHINE command lets you insert assembly language code into a program.

The code following the MACHINE command is assumed to be an assembly
language program. It must end with RTS to return control to the BASIC.
The CODE and CODEL commands are used to enter the assembly language
program. Note that the X register must not be changed by the assembly
language code. If you plan to use the X register, first save it (TXA,PHA is
a good technique) and then reload it (PLA,TAX works with the above). When
the program returns from the assembly language code, execution continues
at the line given by the linenumber in the MACHINE command. See CODE,
CODEL, and Chapter 16 for more information.

MID
Type: string function

Format: MID(stringexpression,integerexpression,integerexpression)

Description: Returns a string equal to a substring of the
stringexpression. The value of the second integerexpression determines
the length of the substring. The value of the first integerexpression
determines the character location of the start of the substring.

Example:

100 A$="ABCDEF"

110 PRINT MID(A$,4%,2%)
120 END

RUN

DE

-89-

NOTE
Type: BASIC command

Format: NOTE integerexpression,integer variable,integer variable

Description: Used with POINT to set the the location in the file. The
integerexpression determines the file number and must be 0, 1, 2, or 3. The
system stores the sector number in the first integer variable and the byte
position in the sector in the second integer variable. See POINT. The
following program lets you get and print any one of a thousand strings
guickly. Without POINT and NOTE, you would probably have to start at the
beginning of the file each time and get each string until you came to the
one you wanted. This would be much slower and cause more disk wear and
tear.

Example:

100 OPEN"I",1%Z,"DATA.FIL"

110 DIM STRLZ(1000,1)

120 FOR TZ=17 TO 1000%

130 NOTE 1%,STRLZ(TZ,0%) ,STRL%(T%,1%)
140 GET 1%,C$

150 NEXT TZ

180 INPUT"Enter string #" TZ

190 IF TZ=07% THEN END

200 POINT 1%,STRL%Z(TZ%,0%),STRLZ(TZ%,1%)
210 GET 1Z,C$

220 PRINT C$

230 GOTO 180

Type: string function

Format: NUM$(integerexpression)

Description: Converts the integer given by the integerexpression into a
string. For example, if the integerexpression equals 100, then NUM$
returns a string whose first byte is 49 (ASCII code for 1), and whose
second and third bytes equal 48 (ASCI code for 0). See STRS.

OFFDISPLAY
Type: BASIC command
Format: OFFDISPLAY

Description: Turns display off, increasing program speed by up to 30%.
ONDISPLAY turns display back on.

ONDISPLAY

Type: BASIC command
Format: ONDISPLAY

Description: Turns the display on, if the display has been blanked with

-90-

OFFDISPLAY.

ON GOSUB
Type: BASIC command

Format: ON integerexpression GOSUB linenumber,...,linenumber

Description: Acts like a GOSUB to one of the linenumbers. The value of
the integerexpression determines which linenumber is used. For example, if
integerexpression equals 3, the program executes a GOSUB to the third
linenumber in the list. You will get an error message if the
integerexpression is less than one or greater than the number of
linenumbers in the list. When a RETURN is reached in the subroutine, the
program returns to the statement following the ON GOSUB., See Chapter 4.

-

ON GOTO
Type: BASIC command

Format: ON integerexpression GOTO linenumber,...,linenumber

Description: Acts like a GOTO to the linenumber specified by the
integerexpression. For example, if the integerexpression equals 2, the
program executes a GOTO to the second linenumber in the list. You will get
an error message if the integerexpression is less than one or greater than
the number of linenumbers in the list. See Chapter 4,

OPEN
Type: BASIC command

Format: OPEN stringexpression,integerexpression,stringexpression

Description: Used to access a disk file. The integerexpression sets the
filenumber amd must be 0, 1, 2, or 3. All subsequent commands which access
this file must use this filenumber. The second stringexpression gives the
disk filename (1 to 8 characters) and an optional extension of a period and
1 to 3 characters. If the disk is not disk 1, the name is preceded by D2:,
D3:, or D4:, The following are legal names: DATA.FIL DATA D2:DATA.F2
D3:SAVEDATA.FLE

The first stringexpression determines the mode in which the file is to be
opened (0, I, A, or R). Mode O opens the file for output only., If a file of
the same name already exists on the disk, the file will be destroyed. Mode
A opens the file in the append mode, and lets you append data to the end of
the file. Mode I opens the file in input only mode. Mode R is the random
access mode. Note that you cannot add to a file in R mode.

Example: OPEN "I",2%,"D2:ALPHA.C"

PCONTROL
Type: BASIC command

Format: PCONTROL integerexpr,integereexpr,integerexpr,integerexpr

-91-

Description: Used with PDISPLAY and PRATE, which define the figure and its
rate of motion. PCONTROL starts and stops the motion, allowing
synchronization of several players and missiles. The first
integerexpression controls player and missile 0, the second
integerexpression controls player amd missile 1, the third controls 2, and
the fourth controls 3. The following chart shows how the value of the
integerexpression controls player-missile action:

Value of ‘
Integerexpression Effect

0 player and missile stop

1 player starts and missile stops
2 missile starts and player stops
3 both player and missile start

Example: 100 PCONTROL 3%,0%,1%,2% activates player O, player 2, missile O,
and missile 3.

PDISPLAY

Type: BASIC command

Format: PDISPLAY integerexpress,ADR(linenumber),integerexpress
Description: Draws a figure into a player or missile. The first
integerexpression determines which player or missile is being set

according to the following chart:

Value of first
Integerexpression Player-missile

player O
"

NouUuPbWN=O
=]
[N
0]
0]
[y
-t
o
W OWN -

The second integerexpression sets the vertical position of the
player-missile. 128 is about the center of the screen. The linenumber

specifies the location of the data to be stored in the player or missile
(See Ch. 14).

PEEK

Type: integer function

Format: PEEK(integerexpression)

Description: Returns the value of the byte at the memory location

specified by the integerexpression. Note that the integerexpression is
assumed to be a positive number from O to 65535, See POKE and PEEKW.

-92-

Example:

100 PRINT PEEK(40960%) prints the number stored in memory location
40960. : .

PEEKW
Type: BASIC function

Format: PEEKW(integerexpression)

Description: Returns the value of the integer word (2 bytes long) at the
memory location specified by the integerexpression. Note that the
integerexpression is assumed to be a positive number from O to 65535. The
low order part of a word is at the specified memory address, and the high
order part is at the memory address plus 1.

-

Example:

100 PRINT PEEKW(40960%)
110 PRINT FINT(PEEKW(40960%))

Line 100 prints a number equal to the value in memory location 40969 plus
256 times the value of the number in location 40961. If this number is
greater than 32767, it will be printed as a negative number. The FINT
function in line 110 converts the integer returned by PEEKW to a positive
floating point number. For example, if the number stored at 40960 is
38000, line 110 prints 38000 instead of treating the number like a signed
integer (i.e., printing a negative number),

PLOT
Type: BASIC command

Format: PLOT integerexpression,integerexpression

Description: Plots a point or a character to the display screen. The
horizontal position is determined by the first integerexpression, and the
vertical position by the second integerexpression. The character or color
plotted is determined by the COLOR command.

POINT
Type: BASIC command

format: POINT integerexpression,integerexpression,integerexpression
Description: Used with NOTE to set the location in the file. The first
integerexpression determines the file number and must be 0,1, 2, or 3. The

second integerexpression determines the sector number, and the third
integerexpression the byte position in the sector. See Chapter 6.

POKE
Type: BASIC command

Format: POKE integerexpression,integerexpression

-93—

Description: Stores the number specified by the second integerexpression
into the memory location specified by the first integerexpression. Note
that since a memory byte has a maximum value of 255 and a minimum value of
O, the second integerexpression should remain within these limits. You
should realize that the POKE command can cause the system to crash. If you
POKE a location used by BASIC, weird and bad things will probably happen.

Example:

100 POKE 40960%,3%Z causes 3 to be stored in memory location 40960.

POKEW
Type: BASIC command

Format: POKEW integerexpression,integerexpression

Description: Stores the two byte word specified by the second
integerexpression into the memory locations specified by the first
integerexpression. See PEEKW.

Example:

100 POKEW 40960%,515% stores 515 in two memory locations. 515 equals 2
times 256 plus 3. 3 is stored in 40960 and 2 in 40961.

POPST

Type: BASIC command

Format: POPST(variablename)

Description: Removes an integer, real number, or string from the stack and
stores it in the variable. See LOADST.

POS
Type: BASIC command

Format: POS integerexpression,integerexpression
Description: Most useful for text modes. Positions cursor to column equal
to the first integerexpression and the line equal to the second

integerexpression. A subsequent PRINT will start printing at the new
cursor position.

PRATE

Type: BASIC command

Format: PRATE integerexpr,integerexpr,integerexpr,integerexpr
Description: Used with PDISPLAY and PCONTROL to automatically move a

player-missile. The first integerexpression determines the
player-missile according to the following chart,

—94-

Value of first v
Integerexpression Player-missile

0 player O
1 " 1
2 " 2
3 " 3
4 missile O
5 " 1
6 " 2
7 " 3

The second integerexpression determines the horizontal speed of the
player-missile. A negative number moves the object to the left and a
positive number to the right. The third integerexpression determines the
vertical speed. A negative number moves the object up and a positive
number moves it down. The maximum speed is 32767; however, speeds of
around 256 are more reasonable. Due to wrap around, very high speeds cause
weird effects. The fourth integerexpression determines the length of time
a given figure is displayed in sixtieths of a second.

Example:

100 PRATE 2%,256%,512%,47% sets player 2 motion to the right and down.
Each figure will remain on the screen for 4/60 second. You can start or
stop player or missile motion with PRATE or with PCONTROL. See Chapter 14
for more information.

PRINT
type: BASIC command

Format: PRINT expression,...,expression
Note that the commas can be replaced by semicolons

Description: Each of the expressions is evaluated and the result is
output to the display screen. If a comma separates two expressions, the
second expression will be shown in the next print zone. The first print
zone starts at the left margin (usually print position 0, 1, or 2). The
second print zone starts at position 8, the third at 16, etc., If a
semicolon separates two expressions, the second will be output immediately
following the first. If the last expression is not followed by a comma or
semicolon, a carriage return will be output and the next PRINT will start
on a new line. If the last expression is followed by a comma or semicolon,
the next PRINT will be on the same line.

Examples:

100 PRINT "ABC"
110 PRINT "zz"
120 END

RUN

ABC

2z

-95-

100 PRINT "ABC",
110 PRINT "zz"
120 END

RUN

ABC 2z

100 PRINT "ABC";
110 PRINT "zz"
120 END

RUN

ABCZZ

100 FOR T%Z=17% TO 5%

110 PRINT "A";TZ;

120 NEXT TZ: PRINT: PRINT "DONE"

RUN

A1A2A3A4A5 .
DONE

PRINT USING
Type: BASIC command

Format: PRINT USING stringexpression,expression,...,expression
Description: The following examples illustrate the use of PRINT USING.

Examples: Note that the decimal points are aligned and that only two
numbers are printed after the decimal point. Note also that the numbers
are rounded. Each of the # signs in the stringexpression reserves a space
for a digit of the number:

100 FOR T%Z=1Z TO 3%
110 READ A
120 PRINT USING "### .#4" A
130 NEXT T%
140 DATA 5.376,15.1,-17.312
RUN
5.38

15.10

-17.31

If the # signs in the stringexpression are preceded by $$, a single $ is
placed immediately before the number:

100 FOR TZ=1% TO 4
110 READ A
120 PRINT USING "$$#4#.#4" A
130 NEXT T%
140 DATA 1.777,21.772,0.76,310.1
RUN
$1.78
$21.77
$.76
$310.10

-96~

If the # signs in the stringexpression are preceded by **, any leading
spaces in the number are filled with *'s:

100 FOR T7%=1% TO 4%

110 READ A

120 PRINT USING "**## ##" ,A

130 NEXT T%

140 DATA 1.777,21.772,310,1,1107.666
RUN

**x1,78

*%21.,77

*310.10

1107.67

If the # signs in the stringexpression are preceded by **$, a $ is placed
immediately before the number and any leading spaces are filled with *'s:

100 FOR TZ%= 17Z TO 4%

110 READ A

120 PRINT USING "**$# ##" ,A
130 NEXT TZ

140 DATA 1.777,21.772,.076,310.1
RUN

**$1.78

*$21.77

*%%¢$ 08

$310.10

If a minus sign follows the last # sign in the stringexpression, a trailing
minus sign is printed for negative numbers. If a plus sign follows the
last # sign in the stringexpression, a trailing plus or minus sign is
printed, depending on the sign of the number. If a plus sign precedes the
first # sign in the stringexpression, a plus or minus sign precedes the
number when it is printed. Note that you cannot use the last option if you
are using *'s or $'s:

100 FOR T%=1% TO 3%

116 READ A

120 PRINT USING "**# ##- $$#.#4+ +###.F##",AAA
130 NEXT TZ%

140 DATA -1.777,21.772,-.076

RUN

**1.78- $1.78- -1.78
*21.77 $21.77+ +21.77
**% ,08- $.08- -.08

PRINT USING can also work with strings. If the stringexpression equals !,
the first character of the string is printed:

100 PRINT USING "!","ABC"
RUN
A

If the stringexpression is a backslash followed by a backslash, two or more
characters from the string are printed. The number printed equals two
plus the number of spaces between the backslashes. If the string is
shorter than the number of characters to be printed, spaces will be added

-97-

to the end of the string until it equals the number of characters to be
printed. If the string is longer than the number of characters to be
printed, the left most characters of the string will be printed:

100 FOR T%=1% TO 4%

110 READ A$

120 PRINT USING "\ \",A$
130 NEXT T%

140 DATA A,ABC,ABCDE,ABCDEF
RUN

A

ABC

ABCD

ABCD

The stringexpression can have several different print formats. Note that
spaces in the stringexpression correspond to spaces in the output:

100 FOR TZ%Z=17% TO 2%

110 READ A,A$,B :
120 PRINT USING "#.# ! ##",A,A$,B
130 NEXT TZ

140 DATA 5,ABC,8.6,2.12,2Z,-2

RUN

5,04 9

2.1 72 -2

If you have more expressions than formats in the stringexpression, the
program will return to the start of the stringexpression:

100 A=2:A$="ABC": B=4: B$="7"

110 PRINT USING "# \ \",A,A$,B,B$,A,A$
RUN

2 ABC4 Z 2 ABC

Special note: You must append PUSING.APP in order to compile a program
which uses PRINT USING. Otherwise you will get a missing line error.

PSETCOLOR
Type: BASIC command

Format: PSETCOLOR integerexpress,integerexpress,integerexpress

Description: Sets the color and brightness for a player and its
associated missile. The first integerexpression equals the player number
and must be 0, 1, 2, or 3. The second integerexpression sets the color, and
the third integerexpression sets the brightness. Chapter 13 describes the
relationship between these numbers and the colors produced., Note that
during the load of the BASIC, all players have their colors set to black, so
you must always issue a PSETCOLOR command before using players or
missiles, See SETCOLOR.

-98-

PSIZE
Type: BASIC command : r

Format: PSIZE integerexpression,integerexpression

Description: The second integerexpression sets the player-missile size.
0 is normal size, 1 is two times normal, and 3 is four times normal. The
following chart shows how the first integerexpression sets the
player-missile.

Value of first
Integerexpression Player-missile £

0 player O

1 " 1

2 " 2

3 " 3 -

4 missile O

5 11] 1 O
6 " 2 ‘k
7 " 3

!

Example: PSIZE 27%,3% sets player 2 to four times normal size.

PUT
Type: BASIC command

Format: PUT integerexpression,variablename

Description: Places data into a file. The integerexpression equals the
filenumber and must be O, 1, 2, or 3. The variable can be integer, real or
string. The maximum length of a string is 255 bytes., See GET. The ,
following program puts a string, an integer, and then two real numbers into .
a file called "DATA.FIL". See Chapter 6 for an alternate form of PUT. :

Example:

100 OPEN "0",0%,"DATA.FIL"

110 PUT 0%,A$: PUT 0% NZ: PUT 0%,B: PUT 0%,C
120 CLOSE 0%

130 END

RAD
Type: BASIC command

Format: RAD

Description: Causes BASIC to assume radians for all trig functions,

READ
Type: BASIC command

Format: READ variable,...,variable

Description: Gets data from DATA statements and assigns these values to
the variables. See DATA and RESTORE.

-99_

RN

Example:

100 READ A,A$

110 READ B$,A%,C$
120 PRINT A,A$ ‘
130 PRINT B$,A%,C$

140 DATA 5,ABC,&2

150 DATA 4,27

RUN

5 ABC

&2 4 77

REM
Type: BASIC command

Format: REM comments .

Description: Provides a way to put comments and information into a
program. When Advan BASIC encounters a REM, it goes on to the next
statement. Unlike ATARI BASIC, Advan REM statements have no effect on
program execution speed.

REPEAT UNTIL
Type: BASIC command

Format: REPEAT

UNTIL condition

Description: Provides a way of looping through a sequence of statements.
The following program executes the statements between REPEAT and UNTIL
and then tests the condition., If true, the program continues with the
statement immediately following UNTIL. If false, it goes back to the
REPEAT and again executes the statements between REPEAT and UNTIL.

FOR/NEXT is a more useful looping tool if you know how many times a loop
must be executed; otherwise REPEAT UNTIL and WHILE WEND are probably
better,

Example:

100 REPEAT

110 READ A
120 S=S+A

130 UNTIL A=0
140 PRINT S

150 DATA 1,2,3,0
160 END

RUN

6

-100-

RESTORE
Type: BASIC command

Format: RESTORE

Description: As the program executes READ commands, it moves sequentially
through the data in the DATA statements. RESTORE causes the program to
return to the start of the data. The next READ statement reads the data
from the start of the first DATA statement. See READ and DATA.

Example:

100 READ A%,B%: PRINT AZ,BZ
110 READ C%,DZ: PRINT CZ,DZ
120 RESTORE

130 READ EZ,FZ: PRINT EZ,FZ
140 DATA 1,2,3,4,5,6

RUN

1 2
3 4
1 2
RETURN

Type: BASIC command
Format: RETURN

Description: Used with GOSUB. When the program executes a RETURN

statement, control transfers to the statement right after the last
executed GOSUB. See GOSUB.

RIGHT

Type: string function

Format: RIGHT(stringexpression,integerexpression)

Description: Returns a string equal to the right part of the
stringexpression starting at the location equal to the value of the
integerexpression.

Example:

100 A$="ABCDEF"

110 PRINT RIGHT(A$,47)

RUN
DEF

RND
Type: real function

Format: RND(realexpression)

-101- -

Description: Returns a random number less than the value of
realexpression and greater than zero. Note that RNDZ is much faster than
RND, although not as random. See RNDZ.

Example: 100 PRINT RND(8)

RND%
Type: integer function

Format: RNDZ(integerexpression)

Description: Returns a random integer less than or equal to the
integerexpression and greater than or equal to one. The integerexpression
must be less than or equal to 255. See RND.

Example:

100 PRINT RNDZ(67%)

RTIME
Type: BASIC command

Format: RTIME

Description: Sets to zero the clock used by the TIME and WAIT commands.
See TIME and WAIT.

SCONTROL
Type: BASIC command

Format: SCONTROL integerexpr,integerexpr,integerexpr,integerexpr

Description: The ASOUND command specifies the parameters for the voice,
but does not actually start the sound. SCONTROL starts and stops all sound
channels, allowing several voices to be synchronized. The first
integerexpression controls voice 0, the second integerexpression controls
voice 1, the third controls 2, and the fourth controls 3. If the
integerexpression is 1, the voice is started or continued. If it is O, the
voice is stopped or not started.

SETARRAY
Type: BASIC command

Format: SETARRAY variablename,expression

Description: Sets each element of the array equal to the value of the
expression. The variablename must be the name of a real or integer one
dimensional array. If real, the expression must be real; if integer, the

expression must be integer.

Example:

SETARRAY A%Z,0%Z sets all elements of A7 to 0%.

SETCOLOR
Type: BASIC command

-102-

Format: SETCOLOR integerexpress,integerexpress,integerexpress

Description: The first integerexpression specifies the color register
(must be 0, 1, 2, 3, or 4). The second integerexpression sets the color and
the third integerexpression sets the brightness. Chapter 13 describes the
relationship between these numbers and the colors produced. Note that the
particular color register used depends upon the graphics mode. See
Chapter 13 for a more complete description.

SETINT@
Type: BASIC command

Format: SETINT@ integerexpr,integerexpr,integerexpr,integerexpr

Description: Works with ATARI's display list interrupt capability. The
first integerexpression is an identifying number (0 to 7), which refers to
a given interrupt. The second integerexpression gives the display list
linenumber where the interrupt occurs. Note that the first three display
list lines (0, 1, and 2) are blanks, so that line 3 is the top display line.
Also, the changes produced by the interrupt take effect at the start of
the next screen line; that is, changes are not made in the middle of a line.
The third integerexpression gives the memory location to be changed, and
the fourth integerexpression gives the new value. To remove an interrupt,
give the SETINT@ command with the last three integerexpressions equal to
0%. Before using SETINT@, you must append DLISTINT.APP. See CINT@ and
Chapter 15.

SIN

Type: real function

Format: SIN(realexpression)

Description: Returns the sine of the value of the realexpression. Radians
are assumed, unless the DEG command was executed.

SGN

Type: real function

Format: SGN(realexpression)

Description: Returns 1 if the realexpression is greater than O, returns O
if it equals zero, and -1 if less than O.

SOUND

Type: BASIC command

Format: SOUND integerexpr,integerexpr,integerexpr,integerexpr
Description: Sets the sound for one of the four ATARI sound channels. The
sound continues until an END command or another SOUND is executed for that
channel. The first integerexpression sets the channel and must be 0,1, 2,
or 3. The second integerexpression determines the frequency (see table

below). The third integerexpression (0 to 14) must be even and controls

. -103-

distortion. 10 gives a pure tone. The fourth integerexpression sets the
volume and must be less than 16 and greater than or equal to O.

Integerexpression Frequency Integerexpression Frequency
29 ' high C 91 F
31 B 96 E
33 A# 102 D#
35 A 108 D
37 G# 114 c#
40 G 121 middle C
42 F# 128 B
45 F 136 A#
47 E 144 A
50 D# 153 G#
53 D 162 G
57 C# 173 F#
60 C 182 F
64 B 193 E
68 A# 204 D#
72 A 217 D
76 G# 230 C#
81 G 243 C
85 F#

SQR

Type: real function

Format: SQR(realexpression)

Description: Returns the square root of the value of the realexpression.
STICK

Type: integer function

Format: STICK(integerexpression)

~

Description: Returns an integer whose value depends upon the joystick
position according to the following chart:

Function value Joystick position

15 center

7 right

6 forward right
14 forward

10 forward left
11 left

9 back left

13 back

5 back right

Hint: If you take STICK(TZ) and 3%, you can tell whether the stick is
forward or back: 3 means neither, 1 means back, and 2 means forward. If
you take STICK(TZ) and 127, you can tell whether the stick is left or

~104-

right: 12 means neither, 8 means left, and 4 means right. The value of the
integerexpression determines the joystick, and must be 0, 1, 2, or 3.

Example: PRINT STICK(0%)

If joystick O is shifted right, the line prints 7.

STRIG
Type: BASIC function

Format: STRIG(integerexpression)

Description: Checks the fire button of the joystick given by the value of
the integerexpression. If the button is pressed, STRIG returns zero;
otherwise it returns 1.

STRING
Type: string function

Format: STRING(integerexpression,integerexpression)

Description: Creates a string whose bytes equal the value of the second
integerexpression, The length of the string equals the value of the first
integerexpression.

Example:
100 PRINT STRING(5%,ASC("A"™))

RUN
AAAAA

Type: real function
Format: STR$(realexpression)

Description: Converts the number given by the realexpression into a
string. For example, if the realexpression equals 1,2, STR$ returns a
string whose first byte is 49 (ASCII code for 1), second byte is 46 (ASCII
code for decimal point), and third byte is 50 (ASCII code for 2).

SUB SUBEND
Type: BASIC command

Format: SUB subroutinename
SUB subroutinename(variablename,...,variablename)

Description: Used to define a named subroutine. The subroutine may
extend over more than one line and must end in a SUBEND command. Note that
the SUB command must be the first statement on a line. Named subroutines
make programs easier to understand; that is, FIGURETAX@ is more meaningful
than GOSUB 2000. The subroutine is called when its name is used.

-105-

The subroutinename following SUB must end in @, telling the compiler that
it stands for a named subroutine. -The variables in parentheses are called
dummy variables and no more than four are possible. They can be
integer,real, or string. See Chapter 8 for more information.

TAB
Type: BASIC command

Format: TAB(integerexpression)

Description: Used with PRINT and LPRINT to tab to the print position
specified by the integerexpression. If you follow a tab with a comma, what
is printed next will not be at the tab position, but at the start of the
next print zone. You must use a semicolon after a tab if you want the next
printed item to start at the tab position. If you try to tab to a position
to the left of the current print position, the tab will be ignored. Note
that the leftmost print position is zero, and the one just to the right of
it is 1. In the example, the left screen margin is set at 2, so the 'R' in
RUN is at tab position 2.

Example:
100 PRINT TAB(3%);"A";TAB(6%);"B"

RUN
A B

TAN
Type: real function

Format: TAN(realexpression)

Description: Returns the tangent of the value of the realexpression.
Radians are assumed, unless the DEG command was given,

Example:

100 A=1
110 PRINT TAN(A)

TIME
Type: integer function

Format: TIME

Description: Returns the value of the timer, which counts by one for each
1/60 second. Thus, if TIME returns 120, then 120/60 seconds have passed
since the last reset of the timer. The longest time which can be measured
is 32767/60=546.1 seconds, or about 9 minutes. See RTIME and WAIT.

TRAP
Type: BASIC command

Format: TRAP linenumber

-106-

Description: Tells the system what to do in case of an error. Once TRAP
has been executed, any subsequent error causes the program to go to the
line specified in the linenumber instead of returning to BASIC. Memory
location 1240 will have the error number. After setting a TRAP, if you
want to switch back and have errors cause a return to BASIC, give a TRAP O
command. Appendix C lists the error numbers.

Example:

100 TRAP 200
110 OPEN "I",1Z,"DATA"
120 TRAP O

200 PRINT "message"
210 INPUT ""T$
220 GOTO 110

If an error occurs in the opening of a file, the message on line 200 will be
printed. The message specifies corrective action and tells the user to
press RETURN. Then the program returns to line 110 and again tries to OPEN
the file. Failure will cause another return to line 200. Success will
reset the TRAP so that subsequent errors will cause a return to BASIC. You
can set and reset the TRAP as often as desired.

VAL
Type: real function
Format: VAL(stringexpression)

Description: If the characters in the stringexpression represent a
number, VAL returns this number. See STR$ and VALZ.

VALZ

Type: integer function

Format: VALZ(stringexpression)

Description: If the characters in the stringexpression represent an
integer, VALZ returns this integer. See NUM$ and VAL.

WAIT

Type: BASIC command

Format: WAIT(integerexpression)

Description: Causes the program to pause for a number of seconds equal to
the value of the integerexpression divided by 60. For WAIT to work

properly, the timer sould not overflow; that is, a reset timer should have
been given within the last 9 minutes. See RTIME and TIME.

-107-

WHILE WEND

Type: BASIC command

Format: WHILE condition

WEND

Description: Provides a way of looping through a sequence of statements.
The program tests the condition. If it is false, execution continues at
the statement immediately following WEND, If true, it executes the
statements between WHILE and WEND. WEND returns control to the top of the
WHILE loop, where the condition is again tested. FOR/NEXT is a more useful
looping tool when you know how many times the loop must be executed. If
you do not know this, WHILE/WEND and REPEAT/UNTIL are more useful.

-

Example:

100 READ A

110 WHILE A>=0
120 S=S+A

130 READ A
140 WEND

150 PRINT S

160 DATA 1,2,3,-1
RUN

6

-108-

Hex

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

ASCII

space
1

I v 4+ ¥ -0 39¢ 3=

O ONOUNEWNFHON.

OV Aee e

Dec

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

82
83

85
86
87
88
89
90
91

93
94

95

Hex

Pt AN M E<COHMNPWOYOZRIERGUHIQAEEHODOT > ®

ASCII

-109-

Dec

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Appendix A ASCII Code for ATARI

Hex

ASCII

N< ¥ ECCTOHNOTOD B HKRGWH DT MO RO oM

clear screen
backspace
tab

Appendix B
ABS HPOS
ABS7Z IF
ADR INPUT
ASC INPUTLINE
ASCB INSERTB
ASCW INSERTW
ASOUND INSTR
ATAN INTSTR1
CASE INT
CHR$ LEFT
CHRWS$ LEN
CINT@ LET
CLOSE LOADST
CODE LOCATE
CODEL LOG
COLL LPRINT
COLOR LSCREEN
Ccos MACHINE
DATA MID
DEF NEXT
DEG NUM$
DIM OFFDISPLAY
DFILL ON
DO ONDISPLAY
DRAVWTO OPEN
ELSE PCONTROL
END PDISPLAY
ENDIF PEEK
EOF PEEKW
EXG PLOT
EXP POINT
FAST POKE
FILL POKEW
FINT POPST
FIX POS
FOR PRATE
GET PRINT
GETKEY PSETCOLOR
GOSUB PSIZE
GOTO PUSING$
GRAPHICS PUSING1$

-110-

Reserved Words

PUSINGZ
PUSING17Z
PUSING27%
PUSING37%
PUT

RAD

READ

REM
REPEAT
RESTORE
RETURN
RIGHT
RND

RND7Z
RTIME
SCONTROL
SETARRAY
SETCOLOR
SETINT@
SIN

SGN
SOUND
SQR

STEP
STICK
STRIG
STRING
STR$

SUB
SUBEND
TAB

TAN

TIME
TRAP
UNTIL
USING
VAL

VALZ
WAIT
WEND
WHILE

Appendix C Error Messages
1 or 2 SYNTAX ERR Several errors can cause this message.
3 MISSING LINE A reference was made to a non-existent line,
4 MISSING QUOTE Quotes missing from a string expression.

5 ARGUMENT ERR Several errors can cause this message. You might have
forgotten to dimension an array or used the DIM statement after the first
use of an array. The arguments in a function or named subroutine may
differ from the way the function or subroutine was defined. Remember, in
user-defined functions and subroutines, the system will not convert
between integers and real numbers.

6 UNDEF.FN,SUB,0OR ARRAY You forgot to define a function or subroutine or
to dimension an array. Another possibility is a spelling mistake,

7 REDEF.FN,SUB,OR ARRAY You defined a function or subroutine twice,
dimensioned an array twice, or used an array before the DIM statement.

11 MUST BE AT LINE START DATA,SUB, and DEF statements must be first in a
line; the statement 100 A%Z=Z7%: DATA 5 gives this error.

12 MAX.NUMB.EXC. Maximum number of variables (255) or maximum number of
lines (975) exceeded. If maximum number of variables exceeded, I suggest
you try executing CLEAN.COD to remove unused variables, if any.

13 ARITHMETIC ERR. Possibilities include you divided by zero, or tried to
create a floating point number larger than or equal to 10"99 or smaller or
equal in absolute value to 10%-99,

14 EXP.TOO COMPLEX There is a maximum level of complexity possible in
arithmetic expressions and a limit to the depth of nesting in loops. An
error in one or both of these areas could cause this message.

15 STACK ERR. Possibilities include using POPST'without LOADST or vice
versa, thus exceeding the stack limit.

16 OUT OF DATA You have tried to read more data than is present in the
program.

17 MEMORY EXCEEDED See Chapter 11.

18 NUMBER OUT OF RANGE The most likely cause is that you exceeded the
maximum possible subscript value in an array. It is also possible that you
used a negative subscript, or that in a string function, you used a number
beyond the length of the string.

19 NO GOSUB Your program tried to execute a RETURN, but had never
executed a GOSUB.

20 NO FOR You used a NEXT with no matching FOR. Note that this could be a
spelling error. Unlike some BASICs, Advan checks the variable in the FOR
and NEXT to make sure they agree.

21 NO CASE You used CASE END,CASE ELSE, or & with no CASE. A1l CASE

-111-

statements must start with a CASE command.

22 NO IF The program encountered an ENDIF or ELSE in what appeared to it
as a multi-line IF/DO, but had no matching IF/DO.

23 NO WHILE You used WEND with no matching WHILE.
24 NO REPEAT You used UNTIL with no matching REPEAT,

25 NO SUB You used SUBEND with. no matching SUB. Remember, only one
SUBEND can be used in a named subroutine.

26 NO NEXT You used FOR with no matching NEXT. Remember, Advan BASIC
checks the variablename in FOR/NEXT. If they do not match, an error
message is given,

27 NO CASE END You used CASE with no matching CASE END.
28 NO ENDIF You used IF/DO with no matching ENDIF.

29 NO WEND You used WHILE with no matching WEND.

30 NO UNTIL You used REPEAT with no matching UNTIL.

31 NO SUBEND You used SUB with no matching SUBEND.

32 FILE OPEN You may have tried to open a file which was already open, or
you may have tried to open two files with the same file number.

33 NO SUCH DEV, You tried to open a non-existent disk or a non-disk
device, In Advan BASIC, OPEN refers only to disks.

34 WRITE ONLY You tried to read from a file opened for input only.

35 NOT OPEN You tried to GET, PUT, etc. to a file which is not open.

36 READ ONLY You tried to write to a file opened for READ ONLY, or you
tried to OPEN in output or append mode a locked file or a file on a write
protected disk.

37 END FILE You tried to read past the end of a file.

38 DISK FULL There is no more room on the disk.

39 FILE LOCKED You tried to erase a locked file. A file must be unlocked
before it can be erased.

40 DIR FULL Only 64 files are possible on a disk. You tried to exceed
that number.

41 FILE NOT FOUND The system could not find the file on the specified
disk.

42 TI/0 ERROR Normally occurs when something is wrong with the disk or
disk drive.

-112-

Appendix D Memory Map of the BASIC

0000 to OOD3 reserved for Advan BASIC as working storage

00D4 to OOFF wused by Advan BASIC, but can be used by machine code

0100 to O6FF reserved for Advan BASIC

0700 to 1DAF Advan DOS

A000 to BFFF Advan executé module

CO00 to FFFF ATARI operating system

If graphics mode O is used, the display occupies the region from 9Cl1C to
9FFF. BASIC and the user program occupy the region from 1DBO to 9C1B.
Note that in an XL or XE machine, 14K of the BASIC is transferred to upper
memory during program execution.

If a graphics mode other than 0 is selected, 8000 to 9FFF is set aside as a
display region, 7C00 to 7FFF for players, 7800 to 7AFF for an alternate
character set, and 7BO0 to 7BFF for missiles or for the top part of an

alternate character set. The region from 1DBO to 77FF is used for the
program and the part of the BASIC not transferred to upper RAM.

Special Locations

Hex Decimal Description
54 84 row number of current cursor location
55,56 85,86 column number of current cursor location

(use PEEKW(85%) to get column number)

52 82 contains column number of left screen
margin

53 83 contains column number of right screen
margin

2F0 752 cursor display control flag. POKE 752%,1%

removes cursor; POKE 7527,07 restores
cursor. Note that the cursor is not
changed until the next print command.

290 656 row number of split screen text cursor
291,292 657,658 column number of split screen text cursor
4E3 1251 printer width

-113-

Appendix E Assembly Language Mnemonics used by Advan BASIC Compiler

In order to understand the mnemonics used by Advan BASIC, consider the ADC
command. This command causes a number and the carry bit to be added to the
accumulator. The question is, where is the number? Advan BASIC uses
extensions to the command to specify the location of the number.

ADC The two bytes following ADC specify the location of the number. For
example, ADC,FF,9F adds the number at 9FFF to the accumulator.

ADCZ The single byte following ADCZ specifies the zero page location of
the number. For example, ADCZ,E0 adds the number in OOEQO to the
accumulator.,

ADCIM The single byte following ADCIM will itself be added to the
accumulator. For example, ADCIM,2 adds 2 to the accumulator.

ADCX The X register is added to the two bytes following the ADCX command.
This gives the location of the number to be added to the accumulator. For
example, ADCX,3,2 (with x=2) adds the number stored in 205 (i.e., 203+2) to
the accumulator.

ADCY Same as ADCX, except the Y register is used instead of the X
register.

ADCIY The single byte following ADCIY specifies the zero page location of
the two byte address. The Y register is added to the two byte number in
page zero to get the address of the number to be added to the accumulator.
For example, consider ADCIY,EO. The two byte address is at OOEOQ and OOEl.
The number stored in OOEO and OOEl is added to the Y register to form the
address.

ADCIX The single byte following ADCIX is added to the X register. The sum
(must be in zero page) is the location of the first byte of the two byte
address. For example, consider ADCIX,EO. If the X register=4, the address
of the number to be added to the accumulator is OOE4 and OOE5.

ADCZX The single byte following ADCZX is added to the X register. This is
the address (in zero page) of the number to be added to the accumulator.
For example, consider ADCZX,EO. If the X register=4, the number to be
added to the accumulator is in memory location OOE4,

In addition, the following two commands show the last two possible
extensions,

ASLA Takes the number in the accumulator and shifts it left.

LDXZY The single byte following LDXZY is added to the Y register. The sum
is the zero page location of a number which is loaded to the X register.

The following table lists the possible 6502 commands by mnemonic.

ADC, ADCIM, ADCIX, ADCIY, ADCX, ADCY, ADCZ, ADCZX get the number from the
specified location and add with carry to the accumulator

AND, ANDIM, ANDIX, ANDIY, ANDX, ANDY, ANDZ, ANDZX get the number from the

~114-

specified location and then AND it with the accumulator

ASL, ASLA, ASLX, ASLZ, ASLZX shift specified number left by one bit

BCC branch on carry clear
BCS branch on carry set
BEQ branch if result is zero

BIT, BITZ compare bits in accumulator with those in the specified memory
location

BMI branch if result is negative

BNE branch if result is not zero

BPL branch if result is positive

BRK forces break

BVC branch if overflow not set

BVS branch if overflow set

CLC clear carry flag

CLD clear decimal mode

CLI clear interrupt flag (enables interrupts)
CLV clear overflow flag

CMP, CMPIM, CMPIX, CMPIY, CMPX, CMPY, CMPZ, CMPZX compare number at
specified memory location with accumulator

CPX, CPXIM, CPXZ compare mumber at specified memory location with X
register

CPY, CPYIM, CPYZ compare number at specified memory location with Y
register

DEC, DECX, DECZ, DECZX decrement by one the number in the specified
memory location

DEX decrement X index register by one
DEY decrement Y index register by one

EOR, EORIM, EORIX, EORIY, EORX, EORY, EORZ, EORZX exclusive OR the
accumulator with the number in the specified memory location

INC, INCX, INCZ, INCZX increment by one the number in the specified
memory location

INX increment X index register by one

-115-

e

INY increment Y index register by one
JMP JUMP to new address
JSR go to a subroutine

LDA, LDATM, LDAIX, LDAIY, LDAX, LDAY, LDAZ, LDAZX load number from
specified memory location to accumulator

LDX, LDXTIM, LDXY, LDXZ, LDXZY 1load number from specified memory location
to the X register

LDY, LDYIM, LDYX, LDYZ, LDYZX load number from specified memory location
to the Y register :

LSR, LSRA, LSRX, LSRZ, LSRZX shift the number in the specified location to
the right by one : .

NOP no operation

ORA, ORAIM, ORAIX, ORAIY, ORAX, ORAY, ORAZ, ORAZX OR the accumulator with
the number in the specified memory location :

PHA push accumulator to the stack
PLA pull number from stack and put into the accumulator

PLP pull number from stack and put in processor status register

ROL, ROLA, ROLX, ROLZ, ROLZX rotate number in specified location left by
one

ROR, RORA, RORX, RORZ, RORZX " rotate number in specified location right by
one

RTI return from interrupt subroutine
RTS return from subroutine

SBC, SBCIM, SBCIX, SBCIY, SBCX, SBCY, SBCZ, SBCZX subtract number at
specified memory location and borrow from accumulator

SEC set carry bit
SED set decimal mode
SEI set interrupt flag (disable interrupt)

STA, STAIX, STAIY, STAX, STAY, STAZ, STAZX store accumulator at the
specified location

STX, STXZ, STXZY store X register at specified memory location

STY, STYZ, STYZX store Y register at specified memory location

TAX transfer accumulator to X register

-116-

TAY transfer accumulator to Y register

ey
e

TSX transfer stack pointer to X register
TXA transfer X register to accumulator ‘
TXS transfer X register to stack pointer

TYA transfer Y register to accumulator

Appendix F Reporting Problems or Errors

If you should encounter a problem or error in the BASIC or the manual, we
would appreciate hearing about it. Please list the computer you were using

and, if possible, a short example of a program which malfunctions. Send
to:

Advan Language Designs
P.0. Box 159
Baldwin, Kansas 66006

-117-

ABS 25,70
ABSZ 25,70
ADR 70

AND 10,66,67
APPEND 59
Arrays 6,66
ASC 70

ASCB 71
ASCII code
ASCW 71
ASOUND
ATAN

109

34-36,71
25,72

INDEX

FAST FAST END 80

Filenames 2-4,17,59

FILL 41,80

FINT 25,81

FIX 25,81

FOR 14,81

Format 2,57,58

FORMAT.COD 2,57

FORMAT1.COD 57,58

Functions 66
Built-in 25

User-defined 25-27

CASE,CASE ELSE,CASE END 11,12,72 .

CHECKSUM.COD 56,57
CHR$ 29,72

CHRW$ 29,73

CINT @ 51,52,73
CLEAN.COD 56

CLOSE 18,73

CODE 34-36,44,45,48,49,53,54,73

CODEL 54,55,74,75
COLL 47,75,76

COLOR 138-41,76
COMPILE 31,32,59,60
Condition 10-12,15,16,69
Constants 5,65
COPYDISK.COD 57
COPYFILE.COD 33,57
C0S 25,76

DATA 8,9,76

DEF 77

DEG 22,77

DEL 60

DFILL 42,45,77,78
DIM 77

DIR 3,60

Disk commands 2-4,17-21
Display list interrupts
p0O 10,11,15,83,84
DRAWTO 41,78

50-52

ELSE
END

10-12,72,84
11,12,72,78,79
ENDIF 10,11,83,84
EOF 19,79
Error messages
EXEC 31,32,61
EXG 23,79

EXP 25,79,80
Expression 69

111,112

- GRAPHICS

GET 18-21,82

GETKEY 25,82

GOSUB 82

GOTO 82

37,38,82,83
Graphics modes 37-41

HPOS 43,44,83
IF 10-13,83,84
INPUT 8,84
INPUTLINE 8,84
INSERTB 29,85
INSERTW 30,85
INSTR 29,85,86
INSTR1 29,86
INT 25,86
Integerexpression
Integers 5,6,65

7,69

KILL 33,61

LEFT 29,87

LEN 29,87

LET 87

LIST 1,4,61

LLIST 61

LMARGIN 61

LOAD 3,33,62

LOADS 62

LOADST 23,24,87,88
LOCATE 42,88
LOCK 33,62
LOG 25,88
LPRINT 28,88
LPRINT USING
LSCREEN 89

28,88,89

-118-~

