

ERROR CODES

ERROR
CODE ERROR CODE MESSAGE

2 Memory insufficient
3 Value error
4 Too many variables
5 String length error
6 Out of data error
7 Number greater than 32767

8 Input statement error
9 Array or string DIM error

10 Argument stack overflow
11 Floating point overflow/

underflow error
12 Line not found
13 No matching FOR statement
14 line too long error
15 GOSUB or FOR line deleted
16 RETURN error
17 Garbage error
18 Invalid string character

Note: The following are INPUT/OUTPUT er
rors that result during the use of disk drives,
printers, or other accessory devices. Further in
formation is provided with the auxiliary hard
ware.

19 LOAD program too long
20 Device number larger
21 LOAD file error

128 BREAK abort
129 IOCB
130 Nonexistent device
131 IOCB write only
132 Invalid command
133 Device or file not open
134 Bad IOCB number
135 IOCB read only error
136 EOF
137 Truncated record
138 Device timeout
139 Device NAK
140 Serial bus
141 Cursor out of range

ERROR
CODE ERROR CODE MESSAGE

142 Serial bus data frame overrun
143 Serial bus data frame checksum error
144 Device done error
145 Read after write compare error
146 Function not implemented
147 Insufficient RAM
160 Drive number error
161 Too many OPEN files
162 Disk full
163 Unrecoverable system data 1/0 error
164 File number mismatch
165 File name error
166 POINT data length error
167 File locked
168 Command in valid
169 Directory full �

170 File not found
171 POINT invalid

For explanation of Error Messages see Appendix 1.

-

ASSEMBLER EDITOR
MANUAL

JI\.
ATARI®

QA Warner Communications Company

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Computer Division. However,
because of the ongoing improvement and updating of the computer software and hardware, ATARI, INC. cannot guarantee the ac
curacy of printed material after the date of publication and cannot accept responsibility for errors or omissions.

PRINTED IN U.S.A. ©1981 ATARI, INC.

I

-

PREFACE

This manual assumes the user has read an introductory book on assembly
language. It is not intended to teach assembly language. Suggested references
for assembly language beginners are 6502 Assembly Language Programming by
Lance Leventhal and Programming the 6502 by Rodney Zaks (see Appendix 8).

The user should also know how to use the screen editing and control features of
the AT ARI® 400™ and AT ARI 800™ Personal Computer Systems. These
features are the same as used in AT ARI BASIC. Review the AT ARI BASIC
Reference Manual if you are unsure of how to do screen editing.

This manual starts by showing the structure of statements in assembly
language. The manual then illustrates the different types of6502 operands. The
Assembler Editor cartridge contains three separate programs:

• EDIT (Editor program) - Helps you put programming statements in a form
the Assembler (ASM) program understands. The EDIT program lets you use
a printer to print a listing of your program. Programs can also be stored and
recalled using ENTER, LIST and SA VE, LOAD. The Assembler Editor allows
automatic numbering, renumbering, delete, find and replace.

• ASM (Assembler program) - Takes the program statements you create in
the EDIT step and converts to machine code.

• DEBUGGER - Helps you trace through the program steps by running the
program a step at a time while displaying the contents of important internal
6502 registers. The DEBUGGER program also contains programming
routines which allow you to display registers, change register contents,
display memory, change memory contents, move memory, verify memory,
list memory with disassembly, assemble one instruction into memory, go
(execute program), exit. The disassembly routine is especially useful in
reading and understanding machine language code.

The Assembler Editor cartridge allows you to talk in the computer's natural
language - machine language. Assembly language programming offers you
faster running programs and the ability to tailor programs to your exact needs.

Preface v

\ .. -

t\
.... .

CONTENTS

PREFACE v

1 INTRODUCTION

About This Book 1
A TARI Personal Computer Systems 1
How an Assembler Editor Is Used 2

2 GETTING STARTED

Allocating Memory 5
Program Format-How to Write a Statement 8

Statement Number 8
Label 8
Operation Code Mnemonic 8
Operand 8
Comment 8

How to Write Operands 12
- Hex Operands 12

Immediate Operands 12
Page Zero Operands 12
Absolute Operands 12
Absolute Indexed Operands 12
Non-indexed Indirect Operands 13
Indexed Indirect Operands 13
Indirect Indexed Operands 13
Indexed Page Zero Operands 13
String Operands 13

3 USING THE EDITOR

Commands to Edit a Program 15
NEW Command 15
DEL Command 15
NUM Command 15
REN Command 15
FIND Command 15
REP Command 17

Commands to Save (or Display)
and Retrieve Programs 19

LIST Command 19
PRINT Command 21

- ENTER Command 21
SA VE Command 22
LOAD Command 22

Contents vii

4 USING THE ASSEMBLER

The ASM Command 25
Directives 27

OPT Directive 27
TITLE and PAGE Directives 28
TAB Directive 29
BYTE, DBYTE, and WORD Directives 30

BYTE 30
DBYTE 30
WORD 31

LABEL = Directive 31
* = Directive 31
IF Directive 32
END Directive 33

5 USING THE DEBUGGER

Purpose of Debugger 35
Calling the Debugger 35
Debug Commands 35

DR Display Registers 36
CR Change Registers 36
D or Dmmmm Display Memory 36
C or Cmmmm Change Memory 37
Mmmmm Move Memory 38
Vmmmm Verify Memory 38
L or Lmmmm List Memory With Disassembly 38
A Assemble One Instruction Into Memory 40
Gmmmm Go (Execute Program) 40
Tmmmm Trace Operation 40
S or Smmmm Step Operation 41
XExit 41

APPENDICES

1 Errors 43
2 Assembler Mnemonics (Alphabetic List) 45
3 Special Symbols 47
4 Table of Hex Digits with Corresponding

Op Code Mnemonics and Operands 49
5 Expressions 51
6 Directives 53
7 AT ASCII Code and Decimal/

Hexadecimal Equivalents 55
8 References 61
9 Using the ATARI Assembler Editor

Cartridge to Best Advantage 63
10 Quick Ref ere nee for Commands

Recognized by the Assembler Editor 75

viii Contents

-

11 Modifying DOS I to Make Binary Headers
Compatible with Assembly Cartridge 77

ILLUSTRATIONS

Figure 1 Relationship of various parts of Assembler
Editor cartridge to you and your software 3

Figure 2 Memory map without use of LOMEM 5
Figure 3 Memory map with use of LOMEM 7
Figure 4 Example of how to write Line No., Label,

Op Code, Operand, and Comment in the
AT ARI programming form 9

Figure 5 Statements as they would appear on the
screen when entered on the keyboard
with the recommended spacing. 10

Exhibit I Sample reproducible AT ARI
programming form 13

Figure 6 Sample program as you write it on
the AT ARI programming form 18

Figure 7 Appearance of the screen as your
program is entered on the keyboard 18

Figure 8 Appearance of the screen as your
sample program is assembled 25

- Figure 9 Normal (default) format of assembly
listing as it appears on the screen 26

-

Contents ix

-

-

ABOUT THIS
MANUAL

ATARI

PERSONAL

COMPUTER

SYSTEMS

1

INTRODUCTION

To use the ATARI® Assembler Editor cartridge effectively, there are four
kinds of information that you must have. First, you need some guidance about
how to use the cartridge itself. Second, you need to know about the AT ARI
Personal Computer System you are using with the cartridge. Third, you need to
know something about 6502 Assembly Language programming. And, fourth,
the Assembler Editor Cartridge was designed to be used with the AT ARI disk
drives and DOS II.

This manual explains the operation of the AT ARI Assembler Editor cartridge. It
does not explain 6502 Assembly Language programming. If you are already
familiar with 6502 Assembly Language, you will find this manual amply suited
to your needs; otherwise, you should refer to one of the many books that ex
plain 6502 Assembly Language programming; suitable books are listed in
Appendix 8.

If you are familiar with AT ARI BASIC and have written some programs on your
ATARI 400™ or ATARI 800™ Personal Computer System, you will find no
better way to learn assembly language than the combination of this manual, the
AT ARI Assembler Editor cartridge, and a 6502 programming book.

If you have had no experience with computers and no programming exper
ience, then this manual is probably too advanced for you and you should start
by writing some programs using AT ARI BASIC and your AT ARI Personal Com
puter System to become familiar with programming in general. Reading one of
the books recommended in Appendix 8 will help you learn assembly language.

The AT ARI Assembler Editor cartridge is installed in the cartridge slot of the
AT ARI 400 computer console and in the left cartridge slot of the AT ARI 800
computer console. You must be familiar with the keyboard and all the screen
editing functions. That material is covered in the appropriate Operator's Manual
supplied with your AT ARI Personal Computer System. The special screen
editing keys are described in Section 6 of the Operator's Manual. You should
read Section 6 and follow the instructions until you are completely familiar with
the keyboard and the screen-editing functions.

You need not have any equipment except the AT ARI Personal Computer System
console, your television or a video monitor for display, and the AT ARI
Assembler Editor cartridge. However, without a permanent storage device you
will have to enter your program on the keyboard each time you wish to use it.
This can be tedious and time-consuming. An ATARI 410™ Program Recorder,
ATARI 810™ Disk Drive, or ATARI 815™ Dual Disk Drive (double density) is a
practical necessity.

Introduction 1

HOW AN

ASSEMBLER

EDITOR IS USED

2 lntmdl4clion

The ATARI 410 Program Recorder is an accessory that functions with the
ATARI 400 and the ATARI 800 Personal Computer Systems. The proper opera
tion of your Program Recorder is explained in Section 8 of the ATARI 400 and
ATARI 800 Operator's Manuals. Before using the Program Recorder with the
Assembler Editor cartridge, be sure you know how to operate the Program
Recorder. The disk drives are accessories that function with any AT ARI Per
sonal Computer System with at least 16K RAM. To use a disk drive you need a
special program, the Disk Operating System (DOS). At least 16K of memory is
required to accommodate DOS. Consequently, if you are using an ATARI 400
Personal Computer System, you must upgrade it from BK to 16K (RAM). This can
be done at any AT ARI Service Center.

If you are using the ATARI 810 Disk Drive, you should refer to the instructions
that come with it. You should also read the appropriate Disk Operating System
Reference Manual. If you are currently using the 9/24/79 version of DOS (DOS I),
you must use the program in Appendix 1 1 for the disk drive to be compatible
with the Assembler Editor cartridge.

Ifyou are using the ATARI 815 Dual Disk Drive, you should refer to the ATARI
815 Operator's Manual and the Disk Operating System II Reference Manual that
come with it .

You can also add the ATARI 820™, the ATARI 825™ or the ATARI 822™ Printer
to your Personal Computer System to give you "hard copy"-that is, a perma
nent record of your program written on paper.

All assembly language programs are divided into two parts: a "source
program," which is a human-readable version of the program, and the "object
program,'' which is the computer-readable version of the program. These two
versions of the program are distinct and must occupy different areas of RAM.
As the programmer, you have three primary tasks:

• To enter your source program into the computer, edit it (make insertions,
deletions, and corrections) and save it to or retrieve it from diskette or
cassette.

• To translate your source code into object' code.

• To monitor and debug the operation of your object program.

These three tasks are handled with three programs included in the AT ARI
Assembler Editor. The first program, called the Editor, provides many handy
features for entering the program and making insertions, deletions, and correc
tions to it . It also allows you to save and retrieve your source code. The second
program, called the Assembler, will translate your source program into an
object program. While doing so, it will provide you with an "assembly listing,''
a useful listing in which your source program is lined up side by side with the

-

resulting object program. The third program is called the Debugger; it helps
you to monitor and debug your object program. The relationship between these
three programs is depicted as follows:

l.------YOU-------.l

~ I Deblgger I
Source Program Object Program

.._I -----· I Assembler , _____ t
Figure 1. Relationship of various parts of Assembler Editor cartridge

to you and your software.

In Section 3 we explain the Editor; in Section 4, the Assembler; and in Section 5,
the Debugger. There are some fundamental ideas we must explain first.

lntroductio11 3

NOTES:

4 Notes

-

ALLOCATING

MEMORY

2

GETTING
STARTED

The very first decision you must make when you sit down to write your source
program involves the allocation of memory space.

All programs, regardless oflanguage, occupy memory space. The computer has
a limited amount of memory and must manage its memory carefully, allocating
portions of memory for program, data, display space, and so forth. This is all
done automatically in BASIC, so the BASIC user need not worry about where in
memory his program and data are stored. Such is not quite the case with the
Assembler Editor cartridge. You have the power to place your programs
anywhere in memory that you desire. With this power comes the responsibility
to allocate memory wisely.

The ATARI computer system uses low memory for its own internal needs. The
amount it uses depends on whether or not DOS is loaded into RAM. In any
event, the Assembler Editor cartridge will automatically place your source pro
gram into the chunk of memory starting with the first free memory location.
As you type in more source code, the memory allocated to storing your source
code (called the "Edit Text Buffer") grows. If you delete lines of source code, the
edit text buffer shrinks. You can visualize the memory allocation with this
figure, which is called a memory map:

OS

�

�A
DOS 180
RAM �

.. L Bottom of

Edit Text
Buffer

Usable RAM

B

l Empty
Memory

c

Display
RAM

*not to scale

Top of
Addressable

Memory

Figure 2. Memory map without use of LOMEN.

The edit text buffer always grows towards the right, into the "empty memory"
area. The left side of the edit text buffer is fixed in place once you start entering
code.

Your problem is to determine where to store the object code produced by the
Assembler. If you put the object code into the regions marked OS RAM, DOS
RAM, or display RAM, you will probably cause the computer to crash and all
your typing will be lost. If you put it into the place called the edit text buffer,
the object code will overwrite the source code, causing more chaos. The only
safe place to put your object code is in the "empty memory" area.

Getting Started 5

6 G1•tti11g Started

You can find out where this empty memory area is by typing SIZE mim.
Three hexadecimal numbers will be displayed, like so:

SIZE m���m:1�1
0700 0880 5C1F
EDIT

The first number (0700 in this example) is the address of the bottom of usable
RAM, the point labeled "A" on the memory map. The second number is the
address of the top of the edit text buffer, labeled "B" on the memory map. The
third number is the address of the top of empty memory, labeled "C" on the
memory map. The difference between the second and third numbers (how
good are you at hexadecimal subtraction?) is the amount of empty memory. You
can use the SIZE command any time you desire to know how much empty
memory remains.

Liberally estimate the amount of memory your object program will require,
then subtract that amount from the third number. For extra insurance, round
the result down. For example, if you thought that your object code might
require 1 .5K, you'd subtract 2K from $5C1F to get $541F and then for simplicity
(and additional insurance) you would round all the way down to $5000. You
would therefore store your object code at $5000, confident that it would not
encroach on the display memory. More conservative estimates and greater care
would be necessary if memory were in short supply.

Having decided to store the object program starting at address $5000, your next
task is to declare this to the computer. This is done with * = directive. The very
first statement of the source code would read:

10 * = $5000

This directive tells the Assembler to put all subsequent object code into memory
starting at address $5000. Although it is not absolutely necessary, it is always
wise practice to make the * = directive the very first line of your source
program.

You have two other strategies for allocating memory space for your object
program. The first and simplest strategy is to place your object code on page 6 of
memory. The 256 locations on page 6 have been set aside for your use. If your
object program and its data will all fit into 256 bytes, then you can put it there
with the directive:

10 * = $0600

This is a good safe way to start when you are still learning assembly language
programming and are writing only very short programs. As your programs
grow larger, you will want to move them off page 6 and use page 6 for data and
tables.

The second strategy is to bump the edit text buffer (your source program) up
ward in memory, leaving some empty memory space below it. You can then
place your object code into this empty space. Figure 3 shows the adjustment of
the memory map.

-

OS DOS Empty 180

B *not to scale

Edit Text
RAM RAM GA Memory ytes Buffer l Empty s:play

Memory RAM , , 11 I I I
Bottom of Top of

Usable RAM Your RAM

Figure 3. Memory map with use of LOMEM.

Top of
Addressable

Memory

This bumping is accomplished with a special command called LOMEM. The
command is special because it must be the very first command you enter after
turning on the computer. Its form is simple:

LOMEM XXXX Ima

where XXXX is the hexadecimal address of the new bottom edge of the edit text
buffer (point A in the memory map). You must not set LOMEM to a smaller
value than it normally is, or you will overwrite OS data or DOS and crash the
system. Furthermore, if you set LOMEM too high, you will have too little room
for your source program. You must estimate how much memory your object
code will require, and bump the edit text buffer upward by that much plus
some more for insurance. Then your first program instruction becomes:

10 * = $YYYY

where YYYY is the old value of A given by the SIZE command before you
turned off the computer, turned it back on, and used the LOMEM command.

You might wonder why anybody would want to use the LOMEM command and
store the object program in front of the source program instead of behind it.
The primary reason this command is provided comes from the fact that the
Assembler program, as it translates your source program into an object pro
gram, uses some additional memory (called a symbol table) just above the edit
text buffer. If you really wanted to, you could figure just how much memory
the symbol table uses; it is three bytes for each distinct label plus one byte for
each character in each label. Most programmers who don't enjoy figuring out
how big this symbol table is use the LOMEM command so they won't have to
worry about it . (Only the label itself counts, not the number of times it appears
in the program.)

Allocating memory can be a confusing task for the beginner. Only two instruc
tions (LOMEM and * =) are used, but if they are misused you can crash the
system and lose your work. Fortunately, if you restrict yourself to small pro
grams initially you'll have plenty of empty memory space and fewer allocation
problems.

The * = directive will be followed by your source program. The source program
is composed of statements. The statements must be written according to a
rigorous format. The rules for writing statements are given in the next section.

Getting Started 7

PROGRAM

FORMAT-HOW

TO WRITE A

STATEMENT

8 Getting Started

A source program consists of statements. Each statement is terminated with
CD!ll:JD. A statement may be 1-106 characters long, or almost three lines on the
screen. A statement is also called a line. The distinction is made between a
physical line (a line on the screen) and a logical line (the string of characters, up
to three physical lines between liliu!!i.illsl.

A statement can have up to five parts or "fields": the statement number, a label,
the operation code mnemonic or directive, an operand, and a comment. These
five fields occupy successive positions in the statement, with the statement
number coming first and the comment coming last. Fields are separated
("delimited") by single spaces.

Statement Number

Every statement must start with a number from 0 to 65535. It is customary to
number statements in increments of 10, 20, 30, etc. The Editor automatically
puts the statements in numerical order for you. Numbering by tens allows you
to insert new statements at a later date between existing statements. To assist
you, the Editor has several convenient commands for automatically numbering
statements (see NUM, REN).

Label

A label, if used, occupies the second field in the statement . You must leave
exactly one space (not a tab) after the statement number. The label must start
with a letter and contain only letters and numbers. It can be as short as one
character and as long as the limitation of statement length permits (106 less the
number of characters in the statement number). Most programmers use labels
three to six characters long.

You are not forced to have a label. To go on to the next field, enter another space
(or a tab). The Assembler will interpret the entries after a tab as an operation
code mnemonic.

Operation Code Mnemonic

The operation code (or op code) mnemonic must be one of those given in
Appendix 2. It must be entered in the field that starts at least two spaces after
the statement number, or one space after a label. An operation code mnemonic
in the wrong field will not be identified as an error in the Edit mode, but will be
flagged when you assemble the program (Error 6).

Operand

The field of the operand starts at least one space (or a tab) after an operation code
mnemonic. Some operation code mnemonics do not require an operand. The
Assembler will expect an operand if the op code mnemonic requires one. Each
different way of writing an operand is given in the section called HOW TO
WRITE OPERANDS.

Comment

A comment appears on the listing of a program, but does not in any way affect
the assembled object code. Programmers use comments to explain to others (and
to themselves) how a section of code works.

-

-

-

There are two ways to have the Assembler interpret entries as comments. One
way is to make the entries in the comment field, which occupies the remainder
of the line after the instruction field(s). At least one space must separate the
instruction fields from the comment field. There may not be enough space in
the comment field for the comment you wish to write there. In that case it is
best to use one or more lines as comment lines dedicated only to making com
ments and containing no code. To do so, you enter one space and a semicolon
followed by any comment or explanatory markings you desire. Everything
between the initial semicolon and the mg is ignored by the Assembler, but
will be printed in the listing of the program.

A sample programming form for assembly language is reproduced as Figure 4.
The form shows examples of how to enter line number, label, op code, operand
and comments. These classes of entry are lined up vertically on the program
ming form. Most variation occurs in the method of entering a comment.
Therefore, Figure 4 includes examples of the various ways to enter comments.

PROGRAM -:5AM

LINE NO. LABEL OP
CODE

Sample, Reproducible
ATARI Programming Form

OPERAND COMMENT

Figure 4. Example of how to write Line No. , Label, Op Code,Operand,
and Label on the Atari programming form.

Getting StaT"ted 9

10 Gctti11g Started

The spacing on the programming form is not the same as the spacing to be used
on the screen, controlled by keyboard entry. On the screen the classes of entry
(the fields) are not lined up vertically. The screen has 38 positions (you can
change it to a maximum of 40), fewer than the programming form, and that is
the main reason not to use many spaces between fields. Another difference be
tween the programming form and screen is the 'wraparound' on the
screen-automatic continuation of characters onto the next line.

Figure 5 shows the entries in Figure 4 as they should appear on the screen when
entered on the keyboard with the recommended spacing. In general, the spac
ing recommended in this manual is the minimum spacing that will be correctly
interpreted by the Assembler Editor. If you prefer to have more vertical align
ment of fields, use TAB, rather than the single spacing between fields that we
recommend. The statements below show various examples of comments cor
rectly positioned in the statement. Each comment in the examples starts with
"COMMENT" or semicolon(;).

Figure 5. Statements as they would appear on the screen when entered
on the keyboard with the recommended spacing. The various
ways to enter comments are illustrated. Compare with Figure 4.

-

HOW TO WRITE This section shows how to write operands. The examples use statement number

OPERANDS XXXX (also called line number XXXX). An instruction entered without a state
ment number is not allowed by the Editor.

The examples use BY (for byte) and ABS (for absolute) as a one-byte and a two
byte number, respectively. This use implies that the program includes defini
tions of BY and ABS as, for example:

0100 BY= 155
0200 ABS= 567

Please refer to the description of the LABL = directive for an explanation of the
definitions of lines 100 and 200.

Hexadecimal Operands

A number is interpreted as a decimal number unless it is preceded by $, in
which case it is interpreted as a hexadecimal number.

Examples:

30 STA $9325
80 ASL $15

Immediate Operands

An immediate operand is an operand that contains the data of the instruction.
The pound sign (#) must be present to indicate an immediate operand.

Examples:

40 LDA #12
70 ORA 11'$3C

1000 CPY ll'BY

Page Zero Operands

When an operand is a number less than 255 decimal, (FF hex) and is not
immediate, the number is interpreted as a page zero address.

Examples:

150 LDX $12
250 ROR 33
500 DEC BY

Absolute Operands

Absolute operands are evaluated as 16-bit"numbers.

Examples:

20 LDX $ 1212
40 CPY 2345

990 DEC 579
2350 BIT ABS

Absolute Indexed Operands

An absolute indexed operand uses register X or Y. The operand is written
____ ,X or ,Y

11 Getting Started

Getting Started 12

Examples:

10 AND $3C26,X
110 EOR 20955,Y

1110 STA ABS,Y

Non-Indexed Indirect Operands

In general, an indirect operand is written with parentheses. The address within
the parentheses is an intermediate address which itself contains the effective
address. The only instruction with a non-indexed indirect operand is jump In
direct . The operand is a number enclosed in parentheses. The parentheses in the
operand enclose a number or an expression that is interpreted as an inter
mediate address.

Examples:

]MP ($6000)
JMP (ABS)
]MP (7430)
JMP (ABS + 256 * BY)

Indexed Indirect Operands

An indexed indirect instruction uses register X. The operand is written (-,X)

Examples:

10 INC ($99,X)

Indirect Indexed Operands

An indirect indexed instruction uses register Y. The operand is written (-),Y

Examples:

10 LDA ($2B), Y
1 10 CMP ($E5),Y

1 1 10 ORA (BY),Y

Indexed Page Zero Operands

A zero page indexed operand is written -,X or -,Y

Examples:

10 INC $34,X
1 10 STX $AB, Y

1 1 10 LDX BY,Y

String Operands

Operands or parts of operands enclosed in double quotation marks are
translated into the AT ASCII codes of the characters between the quotation
marks. The use of such operands must of course be appropriate to the type of
instruction or directive to which they are appended.

Examples:

10 ADDR .BYTE "9 + 1 = s TEN"

Execution of this directive causes the AT ASCII numbers corresponding to "9",
" + ", etc., to be stored at successive locations starting at ADDR. Note that the
AT ASCII representation of any character except the quotation mark (") can be
stored with the .BYTE directive having a string operand.

Exhibit I

LINE NO. LABEL OP
CODE

_,

-

-

Sample, Reproducible
AT ARI Programming Form l"G' 0'

"OG'AMM"

OPERAND COMMENT

Getting Started 13

NOTES:

14 Notes

-

COMMANDS TO

EDIT A

PROGRAM

3

USING
THE EDITOR

Now that we have explained how to get started writing a program, it is up to
you to actually write the program. This manual contains very little information
on assembly language programming techniques. We assume that you are
already familiar with assembly language. The remainder of the section
describes how to use the Assembler Editor cartridge.

A command is not the same thing as an instruction. An instruction has a line
number; a command has no line number and is executed immediately.

NEW Command

This command clears the edit text buffer. After this command you cannot
restore your source program; it has been destroyed.

Some programmers have the habit of giving the NEW command (or its
equivalent with other assemblers) when they start a programming session. The
reason is to remove any "garbage" that may be in memory by mistake. Since
the ATARI Personal Computer System clears its memory when it is turned on,
such routine use of NEW would be a needless precaution. Because NEW destroys
your entire source program, it is more important to develop a habit of NOT
using it routinely. You should, rather, use NEW in a very deliberate fashion only
when you want to remove a source program from RAM.

DEL Command

This command deletes statements from your source program.

DEL xx
DELxx,yy

NUM Command

deletes statement number xx.
deletes statement numbers xx through yy.

This command assigns statement numbers automatically.

NUM

NUMnn

NUMmm,nn

increments statement number by 10
after each The new statement
number, by a space, is auto-
matically displayed.

has the same effect as NUM, but the
increment is nn instead of 10.

forces the next statement number to be
mm and the increment to be nn.

cancels the NUM command.

Using tlie falitor 15

16 Using the Editor

The effect of the NUM command stops automatically when a statement number
that already exists is reached. For example:

10
20
NUM
15

LDX U$EF
CMP MEMORY
15,5

After statement number 15, the next statement number would be 20, which
already exists, so the NUM command is cancelled. The automatic numbering of
statements will continue until the next number is exactly equal to an existing
number. A slight change from the above example illustrates this:

10 LDX #$EF
20 CMP MEMORY
NUM 15,6
1 5 TAX
21

Caution: You cannot use the special keyboard editing keys to change other
statements while the NUM command is in effect. You will succeed in changing
what appears on the screen, but, in an exception to the general rule, the con
tents of the edit text buffer will not be changed.

REN Command

This command renumbers statements in your source program.

REN

RENnn

RENmm,nn

FIND Command

am renumbers all the statements in
increments of 10, starting with 10.

�I renumbers all the statements in
increments of nn, starting with 10.

fii!m renumbers all the statements in
increments of nn, starting with mm.

This command finds a specified string. The ways to write the command are
shown below.

FIND/SOUGHT/

FIND/SOUGHT/,A

FIND/SOUGHT/xx

FIND/SOUGHT/xx,yy ,A

finds the first occurrence of the string
SOUGHT. The statement that contains
the string is displayed.

� finds all occurrences of the string
SOUGHT. All statements containing such
occurrences are displayed.

cmI!D finds the string SOUGHT if it occurs in
statement number xx. Statement xx is
displayed if it contains the string.

finds all occurrences of the string
SOUGHT between statement number xx
and yy. All the statements that contain
the string are displayed.

-

-

-

In these examples, the string SOUGHT is delimited (marked oft) by the
character /. Actually, any character except space, tab and i;liii@I can be used as
the delimiter. For example, the command

FIND DAD

finds the first occurrence of the character A. The delimiter is the character D.
The delimiter is defined as the first character (not counting space or tab) after
the keyword FIND. This feature is perplexing to beginners; its purpose is to
allow you to search for strings that contain slashes (/) or, for that matter, any
special characters.

The general form of the command is

FIND delimiter string delimiter [lineno, lineno] [,A]

In the general form, symbols within a pair of brackets are optional qualifiers of
the command.

REP Command

This command replaces a specified string in your source program with a dif
ferent specified string.

REP/OLD/NEW 1;1:a111;n1

REP /OLD/NEW /xx,yy l;liii@I

REP/OLD/NEW /,A

replaces the first occurrence of the string
OLD with the string NEW.

replaces the first occurrence of the string
OLD between statements number xx to
yy with the string NEW.

replaces all the occurrences of the string
OLD with the string NEW.

REP /OLD/NEW /xx,yy ,A l;!ilii;ill replaces all the occurrences of the string
OLD between statements xx to yy with
the string NEW.

REP /OLD/NEW /xx,yy ,Q l;liiii@I displays, in turn, each occurrence of the
string OLD between statements xx and
yy.
Q stands for "query." To replace the
displayed OLD with NEW, type Y, then
l;iiilllml. To retain the displayed OLD,
press l;iiiil;Ui.

In these examples, the strings OLD and NEW are delimited by the character "/''.
As with the FIND command, any character except space, tab and RETURN, can
be used as the delimiter. For example, the command

REP + RTS + BRK +,A

replaces all occurrences of RTS with BRK. The delimiter is the character "+ ".

The general form of this command is

REP delimiter OLD delimiter NEW delimiter [lineno, lineno] [,� J
In the general form, symbols within a pair of brackets are optional qualifiers of
the command and the symbols within braces (A and Q) are alternatives.

Using the Editor 17

18 Using the Editor

Sample Program

Let us assume you have written a program on an ATARI Programming Form as
shown in Figure 6:

Exhibit I

LINENO. LABEL

LQ
'-l'

]_o __I.IT_
!! '

' ..,

:.o
�A A-"&Sx

�)lf.CI 41.l

OP
CODE

�-=
�
Ll>X.

�
:tlJJL �

=

=

.6/D

Sample, Reproducible
AT ARI Programming Form

OPERAND

*3ooo
'fttoo
Al'hll.JL

COMMENT

,iei;_g_ _2_A-flf.llf:&_
...::JM u

-u:r -j�
"II"+ •1oo

Figure 6. Sample Program as you write it on the
ATARI programming form

Then when you type it in it would appear on the screen as shown in Figure 7:

Figure 7. Appearance of the screen as your program is
entered on the keyboard.

-

-

COMMANDS TO

SAVE (OR

DISPLAY) AND

RETRIEVE

PROGRAMS

The commands to save (or display) and retrieve programs are:

LIST
PRINT
ENTER
SAVE
LOAD

saves or displays a source program
is the same as LIST, but omits line numbers
retrieves a source program
saves an object program
retrieves an object program

With each of these commands there is a parameter that specifies the device that
is the source or destination of the program that is to be saved, displayed or
retrieved. The possible devices are different for different commands, and the
default device is also different. Some of the commands have optional parameters
that limit the application of the command to specified parts of the program.

The parameter that specifies the device that is the source or destination of the
program is written as follows:

#E: is the screen editor

#P: is the printer

#C: is the Program Recorder

#D[n]:FILENAME is a disk drive.
n is 1, 2, 3 or 4. D: is interpreted as D1:.
A program saved on or retrieved from a diskette must be
named (FILENAME).

LIST Command { device: } [,xx,yy]
Format: LIST# filespec

Examples: LIST#E:

LIST#D:MYFILE

This command is used to display or save a source program. The device where
the source program is to be displayed or saved is given in the command. If no
device is specified, the screen is assumed by default. Other possible devices are
the printer (HP:), Program Recorder (#C:) and disk drive (#D1: through HD8: or
HD:, which defaults to #Dl:). The commands to transfer a program (LIST it) to
these various devices are:

LIST HE:

LIST HP:

LIST#C:

LIST #D:filename

(LIST HE: is the same as LIST)

(Use cassette-handling procedures described in your Pro
gram Recorder Operator's Manual.)

where filename is an arbitrary name you give to the
program. Filename must start with a letter and have no
more than eight characters, consisting of letters and
numbers only. It may also have an extension of up to
three characters. For example, NAME3, STS, and
JOHN .23 are all legal names.

Using the Editor 19

20 Using the Editor

The forms of the commands to transfer only particular lines Oines xx to yy) to a
device are:

(LISTHE:,xx,yy is the same as LIST,xx,yy) LIST HE:,xx,yy
LISTHP:,xx,yy
LIST#C:,xx,yy (Use cassette-handling procedures described in the

Program Recorder Operator's Manual.)
LIST#D:NAME,xx,yy where "NAME" is an arbitrary name you give to the

program. See the description above.

A single line may be displayed or saved with the command:

LISTlineno where lineno is the line number.

Caution: The DOS makes sure that every file has a unique name by deleting old
files if necessary. Therefore, do not name a file you are listing to diskette with
the name of a file that is already stored on the diskette, unless you wish to
replace the existing file with the one you are listing.

The LIST command is illustrated below. No device is specified, so the display
device is the screen, by default. The small sample program, written in the
previous section, is used for illustration.

EDIT
LIST l;ljiil;Hi
10 * = $3000
20 LDY #00
30 · REP LDX, ABSX, Y
40 BNE XEQ SAME PAGE
50 INY TALLY
60 JMP REP

� ABSX = $3744
80 · XEQ = * + $60
90 .END

EDIT
LIST30 i;ljiii;UI

30 REP LDX ABSX, Y

EDIT
LIST 60,80 i;l;ll@I
60 JMP REP

-7.QJ ABSX = $3744
BO' XEQ = * + $60

EDIT
D

The examples above show the appearance of the screen, since that is the default
device. The program or the particular lines in the examples could be displayed
on the printer or saved on cassette or diskette by using the forms of the LIST
command described above. Note that the commands tolerate a certain amount
of variation in the insertion of blanks.

-·

-

PRINT Command

This command is the same as LIST, except that it prints statements without
statement numbers.

Example:

EDIT
PRINT i;ljii@I
* = $3000
LDY HOO
REP LDX ABSX, Y
BNE XEQ SAME PAGE
INY TALLY
JMP REP
ABSX = $3744
XEQ= * + $60
.END

EDIT
PRINT30 i;liiil;lll

REP LDX ABSX, Y

EDIT
PRINT 60,80 i;ljliMI

JMP REP
ABSX = $3744
XEQ= * + $60

i;UiilJ:R'
EDIT
0

After using a PRINT command, no further command can be entered until you
press i;iiii@I, which causes the EDIT message and cursor to be displayed.

ENTER Command

Format: ENTER# { device: }
filespec

Examples: ENTER#C:
ENTERHD:MYFILE

The command ENTER is used to retrieve a source program. As with the com
mand LIST, a device has to be specified, in this case the device where the pro
gram is stored. There is only one device, the disk drive, on which a named pro
gram is stored in a retrievable form. To retrieve a source program from a
diskette in a disk drive, the command is:

ENTERHD:NAME

Using t/1e Editor 21

22 Using the Editor

where "NAME" is the arbitrary name you gave to the program when you listed
it on the diskette. This command clears the edit text buffer before transferring
data from the diskette.

To retrieve a source program from cassette, the command is:

ENTER/IC: (Follow the CLOAD procedure given in your 410 Pro
gram Recorder Operator's Manual.) Note that ENTER HC:
clears the edit textbuffer before retrieving the
source program.

To merge a source program on cassette with the source program in the edit text
buffer, the command is:

ENTERll'C:,M

In the above command, where a statement number is used twice (in the edit text
buffer and on tape), the statement on cassette prevails.

Commands for saving and retrieving an object program are SA VE and LOAD.
They correspond to LIST and ENTER, respectively.

SA VE Command

Format:
{device: }

SA VE# fil < address1,address2
I espec

Examples: SAVEHC: < 1235,1736
SAVEHD2:MYFILE < 1235, 1736

To save an object program residing in hex address1 to address2 on cassette
or diskette, the commands are:

SA VEHC: < address 1 ,address2
CAUTION: Use the CSAVE procedure illustrated in your 410 Program

Recorder Operator's Manual.

SA VEHD:FILEN AME < address 1 ,address2
where FILENAME is an arbitrary name you give to the block of
memory that you are saving (where your object program is
stored).

LOAD Command

Format: Gdevice:J LOAD#
file spec

Examples: LOADHC:
LOADHD:MYFILE

To retrieve an object program that had previously been SAVED and which had
previously been called NAME, the command is:

LOADUD:NAME where NAME is the arbitrary name that you gave to the
object program when you saved it on diskette.

LOADUC: (Use the CLOAD procedure described in your 410 Pro
gram Recorder Operator's Manual.)

These commands will reload the memory locations address1 to address2 with
the contents that were previously saved. The numbers address1 and address2
are those that were given in the original SA VE command.

Using tlie Editor 23

NOTES:

24 Notes

THE ASM

COMMAND

4

USING
THE ASSEMBLER

The general form of the ASSEMBLE command is

I ASM/[#D[n]:PROGNAM E[.SRC]J I

I
Where source program
is located

Where assembly l ist i ng
is to be stored or displayed

[,#D[n]:SEMBLED[.OBJ]J

Where object program
is to be stored

The default values of the three parameters of the ASM command are the edit
text buffer for the source program, the television screen for the assembly
listing, and computer RAM for the object program (the assembled program). To
assemble a program using default values of ASM, type

ASM llM!IUI

On receiving this command, the Assembler translates the source program in the
edit text buffer into object code and writes the object code into the memory loca
tions specified in the source program. When this process is completed, the
assembled program is displayed on the screen. For an example of assembly with
default parameter values, we use the small sample program that we wrote.
Figure 8 shows the appearance of the screen after the ASM command.

Figure 8. Appearance of the screen as your sample program is
assembled.

Usirrg tllc Asscmhh•r 25

•

26 Using the Assembler

Using statements 30 and 40 as examples, the format of the assembled program is
shown below. Note, however, that some of the spacing can be changed by the
TAB directive.

3002

3005

�
SA M E

�

B E4437

0064

�
PAG E

30 R E P

40

�

LOX ABSX, Y
B N E XEQ

t t
O pe rand L.= Op Code M nemon i c

'"--------- Label

'"---------- Statement N u m ber
,__ _______________ I n struction
------------------- Com ment from p revious

l i ne starts here
------------------- Address

Figure 9. Normal (default) format of assembly listing as it appears
on the screen.

The general form of the command shown at the beginning of the section shows
how to override the default values of the parameters of the command. These
override selections are explained below.

Location of Source Program

You may specify the location of the source program as a named program on
diskette. You must have previously stored the source program under that name,
using the LIST command. In the general form of the ASM command, the source
program on diskette has been given the extension .SRC. Extensions are optional.

Where Assembly Listing Is To Be Stored

The default value is the screen (llE:). The other possibilities are the printer (llP:),
the Program Recorder (11C:), and the disk drive (llD[n] :NAME [.LST]).

Where Object Program Is To Be Stored

You may specify that the assembled program is to be stored directly on diskette,
using any name (subject to the restrictions of DOS). In the general form of the
ASM command, the assembled program has been given the extension .OBJ.
Extensions are optional.

It is easy to become confused by names of programs when a program may exist
in several related forms. To reduce the chance of confusion, we recommend
using names that include identifying extensions, such as .SRC, .LST and .OBJ for
a source program, an assembly listing and an object program, respectively.

Note that in the ASM command the source program must be in the edit text buf
fer or on a diskette in the disk drive. It can not be on a cassette in the Program
Recorder. The primary reason for this restriction is that the Assembler requires
two passes of the source program and the Program Recorder is not controllable
to permit two passes. However, you can assemble a source program recorded

DIRECTIVES

(PSEUDO

OPERATIONS)

with your Program Recorder. First transfer the program from Program
Recorder to the edit text buffer with the command:

ENTER/IC: i;liii@i (Follow the cassette-handling
instructions in your Program
Recorder Operator's Manual.)

The ASM command with no default parameters is illustrated in the example
below:

ASMllD:SOURCE,llP:,llD2:SEMBLED.OBJ lilifi!ml

The above command takes the source program that you had previously stored
on diskette and called SOURCE, assembles it, lists the assembled form on the
printer, and records on the diskette the machine code translation of the pro
gram (the object program). The object program is given the name
"SEMBLED.OBJ." Note that commands of this form store the machine code on
diskette, not in computer RAM.

To make a default selection, enter a comma, as in the following useful
command:

ASM,llP: 1mum11

The above command takes the source program from the default edit text buffer,
assembles and lists it on the printer as before, and stores the machine code
object program directly into computer RAM.

Directives are instructions to the Assembler. Directives do not, in general, pro
duce any assembled code, but they affect the way the Assembler assembles
other instructions during the assembly process. Directives are also called pseudo
operations or pseudo ops.

Directives are identified by the Assembler by the "." at the beginning. The only
exceptions are the LABEL= directive and the * = directive.

A directive must have a line number, which it follows by at least two spaces.
The directive LABEL= is an exception-there must be only one space before the
label.

OPT Directive

This directive specifies an option. There are four sets of options. These are:

: OPT NOLIST
. OPT LIST

. OPT NOOBJ

. OPT OBJ

. OPT NOERR

. OPT ERR

. OPT NOEJECT

. OPT EJECT

(this is the default condition)

(this is the default condition)

(this is the default condition)

(this is the default condition)

Using the Assembler 27

- ·

2 8 Using the Assembler

The second listed of each pair represents the standard or default condition.
---........

100t. OPT NOLIST
(part of source
program)
200 . OPT LIST

100 . OPT NO�pB]
(part of source
program)
200 . OPT OBJ

100 . OPT NOERR
(part of source
program)
200 . OPT ERR

100 . OPT NOIJECT
(part of source
program)
200 . OPT IJECT

The effect of these directives is to omit from the listed
form of the assembled program the lines between lines
100 and 200. (These line numbers are arbitrary.)

Assembly is suppressed between lines 100 and 200. The
effect of these directives is to omit from the object pro
gram code corresponding to the lines between lines 100
and 200. Memory corresponding to these lines is skipped
over, leaving a region of untouched bytes in the object
program. (These line numbers are arbitrary.)

The effect of these directives is to omit error messages
for the assembled program lines between lines 100
and 200.

The effect of these directives is to suppress, between
lines 100 and 200, the 4-line page spacing that is
normally inserted after every 56 lines of the listed form
of the assembled program.

More than one option may appear on a line. Options are then separated by a
comma, as follows:

1000 . OPT NOLIST,NOOBJ

Title and Page Directives

10 . TITLE "name"
20 . PAGE "optional message"

We explain these directives together because they are intended to be used
together to provide easily read information about the assembled program.

These directives are most useful when the assembled program is listed on the
printer.

TITLE and PAGE allow you to divide your program listing into segments that
bear messages written for your own convenience, much as you might add short
explanatory notes to any complex material.

The PAGE directive causes the printer to put out six blank lines (printers so
equipped will execute a TOP OF FORM), followed by the messages you have
given for TITLE and PAGE. This causes the messages to stand out somewhat
from the rest of the assembled program listing.

Usually there is only one TITLE directive, giving the program name and date,
and different PAGE directives for giving different page messages. Then on
listing the assembled program, the same TITLE message on every page would
be followed by a different PAGE message.

The blank lines that the PAGE directive produces on the 40-column A TARI 820
Printer can be used to break up a long program into segments that can be
mounted in a notebook.

To remove a title, use the following form:

1000 . TITLE " "

The above directive removes titles after line 1000.

The PAGE directive on its own causes a page break-the printer simply puts out
a number of blank lines.

Tab Directive

10 . TAB n1,n2,n3

The TAB directive sets the fields of the statement as they appear when assem
bled and listed on the screen or the printer. Let us use the specific example of
Statement 40 of the small sample program we previously used for illustration. It
was written as follows:

30
40 BEQ XEQ SAME PAGE
50

Note that one space, rather than a tab, is used between each field. Using spaces
rather than tabs lets you write longer programs, since the edit text buffer will
not be filled up with the extra spaces that tabs would require.

Compressing the program in this way makes it less easily readable than we
might wish, but we can use the TAB directive to give us a more readable
assembled version. The form of the directive is

lineno . TAB 10,15,20
or, more generally,
lineno . TAB number1,number2,number3

The previous example has a source program that was compressed in the above
fashion. Note the difference between the spacing of the source listing and the
assembled program. This is an example of the default TAB spacing.

The effect of the TAB directive ofline xxx is confined to the appearance of lines
following xxx when they are assembled and listed on the printer or screen.

In the case of line 40, the appearance on the printer would be as shown below:

3005 D064 40 BNE XEQ SAME PAGE

L10J J J l.__15
) 20

If the TAB directive is not used, then the appearance of the assembler line on the
printer will be as shown below in the default mode:

3005 D064
AME PAGE

40 BNE XEQ S

�12J
17
J J_-----27

That is, the default setting corresponds to . TAB 12, 17,27.

Using the Assembler 29

30 Using tl1c Assem/Jler

The appearance of this line on the screen will be different only because the
screen has 38 characters positions, while the printer has 40.

BYTE, DBYTE and WORD Directives

100 . BYTE a,b, . .. ,n
200- . B¥1'&-"k,&,-.-. -o--N"
300 . DBYTE a,b, . . . ,n
400 . WORD a,b, . . . ,n

These directives are similar in that they are used to insert data rather than
instructions into the proper places in the program. Each directive is slightly
different in the manner in which it inserts data.

BYTE Directive

The BYTE directive reserves a location (at least one) in memory. The directive
increments the program counter to leave space in memory to be filled by infor
mation required by the program. The operand supplies the data to go into that
space.

Examples:

10
20 . BYTE 34
30

Here, the Assembler assembles into successive locations the instruction of line
10, then the decimal number 34, then the instruction of line 30.

10
20 . BYTE 34, 56,78
30

Here, the Assembler assembles into successive locations the instruction of line
10, then the decimal numbers 34, 56 and 78, then the instruction of line 30. The
operand may be an expression more complex than the numbers used in the
examples. The rules for writing and evaluating an expression are given in
Appendix V.: ts'

10
20 . BYTE "ATARI"
30

Here, the Assembler assembles into successive locations the instruction of line
10, then the (AT ASCII code) hex numbers 41, 54, 41 , 52 and 49, then the instruc
tion of line 30.

DBYTE Directive

The DBYTE directive reserves two locations for each expression in the operand.
The value of the expression is assembled with the high-order byte first (in the
lower number location). For example:

10 * = $4000
20 . DBYTE ABS + $3000

When line 20 is assembled and the value of ABS + $3000 is determined to be (say)
$5123, $51 is put in location $4000 and $23 is put in location $4001 .

LABEL =

DIRECTIVE

WORD Directive

The WORD directive is the same as the DBYTE directive except that the value of
the expression is stored with the low-order byte first.

For example:

10 * = $4000
20 .WORD ABS + $3000

When line 20 is assembled and the value of ABS + $3000 is determined, as before,
to be $5123, $23 is put in location $4000 and $5 1 is put in location $4001 .

The WORD directive simplifies some programming since addresses i n machine
code are always given in the order low byte followed by high byte. Therefore,
the WORD directive is useful, for example, in constructing a table of addresses.

100 LABEL = expression

The LABEL = directive is used to give a value to a label. Two examples appear in
the sample program we used before. Statements 00 and 70 give values to ABSX
and XEQ, as follows:

70 � ABSX = $3744
S'O '}{') XEQ= * + $60

Since the symbol that is given a value is a label, there must be only one space
after the statement number. The expression on the right cannot have a value
greater than FFFF (hex). The rules for writing and evaluating an expression are
given in Appendix)!(").

When the LABEL = directive is used to give a value to a label, the label can be
used in an operand, by itself, as in statements 30 and 40 in the sample program.

A defined label may also appear as part of an expression. Our sample program
does not contain an example, so we give one below in line 240.

100 T AB1 = $3000

240 TAB2 = TAB 1 + $20

When the program is assembled, T AB2 will be given the value $3020.

You should note that defining a label in this way gives the label a specific
address; it does not define the contents pf the address. In the example, above,
TAB1 and TAB2 might be the location of two tables that contained the values of
variables that your program required.

* = Directive

100 * = expression

We encountered the * = directive in the "getting started" commands, where it
is used to set the starting location of the assembled program. When the
Assembler encounters the * = expression, it sets the program counter to the
value of the expression.

Using tfit' Ass1'mbler 31

32 Using tilt' ,\sst•m/;lcr

You write * = without the initial " ." that the other directives have (except
LABEL =). Also, note that you write * = without any spaces between * and = .

You should not confuse the * = directive with the LABEL = directive. The * in
* = is not a label. Note, however, that the * = directive itself may have a label, as
follows:

200 GO * = expression
500]MP GO

The Assembler will assemble statement 500 as a jump to the value the program
counter had BEFORE it was changed by line 200.

The * = directive is useful for setting aside space needed by your program. For
example, you will frequently want space reserved starting at a particular loca
tion. Use the following form:

720 TABLE35 * = * + $24
740

The effect of the directive is to reserve 24 locations immediately after TABLE35.
Other parts of your code will not be assembled into these locations (unless you
take pains to do so). Your program can use TABLE35 as an operand and
T ABLE35 can be used as an element in an expression that your instructions
evaluate in accessing the table.

IF Directive

900. IF expression @LABEL

990 LABEL End of conditional assembly

The IF directive permits conditional assembly of blocks of code. In the illustra
tion above, all the code between lines 900 and 990 will be assembled if and only
if the expression is equal to zero. If the expressjon is not equal to zero, the- ff
&eeti-ve has no-effect -on-assembly.

The example given below shows how different parts of a source program may
be omitted from assembly according to the value assigned to the LABEL in the IF
directive. The source program is assembled with Z = 0 in one case and Z = 1 in
another. With Z = 0, the instruction TAX is assembled, and with Z = 1 the in
struction ASL A is assembled. Obviously, this kind of selective assembly can be
extended indefinitely.

SOURCE CODE

0100 ;CONDITIONAL ASSEMBLY EXAMPLE
0120 Z = O
0130 * = $5000 -
0146\ LDA = $45

. __ JH50 . . IF Z@ZNOTEQUALO
Ot� TAX ;THIS CODE ASSEMBLED IFF Z = 0
0170 ZNOTEQUALO
01..� . IF Z - 1@ZNOTEQUAL1
0 190 l ASL A ;THIS CODE ASSEMBLED IFF Z = 1
0200 ZNOTEQUAL1
0219,/- INX ;THIS CODE ALWAYS ASSEMBLED

ASSEMBLY LISTING (40-col. format)
0100 ;CONDITIONAL ASSEMBLY E

XAMPLE
0000 0120 z = 0
0000 0130 * = $5000
5000 A945 0140 LDA #$45
5002 0150 . IF Z@ZNOTEQUA
LO
5002 AA 0160 TAX ;
THIS CODE ASSEMBLED IFF Z = 0

0170 ZNOTEQUALO
5003 0 180 . IF Z - 1@ZNOTEQ
UAL1

0190 ASL A
0200 ZNOTEQUAL1

5003 EB 0210 INX ;
THIS CODE ALWAYS ASSEMBLED

0100 ;CONDITIONAL ASSEMBLY E
XAMPLE
0001 0120 z = 1
0000 0130 * = $5000
5000 A945 0140 LDA #$45
5002 0150 . IF Z@ZNOTEQUA
LO

0160 TAX ;THIS CODE ASSEMBL
ED IFF Z = O

0170 ZNOTEQUALO
5002 0180 . IF Z - 1@ZNOTEQ
UAL1
5002 OA 0190 ASL A
0200 ZNOTEQUAL1
5003 EB 0210 INX ;
THIS CODE ALWAYS ASSEMBLED

END Directive

1000 . END

Every program should have one and only one END directive. It tells the
Assembler to stop assembling. It should come at the very end of your source
program. Later, if you decide to add more statements to your program, you
should remove the old . END directive and place a new one at the new end of
your source program. Failure to do so will result in your added source code not
being assembled. This mistake is particularly easy to make when you make
your additions with the NUM command. It is not always essential to have an
. END directive, but it is good practice.

Using the Assnnbler 33

NOTES:

34 Notes

-

PURPOSE OF

DEBUGGER

CALLING THE

DEBUGGER

DEBUG

COMMANDS

5

DEBUGGING

The Debugger allows you to follow the operation of an object program in detail
and to make minor changes in it.

A knowledge of machine language is helpful when you use the debugger, but it
is not essential. The Debugger is able to convert machine code into assembly
language (disassemble), so you can make code alterations at particular memory
locations. All numbers used by the Debugger, both in input and output, are hex
adecimal.

The Debugger is called from the Editor by typing:

BUG i;l#iihl�I

This produces on the screen:

DEBUG
[]

The command to return to the Writer/Editor is:

x 1;13111;n1

The debug commands are lisl.ed below. In the list, "mmmm" indicates that the
form of the command may include memory address(es). The actual methods of
specifying the memory address(es) and the default addresses are shown in the
examples given later in this section. If you use the commands with no
address (es), the Debugger assigns a default address(es):

DR

CR

D or Dmmmm

C or Cmmmm
Mmmmm
Vmmmm

L or Lmmmm

A
1"° o < Tmmmm

S or Smmmm
Gmmmm

x

G'l1J3

Display Registers

Change Registers

Display Memory

Change Memory
Move Memory
Verify Memory

List Memory With Disassembly

Assemble One Instruction Into Memory
Trace Operation

Single-Step Operation
Go (Execute Program)

Return to EDITOR
Pressing the Em key halts certain operations.

Debugging 35

36 Debugging

We now give several examples showing how to use the commands. In the
examples, the lines ending with i;ljlll;ili are entered on the keyboard. The other
lines show the response of the system, as displayed on the screen.

DR Display Registers

Example:

EDIT
BUG l;jiiiQ;UI
DEBUG
DR IUjiilfl{I

A = BA X = 12 Y = 34 P = BO S = DF
DEBUG
[J

The registers and contents are displayed as shown. A is the Accumulator, X and
Y are the Index Registers, P is the Processor Status Register, and S is the Stack
Pointer.

CR Change Registers

Example:

EDIT
BuG a:Hmm

DEBUG
CR < 1 ,2,3,4,5 lilil!lil:J

DEBUG
[J

The effect of the command above is to set the contents of the registers A, X, Y, P,
and S to 1, 2, 3, 4 and 5 .

You can skip registers by using commas after the < . For example,

CR < ,,,,E2 iiliiil!iHI

sets the Stack Pointer to E2 and leaves the other registers unchanged. Registers
are changed in order up to WIUiCI· For example,

CR < ,34 i;iiiil@I

sets the X Register to 34 and leaves the other registers unchanged.

D or Dmmmm Display Memory

Dmmmm, yyyy where vvvv,is less than or edual to mmmm shows the contents.
· ef-address mmmm. ·

Example:

DEBUG
D5000,0 H!llm'Jl

5000 A9
DEBUG
[J

�ows that address 5000- eontains �j_9-. --

If the second address (yyyy) is omitted, the contents of eight successive locations
are shown. The process can be continued by typing D i;ijli@i.

Example:

DEBUG
DSOOO i;l\jii@i
SOOO A9 03 18 ES FO 4C 23 9 1
DEBUG
D i;ljiil;HI
S008 18 41 S4 41 S2 49 20 20
DEBUG
[]

Dmmmm,yyyy where yyyy is greater than mmmm, shows the contents of
addresses mmmm to yyyy.

Example:

DEBUG
DSOOO,SOOF

SOOO A9
SOOS 18
DEBUG
[]

03 18 ES FO 4C 23 9 1
41 S 4 41 5 2 4 9 2 0 20

The display can be stopped by pressing the BREAK key.

C or Cmmmm Change Memory

Cmmmm < yy changes the contents of address mmmm to yy.

Example:

DEBUG
CS001 < 23 i;iili@I
DEBUG
[]

The effect of the command is to put the number 23 in location 5001 . A comma
increments the location to be changed.

Example:

DEBUG
CSOOH < 21,EF iHii@i
DEBUG
C700B < 31,, ,87 l;!jij@I
DEBUG
[]

The first command puts 21 and EF in locations 500B and SOOC, respectively.

Debugging 37

38 Debugging

, _s(
The second command puts � and 87 in locations 700B and 700E respectively.

You can conveniently use the C command in conjunction with the Display
Memory command, and you need not enter the address a second time with the C
command. The C command will default to the last specified address.

Example:

DSOOO l;ijii@i
SOOD AO 03 18 ES FO 4C 23 9 1
C < AA, 1 4 i;l!iiil;lll
DSOOO #;!\\hil;lli
SOOD AA 14 18 ES FO 4C 23 91

DEBUG
[]

Mmmmm Move Memory

Mmmmm < yyyy,zzzz copies memory from yyyy to zzzz to memory starting
at mmmm. Address mmmm must be less than yyyy or greater than zzzz. If the
origin and destination blocks overlap, results may not be correct.

Example:
DEBUG
M1230 < SOOO,SOOF i;!ijlii@i

DEBUG
[]

The command copies the data in location SOOO-SOOF to location 1230-123F.

Vmmmm Verify Memory

Vmmmm < yyyy,zzz�ompares memory yyyy to zzzz with memory starting at
mmmm, and shows mismatches.

Example:

DEBUG
V7000 < 7100, 7123 l;iiUl@I
DEBUG
[]

The command compared the contents of 7!00-7123 with the contents of
7000-7023. There were no mismatches.

Mismatches would be shown as follows:

7101 00 7001 22
710S 18 700S 10

L or Lmmmm List Memory With Disassembly

This command allows you to look at any block of memory in disassembled
form.

Examples:

L7000

L

L7000, 0
L7000, 7000
L7000, 6000

L345, 567

i;iiii@I List a screen page (20 lines of code) starting at
memory location 7000. Pressing the l!mm key
during listing halts the listing.

l;h!iii!;ili This form of the command lists a screen page start
ing at the instruction last shown, plus 1 .

i;iiii@I These forms list the instructions at address
i;ljiii;Ui 7000 only.
i;ifii"hU'
i;iiii@I This form lists address 345 through 567. Only the

last 20 instructions will actually be visible at the
completion of the response of the system.

The command Lmmmm differs from Dmmmm in that Lmmmm disassembles
the contents of memory.

Example:

EDIT
BUG l;liiil;Ui

DEBUG
L5000, 0 liijiil;lll
5000 A9 03 LDA #$03

DEBUG
[]

This example shows that the Debugger examined the contents of memory
address 5000 and disassembled A9 to LDA. Since A9 must have a one-byte
operand, the Debugger made the next byte (the contents of address 5001) the
operand. Therefore, although the debugger was only "asked" for the content of
location 5000, it showed a certain amount of intelligence and replied by show
ing the instruction that started at address 5000.

To illustrate this further, the number 03 corresponds to no machine code
instruction, so the Debugger would interpret 03 as an illegal instruction, and
alert you to a possible error, as shown below.

Example:

DEBUG
L5001, 0
5001, 03

DEBUG

QJiiJd:I
???

However, ifthe first instruction you wrote was LDA $8A, then you would have
obtained the following, apparently inconsistent, results while debugging:

Example:

DEBUG
L5000, 00 A9 8A LDA H$8A

DEBUG
L5001, 0 8A TXA

Debugging 39

40 Debugging

Because the disassembler starts disassembling from the first address you
specify, you have to take care that the first address contains the first byte of a
"real" instruction.

A Assemble One Instruction Into Memory

The DEBUGGER has a mini-assembler, that can assemble one assembly language
instruction at a time. To enter the Assemble mode, type :

Once in the Assemble mode, you stay there until you wish to return to
DEBUGGER, which you may do by pressing i;ijll@i (on an empty line).

To assemble an instruction, first enter the address at which you wish to have
the machine code inserted. The number that you enter will be interpreted as a
hex address. Now type " < " followed by at least one space, then the instruction.
You may omit an address if assembly is to be in successive locations.

Example:

EDIT
BUG l;liiil;l�i
DEBUG
A i;liill;J�i
5001 < LDY $ 1234 i;ijll@i
5001 AC3412 Computer Responds.
< INV l;ljlll;l�I
5004 CB Computer Responds.
[J i;ljiii;HI
DEBUG
[]

Since the mini-assembler assembles only one instruction at a time, it cannot
refer to another instruction. Therefore, it cannot interpret a label. Conse
quently, labels are not legal in the mini-assembler.

You can use the directives BYTE, DBYTE, and WORD.

Gmmmm Go (Execute Program)

This command executes instructions starting at mmmm. For example:

G7BOO i;ljillml Executes instructions starting at location 7BOO.
Execution continues indefinitely. Execution is
stopped by pressing the mm key (unless the pro
gram at 7BOO tricks or crashes the operating system).

Tmmmm Trace Operation

This command has the same effect as Gmmmm, except that after execution of
each instruction the screen shows the instruction address, the instruction in
machine code, the instruction in assembly language (disassembled by the
debugger-not necessarily the same as you wrote it in assembly language) and
the values of Registers A, X, Y, P and S.

The execution stops at a BRK instruction (machine code 00) or when you press
the mm key on the keyboard.

Example:

DEBUG
TSOOO l!ll'!i!r!!!§�il!P!l';ltral
5000 A9

A = 03 X = 02
5002 18

A = 03 X = 02
5003 ES

A = 03 X = 02
5005 4C

A = 03
7123

A = 03
DEBUG

X = 02
00
X = 02

03 LOA #$03
y = 03 p = 34 s = 05

Y = 03
FO

Y = 03
23

CLC
P = 34

SBC
P = 34

71]MP
Y = 03 P = 34

BRK
Y = 03 P = 34

S = OS
$FO

S = OS
$7123

S = OS

S = OS

S or Smmmm Step Operation

This command has the same effect as T or Tmmmm, except that only one
instruction is executed. To step through a program, type S � repeatedly
after the first command of Smmmm Sim

X Exit

To return to the Editor type :

1Jebuggi11g 41

NOTES:

42 Notes

APPENDIX 1

ERRORS

When an error occurs, the console speaker gives a short "beep" and the error
number is displayed.

Errors numbered less than 100 refer to the Assembler Editor cartridge, as
follows:

ERROR
NUMBER

1 . The memory available i s insufficient for the program to be assem-
bled.

2. For the command "DEL xx,yy" the number xx cannot be found.
3. There is an error in specifying an address (mini-assembler).
4. The file named cannot be loaded.
5 . Undefined label reference.
6 . Error in syntax of a statement .
7. Label defined more than once.
8. Buffer overflow.
9. There is no label or * before " = ".

10. The value of an expression is greater than 255 where only one byte
was required.

1 1 . A null string has been used where invalid.
12. The address or address type specified is incorrect.
13. Phase error. An inconsistent result has been found from Pass 1 to

Pass 2.
14. Undefined forward reference.
15. Line is too large.
16. Assembler does not recognize the source statement.
17. Line number is too large.
18. LOMEM command was attempted after other command(s) or instruc

tion(s). LOMEM, if used, must be the first command.
19. There is no starting address.

Errors

Errors numbered more than 100 refer to the Operating System and the Disk
Operating System. For a complete list of DOS errors, refer to the DOS manual.

128 key pressed during an 1/0 operation.
130 A nonexistent device specified for 1/0.
132 The command is invalid for the device.
136 EOF. End of file read has been reached. This error may occur when

reading from cassette.
137 A record was longer than 256 characters.
138 The device specified in the command does not respond. Make sure

the device is connected to the console and powered.
139 The device specified in the command does not return an Acknowl

edge signal.

Appendix 1 43

44 Appendix 1

140 Serial bus input framing error.
142 Serial bus data frame overrun.
143 Serial data checksum error.
144 Device done error.
145 Diskette error: Read-after-write comparison failed.
146 Function not implemented.
162 Disk full.
165 File name error.

-

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLI
CLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
]MP
JSR
LDA
LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLA
PLP
ROL
ROR
RTI
RTS
SBC
SEC
SED
SEI

APPENDIX 2

ASSEMBLER MNEMONICS
(Alphabetic List)

Add Memory to Accumulator with Carry
AND Accumulator with Memory
Shift Left (Accumulator or Memory)
Branch if Carry Clear
Branch if Carry Set
Branch if Result = Zero
Test Memory Against Accumulator
Branch if Minus Result
Branch if Result "!= Zero
Branch on Plus Result
Break
Branch if V Flag Clear
Branch if V Flag Set
Clear Carry Flag
Clear Decimal Mode Flag
Clear Interrupt Disable Flag (Enable Interrupt)
Clear V Flag
Compare Accumulator and Memory
Compare Register X and Memory
Compare Register Y and Memory
Decrement Memory
Decrement Register X
Decrement Register Y
Exclusive-OR Accumulator with Memory
Increment Memory
Increment Register X
Increment Register Y
Jump to New Location
Jump to Subroutine
Load Accumulator
Load Register X
Load Register Y
Shift Right (Accumulator or Memory)
No Operation
OR Accumulator with Memory
Push Accumulator on Stack ·

Push Processor Status Register (P) onto Stack
Pull Accumulator from Stack
Pull Processor Status Register (P) from Stack
Rotate Left (Accumulator or Memory)
Rotate Right (Accumulator or Memory)
Return from Interrupt
Return from Subroutine
Subtract Memory from Accumulator with Borrow
Set Carry Flag
Set Decimal Mode Flag
Set Interrupt Disable Flag (Disable Interrupt)

Appcruiix 2 45

46 Appendi.r 2

STA
STX
STY
TAX
TAY
TSX
TXA
TXS
TYA

Store Accumulator
Store Register X
Store Register Y
Transfer Accumulator to Register X
Transfer Accumulator to Register Y
Transfer Register SP to Register X
Transfer Register X to Accumulator
Transfer Register X to Register SP
Transfer Register Y to Accumulator

-

APPENDIX 3

SPECIAL SYMBOLS

Below we give a list of special symbols that have a restricted meaning to the
Assembler. You should avoid using these symbols as a matter of course. Most
attempts to use these symbols in any but their special sense will result in errors.
They may be used, without their special meaning, in comments and in the
operands of memory reservation directives.

The semicolon is used to indicate the start of a comment. Everything
between the semicolon and RETURN appears in the listed form of the
program and is ignored by the Assembler. When comments take more
than one line, start each new line with a semicolon.

II The If sign is used as the first symbol of an immediate operand, as in
LDX #24.

$ The $ sign is used before numbers to signify that they are to be interpreted
as hex numbers. For example, LDX 11$34.

* The asterisk is used to signify the value of the current location counter. For
example, the instruction in line 50 gives the symbol HERE a value equal to
5 or more than the number in the current location counter:

50 HERE = * + 5

Example:

18 * = $9 1 1
1 9 RTS
20 * = * + $F
21 TAX

When this example is assembled, line 18 causes the location counter to be $0911 ,
RTS is placed in location $09 1 1 , line 20 causes the location counter to be
increased from $0912 to $0921, and TAX is placed in $0921. This leaves 15
empty bytes between the RTS and the -i:'AX.

The asterisk also signifies multiplication (see Appendix 6). The Assembler uses
the syntax of the statement to distinguish the two meanings of the asterisk.

Register names:

A Accumulator
X X Register
Y Y Register
S Stack Pointer
P Processor Status Register

Appendix 3 47

NOTES:

-

48 Notes

:>-

�
� �·
...

""
"'

TABLE OF HEX DIGITS WITH CORRESPONDING
OP CODE MNEMONICS AND OPERANDS

LSO

MSO

0 Ill(
1 .,..
2 JSR
3 ..
4 R11
I 8'lt
6 RTS
7 M
a
• ICC

LDY-
11:1
CPY-
-
crx-
El

ORA�ND, X

.... ...
AflO.IND, X

--. r
EOR�ND, X

HH!Q, Y
ADC-IND, X

M!Hlf, Y
STA-IND, X

�H!D, Y
LDA�ND, X I LDX-

l.IMID. y
CllP�ND, X

�·. Y
SllC-INO, X

tlC-lllD. Y

BIT-Z,

STY-Z, p' "'. · '

I
STA

'

-z.., ""' -
· JIN, I ��Z. ·

· l
LDA-Z, P111t LDX-Z, Pogt

,IJM;z, ... x lDX·Z. '
CllP-Z, P111t DEC·Z, Poge

�Z. l �z. ,. il
SllC-Z, P111t INC-Z,
�t. x

I M M · I M M EDIATE ADDRESSING - THE OPERAND IS CONTAI N ED IN T H E
S ECON D BYTE OF T H E I NSTRUCTION.

ABS · ABSOLUTE ADDRESSING - THE SECOND BYTE OF THE I N STRUC·
TION CONTA I N S THE a LOW ORDER BITS OF T H E EFFECTIVE AD·
D R ESS. THE THIRD BYTE CONTA I NS THE 8 H IGH ORDER BITS OF T H E
EFFECTIVE ADDRESS (EA) .

Z, PAG E · ZERO PAGE ADDRESSING - SECOND BYTE CONTAINS THE 8
LOW ORDER BITS OF THE EFFECTIVE ADDRESS. T H E 8 HIGH ORDER
BITS ARE ZERO.

A, · ACCU M U LATOR - ONE BYTE I NSTRUCTION OPE RATI NG ON T H E
ACCUMULATOR.

Z, PAG E X · Z PAGE, Y · ZERO PAGE I N DEXED - THE SECOND BYTE OF
T H E I NSi"RUCTION IS ADDED TO THE I N DEX (CARRY IS DROPPED) TO
FORM THE LOW ORDER BYTE OF THE EA. THE HIGH ORDER BYTE OF
T H E EA IS ZEROS.

ABS, XiABS, Y ABSOLUTE I N DEXED - THE EFFECTIVE ADDRESS IS
FORMED BY ADDING THE I N DEX TO THE SECO N D AND T H I RD BYTE
OF T H E I NSTRUCTION.

(I N D, X) · I N DEXED I N DIRECT - THE SECOND BYTE OF T H E I NSTRUCTION
IS ADDED TO THE X I N D EX, DISCARDING THE CARRY, THE RESULTS
POI NTS TO A LOCATION ON PAGE ZERO WHICH CONTAINS THE 8
LOW ORDER BITS OF T H E EA. THE N EXT BYTE CONTA I N S THE 8 H I G H
ORDER BITS.

(IND),Y · I N DI R ECT I N DEXED - THE SECON D BYTE OF THE I NSTRUCTION
POI NTS TO A LOCATION IN PAGE ZERO. THE CONTENTS OF THIS
M EMORY LOCATION ARE ADDED TO T H E Y I N DEX, T H E RESULT BE·
I NG THE LOW ORDER 8 BITS OF THE EA. THE CARRY FROM THIS
OPERATION IS ADDED TO THE CONTENTS OF THE N EXT PAGE ZERO
LOCATION, THE RESU LTS BEING THE 8 HIGH ORDER BITS OF T H E
EA.

>
�
�

�
><
�

NOTES:

-

50 Notes

APPENDIX 5

EXPRESSIONS

When an instruction or directive calls for a number in the operand, the number
may be given as an "expression," the number used being the value of the
expression. An expression is really just a formula.

Expressions are made up of operators and terms. Terms are either numbers or
labels which stand for numbers. An expression containing a label term that
does not have a numeric value will be flagged as an error.

There are five operators; four are arithmetic, and one is logical.

Addition is signified by the sign +

Subtraction is signified by the sign
Multiplication is signified by *

Division is signified by I
Logical AND is signified by �

Expressions must not contain parentheses.

Expressions are evaluated from left to right.

Examples:

100 * = $90 + 1007
200]MP 3 + 2 * 25 * 4/5 - 3
300]MP 0097

These instructions are equivalent.

400 JMP $0061

100 LDA PNUM1 + NUM2

600 LDA jLABEL &o $00FF
610 STA $CC
620 LDA #LABEL/256
630 STA $CD

NUM1 and NUM2 must be defined some
where in the program. The instruction
loads the Accumulator with the sum of
the numbers in the locations NUM1 and
NUM2.

This yields the low order byte of the value
of LABEL.
This yields the high order of byte of the
value of LABEL.

Appendix 5 51

NOTES:

-

52 Notes

. OPT Operand

. TITLE "NAME"

. PAGE 'MESSAGE"

. TAB n1,n2,n3

. BYTE a,b . . . n

. BYTE "AB . . . N"

. DBYTE a, b, . . . n

. WORD a, b, . . . ,n

AB = Expression

* = Expression

. IF Expression

. LABEL

. END

APPENDIX 6

DIRECTIVES

specifies an option. Operand can be LIST or NOLlST,
OBJ or NOOBJ, ERRORS or NOERRORS, .GJECT or
NO.GJECT. (Default options are LIST, OBJECT, ERRORS,
and .GJECT.)

causes NAME to be printed at the top of each page.

produces a blank space in the listing, then causes
MESSAGE to be printed after NAME.

controls the spacing of the fields of Op Code
Mnemonic, Operand, and Comment as they appear in
the listing .

places in successive memory locations the values of the
expressions a, b, ... , n (one byte for each value).

places in successive memory locations the AT ASCII
values of A, B, . . . , N.

places in successive pairs of memory locations the
values of the expressions a, b, . . . , n (two bytes for each
value, high byte first).

places in successive pairs of memory locations the
values of the expressions a, b, . . . , n (two bytes for each
value, low byte first).

makes the Label AB equal to the value of the expres
sion (up to FFFF hex).

makes the Program Counter equal to the value of the
expression (up to FFFF hex) .

assembles following code, up to . LABEL, if and only if
expression evaluates to zero.

indicates the end of the program to be assembled .

Appendix 6 53

NOTES:

54 Notes

�v
o��v

�<v '-'o

0

1

2

3

4

5

6

7

8

9

10

1 1

12

�v
o� �v+--o<v�v �c

+� '->o � �v '-'�
0 c
1 G
2 11
3 Cl
4 a
5 Cl
6 �
7 �
8 �
9 �
A �
B �
c �

APPENDIX 7

ATASCII CHARACTER SET
AND HEXADECIMAL TO

DECIMAL CONVERSION

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

.;v
o� �v+--ov�v �c

+� '-'o � �v '-'�

D Iii
E �
F �
10 c
1 1 �
12 Cl
13 �
14 c
15 �
16 ll
1 7 �
18 1::1
19 �

26

27

28

29

30

3 1

32

33

34

35

36

37

38

�v
o� �v+--o<v�v �c

+� '->o � �v '-'�
1A g
1 B �
1 C D
1 0 D
1 E c
1 F c
20 Space

2 1

22
"

23 It

24 $

25 %

26

Appendi.r 7 55

�
o��v

�v "o

39

40

4 1

42

43

44

45

46

47

48

49

50

5 1

52

53

54

56 Appendix 7

�
o� "'v� �v�v �"

+� S' � �v "�

27

28 (

29

2A *

2B +

2C

2D

2E

2F I

30 0

3 1 1

32 2

33 3

34 4

35 5

36 6

5 5

5 6

5 7

5 8

5 9

60

6 1

62

63

64

65

66

67

68

69

70

�v
�� o+ �v�v 6

+�,p �
�

�v "�

37 7

38 8

39 9

3A

3B

3C <

3D -

3E >

3F ?

40 @

4 1 A

42 B

43 c

44 D

45 E

46 F

7 1

72

73

74

75

76

77

78

79

80

8 1

82

83

84

85

86

�v
o+ "'v� �v�v �"

+�,p � �v "�

47 G

48 H

49 I

4A J

4B K

4C L

4D M

4E N

4F 0

50 p

5 1 Q

52 R

53 s

54 T

55 u

56 v

--

87 S 7 w 103

88 S8 x 104

89 S9 y 10S

90 SA z 106

9 1 S B [107

92 SC \ 108

93 SD J 109

94 SE A 1 10

9S SF 1 1 1

96 60 D 1 12

97 61 a 1 13

98 62 b 1 14

99 63 c 1 1 S

1 00 64 d 1 16

1 0 1 6 S e 1 1 7

1 02 66 f 1 18

67 g

68 h

69

6A j

6B k

6C

6D m

6E n

6F 0

70 p

71 q

72 r

73 s

74 t

7S u

76 v

1 19

120

1 2 1

122

123

124

12S

126

127

1 28

129

130

1 3 1

1 32

1 3 3

1 34

77 w

78 x

79 y

7A z

7B D
7C

7D IJ
7E [)
7F a
80 (inverse characters

hegin)

81

82

83

84

8S

86

Appendix 7 57

�v
o� "'->� � (>� -ov�v

o��v
+

�vo �o/ �v vo �v (>�

1 3 5 B7 1 5 1

1 3 6 BB 1 5 2

1 37 B9 1 5 3

1 3B BA 1 54

1 39 BB 1 5 5

140 BC 1 5 6

141 BD 1 5 7

142 BE 1 5 B

143 BF 1 5 9

1 44 90 160

145 9 1 1 6 1

1 46 92 162

147 93 1 63

14B 94 1 64

149 95 1 65

1 50 96 1 66

58 Appe11dix 7

�v
o� "'->� (>� -ov�v

+
�vo �o/ �v (>�

97

98

99

9A

(EOL)
9B C5lrrm1

9C [!]
9D [!]
9E �
9F [±]
AO

A l

A2

A3

A4

AS

A6

1 6 7

1 68

1 69

1 70

1 7 1

1 72

1 73

1 74

1 75

1 76

1 77

1 7B

1 79

1 80

1 8 1

182

v
� ... � � (>� �""' -ov�v �"

+
� \..>O � �v v�

A7

AB

A9

AA

AB

A C

AD

AE

A F

B O

B 1

B2

B3

B4

BS

B6

-

�
o+.-0v

-Ov "c

1B3

1 B4

1BS

1B6

1 B7

1 BB

1B9

190

1 9 1

192

193

194

19S

196

197

19B

� "-'+ o+ � �v�v �
"

+� ,p �+ �v "�

B7

BB

B9

BA

BB

BC

BD

BE

BF

co

Cl

C2

C3

C4

cs

C6

�
o+.-0v

-Ov "c

199

200

201

202

203

204

20S

206

207

20B

209

2 1 0

2 1 1

2 1 2

2 1 3

2 14

� v+ o+ 6 � �V.-0v
+

�'-'c �� o+.-0v �v "� -Ov "c

C7 2 1 S

CB 2 1 6

C9 2 1 7

CA 21B

CB 2 1 9

cc 220

CD 221

CE 222

CF 223

DO 224

D l 22S

D2 226

D3 227

D4 22B

DS 229

D6 230

�v
o+ �v+

-Ov�v �c

+
�'-'c � �v "�

D7

DB

D9

DA

DB

DC

DD

DE

DF

EO

E l

E2

E3

E4

ES

E6

Append i.r 7 59

�v
""'+

�v
�?-'v

""'+ o� o� �+ o� � -ov�v ""' � -ov�v ""' -ov�v ""'
o�-0v +

� "o � o-'+.�v +� "o �� .;,.?-' "" ?-'� �v "o �v (,
� �v "o �v (,� �v (,�

231 E7 240 FO 249 F9

232 E8 241 F 1 250 FA

233 E9 242 F2 25 1 FB

234 EA 243 F3 252 FC

235 EB 244 F4 253 FD 1 -.. 1 !Bu z,z,er)

236 EC 245 F5 254 FE
[I] !Delete

clwructer)

237 ED 246 F6 255 FF
[EJ (/11se1·1

cluu·cu-ter)

238 EE 247 F7

239 EF 248 FB

Notes:

1 . ATASCII stands for ATARI ASCII. Letters and numbers have the same values a s those i n ASCII, but
some of the special characters are different.

2. Except as shown, charact ers fro m 128-255 are reve1·se colm·s of 1 to 127.

3. Add 32 t o upper case code to get lowe1· case code for same let t er.

4. To get ATASCII code, tell computer (direct mode) to PRINT ASC (" ___ ' ') Fill blank with letter,
character, or number of code. M ust ui:;e t he quotes!

60 Apperuli.i- 7

APPENDIX 8

REFERENCES

AT ARI PUBLICATIONS

Obtainable from your ATARI dealer, or ATARI Consumer Division, Customer
Support, 1 195 Borregas A venue, Sunnyvale, CA 94086

ATARI 400™ Operator's Manual C014768
ATARI 800™ Operator's Manual C014769
ATARI 810™ Operator's Manual C014760
AT ARI 815™ Operator's Manual C016377
AT ARI Disk Operating System II Reference Manual
AT ARI 410™ Operator's Manual C014810

OTHER PUBLICATIONS

6502 Programming Manual
SYNERTEK, 3050 Coronado Drive, Santa Clara, CA 95051 or
MOS Technology, 950 Rittenhouse Road, Norristown, PA 19401

6502 Assembly Language Programming by Lance Leventhal
Osborne/McGraw-Hill, 630 Bancroft Way, Berkeley, CA 94710

Programming the 6502 by Rodney Zaks
Sybex, 2020 Milvia Street, Berkeley, CA 94704

Appendix 8 6 1

NOTES:

62 Notes

APPENDIX 9

USING THE ASSEMBLER CARTRIDGE
TO BEST ADVANTAGE

The Assembler Editor cartridge is designed to support intermediate-level
assembly language software development. It is good enough in this function to
be used by ATARl's own programmers for some software development .

The Assembler is powerful and it can do a great deal, but it is not a professional
software development system. It is not well suited for development of large
assembly language programs. A good rule of thumb is: take the amount of RAM
you have in your system and divide by ten to find the largest amount of object
code you can comfortably develop with this cartridge. Thus, an AT ARI Personal
Computer System with 16K of RAM can be used to develop object code
programs up to about 1600 bytes in size. Of course, you can stretch your
memory by eliminating all explanatory comments and using very short labels.
This will allow you to fit in much more code, but it will make your program
difficult to revise at a later time.

Our recommendation is that this cartridge is best used to develop machine
language subroutines that enhance the speed and power of BASIC programs.
Assembly language complements BASIC very well; the combination of BASIC
and machine language is extremely powerful. You can unleash almost all of the
power inside your A TARI Personal Computer System with this combination.
You should use BASIC for most of your programming; it is easy to write and
debug. You should use assembly language only when necessary. There are five
applications of machine language that are particularly appropriate:

• To provide certain special logical operations not readily available from
BASIC

• To generate special sound effects that BASIC is too slow to generate

• To generate high-speed graphics and animation

• To utilize the interrupt capabilities of the machine

• To accomplish high-speed complex logical calculations and manipulations

Most of these applications are situations di.at call for high speed; in general, the
primary advantage of machine language is its higher speed. Machine language
averages about ten times faster than BASIC and in special cases, can be up to a
thousand times faster. We do not recommend using machine language for
floating point arithmetic or for I/O to and from peripherals (except the screen).
In general, one should use machine language only when its speed advantages
outweigh the difficulties of programming in assembly language.

Extensive use of assembly language requires a thorough knowledge of the
layout and operating system of the host machine. Unfortunately, the ATARI
Personal Computer System is far too complex to cover adequately in a brief
appendix. We therefore provide four commented sample programs which

Appcndi.r 9 63

64 Appe11di.r 9

show how to execute some of the most commonly used functions. These
programs are meant only for demonstration purposes; they certainly do not
exercise the full power of the machine. You may wish to enhance them, adding
whatever features you desire. In this way you will learn more about the AT ARI
Personal Computer System.

All four programs have been written to reside on page 6 of memory. These 256
bytes have been reserved for your use. On page zero, only 7 bytes have been
reserved for your use by the BASIC cartridge; they are locations $CB through
$D1 (203 through 209). Locations $D4 and $D5 (212 and 213) are also usable; they
are used to return parameters from machine language routines to BASIC
through the USR function. Furthermore, locations $D6 through $F1 are used
only by the floating point package; you may use them from BASIC USR calls if
you do not mind having them altered every time an arithmetic operation is
performed. If your program runs only with the Assembler Editor cartridge and
not the BASIC cartridge you may use zero page locations $BO through $CF. You
will have to be very sparing in your use of page zero locations, as nine safe
locations will not take you far. It is not wise to usurp other locations on page
zero, as they are used by the operating system and BASIC; there is no way to
know if you thereby sabotage some vital function and crash the system until it
is too late. For the moment, we recommend that you limit yourself to programs
that fit onto page 6 and use less than 9 bytes of page zero. The four sample
programs meet that restriction; later we will show you how to make larger
programs with BASIC.

Our first sample program is very simple: it takes two 16-bit numbers, exclusive
OR's them together, and returns the resulting 16-bit number to BASIC. It is only
17 bytes long and uses only 4 bytes of page zero. We will use it as a vehicle to
show you the.rudiments ofinterfacing machine language to BASIC. Here's how:
First, type in the program with the Assembler Editor cartridge in place. Make
sure that you have typed it in properly by assembling the program (the
command ASM) and verifying that no errors are flagged to you. If it squawks
unpleasantly, you have offended its delicate sensitivities; note the line number
where the error occurred (CONTROL-1 is a handy way to stop the listing so you
can see what happened). Then list the offending line and correct the typo. You
may rest assured that the program as we list it will indeed assemble without
errors; if you type it in exactly as listed it will work fine. Now assemble the
program with the object code going to your nonvolatile storage medium (either
diskette or cassette). If you have a disk drive, type in:

ASM,,UD:EXCLOR.OBJ

If you have a Program Recorder, type in:

ASM,,UC:

Follow normal procedures for using these devices. After the object code is
stored to your diskette or cassette, open the cartridge slot cover and replace the
Assembler Editor cartridge with the BASIC cartridge. Close the cover and when
you see the READY prompt, load the program from diskette or cassette tape into
RAM.

If you have a diskette, type DOS to call DOS, then type L to load a binary file.
When it asks what file to load, respond with:

EXCLOR.OBJ �

-

When it returns the SELECT ITEM prompt, type B liii!Im to return to BASIC. If
you have a cassette, type in CLOAD and follow the normal procedures for
loading from cassette tape. When the machine language program is fully loaded
and you are back in BASIC's READY mode, you are ready to use your program.
Your program begins at address $0600, or 1536 decimal. Confirm this by the
command:

The computer should respond with the value 104, which, if you care to cipher it
out, is the opcode for the PLA instruction at the beginning of the program. If it
doesn't, you blew it; start backtracking to figure out where you went wrong. If
it comes up correct, then try this command:

A = USR(1536, 1 , 3): ?A �

The computer should respond by printing the value 2, because 1 exclusive
OR'ed with 3 equals 2. If you are not familiar with the exclusive OR operator,
look it up in any beginning book on assembly language programming. You now
have a new function to use. The first parameter is the address of the machine
language routine. The second and third parameters are the two numbers to be
exclusive OR'ed together. They must be integers between 0 and 65535.

Our second sample program generates notes with controllable attack and decay
properties. You may have toyed with the SOUND command in BASIC; if so,
perhaps you have noticed that the sounds you can produce with BASIC are
somewhat primitive. With assembly language it is easier to produce higher
quality sounds. With this routine you can come much closer to the ideal by
directly specifying the attack and decay characteristics of each note. It only con
trols one sound channel, and its algorithm is very simple, so there is plenty of
opportunity for improvement . Four parameters are used: the frequency, the at
tack time, the peak plateau time, and the decay time. All three times are
specified in units of 1 .6 milliseconds. Using the same procedure as before, enter
the program with the Assembler Editor cartridge, assemble it to the diskette or
cassette, save it, switch to BASIC, and load the machine language code. Then run
the program with:

A = USR(1536, 50, 10, 50, 200) ii!illl!tl

Make sure the volume on your television set is turned up and you will hear a
note with a very short attack, a short plateau, and a long decay. Experiment
with different values of the last four parameters to see what effects can be
generated with this technique. Of course, do not change the first parameter
(1536) or the program will almost surely crash.

Our third sample program is a much longer affair which generates a pleasing
animated pattern on the screen. If you study it carefully you will learn a great
deal about the display system of your AT ARI Personal Computer System. This
program only scratches the surface. There is much more to the AT ARI display
system than is evident here. Follow the same procedure to set up the program as
before; you activate the program with:

GR. 19: A = USR(1536) l;!.,flt;nl

There is no termination point in the program; you must press the D £ID key
to terminate the program. After you press the B mu key, the program will
still be intact and usable.

Appendix 9 65

66 Appendix 9

The last sample program demonstrates a very useful capability of the ATARI
Personal Computer System-the display list interrupt. Perhaps you have been itch
ing to have more than five colors on the screen. With display list interrupts you
can have up to 128 colors. Here's the idea behind it: the ATARI display system
uses a display list and display memory. The display list is a sequence of instruc
tions that tell the computer what graphics format to use in putting information
onto the screen. The display memory is the information going onto the screen.
The address of the beginning of the display list can be found in locations 560 and
561 (decimal). The address of the beginning of the display memory can be found
in locations 88 and 89 (decimal). Wondrous things can be done by changing the
display list; this program demonstrates only one of the capabilities of the
display list system. Ifbit 7 of a display list instruction is set (equal to 1), then the
computer will generate a non-maskable interrupt for the 6502 when it en
counters that display list instruction.

If we place an interrupt routine which changes the color values in the color
registers, the color on the screen will be changed each time a display list inter
rupt is encountered. This program consists of two parts: an initializing routine
which sets up the display list interrupt vectors, sets all of the display list instruc
tions to generate display list interrupts, and lastly, enables the display list inter
rupts. The second routine actually services the display list interrupts by chang
ing the color value in the color registers every time it is called. This routine is
designed to operate in GRAPHICS 5 mode; it will put all 128 colors onto the
screen. (Is that enough for you?) To see it in action, follow the familiar pro
cedure for entering, assembling, saving, and loading the program. Then key in
the following BASIC immediate instruction:

GR. 5: FOR I = 0 TO 3: COLOR I: FOR J = 20 * I TO 20* I + 19: PLOT J, 3:
DRA WTO], 39: NEXT j: NEXT I: A= USR(1536)

We hope that these four sample programs have given you a clearer idea ofhow
your ATARI Assembler Editor cartridge might be useful. There are some more
advanced techniques for getting even more use out of your cartridge. The first
problem many programmers encounter arises when they attempt to write a
program larger than 256 bytes long. It will no longer fit onto page 6 and the pro
grammer must find a new place to put the program. The problem is made
worse by the fact that the Operating System and BASIC use memory all over the
address space. The programmer will have a hard time finding a safe place in
memory where the machine language routine will not be wiped out by BASIC
or the Operating System. There are a number of solutions to this problem; each
solution has advantages and disadvantages. We recommend the following ap
proach, which is difficult to understand but is also the most useful and safest
route. What we are going to do is store the machine language program inside a
BASIC program and then touch it up so that it will run from anywhere in
memory.

We begin by writing an assembly language pqJgram with the Assembler Editor
cartridge. Originate the program near the top of your available memory. For ex
ample, if you have 2K of object code and a 16K machine, originate the program
at the 12K boundary with the directive ' * = $3000' . This leaves 4K of space-2K
for your program, 1K for a GRAPHICS mode 0 display, and 1K of extra space for
good measure. Now go through the procedure of assembling the object code to
diskette or cassette, changing the cartridges, and loading the object code into
memory. Calculate the decimal addresses of the beginning and end of your ob
ject code. Let us say that your program is 2179 bytes long. It begins at $3000 or
12288 decimal, so the last byte is at 14466. Print PEEK(12288) and PEEK(14466) to
verify that these addresses really do contain the first and last bytes of your pro
gram. Remember, the computer will print the results in decimal, not hex
adecimal, so you will have to convert in your head or with the computer.

-

Now start writing a BASIC program, begin with:

2 DIM E$(2179)

Then add this subroutine (which you can delete later):

25000 A = 90*J + 1:B = A + 89: IF B > LIMIT THEN B = LIMIT:?"LAST LINE"
25010?] + 5;"E$(";A;" ,",B,") = ";CHR$(34);
25020 FOR I = A TO B:?"IE.i ";CHR$(PEEK)I + C)); :NEXT I
25030 ?CHR$(34):J = J + 1 :RETURN

Here the ml mJ symbol means that you press the escape key twice. Now type
in the following direct commands:

J = o !':;�!�rm� -�A'£1�;!1
C = 12287 �
LIMIT = 21 79 mg

The value of C is the address of the byte before the first byte of your program.
The value of LIMIT is the length of your object program. Now type GOSUB
25000 Eil��:!J.
The computer will print a BASIC line onto the screen. It will look very
strange-all sorts of strange characters inside a string. They are the screen
representation of your object code. To make this line part of your BASIC prgram
simply move the cursor up to the line and press mg. You might reassure
yourself that you were successful by entering:

and verifying that line 5 really did go in. Now type GOSUB 25000 again
and another line will be printed. Enter this one the same way as before.
Continue this process of printing and entering lines until the entire object
program has been encoded inside BASIC statements. You will know you have
reached this point when the computer prints "LAST LINE" onto the screen.

There is one possible hitch with this process. If you have a hex code of $22
(decimal value 34) anywhere in your code it will be put onto the screen as a
double quotation mark. This will confuse the BASIC interpreter, which will
give you a syntax error when you try to enter the line. If this happens, carefully
count which byte is the offender and write down the index of the array which
should contain the double quotation mark. Then go back and replace the
offending quotation mark with a blank space; that will keep the BASIC
interpreter happy. Make note of all such occurrences. When you are done
entering the characters, type in a few more lines like:

30 E$(292, 292) = CHR$(34)

This line puts the double quotation mark into the 292nd array element by brute
force. It should come immediately after the lines that declare the string. You
should have a line similar to this for each instance of the double quotation mark.
Make sure that you have counted properly and put the double quotation marks
into the right places.

Now your object program is a part of the BASIC program. You can SA VE and
LOAD the BASIC program and the object program will be saved and loaded
along with it-a great convenience. You can run the object program by running
the BASIC program and then executing the command:

Appendi.r 9 67

Example 1.
10
20
30
40
50
60
70

0000 80
oocc 90
OOCD 0100
OOD4 0 1 10
OOD5 0120
0600 68 0130
0601 68 0140
0602 85CD 0150
0604 68 0160
0605 85CC 0170
0607 68 0180
0608 45CD 0190
060A 85D5 0200
060C 68 0210
060D 45CC 0220
060F 85D4 0230
061 1 60 0240
0612 0250

Example 2.
10
20
30
40
50
60

68 Appcndi.r 9

A = USR(ADR(E$))

But there is still another possible hitch. The 6502 machine language code is not
fully relocatable; any absolute memory references to the program are certain to
fail. For example, suppose your program has a jump-to-subroutine USR)
instruction that refers to a subroutine within the object code. This instruction
would tell it to jump to a specific address. Unfortunately, your program has no
way of knowing at what specific address that subroutine is stored and thus will
almost certainly jump to the wrong address. The problem arises from the fact
that BASIC might move your object program almost anywhere in memory.

There are several solutions to this problem. The simplest solution is to write
fully relocatable code; that is, code with no JMP's, no JSR's and no data tables
enclosed within it . Put all data tables and subroutines onto page 6. If you still
need more space, put very large data tables into the BASIC string and point to
them indirectly. Replace long JMP's with a bucket brigade of branch
instructions. These techniques should allow you to write large machine
language programs.

; ROUTINE EXCLOR
; PERFORMS EXCLUSIVE OR OPERATION ON
; TWO BYTES PASSED THROUGH THE STACK
; PASSES RESULTS DIRECTLY THROUGH USR FUNCTION

TEMPL
TEMPH
RESLTL
RESLTH
EXCLOR

I
I

i * =

PLA
PLA
STA
PLA
STA
PLA
EOR
STA
PLA
EOR
STA
RTS
.END

; ROUTINE NOTE

$0600
$CC TEMPORARY HOLDING LOCATION
$CD TEMPORARY HOLDING LOCATION
$D4 ADDRESS FOR PASSING RESULTS
$D5 ADDRESS FOR PASSING HIGH RESULT

TEMPH SA VE HIGH BYTE

TEMPL SA VE LOW BYTE

TEMPH PERFORM HIGH EXCLUSIVE OR
RESLTH STORE RESULT

TEMPL PERFORM LOW EXCLUSIVE OR
RESLTL STORE RESULT

WHAT COULD BE SIMPLER?

; GENERA TES NOTES WITH CONTROLLABLE A TT ACK AND DECAY
; TIMES
; CALL FROM BASIC WITH COMMAND:
; A = USR(1536, F, A, P, D)

-

70 ; WHERE
80 ; F IS THE FREQUENCY
90 ; A IS THE A TT ACK TIME
0100 ; P IS THE PEAK TIME
0 1 10 ; D IS THE DECAY TIME
0120
0130 ; ALL TIMES GIVEN IN UNITS OF 1 .6 MILLISECONDS

0000 0140 * = $0600
D200 0150 AUDF1 $D200 AUDIO FREQUENCY REGISTER
D201 0160 AUDC1 $D201 AUDIO CONTROL REGISTER
oocc 0170 ATTACK $CC ATTACK TIME
OOCD 0180 PEAK $CD PEAK OR PLATEAU TIME
OOCE 0190 DECAY $CE DECAY TIME
0600 68 0200 NOTE PLA
0601 68 0210 PLA
0602 68 0220 PLA
0603 8DOOD2 0230 STA AUDF1 SET FREQUENCY
0606 68 0240 PLA
0607 85CC $&Q.-- STA ATTACK SET A TT ACK TIME
0608 68 .Q2W ' PLA
060A 68 0270 PLA
060B 68 0280 PLA
060C 85CD 0290 STA PEAK SET PEAK TIME
060E 68 0300 PLA
060F 68 0310 PLA
0610 85CE 0320 STA DECAY SET DECAY TIME

0330
0340 ; ATTACK LOOP
0350

0612 A9AO 0360 LDA #$AO START WITH ZERO VOLUME
0614 8D01D2 0370 ATLOOP STA AUDC1
0617 A6CC 0380 LDX ATTACK
0619 204106 0390 JSR DELAY
061C 18 0400 CLC
061D 6901 0410 ADC U$01
061F C9BO 0420 CMP U$B0
0621 DOF1 0430 BNE ATLOOP

0440
0450 ; PEAK LOOP
0460

0623 A90E 0470 LDA U$0E
0625 A6CD 0480 PKLOOP LDX PEAK
0627 204106 0490 JSR DELAY
062A 38 0500 SEC
062B E901 0510 SBC U$01
062D DOF6 0520 BNE PKLOOP

0530
0540 ; DECAY LOOP
0550

062F A9AF 0560 LDA #$AF
0631 8D01D2 0570 DC LOOP STA AUDC1
0634 A6CE 0580 LDX DECAY
0636 204106 0590 JSR DELAY

Appendix 9 69

0639 38 0600 SEC
063A E901 0610 SBC #$01
063C C99F 0620 CMP #$9F
063E DOF1 0630 BNE DCLOOP
0640 60 0640 RTS

0650
0641 A013 0660 DELAY LDY #$13
0643 88 0670 DELAY2 DEY
0644 DOFD 0680 BNE DELAY2
0646 CA 0690 DEX
0647 DOFB 0700 BNE DELAY
0649 60 0710 RTS
064A 0720 .END

Example 3 .
10
20
30 ; ROUTINE SPLAY
40 ; PUTS A PRETTY DISPLAY ONTO THE SCREEN
50 ; CALL FROM BASIC WITH THE FOLLOWING COMMANDS
60 ; GR. 19: A = USR(1536)
70 ; EXIT PROGRAM WITH IJ
80
90
0100 * = $0600

oocc 0110 TEMP $CC TEMPORARY LOCATION
OOCD 0120 XLOC $CD HORIZONTAL POSITION OF PIXEL
OOCE 0130 YLOC $CE VERTICAL POSITION OF PIXEL
OOCF 0140 DIST $CF DIST. OF PIXEL FROM SCREEN CENTER
DODO 0150 PHASE $DO COLOR PHASE
OOD1 0160 COLOR $D1 COLOR CHOICE
0058 0170 SAVMSC $58 POINTER TO BEG. OF DISPLAY MEMORY
02C4 0180 COLOR0 $02C4 LOCATION OF COLOR REGISTERS
D20A 0190 RANDOM $D20A HARDWARE RANDOM NUMBER LOCATION
0600 68 0200 SPLAY PLA POP A ZERO FROM ST ACK
0601 85DO 0210 STA PHASE STORE IT IN PHASE
0603 AA 0220 TAX SET COUNTER

0230
0240 ; THIS IS THE MAIN PROGRAM LOOP
0250 ; FIRST WE RANDOMLY CHOOSE THE SCREEN LOC. TO MODIFY
0260 ; SCREEN IS 40 PIXELS HORIZONTALLY BY 24 PIXELS VERTICALLY
0270 ; WITH 4 HORIZONTALLY ADJACENT PIXtLS PER BYTE
0280 ; HENCE THERE ARE 10 BYTES PER HO RIZO NT AL ROW
0290 ; AND 24 ROWS FOR A TOT AL OF 240 BYTES
0300 ; TO REPRESENT THE SCREEN
0310
0320
0330

0604 ADOAD2 0340 BEGIN LDA RANDOM GET A RANDOM NUMBER
0607 290F 0350 AND H$0F MASK OFF LOWER NYBBLE
0609 C90A 0360 CMP H$0A MUST BE SMALLER THAN 10
060B BOF7 0370 BCS BEGIN IF NOT, TRY AGAIN

70 Appendix 9

060D B5CD 03BO STA XLOC STORE THE RESULT
060F 3B 0390 SEC
0610 E905 0400 SBC 11$05 GET X-DIST ANCE FROM CENTER
0612 1005 0410 BPL XA IS IT POSITIVE OR NEGATIVE?
0614 49FF 0420 EOR 11$FF IF NEGATIVE, MAKE IT POSITIVE
0616 1B 0430 CLC
0617 6901 0440 ADC 11$01
0619 B5CF 0450 XA STA DIST SAVE THE ABSOLUTE VALUE
061B ADOAD2 0460 TRYAGN LDA RANDOM GET ANOTHER RANDOM NUMBER
061E 291F 0470 AND 11$ 1F MASK OFF LOWER 5 BITS
0620 C918 04BO CMP #$18 MUST BE SMALLER THAN 24
0622 BOF7 0490 BCS TRYAGN (BECAUSE THERE ARE ONLY 24 ROWS)
0624 B5CE 0500 STA YLOC STORE THE RESULT
0626 3B 0510 SEC
0627 E90C 0520 SBC H$0C GET Y-DIST FROM CENTER OF SCREEN
0629 1005 0530 BPL XB IS IT POSITIVE OR NEGATIVE?
062B 49FF 0540 EOR #$FF IF NEGATIVE, MAKE IT POSITIVE
062D 18 0550 CLC
062E 6901 0560 ADC 11$01

0570
05BO ; NOW CALCULATE THE COLOR TO PUT INTO THIS POSITION
0590

0630 18 0600 XB CLC
0631 65CF 0610 ADC DIST TOT AL DIST FROM CENTER OF SCREEN
0633 65DO 0620 ADC PHASE COLOR PHASE OFFSET

0630
0640 ; BITS 3 AND 4 NOW GIVE THE COLOR TO USE
0650

0635 291F 0660 AND #$1F MASK OUT BITS 5, 6, AND 7
0637 4A 0670 LSR A
063B 4A 06BO LSR A
0639 4A 0690 LSR A SHIFT OFF BITS 0, 1, AND 2
063A B5D1 0700 STA COLOR STORE RIGHT-JUSTIFIED RESULT

0710
0720 ; NOW WE MUST DETERMINE WHICH OF THE 4 PIXELS
0730 ; IN THE BYTE GET THE COLOR
0740

063C ADOAD2 0750 LDA RANDOM
063F 2903 0760 AND #$03 GET A RANDOM NO. BETWEEN 0 AND 3
0641 AB 0770 TAY USE IT AS A COUNTER
0642 F007 07BO BEQ NOSHFT SKIP AHEAD IF IT IS 0

0790
OBOO ; SHIFT OVER TWICE FOR EACH STEP IN Y
OB10

0644 06D1 OB20 SHFTLP ASL COLOR
0646 06D1 OB30 ASL COLOR
064B BB 0840 DEY
0649 DOF9 OB50 BNE SHFTLP

OB60
OB70 ; NOW WE MUST CALCULATE WHERE IN MEMORY TO PUT OUR
OBBO ; SQUARE

064B A5CE OB90 NOSHFT LDA YLOC GET VERTICAL POSITION
064D OA 0900 ASL A YLOC* 2

Appendix 9 71

064E 85CC 0910 STA TEMP SA VE IT FOR A FEW MICROSECONDS
0650 OA 0920 ASL A
065 1 OA 0930 ASL A YLOC* 8
0652 65CC 0940 ADC TEMP ADD IN YLOC* 2

0950
0960 ; RESULT IN ACCUMULATOR IS YLOC* 10
0970 ; REMEMBER, THERE ARE TEN BYTES PER SCREEN ROW
0980

0654 65CD 0990 ADC XLOC
1000
1010 ; RESULT IS MEMORY LOCATION OF DESIRED PIXEL GROUP

0656 AB 1020 TAY
0657 A5D1 1030 LDA COLOR GET COLOR BYTE
0659 9158 1040 STA (SA VMSC),Y PUT IT ONTO THE SCREEN
065B CA 1050 DEX WE SHALL PUT 254 MORE SQUARES
065C DOA6 1060 BNE BEGIN ONTO THE SCREEN

1070
1080 ; END OF MAIN INNER LOOP
1090

065E C6DO 1 100 DEC PHASE STEP COLOR PHASE FOR EXPLOSION
0660 A5DO 1 1 10 LDA PHASE
0662 291F 1 120 AND 11$1F EVERY 32 PHASE STEPS
0664 D09E 1 130 BNE BEGIN WE CHANGE COLOR REGISTERS

1 140 ; THIS SECTION USES BITS 5 AND 6 OF PHASE
1 150 ; TO CHOOSE WHICH COLOR REGISTER TO MODIFY
1 160

0666 A5DO 1 170 LDA PHASE
0668 4A 1 180 LSR A
0669 4A 1 190 LSR A
066A 4A 1200 LSR A
066B 4A 1210 LSR A
066C 4A 1220 LSR A
066D 2903 1230 AND #$03
066F AA 1240 TAX

1250
0670 ADOAD2 1260 LDA RANDOM CHOOSE A RANDOM COLOR
0673 9DC402 1270 STA COLORO,X PUT NEW COLOR INTO COLOR REG.
0676 4C0406 1280 JMP BEGIN START ALL OVER
0679 1290 .END

Example 4.

10 I
20 ; KATHY'S COLOR PALETTE
30 ; PUTS ALL 128 COLORS ONTO THE SCREEN
40 ; CALL FROM BASIC WITH THE FOLLOWING COMMANDS:
50 ; GR. 5
60 ; FORI = O TO 3: COLOR I: FOR J = 20 * I TO 20*1 + 19: PLOT J, 3 :
65 ; DRA WTO J, 39: NEXT J: NEXT I
70 ; A = USR(1536)
80 ; BASIC IS STILL USABLE

--
90 ; EXIT WITH SYSTEM RESET KEY
0100

72 Appendix 9

0110
0000 0120 * = $0600
oocc 0130 POINT A $CC POINTER TO DISPLAY LIST
OOCE 0140 COLCNT $CE KEEPS TRACK OF COLOR WE ARE ON
OOCF 0150 DECK $CF BIT 0 KEEPS TRACK OF WHICH DECK
0230 0160 DSLSTL $0230 0. S. DISPLAY LIST ADDRESS
D40E 0170 NMIEN $D40E NON-MASKABLE INTERRUPT ENABLE
D40F 01BO NMIRES $D40F NON-MASKABLE INTERRUPT RESET
D40F 0190 NMIST $D40F NON-MASKABLE INTERRUPT ST A TUS
0200 0200 VDSLST $0200 DISPLAY LIST INTERRUPT VECTOR
D01A 0210 COLBAK $D01A BACKGROUND COLOR REGISTER
D016 0220 COLPFO $D016 COLOR REGISTER #0
D017 0230 COLPF1 $D017 COLOR REGISTER #1
D018 0240 COLPF2 $D018 COLOR REGISTER #2
D40A 0250 WSYNC $D40A WAIT FOR HORIZONTAL SYNC
0600 6B 0260 SETUP PLA CLEAN STACK

0270
02BO ; SET UP POINTER ON PAGE ZERO
0290

0601 AD3002 0300 LDA DSLSTL
0604 B5CC 0310 STA POINT A
0606 AD3102 0320 LDA DSLSTL + 1
0609 B5CD 0330 STA POINTA + 1

0340
060B A007 0350 LDY 11$07 POINT TO 3RD MODE BYTE
060D A9BA 0360 LDA 11'$BA NEW MODE BYTE

0370
03BO ; STORE 16 DISPLAY LIST INTERRUPT MODE BYTES
0390

060F 9 1CC 0400 LOOP 1 STA (POINTA), Y
061 1 CB 0410 INY
0612 C017 0420 CPY #$17
0614 DOF9 0430 BNE LOOP1

0440
0450 ; SKIP FOUR BLANK LINES
0460

0616 CB 0470 INY
0617 CB 04BO INY
0618 CB 0490 INY
0619 CB 0500 INY

0510
0520 ; STORE 16 MORE DISPLAY LIST INTERRUPT MODE BYTES
0530

061A 91CC 0540 LOOP2 STA (POINTA), Y
061C CB 0550 INY
061D C02B 0560 CPY #$2B
061F DOF9 0570 BNE LOOP2

05BO
0590 ; SET UP DISPLAY LIST INTERRUPT VECTOR
0600

0621 A950 0610 LDA #$50
0623 BD0002 0620 STA VDSLST
0626 A906 0630 LDA #$06

Appendix 9 73

tlJ
0628 8D

/\
102 0640 STA VDSLST + 1

0650
062B A900 0660 LDA #$00
062D 85CE 0670 STA COLCNT INITIALIZE COLOR COUNTER
062F 85CF 0680 STA DECK INITIALIZE DECK COUNTER
0631 8DOFD4 0690 STA NMIRES RESET INTRPT. STATUS REGISTER
0634 ADOFD4 0700 WAIT LDA NMIST GET INTERRUPT STATUS REGISTER
0637 2940 0710 AND #$40 HAS VERTICAL BLANK OCCURRED?
0639 FOF9 0720 BEQ WAIT NO, KEEP CHECKING
063B ADOED4 0730 LDA NMIEN YES, ENABLE DISPLAY LIST
063E 0980 0740 ORA #$80
0640 8DOED4 0750 STA NMIEN THIS ENABLES DLI
0643 60 0760 RTS ALL DONE

0770
0780 ; DISPLAY LIST INTERRUPT SERVICE ROUTINE
0790

0644 0800 * = $0650
0650 48 0810 DLISRV PHA SA VE ACCUMULATOR
0651 A5CE 0820 LDA COLCNT GET CURRENT COLOR
0653 18 0830 CLC
0654 6910 0840 ADC #$10 NEXT COLOR
0656 85CE 0850 STA COLCNT SAVE IT
0658 D013 0860 BNE OVER END OF DECK?

0870
0880 ; END OF DECK, BLACKEN SCREEN
0890 - -----1

065A 8DQ'AD4 0900 STA WSYNC WAIT FOR NEXT SCAN LINE
065D 8DOADO 0910 STA COLBAK BLACKEN ALL REGISTERS
0660 8D16DO 0920 STA COLPFO
0663 8D17DO 0930 STA COLPF1

� E6CF 0940 STA COLPF2
066B 68 0950 INC DECK NEXT DECK
066C 40 0960 PLA RESTORE ACCUMULATOR

0970 RTI DONE
-

0980
0990 ; PUT OUT NEXT COLOR, WITH FOUR LUMINOSITIES
1000

066D A5CF 1010 OVER LDA DECK UPPER OR LOWER DECK?
066F 2901 1020 AND #$01 MASK OFF RELEVANT BIT
0671 OA 1030 ASL A SHIFT INTO HIGH LUMINOSITY
0672 OA 1040 ASL A
0673 OA 1050 ASL A
0674 05CE 1060 ORA COLCNT MERGE WITH COLOR NYBBLE
0676 8DOAD4 1070 STA WSYNC WAIT FOR NEXT SCAN LINE
0679 8D1ADO 1080 STA COLBAK STORE COLOR
067C 6902 1090 ADC #$02 NEXT HIGHER LUMINOSITY
067E 8D16DO 1 100 STA COLPFO STORE COLOR
0681 6902 1 1 10 ADC #$02 NEXT HIGHER LUMINOSITY
0683 8D17DO 1 120 STA COLPF1 STORE COLOR
0686 6902 1 1 30 ADC #$02 NEXT HIGHER LUMINOSITY
0688 8D18DO 1140 STA COLPF2 STORE COLOR
068B 68 1 150 PLA RESTORE ACCUMULATOR
068C 40 1 160 RTI DONE

74 Appendi.i: !!

APPENDIX 10

QUICK REFERENCE:
COMMANDS RECOGNIZED BY

THE ASSEMBLER EDITOR

The following list includes all commands and directives recognized by the Assembler Editor cartridge.
However, not all options, parameters, or defaults are presented. In most cases only the most useful or
interesting version is presented.

EDITOR
Reference
Page No.

NUMxx, yy provides auto line numbering starting at xx in increments 15
of yy

REN xx, yy renumbers all statements in increments of yy, starting 16
with xx

DELxx, yy deletes statement numbers xx through yy 15

NEW wipes out source program 15

FIND/SOUGHT/xx, yy, A finds and displays all occurrences of the string SOUGHT 16
between xx and yy

REP/OLD/NEW/xx, yy, A replaces all occurrences between lines xx and yy of the string 17
OLD with the string NEW

LIST #P: lists source program to printer 19

PRINT #P: prints source program on printer 21

ENTER #0: NAME retrieves source program from diskette 21

SA VE #C:-<xxxx , yyyy saves data in addresses xx xx through yyyy to cassette 22

LOAD #C: retrieves data from cassette 22

ASSEMBLER

ASM#D: NAME. SRC, #P: , #0: NAME. OBJ

DEBUGGER

DR

CR < ,,x

Dxxxx, yyyy

retrieves source file called NAME. SRC on diskette, lists
assembly listing to printer, and saves object program to
diskette under filename NAME. OBJ

displays 6502 registers A, X, Y, P, and S.

puts an x into the Y-register.

displays contents of addresses xxxx through yyyy

25

36

36

36

Appendix 10 75

Cxxxx < yy

Mxxxx < yyyy, zzzz

Vxxxx < yyyy, zzzz

Lxxxx

A

Gxxxx

Txxxx

Sxxxx

x

76 Appendix 10

puts yy into address xxxx.

copies memory block yyyy through zzzz into block starting
at xxxx.

compares memory block yyyy through zzzz with block
starting at xxxx, displaying mismatches.

disassembles memory starting at address xxxx.

activates mini-assembler (no labels, one line at a time).

runs object program at xxxx.

trace; displays 6502 registers while running object program
at address xxxx at readable speed.

single-steps object program at xxxx, displaying registers.

return to EDIT mode

37

38

38

38

40

40

40

41

4 1

-

APPENDIX 1 1

MODIFYING DOS I TO MAKE
BINARY HEADERS COMPATIBLE WITH

ASSEMBLER EDITOR CARTRIDGE

The following assembly language program modifies four memory locations in
DOS I to make binary file headers compatible with the Assembler Editor car
tridge. There are two headers (each two bytes long)-one for SA VE and one for
LOAD. To change the header bytes from hex 8409 to hex FFFF for full com
patibility, type the following modification program.

EDIT

10 * = 600
20 LDA 11$FF
30 STA $2441
40 STA $2448
50 STA $ 14BF
60 STA $ 14CO
70 END

To assemble the modification program, type ASM and press �1m·

Apperuiix 11 77

78 Appendix 1 1

To run this program, you must be in DEBUG mode so, type the following.

• Type BUG and press l;lijl{ll;lll.
• Type G600 and press i;j\!iil@I ·
The screen will display:

DOS I will now have header bytes that are fully compatible with the Assembler
Editor cartridge.

To change DOS I permanently on your diskette:

1 . Run the Modification Program.
2. Type X IDijli@I to get out of BUG.
3. Type DOS l;l§iii@i to enter DOS.
4. Type H H:Ui!;lll to write a fully compatible DOS on diskette.

LOCATION
DECIMAL HEX
9281
9288

5311
5312

2441
2448

14BF
14CO

CHANGES AND LOCATIONS

PRESENT CONTENTS
DECIMAL HEX
132 84
9 09

132
9

84
09

CHANGE TO
DECIMAL HEX
255 FF
255 FF -LOAD

255
255

FF
FF -SAVE

Instead of using the Modification Program, you could use BASIC to POKE
decimal 255 into memory locations 9281 , 9288, 5311 , and 5312. After making
the pokes, type DOS iiliill!;ill to display the DOS Menu. Type H i;liiii@I to write
the DOS modification onto diskette.

-

NOTES:

Notes 79

... 0
w .. �

w "' 8 "' ..
c .. g

;!
0
(j g ..
0

� "' i!: "' "'

.. w
� s :i: o "' "'

"' "'
w W "' "'
- z " " w .,,
.,, ,_

</) "
� "' ;:l <)
w "'

:i:
0
z .. "' ..

,.
0 ;! "'

NO.OP

0 z INDIRECT
z 0
0

� �
z "' 0 Operand •

Bytes •

LOA M-A Note 1

STA A-M

LOX M-X

STX X-M

LOY A-Y

STY Y-M

Machine cycles

AND A l'I M-A Note 1
BIT " M

C M P A - M

CPX X-M

CPY Y-M

ADC A+M-t-C-A Note 1,3

SBC A-M-C-A Note 1,3

ORA AVM-A

EOR A"'rM-A

INC M + l - M

O EC M -1-M

INX X + l -X

DEX X· 1-X

INY Y + l -Y

OEY Y-1-Y
Machine cycles

ASL c-� o
AOL C:�(B-1
LSR o�- c

ROA G:�
Machine cycles

TAX A-X

TXA X-A

TAY A-Y

TYA Y-·A

TSX SP-X

TXS X-SP

Machine cycles

CLV o-v
CLO o-o

SEO 1 - 0
c u 0-1

SEI 1-1
CLC o-c

SEC 1 -C

Mact11ne cycles

BPL Branch d N•O Note 2

BMI Branch d N=l Note 2

BVC Bra�ch II v .. o Note 2

BVS Branch d V= 1 Note 2

BCC Branch 11 C=O Note 2

BCS Branch 1 t C=l Note 2

BNE Branch 1 1 Z=O Note 2

BEO Brf!nct1 i t Z•l Note 2

J M P Jump

JSR Jump to Sl!btout.

ATS Return fr. Subrout

BAK Break \Interrupt}

RTI Aetuin Ir. lnteuupt

Machine cycl es

PHP P-S:SP- 1-SP
PLP SP+ 1-S;S-P
PHA A.-S; SP- 1-SP
PLA SP+ 1-SP;S-A.
NOP No operation

A
X, Y, P
SP

Accumulator, or conten1s
Registers X, Y, P, or contents
Stack Pointer, or contents
Stack s

M

"''
A V.-V

Memory location (elleclive
address), or contents
Sit 7 of M
Logical ANO, OR, XOR

Indirect

{$hhhh)
(ABSJ

3

6C

:.fil

P-0 P is copied lo Q; P unchanged

I NSTRUCTION SET (OPERATION CODES)
TYPE OF ADDRESSING

NON·INDEXEO INDEXED MISCELLANEOUS

lmmed

#$hh
•BY

2
A9

A2

AO

JU_
29

C9

EO

co
69

E9

09
49

_0

DIRECT DIRECT I N DIRECT Register (A,X,Y,P,
CONDITION PC or SP)

Page 0 Absolute Abs ,X Abs. Y Indexed, X Indexed, Y Indexed Indirect Flag (F) FLAGS
Page 0 Page O Indirect Indexed {Alfected- •) Re1ati11e (R)

Shh $hhhh Shhhh,X $hhhh,Y $hh.X $hh,Y \$hh,X) ($hh),Y Slack (S)
BY ABS A8S,X BY,Y BY,X BY,Y (BY,X) {BY),Y None (N) 7 6 5 4 3 2 1 0
2 3 3 3 2 2 2 2 1 2 N v B D I z c

A5 AD BD B9 85 Al 81 • •
85 BO 90 99 95 Bl 9 1

A 6 AE BE 86 • •
88 BE 96
A4 AC BC 84 • •
84 BC 94

02 _©_ _©_ _©_ _©_ _©_ __@_ __@_
25 20 JD 39 35 21 31 • •
24 2C M7 M6 •
C5 CD DO 09 05 Cl 01 • • 4

E4 EC . . 4

C4 cc . • •
65 60 70 79 75 61 7 1 . • • •
E5 EO FO F9 F5 E l F l • . . •
05 DO 1 0 19 15 01 11 . •
45 40 5D 59 55 ., 51 • .
E6(5 EE(6 FE(7 Fili2_j • •
cill) C�6 DE(7 06:.@] • •

EB(X) • •
CA(X) • •
C8(Y) . •
88(Y) . •

_ill _0 l!L ..©. ..©. _.@_ � _2L
06 OE 1E 16 OA(A) . • •
26 2E JE 36 2A(A) • . •
46 4E SE 56 4A(A) 0 • •
66 6E 7E 76 6A(Al • • •

:.@_ :.ID_ _m.: --®.: __©_
AA(A) • •
BA(X) • •
AB(A) • •
98(Y) • •
BA(SP) • •
9A(X)

.ill
BS(F) 0

06(F) 0

FB(F) 1
58(F) 0

78(F) 1
18(F) 0

JB(F) 1

�
10(R)

JO(R)

50(R)

70(R)

90(R)
BO(R)
DO(RI

FO(R)

4C(3

20(6

60(5) Q
OO(P,P9(,7 1

40(� From Stack

�
08(P) 3 J_ J_
28(S) 4 From Stack

48(A)?J'
68(S) 4 •J_ J_ J_ .
EA(N · � J_ J_ J_

NOTES: At 1ne l'leaa of eacl'I column, unoe1 TYPE OF ADDRESSING, the correct way to write an Qperana Is given, 1n l'lex, wl'lere "l'I" represents a he• a1g1t, and symt>Ollcally. wl'l<ire "BY' ana
'ABS' rcprnen1 numbers ot one arid two bytes, 1upecHve1y The numDOr at the hoaa ot uch column is the numDer of bytes ol tl'lat type of Instruction.

Th11 circled number at the toot ol a coll,llT'll'I •S tl'l(l l'lumbe1 ol macrune cycles 101 the Instructions on that block. e•cepllons are 1ndu:<1ted b)' the circled l'IUmbers illltH the Op Code.

1. 11 11'\e p<1ge bouridary 1s crossed, the numt>er ot m<1cnine cycles is one more Iha"' snown.

2 If the condihon Is true IU'ld tne branch ls taken. the number of mach1M1 cycles 1s one more tl'liln shown wnen the bran::h •S 10 the same page and lwomorn ltlan snowriwnen tl'le Dranch ls
to a d111erent page.

J. E!Tects or ADC and SBC may be corilusing II 11'16 D Flag os set Check results cilrelully.

4 C-O when A or X or Y < M; C�1 when A o1 X or V ;. M.

© 1981 ATARI, I NC. PRINTED IN U.S.A.

JI\.
ATARr

A Warner Communications Company Cl C01 4189-03 REV. 2

