

ERROR CODES

ERROR
CODE ERROR CODE MESSAGE

2 Memory insufficient
3 Value error
4 Too many variables
s Stdng length error
6 out of data error
? Number greater tltan 32767
I Input statement error
I Array or string DIM error

10 Argument stack overflolv
11 Floating point overflod

underflow etror
72 Line not found
13 No matching FOR statement
74 line too long error
15 GOSUB or FOR line deleted
16 RETURN error
az Garbage error
1a Invalid string character

-lfoter The fouowing are INI'UT/OUTPUT er-
rors rhdl rerul t dur ing rhe use of di"k dr i !e".
pr inlerr . or other acce.sory device\. ruf lher in-
formation is provided with th€ auxiliary hard'

19 LOAD program too long
20 Device number larger
za LOAD file erlor

aza BREAK abort
7zs IOCB
13o Nonexistent device
131 IOCB write only
132 Invalid command
13J Device of lile not open
7J4 Bad IoCB number
13s IOCB read only error
136 EOF
737 Truncated record
13a Device timeout
139 Device NAK
74o Serial bus
117 Cursor out of range

ERROR
CODE ERROR CODE MDSSAGE

142 Serial bus data frame overrLur
143 Serial bus data frame checksum error
144 Device done error
145 Read after write compare error
146 Function not implemented
147 Insufficient RAM
160 Drive number error
161 Too many OPEN files
162 Disk iull
163 Unrecoverable system data I/O e|ro.
164 File number mismatch
165 File name error
166 POINT data length error
167 File locked
164 Command invalid
169 Directory full
1?o File not found
171 POINT invalid

ror explmation of Errcr Messges see Appendix 1.

ASSEMBLER EDITOR
MANUAL

/t\
ATARI'

OAwame' communicar ons company

lveD' etfort has b€en hade to eNure thal thid manu.l .m.ately documenls rhis prcdud ofthe ATARr compurer Division. Hove@rjbeoue ot rhe ongong imlroLement.and updatin8 ofthe omputer sftwe an:d hardware, ATART, rNC. cannot gudaDtee lhe ae
cuacy or printeJ mlenal after the datc ofpublication and onnor acepi responsibnity for eriors or omissrons.

PREFACE

This manual assum€s the user has read an introductory book on assembly
languag€. It is not intended to teach assembly language. Suggested rcferencis
for assembly languag€ beginners are 6'502 Assembll ranguage programmingby
Ladce L€v€nthal and Progamming the 65U by Rodney Zaks (6ee Appendix 8).

The wer should also know how to use the scleen editinq and control features of
rhe ATARIo 400rM and ATARI 8OOtu personal CoriDuter Svsrems. Thes€(eatures are the same as used in ATARI 8AS|C. Rer.i;w rhe"ATARr BASIC
Reference Manual ifyou are Lrnsure of ho.w to do screen editing.

This manual stafls by showing the structure of sLarements in assembly
language. The mdnual then illusrrares Lhe diflereni rype6 of6502 operands. Thi
Assembl€r Editor ca:rtridge contains three separate programs:

. tDlT (rdiror program) . Helps you pur programming srarements in a form
rhe Ahrembler (ASMI program undersrands. The tDIT program leis you u"e
a prinier to p.int a lisiing ofyour program. programs can also be stored and
rccalled using ENTIRJ LIST and SAVX, LOAD. The Assembler Ediior allows
automatic numbedng, rerumbering, delete, find and .eplace.

. ASM (Assembler program) - Take6 the program statements you ceate in
the EDIT step and converts to machine code.

. DEBUGGER - Hetps you trace through the program steps by running the
program a step at a time while displaying th€ contents of important internal
6502 registers. The DEBUGGER program also contains programming
rcutines which allow you io display registers, change register contentsJ
display memory, change memory contents, move memory, ve fy memory,
list memory with disassembly, assemble one instruction into memory, go
(execuie prograd, exit. The disassembly rouiine is especially usefut ir
rcading and understanding machine language code.

The Assembler Editor cartridge allows you to talk in the mmputer's natural
language - machine language. Assembly languag€ programming offers you
f:lster running programs and the ability io iailor programs to your exact needs.

CONTENTS

PREFACE
1 INTRODUCTION

About This Book
ATARI Peisonal Computer Systems
How anAssembler Editor Is Used

1
1

2 GETTING STARTED
Allocating Memory
Program Format*How to Write a Statement

Statement Number
Label
Operation Code Mnemonic
Operand
Comment

How to Write Operands
Hex Operands
Immediate Operands
Page Zero Operands
Absolute Operands
Absolute Indexed Operands
Non-indexed Indirect Operands
Indexed Indirect Operands
Indirect Indexed Operands
Indexed Page Zero Operands
String Operands

5
a
a
a
a
a
a

a2
12
t2
t2
7.2
12
13
13
13
13
13

3 USING THE EDITOR
Commands to Edit a Program

NEW Command
DEL Command
NUM Command
REN Command
FIND Command
REP Command

Commands to Save (or Display)
and Retrieve Programs

LIST Command
PRINT Command
ENTER Command
SAVE Command
LOAD Command

15
7.5
15
15
15
7.5
77

19
19
27
27

4 USING THE ASSEMBLER
The ASM Command
Directives

OPT Directive
TITLE and PAGE Directives
TAB Directive
BYTE, DBYTE, and WORD Directives

BYTE
DBYTE
w'ORD

LABEL = Directive* = Directive
IF Directive
END Directive

2E
27
27
2A
2S
30
30
30
31
31
31
32

5 USING THE DEBUGGER
p1r rn^cp ^ f nph r rddp r

aa l l i hd +Lp np } ! ' r ddp r

Debug Commands
DR Display Registers
CR Change Registers
D or Dlnmmm Display Memory
C or Cmmmm Change Memory
Mmmmm Move Memory
Vmmmm Verify Memory
L or Lmmmm List Memory With Disassembly
A Assemble One Instruction Into Memory
Gmmmm Go (Execute Program)
Tmmmm Trace Operation
S or Smmlnm Step Operation
X Exit

APPENDICES

36
36
36
3Z
3B
3B
38
40
40
40
4a
4l

1
2
3
4

5
6
7

I
9

Errors
Assembler Mnemonics (Alphabetic List)
Special Symbols
Table of Hex Digits with Corresponding
Op Code Mnemonics and Operalds
Expressions
Directives
ATASCII Code and Decimal/
Hexadecimal Equivalents
References
Using the ATARI Assembler Ddiror
Cartridge to Best Advantage
Quick Reference for Command6
Recognized by the Assembler Ediror

43
45
47

49
51
53

61

63
10

11 Modifying DOS I to Make Binary Headers
Comparible with Assembly Carr;idge

ILLUSTRATIONS

Figure 2
Figure 3
Figure 4

Figure 5

-r-xntolr I

Figure 6

-rlqure /

Figure B

Figure 9

Relationship ofvarious parts of Assembler
tditor carrridge ro you and your sollware
Memory map withour use of LOMEM
Memory map with u6e of LOMEM
Example ofhow to write Line No., Label.
Op Code. Operand. and Comment in rhe
ATARI programming form
Statemenrs a6 rhey would appear on the
screen when entered on the keyboard
with the recommended spacine. !O
Sample reproducible A'I'ARI

-
programming form j,B
S_ample program as you write it on
lhe ATARI programming form lB
Appearance of the screen as your
program is entered on the keyboard
Appearance of the screen as your
sample program is assembled
Normal (defaulrt format of assembly
listing as it appears on the screen

3

1a

25

26

l

7
)

INTRODUCTION

ABOUT THIS
MANUAL

To use the ATARI@ Assembler Editor cariridge effectively, there are fturkinds ofinformation that you must have. Firsi, y;u need someguidarc€ aboutho$ ro Lr"e lhe rdrrr i , lge i rselr . Second, vou ne.a r , , know abo-ur rhe ArARI
rcrsonal Compurcr sysrem you ar(ur ing wir h rhp carr r idge. I hird. you need ro
knou .om.'hing dbour b502 An"cmbtv Langurgp nrogramm,ng. And. tourrh,
lhe Assemblcr Edi lor Carrr idee was de\Uned lo bc u"ed wirh lhc At ARJ di"k
drives and DOS II

This manual explains ihe operation ofttre ATARr Assembler Ediior cartridge. rt
do.s nor e\pl , in 6502 Assemblv LdnH,raep pr.^qrammin]-. l t vou are ahe.dvIdmil i r r wirh 6so2 AJ.embl l rangu"ge. vou u i) i r ind rhis 'maIual rmply .uire-dio J our nced': orhcrwi:" . vou Jroutd I pter ro one,, f rh. many Look" ihar ex.plain 4502 AssFmbly Ld Buage pro8rdmming: .uir :bJe books dce t i " ,ed r , l

Ifyou are familiar with ATARr BASIC and have written some programs on your
ATARI 400rr1 or ATARI 800N personat Compute. System,^yoi will fini1 no
better way to learn assembly language ihan the combination oithis manuat. theATARI A.sembler tdrror carrr idge. rnd a 6502 programming book.

l fyou have had no experience wirh compurer! and no Droerammrnd exDer-
ien, e. rhen thi" manudl is pr obabtJ roo advanced tor you anJyou st oi ta "rarr
Dy wntlng some programs using ATARr BASIC and your ATARr personal Com,pt ' rcr Sysrem ro bc, ome lamil iar s r lh proqrammine in eenp1.3t. Readine one olthF hooks re.nmn,ended in Appcndi\ I wi

help you leirn as.embtv languase.

The 4TARI Assembler Editor cartridge is installed in ihe cart dge slot ofihe
ATARI 400 computer console and in the tcft cart.idee slot of the "1TARr 800(ompurFr console. You musr he tamit iar w h rhe ke1;board and al l rhe scree _
editing lunctions. That matedal is covered in the app;opriaie operator,s Manual
supplied rvith yolll. A'rARI perconal computer *st;m. Th; special sc.een_
editing keys are described in Section 6 of fue Opeiator's uanual. you shoutd
readSection 6 and follo.lv the instmctions untit yoir are compietely familiar with
th. keyhoard "nd rhe.creen-edr. i g lun(1ion,.

You nced nIr havp any equipmenr ej .epr rhe ATARI rer$onat Compurcr St srFm.onsole. your lele\ is ion or d \ ideo moniror tor disotav. dnd-rhe 4fARr
Assemblpr Ldiror car-rr idge. However. wirhour a pcrmaneni sror"ge device you
wrrr have lo pnle' yo, ' r program on rhe kpyboard ea(h r ime you u i .h to usp ir .
This can bp_rpdious and r ime-consuming. An ATARI 4 ro v i rogrrm necorder,
ATARI 810rM Disk Ddve, or ATARr 8151M Duat Disk Drive (do;bte densitvl is;pr:ctrcal ne, e-si tv,

ATARI
PERSONAL
COMPUTER
SYSTEMS

I

)

The ATARI 410 Program Recorder i6 an acc€ssory that functions with ihe
ATARI 400 and Lhe ATART 800 Per"onal Computer Systems. The pr oper opFra-
t ion ofyour Program Recorder is expla;ned in Secl jon 8 ofrhP ATARI 400 and
ATARI 800 Opdator's Manuals. Befor€ usiDg the Program Record€r with the
Assembler Editor cartridge, be sure you know how to operate the Program
Recoder. The disk &ives are accessodes that function with any ATARI Per-
sonal Comput€r system with ai leasi 16K RAM. To us€ a disk drive you need a
special program, the Di6k operatiDg System (DoSJ. At least 16K of memory is
required to accommodate DOS. Consequently, if you are using an ATARI 400
Personal Computer System, you must upgrade it from 8K to 16K (RAM). This can
be done ai any ATARI Service Center.

I f you arc using the ATARI 810 Dirk Dri ! e. you shodd refer to the in6(ruct ions
rhi t come wirh i r . You should al to read rhF appr opriate Disk operal ing sysrem
Reference Manual. Ifyou are curently usirg the 9/2419 ver8ion ofDos (Dos I),
you must use rhe prdgram in AppeniJ;x I I for rhe d,"k dr ive ro be comparible
with the Assembler Editor cariridse.

lfyou are using the ATARI 815 Du3l Disk Driwe, you should refer to the ATARI
8r-5 operator's:uanual and the Disk operating sistem 1I Reference Manual that

You can also add the ATARI820r!, the ATARI S25TM or the ATARI 822rNi Printer
io your Personal Compute! System to give you "hard copy"-ihat is, a perma-
nent rccord ofyour program written on paper.

All assembly language programs are divided into two parts: a "soxrce
prosram, which is a human readable version ofrhe program. and rhe "object

;roiram. s hich is lhe compurer-readable vet" ion of the program. Thesc two
i,er."ion. of th. progr am are'disrinct and mLrst oc' upy diftire;r area" of RAM
As the programmer, you have three p mary iasks:

HOW AN
ASSEMBLER
EDITOR IS USED

To enter your source program into the computer, €dit it (make insertioru,
deletions," and corrections] and save it to oi retrieve it from diskette or

To translate youl source code into object code.
To monitor and debug the operation of your object program

These thiee rasks are handled wirh rhree programs included in lhe ATARI
As6embler Ediror. The firsr program. called-rhi bditor. Provides many handy
features for €nte ng the program and making insertions, deletions, and co ec-
tions to it. It also aliows you to save and retriive your source code The second
program, cal led lhe AssFmbler, wi l l t ranslate your source program 'nio an
;bieir prcsram. whi)e doing so, i r wi l l provide you with an -assembly l ist ing. '

a ;sct;l listing in which your source piogram is lined up side by side with rhe

result ing obiecl program. The rhjrd progrdm is.a ed rhe Debugspri ; r helpsyou to monnor and dFbug yol l l objen program. The relar ionship berween rheseihree programs is depicted as follows:

YOU

Source Program

Figure 7. Rel.,tiot?.ship ofvariorr,s pans of Assembter Editor .llrtridee
to you and your softwdre,

In Section 3 we explain the Editor; in Section 4, the Assemble(and in Section 5.
rhe Debugger. There are some funddmentat ideau we musr explain f i rs l .

Object Program

),

GETTING
STARTED

ALLOCATING
MEMORY

The very lirst.decision you must make when you sii down to write your sourceprogram involves the allocation ofmcDlory spac€.

Al l p, ogram". , lgdrdlpss , , f l "ngu"ue. occrrpl me ,ory \p4ce. rhe(.ompurerha"
a rrmrrc(l drnounl ot ,npmory and mu5t manr. 'F i t i merno|v .dr. ful l \ . a l loLJlmup " r t i o n " o f m . r , r o l J r o r p r o g r d m . d r r a . d r . p i r y " f , a , " . r , , d . o r o l t . r r . , . ; , , i i
donr automdlRatly in BASIC. c, , rhc BASIC u".r nced nor worcv about $ hele innremury l r i . p 'ogrJm and dara drc,tored. Su.h is nor quire r ie crsc rvirh rheAs.emblpr LdIor c"r ' r r idge. y, ,u hare Jhe powpr ro pt l r lF vour L,rueramsrnJ whei e in me ory, har you dcn.e. u i rh rhF po-", ,oln.sr6., .sp;n, i"b, t i r l .
to allocatc menor.v iviselv,

rhe araRr conputer syU." *"" a* -"--" tbr its own internat Deeds. The
an,ounr rr urFs, lepcnds un $hprlrcr o. nor DOr is loJIed ir , ro RA]\1. ln anvF v e , , r . ' h c A r " c n r b F r f , d i r o . , d r r r i d g F $ r a u r o m a r i , J t y p l a , e v o u r s , u r c c p r J _
g ' " m i n r o ' h e c h u n k o f m c r n o , v , r J i n g w i r h r h e f i r . j i r . . ; " m o r " t , . . r | i o n .
As.you typ€ in more source code, the memorlr allocated io storing your source.odc ' .a ed r h- . Ldir TF\r Bufrer j , gro$ ". t fyou dcl"re t inFs or .o;r (F , . ,de, rh.c d i r r p \ r b u f T (r . l r r i n k . . y o u , r n v i s u a t i z F r t , p m F m o r) r o , , r r o n \ v i r h r h i "figure, which is called a memofy map:

DOSos 180 Edi tToxt
Bufter

Empty Display
BAU

EigtJre 2. Mernorynap without rtse of LOMEN.

' I he e l i i r t r xr hut i . r i lwry. gros. lo \vrrd" lhp r . isht , I o rhe . .emo
ar pa. The lpf r r iJe or rhe eJ i r rFrr Lr r f Ipr i . f i rca in pta, . on.e vou l r ,u . r .nr . r i ie

Your pfobleD, is r , , dcr . rmine wl)erF ro, rore Jhc obip, rLod, Dr , , (lu(.ed bv rhe
A."embler . l fyou nur rhF, ,h jecr codF in lo rhF rcgio 'nq m.rk;d os RAM, DOS
R A M . o r d . . p l a v R A M .) o u $ i l . p f o l r l l ' J c , r r r " . r h . c o m p u r e r r . , r " " h , , n d a t l
y o J r . l y p i n g \ \ i l l b e l o " l . l f y , , u p u r i r i n r o r h F p t d c , c r " , t r h . e d i r r p \ r b u r t ; r ,
'hc obiccr , o , le wi l l ovcfwr i e rhe s, ,ur r 'e , ode. , : s in{ mo,c .hdo! . . i Le unlv
s i r i p l d . e r u t , ,

) o l r . o b j e . r , u . t c i s i n r h c . ? m p , v r ,) e ; , , , y . . i r . , .

You can find olrr wherF rhis empty memory area is by ryping SrZr mffini.I hree hexade.rmaL number" wi l l be displayed. l ikF so:

SIZEffi
0700 0880 5c1F
NDIT

The tust number (0700 in this example) is the address ofihe bottom of usable
RAM, th€ point labeled "A" on ih€ m€mory map. The second number is the
addrcss ofthe top of th€ edit text bufer, Iabeled .r8,, on the memory map. The
third number is ihe address ofthe top of empty memort, labeled-,,C,, ;n the
memory map. The difference between the second and third rumbers (how
good ar€ you at hexadecimal subtraction?) is the arnount of€mDtv memoru. you
can use the SIZE command any time you d€sire to know h-ow much lmpty
memory remam6.

Liberally estimat€ ihe amouni of memory yorr object pm$am wi[require,
then subtract that amount from ihe third numb"..

'ror
i*t.i i""u.a"... .ir.-i

the rpsulr down. for example. i fyou rhoughl rhar your objen code mighr
require 1.5K, you'd subtract 2K from g5C1F to g€t $541F and then for simptclty(and additional insurance) you would round atl the way down to $5004. yo;
would therefore store your object cod€ at g5OOo, confident that it would not
encroach on the display memory. More conservaiiwe estimates and greater carc
would be necessary if m€mory werc in short supply.

Having decided lo ilore rhe obtect program slarrinq ar ad&ess $5000. vour nerr
rask is ro declare this to rhe compurer. rh;s is done-wirt . - direcr ive."The velv
firsr starement ofrhe source code would read:

10 { -$5000

This direcr ive rells rhc Assembler ro pul all subsequenr object code inro memory
start ing ar address $5000. Alhough ir is nor abdlurely neces"ary. ; r i . a lways
wise praciice to make the *= directiwe the v€ry jirst line oi your source
program.

You have two other strYou havF l$o olher srralegies for dl locaring memory sprcc tor vour obiecl
program. l he f i rsr and simplest srraregy is ro-placeyouiobFcr code 6n paeeo orprogram. I he lirsr and simplest srrareqy is ro place yourobjFcl code on Daee t oI
memory. The 256 locarion. on page o-6ave bi,en sir a.ide for you. u"J. riyourmemory. rnez5b tocatron! on page r j have bcen setas idefbryour ure. I fyour
objecr -program and its drra wil Jl fir inro 256 byres. rhen you can pur ir iher.put it there
wiih the directive:

10 r =$0600

This is a good safe way to sra

when you are !r i l l tearninq assembty languase
programming and are wriring only very shorr proeramsi as your proE"raris
grow larger, you will wanr ro move rhem offpdgi 6 ;nd use pag; 6 io; d; and

t he second srrdlegy is 10 bump rhe edir rexr butTpr {your source program) ut)-
waro rn memory. leavrng some emply memory spar e betow ir. you can rhen
prace your oDJecl codc into this empry space. FigL're 3 shows rhe adjuslmFnl of
rne memory map.

I
it

IIos Dos Empty EdilTexl
Buffer

Emply Dlsplay180

Top ol
BAM YoUi RAM

Figure 3. Memory tnap with ttse of LOMEM.

This bumping is accomplished wfth a speciat cornmand ca ed LOMIIM. Thecommand rs special because ir must be rhe very fir"l command you enler aneriuning on the computer. Its form is simple:

LOMEM xxxx g!19fiffi1

wher€ XXXX is the hexadecimal address ofth€ new boftom edge ofthe edit t€xt
buffer rpoint A in the mernory mapr. you musl not ser LOMf,M to a smallervarue rnan

normalty rs. or you will overwrite OS data or DOS and .rdsh rhesystem. rurthermore, ifyou set LOMIM roo high, you will have too little room
ror your source Fogram. you must esiirl-Iate how much memorv your obiect
cod€ will require, and bum_p the edit teni buffer upward by thit"-".r, !t""some more for insurance. Then your firsi program instruction becomes:

'

10 * =$YYYY

wherF YYYY is rhe old lalue of A given by rhe StZr command before you
turned ol l lhe compuler, 'Lrrned ir brck on, and used rhe LOMiM command

You might wonder why anybody would want to use the LOMIM command and
store the object prcgram in front ofthe sourc€ program instead of behind it.
The primary reason ihis conunand is prcvided com€s fiom th€ fact that the
Assembler program. as ir rranslares your souice program inro an obiecl pro-
gram. uses so^me addi i ional memory tca ed a symbol iabJerjusr above rhe edit

object pro-

rerr buffer. l fyou real l l wanted io, you.ould-f ieure jusr how much memorv
rhe symbol iable uses; ir i" lhrep b!Ie! tor eJch dlsrinci Iabet olu. one bq" r"',plus on€ bl-te forrhe symbol iable usesi ir i" lhrep bJa;! tor eJch
each chdracler in €ach labpl. Mosr progr€mmers $ ho doni e^joy ngoing our
now org rnrs symool tabte,s use the LOMTM commard so rhev won r have Loworry abour i r . {Only rhe label i r"el fcoLlr ts, nor rhe number of i imes ir aooears
rn lhe program.r

Alloc"ring memory can be a confusing rask for rhe beginner. OrJy rwo insrruc
I'ons iLOMI_ Il and =) JJe used. bur if they are miiused you ian crash thesy"rpm.and lose your.work.. fonunarely. i t yoLr resrr icr your"el f to smal l pro_gram" inir ia l ly you l l havp plpnry ofempry memory spa, i and tewer atJocai ion

The - directive will be followed by your sour.e proeram. The solDce Droerallis composed ot strlempnrs. The sraremenrs muit be writren .ccord'i"j," .
r igorous fbrmar. The rules tor wrir ing slaremenrs are given in rhe nexr s; t ion.

PROGRAM
FORMAT-HO\^/
TO WRITE A
STATEMENT.

A source program consists of statements. Each statement is ierminated with
g:!8W. A statement may be 1-106 charact€rs long, or almost ihree lines on the
scleen. A statement is al6o called a line. The distinction is made between a
physical line (a line on the screen) and a logical line (the stdng ofcharacie$, up
to three physical lines between ffiFs).

A siatemeni can have up io five parts or "fields": the statement number, alabel,
the operation code mnemonic or dircctive, an operand, and a comment. These
five fields occupy successive positions in the statement, with the statemeni
number coming first and the comment coming last. Fields ar€ separated
("delimited"l by single spaces.

Statement Number
Every statement musi siart with a number from O to 65535. It is customary to
number statements in incremenis of 10, 20, 30J etc. Th€ Editor automaiically
puts the statements in numerical order for you. Numbedng by tens allows you
to insert new statements at a later date between existine stat€ments. To assist
you. rhe tdi lor has several convenienr commands for aur;mir ical ly numbering
statements (see NUM, REN).

Label
A label, if used, occupies the second field in the statement. You must leave
€xactly one 6pace (not a tab) after the statement number. The label must stafi
with a letter and contain onlv letters and numbers. It can be as short as one
charact€r and as long as the limitation of statement length pelrnits (106 less the
number ofcharacters in the statement number). Most programmers use labels
ihree to six characters long.

You are not forced to have a label. To go on to the next field, eDteranother space
(or a iab). The Assembler will interyret the ent.ies after a tab as an operation

Ope.ation Code Mnemonic
The operation mde (or op code) mnemonic must be one of thos€ given in
Appendix 2. It musi be enter€d in the {ield that sta s at least two spaces after
the statement number, or one spac€ al}er a label. An operation code mnemonic
in th€ wrong field will not be ideniified as an error in the Edit mode, but will be
flagged when you assemble ih€ program (Eror 6).

operand
Thc fieldofthc opcrand startsat least one space (or a iab) after anoperaiion code
mnemonic. some operaiion code mnemonics do not require an operand. The
Assembler will expect an opemnd ifthe op code mnemonic requircs one. Each
differeni way of wriiing an operand is given in the section called HOw TO
WRITE OPERANDS.

Cornment
A comment appears on the listing ofa Fogram, but does not in any way aIt'ect
the assembled object code. Programmers use comments to €xplain io others (and
to themselves) how a seciion of code works.

There are two ways to hawe the Assembler interpret €ntries as comm€nts. One
way is ro mal.e lhe entr ies in lhe commeni f ie ld. ;hich occupies rhe remainder
of the line afier the insrru.lion fieldtsl. Ar leasr one sDace musr seDaraLe rh€
instruflion fields from rhe commenl field. There may iror be enougL space in
the comment field for the comment you wish to write th€re. rn th;t c;se it is
best to use one or more lines as comment lines dedicated onlv to makinq com-
ments and conraining no code. To do so. you .nt.r one spaci ara a semicoton
followed by any comment or explanarory markings you de6ire. jtveryrhing
berween rhe iniriai semicolon andlhe m@iffl is ignored by rhe a,sembter. bui
wrx De prrn(eo rn rhe Is lrng ot lhe pmgram.

A sample programming form lor assembly language ir rcproduced as figule 4.
The form shows examples of how to enrer line number. Iibel. op code. operand
and comments. These classes of entry ar€ lined up vertically on the program-
ming form. Most vadation occurs in the method of ent€rinE a comment.
Therefore. Figure 4 includes examples ofthe rar ious ways ro enier commenrs.

s.mple, Reproducible
ATARI ProgIamming rornr

Figvre .Exdrnple of haw ta wfite Line No.., L.tbel, Op Code,Operani!,
and Ldbel on the Atari progratnningforn.

""^^* 6Anz"t.. *qn ' t r l 4 t IAD'"*'""""Jor+rrl -noa

LINENO COMMENT

t0 LT6L Ultt4AJf tl at'4Ae f f'rLn
-lt+ bt4t6 r tl rnaabJr f,F.L:>

tt^tlf.rlr irJ'1+t6 t.rE, *r1h^ta
'tiLAL!4 Utlli^lU-6 .a -ll+6 Dle
lruAE;r bi-r1t' l,itJ. bnr

J60 t tA hn-7*13 ^hHl\arr$ t)1.
++,b,

n 1 ^ n m t n t t
t-e'aLA6€L

,'P?tlt6r1 t t^lr l!4^\ . ^'tdtn<
o^\Lu slr'.tr5 . lertJ. "aA . t)lE
Jal ct,.'.|.qti;6 o a1 T1E tA#.L
d A]Jtllx u.Jtl M4!4 At Ar,c t "

---/\/\\ ^

The spacing on ihe pmgramming form is not the same as the spacing to be used
on the screenj controlled by keyboard eDtry. On the screen the classes ofeniry
(the {i€lds) are not lined up verticaly. The screen has 38 positions (you can
change it to a maximum of40), {ewer than the progrsrnming form) and that is
the main reason not to use many spaces between fields. Another difference be-
tw€€n the programming form and screen is the r\{raparound' on the
screen-auiomatic continuation of characters onto the next line.

Figure 5 shows the entries in Figue 4 as they should appear on the screen when
entered or ihe keyboard with the recommended spacing. In general' the spac-
ine recommerded in this manual is the minimum spacing that willbe correctly
inlerpreied by the Assembler Editor. Ifyou prefer to have more vertical slign-
ment offields, use TAB, raiher than the single sPacing between fields that we
recommend. The statements below show various examples of comments cor-
rectly positioned in the staiement. Xach comment in the examples siarts with
"COMMENT" or semicolon(r.

Figure 5. Stct,a,nents as ttEy would appear on tlle screel:, when entereil
on the keybooril rrith the reconmendcd spacing. The v.trb s
vrays to enter cot'-,'tents arc illustrdElL Conapdre with FEu]e 4.

HOW TO \ /RITE This section showshow to write operands. The examples use statemenr number
OPERANDS xxxx (also caled line number xxxx). An insiructi; entered without a siate_ment number is not alowed by the Editor.

. The examples use By (for b)1€) and ABS (for absotuie) as a one_byte and a two_byte number, respectjvety. Thi$ use implies rhar the proeram i;cludes defini_r ions ofBy and ABS rs. ror exdmptc:

0100 By= 155
0200 1\85=567

pl€ase refer to rhe d€scripiion ofthe r,ABL = direcrive fbr an exptanarion ofthedefinitions of lines 1oo and 200.

Hexadecimal Operands
A number is interyrcied as a decimat number unless ii is preceded by g, inwhich case it is interpreied as a hexadecimal number.

Examples:
30 sTA 99325
80 ASL 915

Imrnediare Operands
,\n immediate operad js_ an operand that contains the dara ofrhe instruction.
The pound sign (/l must be p;sent io indicate an immediar€ operand.

E"xamples:
40 LDA i72
70 oRA ,fg3c

1OOO CPY /BY

Pag€ Zero Operands
when_an operand is a number less than 2s5 decimdl, (FF h€x) and is notimmediate, the number is inrerpreted a$ a page zero address.

Example8:
150 LDX 912
250 ROR 33
5OO DEC !Y

Absolute Operands
Absotuie operands are evaluated as 16_bii numbers.

Examples:
20 LDX 91212
40 cPY 2345

990 DEC 579
2350 nIT AB5

Absolure tndexed Operands
An absotut€ indexed operand uses regist$ x or y. The operand is written
_,x or _,Y

Examplesr
10 AND

110 F,OR
1110 STA

$3C26,x
20955,Y

Non-Indexed Indireca operands

ln Eeneral. an indjrecl operand is wrilten with pa-rentbeses The address wirhin
rbe-Dareniheses i" an i;rermediare address which itself con(ains Ihe effective
addrless. The onlv instrudion with a non-indexed indirecl operand isJump In'
dired. The operand is a number enclosed in parentheses. The parcnlheses in the
operand enciose a number or an expression lhar is inlerpreted ae an inter-
mediate addr€ss.
Dxamples:

JMP t$6000)
JMP (ABS)
JMP (7430)
JM? (ABS+256-BYJ

Indeied Indtiect oPerands
An indexed indftect instruction us€s register X. The operand is wdtten (-,Xl

Examples:
10 rNc ($99,X)

Indirect Index€d OPerands
An indtect indexed instruction uses register Y. The operand is wdtt€n (-)'Y

Exarnpld:
10 LDA I$28),Y

110 .CMP ($E5),Y
1110 ORA (BY),Y

tndexed Page zero operandg
A zero page indexed operand is wrirlen -.X or -.Y

Eramples:
10 lNc $34,X

110 STX $AB,Y
1110 I-DX BY,Y

string operands
ODerands or pai-ls ol operands enclosed in double quotaLion marks are
rr:anslared into rhe ATASIII codes of lhe characiers berween lhe quota(ion
marks. The use ofsuch operands musl ofcourse be appropriate to lhe U?e of
insrruclion or diredive io which they are appended.
Examples:

10 ADDR .BYTE ..9+1 =S TEN"

Ex€cutio[ofthis direciive causes th€ ATASCII numb€rs coresponding to "9",
' ' ' , erc.) io be srored al successive local ions slarJing al ADDR. Note. lhal lhe
ATASCII represenlation ol any character except rhe quoration mark (") can be
srored wirh lhe.BYTL direct ive having a slr ing operand.

Exhibit I
Sample, Reproducible

ATARI Programming Form

L I N E N O , LABEL OP
CODE OPERAND COMMENT

NOTES:

30
USING

THE EDITOR

tI
IItI

COMMANDS
EDIT A
PROGRAM

Now that we havc explanrcd how to gct started writire a proeram. rt is uD royou to actually $'ritc the program. This manual coniiins-r eiy liiitc jni;r mdijon
on assem}]y .laDguage pfogramDring rectrniques. wc assume thar you are
alrcrLly fdmilirr wilh Jssenrbty language. ihe remainder of the section, i F s . . i L r p s l r n $ r o r b " r h c A . s c m L r t ^ . r d i r , , r , n , r r i d g r

a u n commano rs nor rhe same fhine as an instruction. An insiructioir has a line
numbe.; a command has no line number.and is executed immediatety.

NDw Command
This command clears the edii text bul]br. After this command
restore your source program; it has been d€stroyed.

Somc programmers ha1,e th€ habit ot giving the NEw coDrmand (or its
e.luivaleDt with olher asscmblers) whcn thev start a programming sessioD. r.he
r€ason is to remove any .,garbage,, ihal may be in mernory by misrake. SiDce
thc.ATARI Pcrsonnl Compuier Sysiem clears jts mcmory rvtren it is turned or,,
such rouiine use olNDw wouldbe a needlcss precaution. Because NEw destroys
your cniire sorrcc progranr! it is more importanr io dcvetop a trabii of NO,l.
usxrg ii roulinely. You should. .atherJ use NEw in a very dctiberate fashion only
rvhen you rv:Dt to rcmove a source prog.am from RAtvr.

DEL Command
This command deletes statements from your souce progfam.

Drlxx S.qe* deletes staiement nnmber xx.
DEIxx,n' $itR:* dcleies statement numbers xx trrrcugh yy.

NUM Command
This command assign$ staiement numbers auiomatical|y.

NUM liflnir& incremcnts statemeni number by 10
a{ier cach 4FilH. rhe nerv statement
numbcr, fbllowed by a space, is auto
matically displayed.

l'i1Xi+l} has the same eilact as NUM, but ihe
ncrement is nn instead of10.

llltl:i't forces the next statement nuDber io be
mm and the indement to be nn.

fiitjtlj cancels the NUM command.

NUMnn

NUMmm,nn

i;'r,:SS

10
2n
NUM
75

The eff€ct ofthe NUM commanal stops automatically when a statement number
that already €xists is reach€d. For examplel

RXN

LDX *$EF
CMP MEMORY
75,5

A{ier statement number 15, the next statement number v\rould be 20, which
;;;;;;;;-iJ.;lh; NtM c;mmand is cancelled' rhe automatic numbedns of
"i'i"i'""i"Gri -"tl""e until the next number is exactlv equal to an existing
""t"iler. .t sfigftt ctta"ge from the above example iUustrates this:

10 LDX r$EF
20 CMP MEMORY
NUM 15,6
15 TAX
2 7

Caution: You cannot us€ the special keyboard ediLing -keys to cbange other
$atemenis while the NUM command is in effect YoLr will succeed 'n cnangmg
;;;i;;;;; "; tt" "ceen, but, in an exceptioil to the general rule' the con-
t€nts oiihe edit text buffer will not be changed

REN Co'xrmand
This command r€numbers stat€ments in your source program'

@ r€numbe$ aI the statements.in
incremenls of 10, stafiing wilh 10'

@ rcnumbers all the statements in
increments ofnn, stafiing with 1o

l@ renuJnbers all lhe stalemenrs rn
incremen{s ot nn, startmg \r'rtD mm'

RENnn

RENmm,nn

FIND Conunand

This commanal finds a specified string The ways to wdte th€ command aft
shown below.

fIND/SOUGIII/ @ finds the first occurrence ofthe stdng- soucrt,r. the statem€nt that contains
the string is disPlaYed'

fmds all occurences ofth€ string
SOUGHT. All statem€nts containing such
occurences are displayed.

finds the stdng SOUGHT if it occu$ in
stat€ment number xx. Statement xx is
displayed if it contaiff th€ string

finals all occumen€es ofthe string.
SOUGHT b€tween statement number xx
and yv. All the statem€nts that contain
th€ ;t;ng are displayed.

FrND/souGHT/,4 G8!E!

FIND/SOUGHT/XX @

FIND/SOUGHT/XX,YY,A

In these examples, the string SoUGHT is delimited (marked ofD by the
character /. Actually, any character except space, tab and @ can be used as
th€ delimiter. For exampl€, the command

FIND DAD

finds the lirst occur:rence ofthe character A. The delimiter is the character D.
The delimiter is de{ined as the flrst character fnot cowting space or tab) a{ter
ih€ keyword FIND. This featue is p€rplexing to beginners; its purpose is io
allow you to search for strings that contain slashes (, or, for that matter, any
special characters.

The general form ofthe comlr1alrd is

FIND delimiter st ng d€limiter tlineno,linenol t,Al

In the general form, symbok l'jthin a pair ofbrackets are optional qualifier8 of
rne comrnano.

REP Comrnand
This command replaces a sp€cified string in your source Fogram with a dif
fa.anr cnp-ifip.l crrind

REP/OLD,NEW @ replac$ the fir6t occurrence ofthe string
OLD with the stdng NEw.

REP/OLDArEWxx,yy @ replaces the first occurrence ofthe string
OLD between statements number xx to
},'y with the string NEw.

REP/OLD/NEW/,,A. @@ replaces atl th€ occurenc€s of th€ string
OLD with the st ng NEW.

REP/OLD.NEWXX,]?,A @ replaces all the occurrences ofthe string
OLD between statements xx to }? 1'Jith
the string NXw.

REP/oLDA.lEWxx,]'y,Q @ dfuplays, in turn, each occurrence ofthe
stridg OLD between statemedts xx and
vv.
Q stands for "query." To replace the
displayed OLD with NE\ry, type Y, then
@. To rctain the displayed OI-D,
press@.

In these examplesj the strings OLD and NEW are delimited by the charact€r "/'.
As with the FIND comman4 any character except Bpace, tab and RETURN, can
be used as the delimiter. For examplej the comrrand

REP+RTS+BRI(+JA
replac€s all occurences ofRTS with BRK. The de]imiter is the character "+".

The general lorm of rhis command is
I a I

Rtt delimiler OLD delimirer Ntw delimiler tlineno. linenol L.AJ
In th€ general form, symbols within a pair ofbrackets are optional qualifiers of
the command arld the symbols within braces (A and Q) are alternatives.

Sample Prograln
Let us assume you have wdtten a program on an ATARI Programming Form as
shown in Figure 6:

'lu, I

FEure 6. Satnple Prcgrarn a6 you write it on the
ATARI progranming form

Then when you type it in it would appear on the screen as shown in figure 7:

Figure 7. Appearance oJl
entereil on the keybodrd.

[4,ptograrn ia

COMMANDS TO
sAvE (OR
DISPLAY) AND
RETRIEVE
PROGRAMS

The commands to save (or display) and reideve programs are:

I-IST saves or displays a source program
PRINT is the sam€ as LIST, but omits line numbers
ENTER retri€v€s a source prcgram
sA\.E saves an object prcgram
LOAD retriev€s an object Fogram

wirh ea, h ot rhese commands rhere is a paramFrer r har sppcif ie$ rhe devi.e rharrs rhe sour.e or desi inat ion of rhe program thar is ro be saved. di"ptayed orr€trievpd. rhe po$ible devicps dre di{TFrenr tor differenr commanai, ana the
defar i device is also diferent. some ofih€ commands have optionat paramet€rs
that limit the application ofthe command to specifi€d paris'ofthe irogran.
The parameter that specifies the device thai is the source or atestination ofiheprcgram is wdtten as follows:

iEt is the soeen editor
iP: is the pdnter
rC: is the program Recoder
*DIn]:FI]-INAME is a disk drive.

n is 1, 2J 3 or 4. D: is interyret€d as D1:.
A program saved on or ret eved from a diskette must be
named (FILENAMEJ.

LIST Comrnand

I device: I r,xx,yyl
Format: LIST' I filespec I

Examples: LIST/E:

LISTID:MYFILD

This command is used to display or save a source p.ogram. The device where
the source p.ogram is to be displayed or saved is give; in the command. rf no
device is specified, the sc.ecn is assumed by default. Other possible devices are
the pdnter (tPJ, Program Recorder (/C, and disk d ve (/t1: throuEh /Ds: or
tD:, which defalllts to /D1r. The commands to transfer a prog.am OrST it) to
these various devices a.e:

I-IST'E:

LIST/P:

LIST/C:

LIST,{D:lilename

(LIST'E: is th€ same as IIST)

(Use cassette'handling procedues describ€d in youl pro-
gram Recorder Operator's Manual.)
where filenam€ is an arbitrary name you give to the
program. rilename must siart with a letter and have no
more than eight charactersJ consisting of letters and
numbers only. It may also have an extension of up ro
ihree characters. Ior example, NAME3, ST5, and
JOHN.23 are all legal names.

The forms ofthe commands to transfer only particdar lines (lines xx to yy) to a

LISTTE:,xx,yJr
LISTTP:,xx,yJr
LISTTC:,xx,J,'y

LIST*D:NAIm,xrK,yy where "NAME" is an arbitrary name you give to the
program. See the description above.

A single line may be display€d or saved with the command:

LlsTlineno wher€ lineno tu the line number.

cautlon: The DOS makes sure that every file haB a unique name by deleting old
files ifnecessaly. Therefore, do not name a file you are listing to drskette with
the name of a file that is already stored on the dfukette, unless you wish to
replace the existing ffle with th€ one you are listing.

The LIST command is ilustrated below. No device is specifie4 so the display
device is the screen, by default. The smaU sample program, nritten in the
previous section, is us€d for ilustration.

EDIT
LIST@
10 | =$3000
20 LDY /00
30 REP LDX, ABSX,' Y
40 BNE XEQSAME PAGE
50 INY TALLY
60 JvlP REP
70 ABSX = $3744
80 XXQ = * +$60
90 .xND

EDIT
Lrsr3o @@
30 REP LDX ABSX, Y

EDIT
LrsT 60.80 @

60 JMP REP
70 ABSX=$3744
80 xEQ=. + $60

The examples above show the appearance ofthe screen, since that is the default
d€vice. Th€ program or the particular lines in the examples could be displayed
on the p nter or sav€d on cassette or diskette by using the forms ofthe LIST
command described abov€. Not€ that the commarlds tolerate a certain amount
ofvariation in th€ inseftion ofblanks.

(LISTtE:,xx,yy is the sarne as LIST,xx,ry)

(Us€ cascelte-handling procedues described in ihe
Program Recorder operator's Manual.)

IDTT
I

PRINT Comnand

This command- is the same as LIST, excepi that it prints statements withoutstatement numbers.

Erampl€:
EDIT
PRINT E@
* -$3000
I,DY 'OO
REP I,DX ABSX, Y
BNE XEQ SAME PAGX
INY TALLY
JMP REP
ABSX-$3744
xEQ= * +$60
.END

EDIT
PRrNT3O @!1o
REP I,DX ABSXJ Y

I@
EDIT
PRrNr 60.80 tr4El
JMP REP
ABSX = $3744
xEQ- ' + $60

@D
EDIT
l

After using a PRINT command, no funher command can be enter€d unlil voupress E@t, which causes rhe jtDlt message and culsor to be displayed.
'

EI\rTER Comlnand

Format: ENTERrIdevice: I
ltilespecl

Examples: ENTER/C:
ENTER/D:MYFILE

The command ENTER is used to retrieve a souce program. As with the com_mand LIST. a device has ro be specified, in thi..u"i, rti a."i.e *r,"r" ihe ".o_grarn i6 siored. There is onty one device, rhe disk drive, on which a named Dro_gram is stored in a retrievabl€ form. To rctrieve a source program froin adiskette in a di6k drive, the command is:

ENTER'D:NAME

'where "NAME ' is the aibitrary name you gave to the program rvhen you listed
it on the disketi€. This command cleaft the edit text bufer before transferdng
data from the disk€tte.

To retdewe a souce program from mssetie, the command fu:

(Follow the cLoAD Procedue given in your 410 Pro-
Eram Recorder Operator's Manual.) Nole tbal ENTDR zC:
;lears ihe edit re;tbufier before rerfieving the

ENTER'C:
:
i

t ,

i :
:

.i

rl
l,i
li

1i

l r
l l i
l ,
l i
l L
I
l l
t i
It i
l l iI$ t
l,l,
tillilitLI]rll
iI it ltil1
!l
||l|

sorfce program.

To merge a souce program on casseti€ with the source Program in the edit text
bu{fer, the command is:

INTER'C:,M

In the above command, whexe a stat€mmt numb€r is used twice (in the edit iext
bufer and on tape), the siatement on cassette prevails.

commands for saving and r€trieving an obj€ct progran are SAVE and LoAD.
Ttrey corespond to r-lST and ENTER, respectively.

SAVE Comnrand

f,r..;-.)
ronnat: sAVE/ { ;i.:::. I <addressr.ad&ess2

Examples: SAVE C:<1235,1736
SAVE#Dz:MYFILE< 1235,1736

To save an obj€ct program residing in hex addressl to address2 on cassette
or diskette, the commands are:

SAVE C: < addressl,addr€ss2
CAUTION: Use the CSAYE procedu.e illustraied in your 410 Program

Recorder Operator's Manual.

sAvE#D:FIr-ENAME < addressl,ad&ess2
where FILENAME i6 ar arbitrary name you give to the block of
memory ihat you are savirg (where your object program is
stored).

I,OAD Cotnmand

device:
Fonnat t OAD,

fil€spec

Exampl$r I-OAD/C:
LOAD'{D:MYFILE

LOAD/D:NAME

LOADral

To retrieve.dn objen program that had preyiously been SAVED aod which had
pre!,rousry Oeen called NAMX, rhe command fu:

wfrere NAME i6 the arbilrary name lhar you gave io rhe
obJecl program when you saved it on disketle.

(Us€ the CLOAD proc€dure descfibed in your 410 pro-
gram Recorder Operator's Manual.)

These commands will reload rhe memory locations addresst ro ad&ess2 with
the conlents thar were previously saved. The numbers addressr and addres62
are those rhat were given in the original SAVE command.

NOTES:

USING
THE ASSEMBLER

AsM*[#Dln]:PROGNAME[.SRCl]
f,t#PN I
l ,EE i I
L,t{Dtnl:LrSTlNGI.LSTlll

Where a$embly lisring
ls to be srored ordisplay€d

[,*Dln]:SEIVBLEoI.OBJI]

THE ASM
COMMAND

Th€ eeneral form ofth€ ASSEMBLE command is

The defaulr values of lhe rhree paramelers of lhe ASM command are lhe edjr
len buffer for the source program. rhe relevision screen for ihe assembly
lilting. and compuier RAM for rhe objecl program rthe ass€mbled program). To
assemble a program tr8ing defauli values of ASM. type

ASM E@

On receiving rhis commaod. lhe Assembler trdnslates lhe soulce program in the
edit text buffer into object code and wdtes the object code into the memory loca-
tions specified in the somce program. Wh€n this process is completed, the
a€sembled program is displayed on the screen. For an example ofassembly with
default parameter values, we use the srrall sample program that we wrote.
figure 8 shows the appearance ofthe screen after the ASM command.

Appearance ofth€ scr€en as your sarxrple
a$embled,

progfam i3Figlrre a.

""f :H'f:is""i".?:,Ti,"1"?:tif; ti?::??":T'":1,j1""trffi :i:19:'f;il"7
TAB directive.

8E4437
D064

Operand
Op Code Mnemonic
Label
Statement Number
lnstruction
Comment from Previous

Iine starts here
Address

wh€r€ Object Prograln Is To Be Stored

You may specify that the assernbl€d prograrn isllo b.e stor€dI:*rfl ""**t[ti:Ti:i"f; lT$If '-Jfl Ii,8i!-t:?iTii"{:ffi
i:T^";i#:fi llil;";.;kd t ;s."- has been siven ihe extension oqr'

Fisiuie e. Normal (de*to"fffr:t-"3.f;:Trnblv listing as it appears

ffi LT:i$?,'#H.:'#T:il*i?Yff"1*:i:##i?1f :'l"J*'fi"Hx:
overide s€lections are explained below

Location of Sourc€ Prograln

:tiIEt,ffi?.ti:,1:T*'J.::,f iJ:.Hffi$Filrd#ff :.iif{'ffi
;Al;x,l;l';"1":ln*;::ii:,1'i :n:'l:#"',llT^t:Y-::Rffi :"";:E:?"Tll
Where Aesembly Listing Is To Be Stored

ff ,tlilH#;;".'*";T,;::"':i*"T':""t?:fi ilulilf; .xf Ii;f,i*" *"

Extensions are oPtronar'

ll'#:I"'i.:ffi"T?;:it'i:l#lxT:"":'"'f:$3Hgl;Li.t:ts{ffiij
r.ti3:tg;**l*:*$"'ts*r::r:r:uli"#.i1"";,1'li#'"?'ii*
Note that in the ASM c.-eqld !h: ".y"i,llxlTl#:":l#iJT :f:';::;:*
f;3i# I'i':5',ffi L"i:S.'*#l*"'k;;;oo r"1hat th. a""embrer ."qu"es
i;;;;";"" ;iit" .";* p- g.* T9,tr "li"ffi f l::*f ;|#J#'JJ"1H5to permit two pass€s However, you can

DIRECTIVES
(PSEUDO
oPERATIoNS)

with your Progran Recorder. Iirst transfer the program from program
Recorder to the edit text buffer with the command:

ENTERTC: *i{Eal (Follow the cassette-handling
instruciions in your Prograi-r
Recorder Operator's Manual.)

The ASM command with no default param€ters is illustrated in the example

ASM/D:SOURCI,TP:,$D2:SEMBLED.OBJ ffi

The above command takes the souce program that you had previousty stored
on diskeit€ and called SOURCE, assembl€s it, lists the assembled form on ihe
printer, and records on the diskette the machine code translation ofthe prc-
grdm rrhe obrecr programr. The objef l pmgrrm is given rhe nlme' 'SLMBLLD.OBJ. Nore rhar commands of rhi" lorm srore rhe machine mde on
diskette, not in computer RAM.

To make a default selection, enter a comma, as in the following useful

ASM,rpr g$frffti$

The above command takes the source program from the defaulr edit text buffer,
assembles and lisis it on the printeias before, and stoles the machine codi
object prcgram direclly into computer RAM.

Directives are instructions to the Assembl€r. Dir€ctives do not, in general, pro-
duce any assembled code, but they affeci the way the Assemble. assembtes
other instructions dllring the assembly process. Directivesare also calledpseudo
operations or pseudo ops.

Dire. l ive\are idenri f ied by lheAs"emblprbJ rhe' . ar rhebeqinning. rhpont!
exceprion! are Ihe LABLi direct ive and rhe . diref l ive.

"

A directive must have a line number, which it follows by at least two spaces.
The directive LABEL = is an exception-there must be only one space before the
label.

OPT Direriive
This direciive specifies an option. Th€re are four seis ofoptions. Thes€ are:

: OPT NOLIST
. OPT I,IST

. oPT NOOBJ
, OPT OBJ

. OPT NOXRR

. OPT ERR

. oPT NOqJXCT

. oPT qIECT

(this is the defbult condition)

(ihis is the de{hult condition)

(this is ih€ de{bult condition)

(this is ihe defautt condition)

The second listed of€ach pair represents the standard or default condiiion.

100 . OPT NOLIST The effec1 ofthese directives is to omit from the listed
(part ofsourc€ form ofthe assembled program the lines between lines
program) 100 and 200. (The6e line numbers arc arbitrary.)

ti{&i I

2OO . OPT LIST

1OO . OPT NOOOBJ
(part of source
progran)
200 . oPT oBJ

1OO , OPT NOERR
(pa of souce

2OO , OPT ERR

100 . oPT NOXJECT
(part of sourc€

200 . oPT qlxcT

Assembly is suppressed between lines 100 and 200. The
effect ofthese direciives is to omit from the objeci prc-
gram code conesponding to the lines between lines 100
and 200. Memory correspondirg io the6e lines is skipped
over, leaving a r€gion of untouched bltes in the object
program. (These line numbers €re arbitrary.)

The effect ofthese directives is to omit error m€ss3ges
fo. the assembled program lines between lines 1oo
and 200.

The effect ofihese directives is to suppr€ss, between
lines 100 and 200, the 4line pag€ spacing that is
normally inserted after every 56 lines ofthe listed form
of the assembled prcgran.

More than one option may appear on a line. Opiions ar€ ihen separated by a
comma, as follows:

1000 . oPT NOLISTINOOBJ

fitle and Page Dtuecrives
10 . TITI-E "name"
20 . PAGi "optional message)'

we explain these directives together because they are intended to be used
iogether to provide easily read information about ihe assembled program.

These directives ale most useful when the assembled program is listed on ihe

TITLE and PAGE allow you to divid€ your program listing into s€gments ihat
bear m€ssages wriiten for your own conv€nience, much as you might add short
explanatory notes to sny complex material.

The PAGi directive caus€s the pdnter to put out six blank lin€s (printers so
equipped will execute a TOP oF IORM), followed by the messages you have
given for TITLE and PAGE. This causes the messages to stand out somewhat
from the rest ofthe assembled program listing.

Usually there is only one TITLE directive, giving the program nam€ and date,
and diferent PAGE directives for giving different page messag€s. Then on
listing the assembled prcgram, the same TITI,E message on every page would
be followed by a differcnt PAGE message.

The blank lin€s that the PAGE directive produces on the 4o-column ATARI 820
P nter can be used to break up a long program into segments that can be
mounted in a notebook.

w l

Wtb

To .emove a title, use the following form

1000 .TITLE ""

The above directive removes titles afier line 1000.

The PACt di-re(ljve.on irs owr causes a page break -rhe prinrer simpty purs out
a nrunDef oI bl:rDR lrnes

Tab Directive
10 - TAB n1,n2Jn3

The TAB directive seis the lields ofth€ statement as they appear when assem-
bled and lisred_on rhe screen or the prinr".. r..r u. u.e ri,. !p".i,jc e\arnpte otslatement 40 ofthe small sample program we previously u6ed for itjusi ration. rr
was wntten as lollowsi

BEQ XEQ SAME PAGX

Nore rhat one space, rarher than a lab, is used belwepn each f ield. Usine sDa(e6
rather rhan tabs lers you wrire longer programs, sin.e rhe edir texr buh-ei wi l l
nor be f led up wirh the exrra spaies ahairabs woutd require.

Compressing rhe program in this way makes il te6! easity readable rhan we
mrghl wi\h. bul we can use lhe TAB direcr ive ro give us a more readable
a"sembled version. The form ot rhe direcliv€ is

-

lineno . TAB 10.15.20
or, more generally,
lineno . TAB nlunberl,number2,number3

The previou! example bas a source progrdm rhar was compressed in rhe rbove
falhion. Nore the dj f ference between r6e spacing of rhe;Lu.ce I isr ing ard ihe
assembled program. This is arl example ofihe d;fautt.TAB spacing.

"

The effect ofihe TAB directive ofline xxx is confinedto the aDDearance oflines
fol lowing xxx when rhey are assembled and t i6red on rhe p. inr", o. scr."n.

In ihe case ofline 40, th€ appearanc€ on the Finter wontd be as shown below:

3005 D064 40 BNE XEQ SAME PAGE-ror I I_15J I
-26J

II-rhe TAA direcl ive is nor used. rhen lhp appearancp otrhe assemblcr l inc on theprinrer wi l l be as shown below in rhe deftLr lL mode:

3005 D064 40 BNX XEQ S
AME PAGE

_ , ,1 I I- - t l
_77J I

That isr the default setting corresponds to . TAB 12,17,27.

30
40
50

I]]]l

w4)Th€ appearance of this line on the screen will be different only because the
screen has 38 characters positions, while the printer has ,10.

BYTE, DBYTE and ['ORD Dir€ctives

100 . BYTE a,b,. . . ,n
200 . BYTE *A,B,. . . N"
300 . DBYTE a,b,. . . ,n
400 .],I/ORD a,b,... ,n

These direciives are similar in ihat they are used to insert data rather than
insiructions into the proper places in the program. Each directlve is slightly
different in ihe manner in which ii insefts data.

BYTE Directiwe
The BYTD directive reseNes a location (at least one) in memory. The directiv€
increments the program counter to leave space in memory to be filled by infor-
mation required by the prcgram. The ope.and supplies the data to go into that

Exampl€s:
1 0
20 , BYTE 34
3 0

Here, the Assembler assembles into successiv€ locations the instruction of line
10, then the decimal nunber 34, then the insiruciion of line 30.

1 0
20 . BYTE 34, 56,78
3 0

Here, the Assembter assembles inio successiv€ locations the instruction of line
10, then the decimal numbers 34, 56 and 78, ihen ihe instruction ofline 30. The
operand may be an expression more complex than the numbers used in the
examples. The rules for writing and evaluating an expression are given in
App€ndrx D.

10
20 . BYTE *ATARI"
3 0

Here, the Assembler assembles inio succ€ssive locaiions ihe instruction ofline
10, ihen ihe (ATASCII code) hex numbers a1,54,41,52 and49, then thc instruc
tion of line 30.

DBYIE Directive
The DBYTE directive reserves two locations {br each expression in the operand.
The value ofthe expression is assembled with the high-order bvte first (in the
lower numbe. location). For example:

10 ' =$4000
20 . nBYTr- ABS $3000

t w l

when line 20 is assembled and ihe value ofABS + $3000 is deiermined to be (say) {,{g/
$5123, $51 is put in location $a000 and $23 is pui in location $4001.

LABEL=
DIRECTIVE

WORD Dlr€ctive
The WORD directive is the sam€ as the DBYTE directiv€ €xcept that ihe value of
th€ €xpression i6 stored with th€ low-order bj,te Iirst.

For example:

10 ' =$4000
20 .woRD ABS+$3000

When line 20 i6 assembled and rhe value ofABS+g3000 i! derermined. as b€fore-
to be $5123. 923 is pur in locarion s'4000 and $5r is pur in location ga00r.

The wORD dfective sjmplifies some programming since addesses in machine
mde are always given in rhe order low byre fotlowed by high byre. Therefore,
the woRD directive is u.6eful. for example. in consl'-uc(ing a rabte ofaddresses.

100 LABEL erpression

The LABEI - directive iB u.sedto give a value to a label. Two examples app€ar in
the- sample program we used before. Stat€ments 60 and 70 give values io ABSX
and XXQ as folows:

ABSX= $3744
XEQ= * +$60

Since rhe symbol that is given a value is a tabel, there musr be only one space
aller the sratemenr number. The expression on the right cannoL f,i"", uitue
greater than rffr (hex,. The rdes foi wriring and evaluaring an expression are
given in Appeodix 4.

When rhe LAaIL= dircciive is used ro give a value ro a labet, the label can be
used in an operand. by itselc as in siatemenrs 30 and aO in the sampte Fogram.
A delined label may also appear as part ofan expression. Our sampte program
ooes nor conlarn an example. so we give one below in line 240.

60
70

100 TAB1-$3000

24O TAB2-TAB1+92O

wh€n the program is assembled, TAB2.will be giwen the vatue $3020.

You should oote thar delining a label in rhis wav Eives rhe Iabel a soecific
address: it doe6 nor define thaconrenrs of rhe addiesi. rn rhe examp)e, ibove,
TAB1 and TAB2 might be the location oftra.o tabtes that cortained tht values of
variables that your prcgram r€quired.

* = Direcrive
100 '- expression

we encounrered the ' = direfiive in rhe ..gening sraned comrnands. where ir
is used.Lo set rhe srafiing location of fue asiembled program. When the
Assemr,fer encountefs the ' expre$io4. ir sets lhe program counter io the
varue or rne €xpr€ssron.

You write *= without the initial "." that the other directives have (exc€pi
LABEL =). Also, note that you write * = wiihout any spaces between * and = .

You should not confuse ihe * = directive with the LABEI-- direclive. The * in
* = is not a label. Note, however, that the - = directiv€ itselfmay have a label, as
follows:

200 GO * =expression
500 JMP GO

The Assembler will assemble statement 500 as ajump to the value the program
counter had BEFORE it was changed by line 200.

The - = directive is useful for setting aside space needed by your program. For
example, you will frequcntly want space rcserved siarting at a particular loca-
tion. Use the following form:

720 TABLE35 r=*+$24
740 . . .

The efect ofthe directive is to reserve 24locaiions immediately after TABLE3s.
Other parts ofyour code will not b€ assembled inio these locations (unless you
take pains to do so). Your program can use TABLE35 as an operand and
TABLX,3s can be uscd as an element in an expression that you. instructions
ewaluate in accessing the table.

IF Directive
900. IF expression @LABEL

990 LABEL End of conditional assembly

The IF directive permiis conditional assembly ofblocks ofcode. In the illustra-
tion above, all the cod€ between lines e00 and 990 willbe assembled ifand only
ifthe expression is equal to zerc. Ifth€ expression is not equal to zero, the IF
directive has no effect on assembly.
The €xample given below shows how different parts of a source program may
b€ omitted from assembly according to the value assignedto the LABEL in the IF
directive. Th€ souce program is assembled with Z=o in one case and Z=1 in
another. wiih Z=0, the insiruction TAx is assembl€d, and with z=7 t]]e ii
struction ASI- A is assembled. Obviously, this kind olselective assembly can be

SOURCE CODE
0100 ;CONDITIONAL ASSEMaIY EXAMPLE
0120 z=o
0130 * =$5000
0140 LDA=$45
0150 . If Z@)ZNOTDQUAT-0
0160 TAX;THIS CODE ASSDMBLDD IFF Z=0
0170 ZNOTEQUAL0
0180 . rF Z- 1@ZNOTEQUALI
0190 ASL A ;THIS CODE ASSDMBLED IFI Z=1
02oo ZNOTEQUALI
0210 INX;THIS CODE ALWAYS ASSEMBLED

t{!

w l

Wa

ASSEMBLY LISTING (.to-coL forrnat)
0100 ;CONDITIONAL ASSEMBLY E

XAMPI,E
oooo 0120 z = o
0000 0130 *= $5000
5000 A945 0140 LDA r$45
5002 0150 . rF z@zNoTEQUA
LO
5002 AA 0160 TAX ;
THIS CODX ASSEMBI,ND IIF Z=O

0170 zNoTEQUAr,o
5003 0180 .IF Z I@ZNOTEQ
UAIl

O19O ASL A
0200 ZNOTEQUAT-1

5003 x8 0210 INX ;
THIS CODE AIWAYS ASSEMBLED

O1OO ;CONDITIONAL ASSEMBLY E
XAMP]-E
OOOI O12O Z = 1
0000 0130 *= $5000
5000 ,4.945 0140 r,DA 445
5002 0150 .IF Z@ZNOTE IU1.
LO

0160 TAX ;THIS CODE ASSXMBL
ED IFE Z=O

0170 zNoTnQUALO
5002 0180 .IF Z-1@ZNOTE(!
UALl
5002 0A 0190 ASL A
02oo zNoTnQUALI
5003 E8 0210 INX ;
THTS CODE ALIl!r'AYS ASSEMBI,XD
END Directive

loo0 . tND
Every prcgram should have one and only one END directive. It tells the
Assembler to stop assembling. It should com€ at the v€ry end of your source
program. Later, if you decide to add more statements to your program, you
shornd remove the old . END directive and place a new oni at tlie iew end of
your source program. Failue io do m w.ill result in your added sourc€ code not
being a€sembled. Thi6 misiake is pafticularly ea6y to make when you make
your additions with the NUM command. It is not always essential to have an
. END directive, but it is good practice.

t"- {

NOTES:

q - {

DEBUGGING

PURPOSE OF
DEBUGGER

CALLING THE
DEBUGGER

DEBUG
COMMANDS

The Debugger allow6.you to follow rhe operarion ofan objeci program in derail
ano ro maKe mtnor chandes in it.

A knowledge ofmachin€ langxage is helpfr when you usethe debugger.buL ir
is not essential. The Debugger is able to convefi machine mde intoissembtv
language (disassemble). so you can make code allerarions at parricl ar memorv
locarions. All numbers used by rhe Debugger. borh in inpur andouipur. are he;-

The Debugg€r is caled from the Editor by typing:

BUG @

ThiB produces on the screen:

DEBUG
I]

Th€ command to return to the Writer,4ditor is:

x Eso

DR Display Registers
cR change Registers
D or Dmrrunm Display Memory
CorCmmmm Change Memory

Mmmmm Move Memory
Vmmmm Verify Memory

L or Lmmmm List Memory with Disassembly
A Assemble One tnstruction Into Memory

Tmmmm Trac€ Operatior
S or Smmmm Single-Step Operation

Gmmmm co fExecute Program)
X Return Lo TDITOR
G@ Pressing th€ @ k€y halts ceriain op€rations.

The debug comrrands are listed below. h the list, ,,mmmm,, indicates that the
form ofth€ command may include memory address(es). The actuat methods of
specifying the memory ad&ess(es) and the default addrgssed ar€ shown in the
examples given later in this section. If you use the commands with no
address(es), the Debugger assigns a default ;ddress (es):

we now give several examples showing horir to use the commands. In the
examplesj the line8 ending with @ are edtered on the keyboard. Ttre other
lines show the re8ponse ofthe system, as displayed on the screed.

DR Dtsplay Regtsters
r:xample:

EDIT
BUG @
DEBUG
D R @

A = B A X = 1 2 Y - 3 4 P - 8 0 S = D F
DEBUG
I]

The regist€rs and contents are displayed as shown. A is the Accumulator, X and
Y are the Index Registers, P is the Processor Status R€gister, and S is th€ Stack
Pointer.

CR Chang€ Registere
Exarnpl€:

EDIT
BUG 3@!
DEBUG
cR<1,2,3,4,5 @!

DEBUG
I I

The elfect ofthe command above is to set th€ cont€nts ofthe rcgisters A, X, Y, P,
and S to 1, 2, 3, 4 and 5.

You can skip rcgisteN by u.sing comnas after the <. For exampl€,

cR<,,,,E2 @

sets th€ Stack Point€r to E2 and l€av€s th€ other r€gisters unchanged. Registers
are changed in order up to l@. For example,

cR<,34 @

Sets the X R€gister to 34 and leaves the other regtui€rs unchanged.

D or Dmrn't|'r Dtuplay Memory
Dmmmm, yJ,TT rnihere 'Tyy is less than or equal to rrmmm shows the contents
of address mmmm.
Examplel

DIEUG
D5000,0 @

5000 A9
DEBUG
t l

This shows that address 5000 contains the nwnber A9.

Ifthe second ad&ess (yt?T) is omitted, the contedts ofeight successive locatio4s
are Bhorrn. The process can be continued by typrng D @EO.
Example:

DEBUG
D5000 @

5000 A.9 03 18
DEBUG
D @ @

E5 F0 4C 23 97

Dmmmm,,'J'yy where yyw is great€r than mmmlq shows the contents of
addresses mmmm to yyly.

Example:
DEBUG
D5000,500F @

5000 A9 03 18 EB FO 4C 23 91
5008 18 41 54 47 52 49 20 20
DEBUG
t l

The display can be stopped by pressing the BREAK key.

C or C[rmInIn Change M€mory
Cmmrnm < yy changes the contents of address mmmn to J,y.

5008 1a 41 54 41 52 49 20
DEBUG
I]

Example:
DEBUG
c5001 <23 @

DEBUG
I]

The effeci ofthe command is to put the number 23 in location 5001. A comna
increments the location to be changed.

Example:

-DEBUG
c5008 <21,rF @

DTBUC
c700B <31,,,87 l@

DEBUG
I '

The firsL command puts 2t and tr in locarions 5008 and 500C. respecrively.

The second corrlmand puis 34 and 87 in locations 7008 and 700t resp€ctively.

You can conveniently use th€ C command in conjunction with the Display
Memory command, and you n€ed not enter the addres€ a second time rvith the C
command. The C command will default to the last specifled addre6s.

Erample:
Dsooo l@
5000 A0 03 18 E5 r0 4C 23 91
c<AA,14 @

Dsooo @@
5000 AA 14 18 E5 F0 4C 23 91

DXBUG
I]

Mmrnlrm Move Memory
MnlJJtrrll'l]<yyw,zzzz copies memory from 'Tyy to zzzz to m€mory stariing
at mmrnm. Ad&ess mmmrn must be le8s than ywy or greater thaJJ zzzz.lf tbe
origin and destination blocks overlap, rcsults may not be corr€ct.

Example:
DEBUG
M1230<5000,500F @

DEBUG
I]

The command copies the data in location 5000-500I to location 1230-123I.

Vmrnrntxr vertt, Memory
y mmmm< Wyy.zzz compares m emo ry y)7y Lo zzzz w i r h memory sta-rr i ng at
mmmm, and shows mismatches.

F-ralnple!
DEBUG
v7000<7100,7123 @

DEBUG
I]

The command compared the contents

Mismatches would be shown as follows:

of 7100'7123 with the contents of

7701 00 7001 22
7105 7a 7005 70

L or Lmnnln List M€lnory with Dtgassembly
This command allolvs you ro look ar aJr|y block of memory in disassembled
form.

F.ramplea:
I-7000 @

@

Ltut a screen page (20 lines of code) starting at
memory location 7000. Pressing the @ key
during lisLing halrs rhe lisiing.

This form ofthe command lists a soeen page start-
ing at the instruction last shown, plus 1.

L

L7OOO, O
L7OOO,70OO
L7000, 6000

L345, 567

@ These forms list the instructiom at address
l@ 7000 oriy.
@

@ This form lists addr€ss 345 through 567. Only the
last 20 inshuctions will actu€lly be visible at the
compleiion ofrhe response ofthe system.

The command Lmmmm differs from Dmmmm in that Lmmmm disassembles
the contents olmemory.
Example:

EDTT
BUG E@

r$03

DEBUG
L5000,0 @
5000 A9 03 LDA

DEBUG
t l

Thtu example Bhows that the Debugger examined the contents of memory
address 5000 and dfuassembled A9 to LDA. Since A9 must have a one-byte
op€ran4 the Debugger made the next byte (the contents of address 5001) the
op€rand. Therefore, although the debugger was only "asked" for the content of
location 5000, it showed a certain amount of int€lig€nce and r€plied by show-
ing the instruction that started at address 5000. l

To illustrate this fuiher, the number 03 corresponds to no inachine code
instruction, so the Debugg€r wor d interyret 03 as an illegal instructio& and
alert you to a possible error, as shown below.
Example!

DEBUG
L5001,0 @
5001,03 ???

DNBUG

How€v€r, ifthe {ir6t instruction you wrote was LDA $8A, then you would have
obtained the folowing, apparently inconsistent, results while debuggingl
Example:

DEBUG
L5000,00 A9 8A LDA,fS8A

DEBUG
L5001,0 8A TXA

i,

i.

Because the disassembler starts disassembling from the first address you
specify, you have to take care that the frst address contains the fir6t ble ofa"real" instruction,

A Assemble One Instruction Into Memory
The DEBUGGER has a mini-dssembler, that can ass€mble one ass€mbly language
ifftruction at a time. To enter th€ Assemble mode. tvDe:

A @

Once in the Ass€mble mode, you stay there until you wish to retlfn to
DIBUGGI& which you may do by pressing @[(on an empty tine].

To assembl€ a]rl instruciion, first enter the address at which you wish to have
the Irrachin€ code inseried. The number that vou enter will be interDreted as a
hex address. Now t}?e -< 'folJowed by at leair one space. rhen the insrruction.
You may omit an addr€ss ifassembly is to be in successive locations.

Example:

EDIT
suc l@
DEBUG
A 831@
5001<LDY $1234 @
5001 AC3472
<nwl@

. 5004 cB
|] @

Computer Responds.

Computer Responds.

DEBUG
t l

Since the miDi-ass€mbler assembles only one instruction at a time, it cannot
refer to anorher instrucrion. Therefore, ir cannot interpret a label. Conse-
quenrly. labels are nor legal in lhe mini-assembler.

You can use the directives BYTE, DBYTE, and WORD.

Gmmmm Go (Ex€cule ProgFan,
This cominand €x€cutes instructions starting at mmmm. For exampte;

GTBOO @ Executes instructions starting at location 7800.
Execution continues indefnitely. Execution is
stopped by pfessing the @ key (unless the pre
gran at 7800 tricks or crashe8 the operating system).

Tmmmn Tlace Operatlon
This command has th€ same e{Ieci as cirunmm. exceDt that aft€r execution of
each insrru(Iion the sffeen shows the instrucrion adidress, rhe inslrucrion in
machine code, the irNtruction in assembly language (disassembled by the
debugg€r-not necessarily the sane as you rffote it in ass€mbly language) and
the values ofRegisrers A, X. Y. P and S.

The execution stops at a BRK instruction (machine code 00) or when you press
the @ key on the keyboard.

Exatnple:
DEBUG
r5ooo l@
5000 A9

A = 0 3 X = 0 2
5002 18

A = 0 3 X - 0 2
5003 t5

A : 0 3 X = 0 2
5005 4C

A : 0 3 X = 0 2
7723 00

A = 0 3 X = 0 2
DXBUG

r$03
s = 0 5

S = 0 5
$r0

S = 0 5
$7123

S = 0 5

S = 0 5

Y-03 P= 34

Y=03 P= 34
IO

Y=03 P= 34
23 71 JMP

Y=03 P- 34
BRK

\ = O 3 P = 3 4

S or Smmrnm Step Op€ratlon
This comnand has the s€me e{fect as T or Trnlnmm, except that only one
inslruction is executed. To step through a program. rwe S @!tr repe;redly
aner rhe first command ofSmmrnm @

X Exit
To return to the Xditor typ€:

xEl@

LDA

cLc

SBC

NOTES:

APPENDIX 1
) * ,

ERRORS

when an elror occrlls, the console speaker giwes a short "beep" and ihe error
number is displayed.

Errors numbered less than 100 refer to the Assembler Editor cari dge, as
follows:

ERROR
NUMBER

1 ,

3 .
4.
5 .
6 .
7.
8.
9 .

10.

11.
12.
73.

16.
17.
18.

19.

Errors

The memory available is insufiicient for the program to be assem-
bled.
For the command "DEL xx,yy" the number xx cannot be found.
There is an ellor in specifying an address (mini-assembl€r).
The ffle named cannoi be loaded.
Undelift d lab€l reference.
Elror in syntax of a staiement.
Label defined more than once.
Buffer overflow.
There is no label or - before "=".
The value ofall expression is greai€r than 255 where only one bl.te
was requifed.
A nul l srr ing has been uscd where invdl id.
The addrcss or address t}?e specified is incorrect.
Phase error. An inconsistent result has been found from Pass 1 io
Pass 2.
Undefined forward refercnce.
I-ine is too large.
Assembler does not recognize the sou.ce statemeni.
Line number i6 too large.
IOMIM command was attempted after other command(s) or instruc-
tion(s). LOMEM, ifused, musi be the first command.
T h e r p i c n n c f , r l i n d r . l . l r e q s

m key pressed during an I/o operation.
A nonexistent device specified for I/O.
The command i$ invalid for the device.
EOF. End of file read has been reached. This €rror may occur when
r€ading jiom cassette.
A record was longer than 256 characters.
The device specified in the command does not respond. Make surc
ihe device is conneci€d to the console and powered.
The defice specified in the command does not return an Acknowl-
edge signal.

Errors numbered more than 100 refer to ihe Operating System and the Disk
Operating System. For a complete list ofDOS errors, refer to the DOs manual.

128
130
132

737
138

139

140
142
143

145
146
162
165

Serial bus input framirg error.
Serial bu6 data fiame ov€rrun.
Serial data checksum error.
Devic€ done effor.
Dfukette erlor: Read-after-write comparison fail€d.
Function not implem€nted.
Disk flrll.
File Darne elror:

ItI
!
l

I

1
d

APPENDIX 2
| \ul

ASSEMBLER MNEMONICS
(Alphabetic List)

BMI
BNX

ADC
AND
ASL
BCC
BCS
BEQ
BIT

BPL
BRK
BVC
BVS
cLc
CLD
CLI
CLV
CMP
cPx
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
JMP
JSR
LDA
LDX
LDY
LSR
NOP
ORA
PIIA
PHP
PLA
PLP
ROr,
ROR
RTI
RTS
sBc
sEc
SED
SEI

Add Memory to Accumulator with Carry
AND Accumulato. with Memory
Shifi Le{i (Accumutator or Memoryl
Branch if Calry Clear
Branch ifCarry Sei
Branch ifResult=Zero
Test Memory Against Accumulator
Branch if Minus Result
Branch if Result + Zero
Branch on Plus Result
Break
Branch if V llag Clear
Branch ifv llag Set
Clear carry Flag
Clear Decimal Mode Flag
Clear Interrupt Disable Flag (Enable Interupt)
Cl€ar V FIag
Comp3r€ Accumulator and Memory
Comp:re Register X and Memory
ComFre Register Y and Memory
Decrement Memory
Decrement Register X
Decrcmeni Register Y
Erclusive-OR Accumulator with Memory
Increment Memory
Increment Regisier X
Increment Regist€r Y
Jump to New Location
Jump to Subroutine
Load Accumulator
Load Register X
Load Register Y
Shift Right lAccumulaior or Memory)
No Operation
OR Accumulaior with Memory
Push Accumdlaior on Stack
Push Processor Status Register (P) orio stack
PUU Accumulator from Stack
Pull Prccessor Status Register (P) ftom Stack
Rotate Left (Accumulator or Memory)
Rotate Right (Accumulator or Memory)
Return from Intenupt
Return tiom Subroutine
Subtraci Memory from Accumulato. with Bonow
Set Carry Flag
Set Decimal Mode Flag
Set Interrupi Disable Flag (Disable hterrupt)

STA
sTx
STY

TAY
TSX
TXA
TXS
TYA

Stor€ Accumul.ator
Stor€ R€gistex x
Stor€ R€gister Y
Transfer Accumulator to R€gister X
tansfer Accumulator to Register Y
Tra[6fer Register SP to Register X
Transfe. Register X to Accumulator
Transfer Register X to Register SP
Transfer Register Y to Accumulator

APPENDIX 3
)

SPECIAL SYMBOLS

)

Below we give a lisi of special symbols that have a restricted meaninE io the
Assembler. You should avoid using rhese symbol! as a marrer ofcourie. l rosr
atremprs lo u\e rhesc symbols in dnv bur rheir specidl sense wi l l resujr in Frror".
They mry be u.ed. wirhour rhFir .pecjat meining. in commenrF and in rhe
operands 01 memory r€senation directiwes.

The semicolon is used to indicate the start of a comment. Eventhins
between the semicolon and RETURN appears in the listed {brm'of th!
program and is ignored bv the Assemb'lir. When comments iake more
than one lineJ staft each n€w line {,ith a semicolon.

The / sign is used as th€ lirst symbol of an immediate operand, as in
LDX *24.

The $ sign is usedbefbre numbem to signi{y that they are io be interpr€ted
as hex numbers. For example, LDX 1934.

The aste sk is used to signify the vatue ofthe current location counter. For
example, the instruction in line 50 give6 the symbol HERE a value equat to
5 or more than the number in theiurrent location counier:

50 HERE = * +5

Example:

RTS

TAX

when this example is assembled,line 18 causes the location courier to be 90911,RTS is placed in location 90911, line z0 causes the tocation counrer to be
increased ftom $0912 to 90921, and TAX is placed in $0921. This leaves 15
empiy bytes between the RTS and the TAx.

lhe a"rer isk also r igni f ies mulupl i .ar ion ,"ee Apppndix 6r. ThF A.semblpr useq
lhe !ynlax ol the r iarpmenr ro dr"r ingui"h rhp rwo meanings ofrhe aster isk.

X x Register
Y Y Register
S Stack Pointer
P Processor Status Register

1A
19
20
21

NOTES:

APPENDIX 4
: E 6 q i 5 6 = H ? R !
eg;ggFHlIFgn
riEESEt5;fiEE
+EEEfiEeEEIEF
ri ti;; !:8PEn
;;Eg!cEigiEHf
!FElFIgEiEEEEE-
H o d g 1 g g * 9 *F ? o e i 6 F ; : ;
: VZH A? 6 i*'5
? EEF E! : EIFg F+e Ei g E4+
o o o q i i i 7 T !) s

f i sgi eF 9 eE;36 HEb ? : 6 H+E
E 5 E 5 - ; 9 : ; 5 h

6rai1tE# E filE
Ei;ei:tEI::i;E$
=H 1FHH HiH g? qlEE
> g l
= E { d ^ i

o
z

z
a
Uz
Frlz

r hz
z
af,,,l

r ' \

F
B
aF
r h

X
rr' ' l

*

tr
r r ' l
Fl

F

? \

4 e e l
' t ,n j

e ! 4 S S
= g f i c ! 4 €. 4: t 9

: { E ; ; E E :

a s . . e . E: ! r E ! s

= g = g = 1 I t € i { i g =: : ? i €B t t ; : E t e t

i r i H ; = : r 3 : F
. : .

I

a ; ;
i F } E

l f r :
! - . . i

" F i . F i 3 : . s F F . '
g : : l H E t ! ; c i t r ,

* : ! !
. l
c .

*
i

l t ? i
] F H E i E l r il I E E !

=
X { S ; E : E : 5 - B - r E E

.',,

NOTES:

APPENDIX 5
EXPRESSIONS

WheD an insrrucrion or djrefljve calls fora number in the op€rand,lhe numbermay be given as an ,,expafession.', the n*1i**r.'.. a' "*i,"".;;; i:"ffii; i[T "' ffieraused
being the varue or the

Exprcssions are rnade up ofoperators and Lerms. Terms are either numbers orlaDels which sfand for numbers. An expression conLaining a f"Ua ,.rrn_,f,ricloe8 not have a nlrmeric value will be nagged as an error.
There are five operatorsj four are arithmetiq and one is logicat.

Addirion is signified by rhe 6ign
subtraction i6 signified by the sjdn
Mrdriplicarion is sjqnified bv
Division is signifiea by

"
,

Logicai AND i6 signified by ajr
Expre$ions must not contain parentheses.

Expressions are evaluared from tefi to fighr.

Examples:
*:$90+1002
JMP 3 + 2*25'4./5_ 3
JMP 0097
JMP $0061

1oo LDA *NUM1+NUM2 NUMI and NUM2 must be defined some-where in the program. The instruction
loads the AccumuGtor with the sum ofthe numbers in the locations NUM1 andNUM2.

L-DA i-ABf,L €p $00FF This yields I he low order b}1e of rhe valuerr^ QUL ofLABEL_

3lf J'ABE
' 56

i""'*;H.ntto "rder orb''te orthe

i

' |

i
iIj
II

. l. t. i- u
I
il

II

100
200
300
400

600
610
620
630

These instructions are equivalent.

NOTES:

)

)

)

APPENDIX 6
DIRECTIVES

. OPT Operand specifies an option. Operand can be LIST or NOLTST,
OBJ or NOOBJ, ERRORS or NOERRORS, EJXCT or
NOUECT. (Default options are LIST, OBJECT, ERRORS,
and lEcT.)

causes NAME to be printed at the top ofeach page.

produces a blank space in th€ listing, then caus€s
MESSAGE to be pdnted alier NAME.

contrcls the spacing of the {ields of Op Code
Mnemonic. Op€rand. and Commenl as lhey appear in
the listing.

places in successive memory locations the values ofthe
expressions a, b, ..., n [one byte for each value).

places in successive m€mory locations the ATASCII
values ofA, B, ..., N.

places in successive pairs of memory locations the
values of rhe expressions a. b. ..., n rrwo byle6 for each
value. high byte firstl.

places in succ€ssive pairs of memory locations the
values ofthe €xpressions a, b, ..., n (two bytes for each
value, low b].te firsi).

makes ih€ Label AB equat to the value of the expres-
sion (up to FFFF hex).

mak€s the Program Counter equal io the value ofthe
expression (up to FFFI hex).

assembles folowing code, up io . LABXL, ifand only if
expre$ion evaluates to zerc.

indicates th€ €nd of the prcgram to be assembled.

, TITLE "NAME"

. PAGE (MESSAGE'

. TAB n1,n2,n3

. BYTE a,b...n

. BYTE *AB...N'

. DBYTE a, b,...n

. WORD ar br...,n

AB=nxpre$ion

* = Expre$ion

. IF Expression

.]-ABEL

, END

NOTES:

APPENDIX 7
ATASCII CHARACTER SET

AND HEXADECIMAL TO
DECIMAL CONVERSION

) _.r

t

r"y
0

1

2

3

4

5

6

7

B

I

1U

1 1

1.2

t'n .p"o'o'
r+/

c.'

o
G
il
g
il
il
B
S
El
E
tr
E
g

-"8
d #""u$".'"t6$i,.

FI
t
il
tr
b
EI
u
tr
E
U
EI
gl
II

0

1

3

4

5

6

7

B

I

B

C

E

F

10

11

L 2

13

75

16

1.7

1B

19

/ne
..J,{,

26

27

2B

29

30

31

32

33

3+

35

36

37

3B

1A

1B

1C

1D

1F

21

""{ .re
."*t{"o"o'"'"

E
EI
o
tl
o
o

20 Space

22

23

24

26

!

$

7a

€",) ! e

.$ '"""{"""t"
*1/

,o! ..sv
..\w^}

*Y.-ilr' 4)
^of o' -$t

3 7 7

3 8 B

3 9 9

3A ..

3 8 ;

3 C <

3 E >

3 F ?

4 0 @

4 7 4

+ 2 8

4 3 C

4 4 D

4 5 E

4 6 F

.$' ^+
.9,':-g'-o' - r''

+9"
"

.lo

4 7 c39

40

41

42

M

45

46

4a

49

51.

6_&
56

57

60

61

62

63

65

66

67

6B

69

70

#
71.

72

73

77

7B

79

BO

B1

a2

B3

B4

B5

a6

H

4 A J

o

L

4 D M

5 0 P

5 1 A

5 3 S

5 5 U

5 6 V

27

2B

29

28

2C

2D

2E

2F

30

3 1

32

33

34

36

(

) 49

K48

N

0

1

2

3

4

5

6

T54

'"$ *'$"d

o

{""$
103

104

105

106

707

10B

109

110

777

772

773

174

115

116

1.1.7

118

7 7 q

' 7 2 r

/ J S

d$'
119

720

121

122

723

724

726

727

728

729

130

131

1.32

133

734

,"d"/ "t$"*"
87

8B

89

90

91

92

93

94

95

96

97

98

99

100

101

102

59

5A

5D

60

61

62

63

64

66

x

Y

z

i

l

a

b

c

d

e

f

67

6B

69

6B

6C

6D

6E

6F

70

c
h

I

j

I

Ifll

n

o

p

77

78

79

7B

7D

v
z

B0 (att* ctdrcte's

81

B2

B3

B4

86

tr
I

E
tr
D

r.:$
735

srv .+
.c! ^w

^v^t
.+ O- -t'-

a7

BB

B9

BA

BB

BC

BD

BE

8F

90

91

92

93

94

95

96

r't..I} -e,o\'- ,{"'

.arr' - .,+'

A8

A9

AB

AD

AE

AF

BO

B1

B2

B3

B4

B6

1n)
$Yt,61v

,/n,4::'"*$$.."*c

A5

136

737

138

139

140

747

.745

747

148

749

150

97

98

99

167

169

772

174

(EOL)
uEtt]iut

tr
tr
tr
tr

9B

9C156

9D

9E158

9F

AO

9A

A3

177

778

779

A6

A::
199

200

207

202

203

204

205

206

207

208

209

21.O

21.7

21.2

213

274

"-.;$".tt$r"d 0'6' - ts

.lY orr

C7

C8

C9

CB

CC

CD

CE

CF

DO

D1

D2

D3

D4

D5

D6

C d *1r'"$, ^+
.O'- ^{re

own! brJ

$o c9'

D7

DB

D9

DA

DB

DC

DD

DE

DF

EO

E3

EA

E6

{,5
216

21.8

279

220

221

222

223

224

226

227

228

229

230

183

184

185

186

1.87

1BB

189

190

191

792

193

794

195

196

L97

198

B7

BB

B9

BA

BB

BC

BD

BE

BF

CO

C1

C2

C3

c4

C5

C6

.$t .+

"t$.".."$"".*cf
231

232

233

234

236

238

239

EB

E9

E7 F9

FB

FC

FD

FE

FF

EB

EC

ED

EE

EF

f,'?;::n",'

1. ATASCII stands for ATARI ASCIL Letters and nurlrbels hav€ the same values as those in ASCrr, but
some of the special characters are different.

2. Except as shown, characiers Ilom 128 255 arc reverse colors of 1 to 127.

3. Add 32 to upper case code io get lower casc code lbr same]erte..

4. To get ATASCIT code, t€ll compurer (dirccr mode) ro pRrNT ASC (,,_) Fill blank rvith tetierJ
ch:racter, or numbel ofcode. Must rse the quoiesl

APPENDIX B
REFERENCES

ATARI PUBLICATIONS
Obtainabl€ from your ATARI dealer, or ATARI Consumer Division, Customer
SupportJ 1195 Bonegas Avenue, SunnyvaleJ CA 94086
ATARI4!00rM Operator's Manual COl4zGa
ATARI S00TM Operator's Manual CO:.476g
ATARI SIoTM Op€rator's Manual CO1476O
ATARI SI5TM O-perator's Manual CO76377
ATARI Disk Op;raring Sysiem II Reference Manual
ATARj4l0rM Operaroi 's 'Manual CO148t0

OTHXR PUBLICATIONS
6502 Progt'clmtni.ng Manual

SYNERTIK, 3050 Coronado Drive, Santa Clara, CA 95051 or
MOS Technology, 950 RitteDlou& Road, Nori.istown, pA 19401

6502 Assembly Language Prcgrammingby Larrce Leventhal
Osbome^4ccraw-Hill, 630 Bancro{t Way, Berkeley, CA 94770

Ptwrumming the 65A by Rodn€y zaks
Sybex, 2020 Milvia Street, Berkel€y, CA 94704

NOTES:

)
APPENDIX 9

USING THE ASSEMBLER CARTRIDGE
TO BEST ADVANTAGE

' -

#ir$#t{i*lfu i;rt*i#:i':'i'.$"q!'ffi :l:{f *x.r.:"*
$$ilHf rd;r:."Iffi L*|tl:r,*,k*Hr*l}*il:ffitr
:ri",rr#.#di#*1rf tr13*lkt${$"::ji:J3";::,.*,*;x ;'":*:i
n+'.:l;'*l*+iili*n**h{+*+*tq"*i:,"1'ffi
11ffi:TT#::itJ# ff.li1#:"'ilxr1t,'" rrest used to dev€,op machine

i$:.1=:1ixii:,?tir,."-..";fi*"ffi il#f ,]:i{*ffi :f ."',;'#*:
+:ffi1"i':JTi*JtT i::i"iii,Tl"**'"stem with this -'r'r""i'"
m!;xl*";xniil""?Hl{irxid**f.'fi::"l;:i"'li:i::T:ix:
.

ff.l;."r"
ce ain speciat togical operaiions not feadity avaitabte fr.om

. To gencfaie speciat sound effects that BASTC i$ too slow to generare

. To gercfate high-spced graphics and animation

. To utilize the inicrrupi capabilities ofrhe machine

. To accomplish high-speed comptex togical calcutations and manipulations

Most of these applications :j.e situaiioDs tl:l**i*i,{*+*i'ilrr;[5t {il.frii*i* tr+ ll, ry,rl*-*;;i 5i,+,w+illlii:#,*ulrr', rw *,,1;*i
f.]j:j: il:ri-ti i'i*l:J"i:i;F"il:til::t ;,:,t,lti:ii",f :i;1.,.,-j f{;,;i:il:,ti"'",i.* L:ll ;i:T f.:: ff"i?:*'J:.1"::;lr;ul;t*:,_l#l

show horv to execute some of the most commonly used funclions. These
programs are meant only for demonstration purposesr rhey certain)y do nor
exercise ihe full power ofthe machine. You may \' ish to entranc€ them, adding
whatever features you desirc. In this rvay you will leam mor€ about the ATARI
Personal Computer System.

All four programs have been written to .eside on page 6 ofmemory. These 256
bytes have been reserved for your use. On page zero, oriy 7 bles have been
reserved for your use by rhe BASIC carrridge; they are locaLions gCB throush
$Dl r203 rhro'ugh 209r. L;car ions $Dl and $D; r2l2 ;nd 2 t3rare also usable;rh;y
ate Lrsed ro rerurn paramereN from machine language roulines ro BASTC
though the USR function. Flrthermore, locations gD6 through gF1 are used
only by ihe floating point package; you may use them from BASIC USR calls if
you do not mind having ihem altered every time an arithmetic operation is
peformed. fyour program runs only with the Assemblex Editor cartridg€ and
not the BASIC cartridge you may us€ z€ro page locations gBo through gCF. you
will have to be very sparing in your use of page zero locations, as nine safe
locations will not take you far. It is not wise to usurp other locations on page
z€ro, as they are us€d by the operating system and SASIC; there is no way to
know ifyou ther€by sabotage some vital function and clash the system untit it
is too late. For the moment, we recommend that you limit yours€fto programs
that fit onto page 6 and use less than I byi€s of page zero. The four sample
programs meet that restriction; later we will show you how to make larger
programs with BASIC.

Our fiIst sample program is v€ry simpls it takes two 16-bit numbers, exclusive
OR's them iogether, and returns the resulting 16-bit number to BASIC. lt is only
17 bles long and use6 oriy 4 bytes ofpage zero. we will us€ it as a vehicle to
show you the rudiments ofintefacing machine language to BASIC. Here's how:
First, t}?e in the program with the Assembler Editor cartridge in place. Make
sure that you have typed it in properly by assembling th€ program (the
command ASM) and verifying that no ellors are flagged to you. If it squawks
unpleasantly, you have offended its delicat€ sersitivities; note the line number
where the erlor occuffed (CONTROL-1 is a handy way to stop the listing so you
can see what happen€d). Then list the offending line and corect the typo. you
may r€st assured that ih€ program as we list ii r^/ ill indeed assemble without
effors; i{ you t}?e it in exactly as listed it will work fine. Now assemble the
progran with th€ object code going to your nonvolatile storage medium (either
diskette or cas6ette). If you have a disk drive, type in:

ASM,J/D:EXCLOR.OBJ

Ifyou have a Program Recorder, type in:

ASM,.rC:

Follow normal procedures for using these devices. After the object code is
stored to your diskette or casseti€, open the ca ridge slot mver and replace the
Assembler Editor cartridge w iih the BASIC caltridge. Close the cov€r andwhen
you see the READY prompir load the program from diskette orcassett€ tape into
RAM.

lfyou have a diskeite. rype DOS to call DOS. then lwe L ro load a binary file.
when ir a6ks what f i le ro load. respond with:

ExcLoR.oBJ mi@

1g*tilixflrfr x+*x#l*irffi$il#rf *ff
?PEEK(1536J mfig

#r*.',f..r;r*:ti11f#*"lfu;g;$tr.#:#.;l l
A-USR(1S36, 1, 3): ?A Ggm,

ut;***g*$*ffirimg*u*r,gffi
g**-**$$**#*H*'"+;ffiffi
***$ffi*t**lm*fisl*ffi

A USRfrs36. 50. ro. s0. 200jE!&Et

ffi $;tilg"mqg$*#:s$",.*:**;".,}:fffi
e$#5f $#1lj#l#iF:#"#;{Fi.ftttrdffi

cR. 19: A -USR{15361 F&g{!

$hr#iH:,:""#,tt*H?i"T:5#ii;"&.ffi fl?:,,f""Fffi *:il

The lasi sample program demonstrai€s a very useful capabiliiy ofthe ATARr
Personal computer System-the display list inierrupt. perhaps you have been itch-
ing to have more than five colors on the scre€n. with display lisi interrupts you
can have up to 128 colors. Her€'s the idea behind it: the ATARr displav svsiem
u"es a displd) l i " r and di"plry memory. The displa) l isr i " a *quence oi invruc
| |on" rhar rpl l rhe ' ompurer whar Eraphics format ro use in purr ing informarion
onlD lhe scrcpn. rhe display memory r" rhe information So'ng on{o rbe s.reFn.
The address ofthe b€ginning ofthe display list can be found inlocations 560 and
561 (decimal).The address ofthebeginning ofthe display memory can be found
in locaiions 88 and 89 (decimal). won&ous things can be done by changing the
display list; this program demonstrates onlv one of the capabilitiea oa the
di"play I ist "y i lem. l fbir 7 oIa display l isr insrrud'on is set requ; l ro r , . rhen rhe
computer will generate a non-maskable iirierrupt for the 6502 when ir en
counters that display list instruction.
lf w€ place an interrupt routine which changes the color values in the color
registers, the color or the screen wjtl be changed each tim€ a disptay list inter-
ru_pt is ercountered. This program consists oftwo parts: an initializing routine
which sets up the display list interrupt vectors, sets a]l ofthe display lisi instruc-
tions to g€nerate display list inteuupts, and lastly, enables the display lisi inter-
rupts. The s€cond routine actually seruices the display list interrupts by chang-
'ng rhe color value in the color regisrers every rime it is called. This rourine is
designed io operarc in cRqPHICS 5 mode; iL wi l l pur aj l t2B colors onro lhe
screen. rls rhar enough for you?r To see il iD aflionJ foliow lhe familiar pro-
cedure for Fnlering. a"sembling, saving. and loading rhe program. Then key in
lhe rouowine BASIC immediaTe insLruct ion:

GR. 5: FOR I= 0 TO 3: COLOR I: FORJ=20*I TO 20*I+19: PLOT J, 3:
DRAWTOJ,39: NEXTJ: NXXT I: A=USR(1536)

we hope that these four sampl€ programs have given you a clearer id€a ofhow
your ATARI Assembler Editor cartridge might be useful. Therc are some more
advanced techniques for getting even more us€ out ofyour cartridge. The irst
proolem many programmers encolurrer arises when rhey atrempt to wrjTe aprogram larger rhan 256 byieb-long. Ii will no longer fir onio page e and the pro-
grammer musr find a new place ro pur rhe program. The probtem js made
worse Oy the Iact that lhe Operating Sysrem and BASTC u6e memory all over the
acldess space. The programmer will have a hard iime t]ndins a safe olace in
memory where the machine langLrage rourine wju nor be wip;d our by BASIC
or lhe Operar ing Syslem. There are a number ofsolur ions ro rhis orobl im: ach
solurion has aclvanTage! and djsadvantages. we recommend lhe followine aD-
proach. which is dimcLrl ro undersrand bur i! also rhe mosr usefrd and;fe;i
route. What we are going to do is store the machin€ language program inside a
BASIC program and then touch it up so that it will run from ;nywhere in

we begin by writing an assembly language progran with the Assembler Editor
cartridge. Originate the program near the top ofyour available memory. For ex-
ample. ifyou have 2K ofobject code and a t6K machine, o.iginare rhe program
ai the l2K boLmd€ry wirh the direcl ive =$3000'. This leaves 4K ofspaci-zr
for your program, I K for a CRAPHICS mode 0 djsplay. dnd 1K or extra;pace for
good measure. Now go through ihe procedure ofasspmbling rhe objecfcode ro
ctjskelle or casserre. ch€nging rhe canridges. and loading The objefl code into
memory. Calculate the decimal ad&esses ofihe beginniDg and end ofyour ob-
ject code. Let u3 say that your program is 2179 bytes long. It begins at g3000 orp2a8 decimal, so the last byte is at 14466. Pdnt PEEK(12288) and PEEK(14466) to
verify that these addresses really do contain the flrst and last bytes ofyou. pro-
gram. Remember. the computer wi l l pr int rhe resul" in decimat, nor tex-
adecimal. so you wi l l havF ro (onven in your head or wirh rhe compurer.

Now start writing a BASIC program, begin with:

2 DIM ES(2179i

Ther add this subroutine (which you can delete later):

25OOO A =90*J+ 1:B =A+89: II B > LIMIT THEN B =LIMIT:?"LAST LINE"
250101 + 5;"E$(";A;",",B,") - ";CHR$(3a);
25020 FOR I-A TO B:?..8M @,,;CHR$(PEEK)I+C));:NEXT I
25030 ?CHR$(34)J -l +1:RETURN

Herc the m W symbol m€ans ihat you pre$ the escape key twice. Now tyT)e
in the following direct comnands:

J=0f f i
c = p2a7 sqw
LIMIT=2179 ffi

The valu€ ofc is the address ofthe b]'ie before the lirst byte ofyoru plograIn.
The value of LIMIT is the length of youl objeci program. Now type GOSUB
25000 gffiffi.

The computer will prini a BASIC line onto the screen. It will look very
strange-all sorts of strang€ characters inside a string. They are the scre€n
representation ofyour object code. To make this lin€ part ofyou BASIC prgram
simply move the cursor up to the line and press ffid&. You might reassue
yourself ihat you were succe$ful by entering:

LrsT 5 S:fSW&
and vedfying that line 5 r€aly did go in. Now type GOSUB 25000 @! again
and another line \vill be pdnted. Enter this one the same way as before.
Continue this process of printing ard entering lines until the entire object
program has been encoded inside BASIC statem€nts. You will know you have
reached this point when the computer pdnts "LAST LINE ' onto the screen.

There is one po$ible hitch with this process. If you have a hex code of $22
(decimal value 34) anywhere in your code it wil be put onto the sceen as a
double quotation mark. This will confuse ihe BASIC interyreter, which ltvill
give you a syntax error when you try to enter the line. Ifihis happens, carefuly
count which byte is th€ oft€nd€r and wdte down the index ofthe anay which
should contain the double quotation mark. Then go back and replac€ th€
offending quotation mark with a blank space; that will keep the BASIC
interyreter happy. Make not€ of all 6uch occumences. When you are done
entering th€ characters, iype in a f€w more lines like:

30 E$(292, 292) = CHR$(34)

This line puts the double quotation mark into the 292nd array elem€nt by brute
force. It should come immediately after the lines that declare the string. You
should have a line similar to this for each instance ofihe double ouotation mark.
Ma}.e sure lhat you have counted properly and pur rhe double quotar ion marks
into the right places.

Now your object program is a part ofthe BASTC plograIn. You can SAVE and
LOAD the BASIC program and the object prcgram will be saved and loaded
along with ii-a great convenience. You can run the obj€ct program by running
the BASIC program and then executing the command:

A = USR(ADR(E$))

But there is still another possibl€ hitch. Th€ 6502 machine language code is not
fully relocatable; any absolute memory references to the program are certain to
fail. For example, suppose yoru progran has a jumpto-subroutine oSR)
insiruction that refe$ to a subroutine within the object code. This instruction
would rell ii rojump Lo a specinc address. Unforruna-tely. your program has no
way ofknowing at what specific address that subrouiine is stored and thus will
almost ce ainly jump to the wrong addre$. The probl€m arises from the fact
that BASIC might move your object program almost an}'.wh€r€ in memory.

There are s€veral solutions to this problem. The simplest solution is to write
fully relocatable code; that isJ code with no JMP'S, no JSR'S and no data tables
enclosed within it. Put all data tables and subroutines onto page 6. Ifyou stil
need more space, put very large data tables into the BASIC string and point to
them indirectly. Replace long JMP'S with a bucket brigade of branch
instruciions. These techniques shodd allow you to wdte large machine
languag€ programs.

Exarnple 1.
10
20
30
40

60
70
80
90

; ROUTINE EXCLOR
; PERFORMS EXCLUSIVE OR OPERATION ON
; TWO BYTES PASSED THROUGH THE STACK
; PASSES RESUI,TS DIRECTLY THROUGH USR FUNCTION

t
0000
00cc
00cD
00D4
00D5
0600 68
0601 68
0602 85CD
0604 68
0605 85CC
0607 68
0608 45CD
060A 85D5
o60c 68
060D 45CC
060F 85D4
0611 60
0612

Example 2,

O12O RESLTH
0130 xxcloR PLA
o140
0150
0160
o170
0180
0190
0200
o210
o220
o230
0240
0250

TXMPORARY HOLDING LOCATION
TXMPORARY HOI,DING LOCATION
ADDRESS FOR PASSING RESULTS
ADDRESS FOR PASSING HIGH RDSULT

SAVE HIGH BYTE

SAVE LOW BYTE

PERFORM HIGH EXCLUSIVE OR
STORE RESULT

PERFORM lOW XXCLUSIVE OR
STORE RESULT
WHAT COULD BE SIMPLER?

TEMP]-
$0600
$cc
$CD
$D4
$D5

O1OO TEMPH
O11O RESLTL

10
20
30
40
50
60

PLA
STA TEMPH
PLA
STA TEMPL
PLA
EOR TEMPH
STA RESI-TH
PLA
EOR TEMPL
STA RESI,TI,
RTS
.END

I nourr^" ̂ otr
; GENXRATES NOTDS I,UTH CONTROLLABI,E ATTACK AND DXCAY
; TIMIS
; CALL FROM BASIC WITH COMMAND:
;A=USR(1536, F, A, P, D)

70 i WHERE
80 ; F Is THE FREQUINCY
90 ; A Is THE ATTACK TIMI
0100 ; p IS THE PEAK TrME

. 0110 ;D rs THE DECAY TIME
0720 ;
o13O ; ALL TIMES GIVEN IN UMTS oF 1.6 MII,IIsxCoNDsoooo ot4o $0600D2OO O15O AUDT1 = $D2OO AUDIO fREQUENCY REGISTERD201 0160 AUDCI = $D201 auoro coGnol xpcrsrunOOCC O17O ATTACK = $CC ATTACK TIMEOOCD O18O PEAK = $CD PEAK OR PLATXAU TIMNOOCE O19O DECAY = $CE DECAY TIMX0600 68 0200 NOTE PLA

0601 68 o21O PLA
0602 6a a22n PLA
0603 8DOOD2 O23O STA AUDI1 SNT IREQUENCY0606 68 o2ao PLA
0607 85CC O25O STA AfiACK SET ATTACK TIME0608 68 0260 PLA
060A 68 0270 PLA
0608 68 0280 PLl^
O6OC 85CD O29O STA PEAK SET PEAK TIME060E 68 0300 PLA
0601 68 0310 Pr,A
0610 85CN O32O STA DXCAY SET DECAY TIME

0330 ;
0340 ; ATTACK LOOP
0350 :

0612 A9AO 0360 LDA /$AO START WITH ZERO VOLUME0674 ADO7D? O37O ATI,OOP STA AUDC1
0617 A6CC O38O I,DX ATTACK
0619 204106 0390 JSR Dfl,AY
o61C 18 0400 cLc
051D 6901 0410 ADC ,901
061F C9B0 O42O cMP ,gBO
0621 D0F1 0430 ENn ATLOOP

0440 ;
0450 ; PEAK LOOP
0460 ;

0623 A90E O47O LDA ,gOE
0625 A6CD O48O PKI,OOP LDX PEAK
0627 204106 0490 JSR DILAY
0624 38 0500 sEc
0628 E901 0510 sBc #g01
062D D0F6 o52O 3NE PKT,OOP

0530 ;
0540 ; DxCAy LOOP
0550 ;

O62E Ag1^F 0560 LDA ,$AF
0631 8D01D2 0570 DcLooP sTA AUDC1
0634 A6CE 0580 LDX DECAY
oa36 204106 0590 JSR DXLAY

0639 38
063"1 E901
063C C99F
063E D0F1
0640 60

0641 A013
0643 8a
0644 D0rD
0646 CA
0647 DOFA
0649 60
064A

Example 3.

0600
0610
0620
0630
0640
0650 ;
0660 DELAY
0670 DELAY2
0680
0690
0700
0770
0720

sxc
sBc r$01
cMP *$9F
BNE DCLOOP
RTS

LDY r$13
DEY
BNN DLLAYZ
DEX
BNX DEI,AY
RTS
.END

;
; ROUTINE SPLAY
; PUTS A PRETTY DISPI,AY ONTO THE SCRNEN
; CALI, IROM BASIC WITH THE FOLLOWING COMMANDS
; GR. 19: A- USR(1536)
; EXIT PROGRAM WITH &3 m

10
20

40
50
60
70
80
90
0100

00cc 0110
00cD 0720
00cE 0130
00cF 0140
00D0 0150
00D1 0160
0058 0770
o2c4 0180
D20A 0190
0600 68 0200
0601 85D0 0210
0603 AA 0220

0230
0240
0250
0260
o270
0240
0290
0300
0310
o32n
0330

0604 ADoAD2 0340
0607 290f 0350
0609 c90A 0360
0608 B0F7 0370

TEMP
xl-oc
YLOC
DIST
PHASE
COI,OR
SAVMSC
coLoRo
RANDOM =
SPI-AY PLA

STA
TAX

$0600
$CC
$cD
$CE
$cF
$D0
$Dl
$58

TEMPORARY LOCATION
HORIZONTAL POSITION OF PIXEL
VERTICAL POSITION OF PIXEL
DIST. OF PIXEL FROM SCREEN CENTER
COLOR P}IASE
COLOR CHOICE
POINTER TO BEG. OF DISPI,AY MEMORY

$o2c4 LOCATION OF COLOR REGISTERS
$D2OA HARDWARE RANDOM NUMBER LOCATION

POP A ZERO FROM STACK
PHASE STORE IT IN PHASX

SET COUNTXR

; THIS IS THE MAIN PROGRAM LOOP
; FIRST WE RANDOMLY CHOOSE THE SCREEN LOC. TO MODIFY
; SCREEN IS 40 PIXELS HORIZONTALLY BY 24 PIXEI,S VERTICALLY
; WITH 4 HORIZONTAI,I,Y ADJACENT PIXELS PER BYTE
; HXNCX THERE ARE 10 BYTXS PER HORIZONTAL ROW
; AND 2l ROWS FOR A TOTAL OF 240 BYTES
; TO REPRESENT THE SCREEN

;

BEGIN LDA RANDOM GET A IIANDOM NUMBER
AND /$OF MASK OFF I,OWXR NYBBI,E
CMP '$OA MUST BE SMALLER TIIAN 10
BCS BEGIN IF NOT, TRY AGAIN

iiSi 35"' 3:33 srA xr'oc sroRn rHx RE'u,r
3313 ?8Sj :f: :* 1j0u crr x_DrsrANcE rRoM CENTER
B:t; i;" 3j* # #, i:'J;:?:iilf,ff,u'iffi,?l*
:::l 9:Sl o44o aoc o$0,

::i: ljri_ i1i3 ff""". ilx il'I".,:iI"^1H.ffi.*,HJ#i1,,,.
3:f :31: ra L.)_" ,!r MASK oFr LowER 5 Brrsoezz noiz ;;; ;gi. 1'{1* ily$,?.,,,H#l#1il"?,._"*o
i:# 3:"' ff?8 *l ""oc* ;;;;";;L"r*?*'
3r; Hff ffi3 ::: ,$ic c-Er y.Drsr fRoM .ENTER oF scRErN

i!;3 i3" i:# :S f*, flG:X'iTi,f,flXtrf#H,",
o62E 6901 os6o io" oso,o57O ,

3;33 ; Now CALCULATE rm cor,oR To pur rNro THrs posrrroN
0630
0631
0633

1a
65CI
65DO

.0600 xB
0610
o62n
0630 :

!ff8 ; rtrs r aNl I Now crvx rHE coloR ro usx

cLc
i:9 ?].. TorAL DrsT rRoM CENTER Of ScREf,NADC PHASE COLOR P}IASE OFFSET

0635 291f
0637 4A
0638 4A
0639 4A
063A 85D1

06D1
06D1
88
DOF9

]15CE
OA

0660
0670
0680
0690
0700
0710 :

AND r$1F
]-SR A
LSR A
:.ll A sHrfT oFF Brrs 0, 1, AND 25IA COLOR STORE RJGIJT.ruSTFIEU RI]SULT

ASL COtoR
DEY
BNE SHI1TLP

MASK OUT BITS 5, 6, AND 7

O72O ; Now wx MUST DETERMINI wHIcH oF THE 4 PIxxLS0730 i rN THr BYTE Cf,T TIIE COLOR0740 :

:::: fl?9^* :::9 LDA RTNDOM
0;; ;;" !ti." fl' ^o' GEr A RANDoM No. BrrwEEN 0 AND 3
0642 Fooz i7; ;i-: . ^- - usEIrAsA couNrER

uTso ;
EQ NoslIFT SKIP AIIEAD lI rT Is o

3313 ;
t** o*o twrcE FoR EACH srEP rN Y

O82O SIIFTLP ASI, COI,OR
0430
0840
0850
0860 ;
O87O : N^OW _WI MUST CALCULATE WH_LRI IN.MI]MORY TO pUT OURUddO ; SQUARE
O89O NOSHFT LDA YLOC GIT VERT]CAL POSMON,trsL A \'LOC.2

064E 85CC 0910
0650 0A 0920
0651 0A 0930
0652 65CC 0940

0950
0960
4970
0980

0654 65CD 0990
1000
1010

0656 A.8 7020
0657 A5D1 1030
0659 9158 1040
0658 CA 1050
065C DOA6 1060

1070
1080
1090

065E C6D0 1100
0660 A5D0 1110
0662 297F 1120
0664 D09E 1130

1740
1150
1160

0666 A5D0 7770
066A 4A 1180
0669 4A 1190
0664 4A 1200
0668 4,{ 1.210
066C 4,4. 1220
066D 2903 1230
066F AA 1240

1250
0670 /'DoADz 1260
0673 9DC402 1270
0676 4CO406 1280
0679 1290

Exampl€ 4.

10
20
30
40
50
60
65
70
80
90
0100

STA TEMP SAVE IT FOR A FXW MICROSECONDS
ASL A
ASL A YLOC*8
ADC TEMP ADD IN YI,OC*2

; RESULT IN ACCUMULATOR IS YLOC*10
; REMEMBER, THERE ARE TEN BYTES PER SCRXEN RO.\ry

ADC X],OC
;
; RESULT IS MEMORY LOCATION OF DESIRED PIXEL GROUP

TAY
LDA COLOR GET COLOR BYTE
STA (SAVMSC),Y PUT IT ONTO THE SCREEN
DXX \^/E S}IALL PUT 254 MORE SQUARES
BNE BEGIN ONTO THE SCREEN

; END OI MAIN INNER LOOP
;

DEC PHASE STEP COLOR PHASE FOR EXPLOSION
LDA PHASE
AND '$1F EVERY 32 PHASE STEPS
BNE BEGIN WE C}1ANGE COLOR REGISTERS

; THIS SECTION USES BITS 5 AND 6 OF PHASE
; TO CHOOSE WHICH COLOR REGISTXR TO MODIFY

LDA PHASE
LSR A
LSR A
LSR A
I,SR A
LSR A
AND /$03
TAX

;
LDA RANDOM CHOOSE A RANDOM COLOR
STA COLORO,X PUT NEW COLOR INTO COLOR REG,
JMP BEGIN START ALL OVER
.END

, "-A.t"U', CO"O* O-A""tt"
; PUTS ALL 128 COLORS ONTO THE SCREXN
i CALL FROM BASIC WITH THE FOLLOWING COMMANDS:
; G R . 5
; FORI-0 TO 3: COLOR I: FORJ-20*I TO 20*I+19: PI-OT J, 3:
; DRA1ir'TO J, 39: NiXT J: NEXT I
; A =USR(1536)
; BASIC IS STILL USABLE
; EXIT WITH SYSTEM RESET KEY
;

0000
00cc
0OcE
00cr
0230
DlOE
D{OF
D4OF
0200
DOlA
D016
DO17
D018
D4OA
0600 68

0616 C8
0617 C8
0618 C8
0619 C8

0601 AD3002
0604 85CC
0606 AD3102
0609 85CD

0608 A007
060D A98A

060F 91CC
0611 C8
0672 C017
0614 D0F9

0110 ;
o12O 90600
O13O POINTA = $CC POINTER TO DISPLAY I,IST
O14O COI,CNT = $CE KEEPS TRACK OF COLOR I,vE ARE ONO15O DECK = $CF BIT O KEEPS TRACK OF WHICH DECK0160 DSLSTL = 90230 o. s. DIspr,Ay LrsT ADDRESS
O17O NMIEN = $D4OE NON-MASKABLE INTERRUPT ENABLEO18O NMIRIS = $D+Of NON-MASKAELI INTIRRU|T RESETO19O NMIST = $D4OF NON-MASKABLE INTERRUPT STATUS0200 vDslsr = 90200 DrspLAy r,rsr rNTERRupr vriioi--O21O COI,BAK = $DO1A BACKGROUND COLOR REGISTERO22O COLPEO = gD016 COLOR REGISTER ,0
0230 COLPF1 = gD017 CO]_OR REGISTER,f1
0244 COLPF2 = $DO1S COLOR REGISTXR.2
0250 wsyNc = gD,r0A wArT FOR HORTZONTAL SYNC0260 SETUP PI,A CLEAN STACK
0270 ;
0280 ; SnT UP POINTER ON PAGE ZERO
0290 ;
0300 LDA DS]-STL
0310 STA POTNTA
O32O LDA DSLSTL+ 1
O33O STA POINTA+ 1
0340 ;
0350 LDy tgoT POINT TO 3RD MODE BYTX
0360 LDA #gBA NEw MODE BYTE
0370 ;
O38O ; STORE 16 DISPLAY]-IST INTERRUPT MoDE BYTES
0390 ;
O4OO LOOP 1 STA (POINTA), Y
0410 INy
O42O Cpy iglz
O43O BNE LOOPI
0440 ;
0450 ; SKIP IOUR BLANK LrNES
0460 ;
O47O INy
0480 INy
0490 INy
0500 INy
0510 ;
O52O ; STORE 16 MORE DISPLAY LIST INTERRUPT MODE BYTIS
0530 ;
o54O LOOPZ STA (POINTA)j Y
o55o INy
os6o cpy *$28
O57O BNE I,OOP2
0580 ;
0590 ; SrT UP DISPLAY LrsT INTERRUPT VECTOR
0600 ;
0610 rDA rgso
0620 STA VDSI,ST
0630 LDA rg06

0614 91CC
061C C8
061D C02B
061F DOFg

0621 A950
0623 8D0002
062A A906

062A 4D702 0640 STA VDS]-ST+ 1
0650 ;

0628 A900 0660 LDA /$00
O62D 85CE 0670 STA COI,CNT INITIALIZE COLOR COUNTER
O62F 85CF 0680 STA DECK INITIALIZE DECK COUNTER
0631 8DOFD4 0690 STA NMIRES RESET INTRPT. STATUS REGISTER
0634 ADOFD4 OTOO WAIT]-DA NMIST GET INTERRUPT STATUS REGISTER
0637 2940 O71O AND r$40 rrAS !'ERTICA] BLANK OCCURRED?
0639 FOTg O72O BEQ WAIT NO, KEEP CHECKING
0638 ADOED4 O73O LDA NMEN \TS, ENABLX DISPLAY LIST
063E 0980 O74O ORA /$80
0640 8DOED4 O75O STA NMIXN THIS XNABLES DLI
0643 60 0760 RTS AI,I, DONE

0770 ;
0780 ;DISPLAY LIST INTERRUPT SERVICE ROUTINE
0790 ;

0644 0800 $0650
0650 48 O81O DLISRV PIIA SAVE ACCUMULATOR
0651 AsCN OA2O I,DA COLCNT GET CURRENT COLOR
0653 18 0830 Cr-C
0654 6910 0840 ADC '$10 NEXT COLOR
0656 85CE 0850 STA COLCNT SAVE tT
0658 DO13 0860 BNE OVER END OF DXCK?

0870 . ;
0880 ; xND OF DICK, BLACKIN SCREEN
0890 ;

065A SDOAD{ O9OO STA WSYNC WAIT TOR NXXT SCAN I,INE
O65D SDOADO O91O STA COI,BAK BLACKEN ALL REGISTERS
0660 8D16D0 0920 STA COLPFo
0663 8D17D0 0930 STA COLPF1
0669 E6CF 0940 STA COLPEz
0668 68 O95O INC DECK NEXT DECK
O66C 40 0960 PLA RESTORE ACCUMULATOR

O97O RTI DONE
0980 ;
0990 ; PUT OUT NEXT COLOR, WITH FOUR I-UMINOSITIES
1000 ;

O66D AsCI
o66t 2901
0671 0A
0672 0A
0673 0A
0674 05CE
0676 8D0AD4
0679 8D1AD0
067C 6902
067E 8D16D0
0687 6902
0683 8D17D0
0686 6902
0688 8D18D0
0688 68
068C 40

1010 Or,aER
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

LDA DECK
AND r$01
ASL A
ASL A
ASL A
ORA COLCNT
STA WSYNC
STA COLBAK
ADC /$02
STA COLPFO
ADC r$02
STA CO'-PTI
ADC r$02
STA CO]-PF2
PLA
RTI

UPPER OR LOWER DECK?
MASK OFf RE]-XVANT BIT
SHIFT INTO HIGH]-UMINOSITY

MERGE WITH COLOR NYBBLE
WAIT FOR NEXT SCAN LINE
STORE COI,OR
NXXT HIGHER LUMINOSITY
STORE COI,OR
NEXT HIGHER I,UMINOSITY
STORE COLOR
NEXT HIG}IER LUMINOSITY
STORE COLOR
RESTORE ACCUMUI,ATOR
DONE

APPENDIX 10
QUICK REFERENCE:

COMMANDS RECOGNIZED BY
THE ASSEMBLER EDITOR

lll*lilri{t:ffi1#"trfffTi#'t":l$::"Hr*rf Y."1i:r""i'.Ti;,r":',r'':,'s:is'"?
Ref€renoe
Page No,

15

1 6

7 7

19

27

21

22

22
ASSEMBLER

ASM'D: NAME. SRC, /P:, /D: NAME. OBJ
retrieves source file caled NAME. sRc on diskette. lists

2s
a.ssembry risrjns io pri.,*. ""0 *;;ri*i.iii.i,"i"i,ii.diskerre under tr tename NAMr. OBI

EDITOR
NUMxx, yy

RENxx, yy

DELxx, yy

NEW

FIND/SOUGHT/XX, yy, A

RiP/OLD,NEWXX, yy, A

LIST rP:

PRINT 'P:

ENTER 'D: NAME

SAVI /C: xxxx, yyyy

LOAD 4C:

DEBUGGER

DR

c R < , , x

Dxxxx, ylyy

provides duro l ine numbering srr fr ing al xx jn incrementsOI Jry

r€nulnbels all statemeniB in inclemenis ofly, starting

deletes statemeni numbers xx through yy
wipe8 out source program

finds and disptays all occurences of the srnng soUGHTDetween xx and yy

::ol":.::iil,"*"'1"*:s.bei ween rines x.\ and yy orrhe srrinsULIJ wrrh the strjng NEW

lists souce program to p nter

p nts souce program on pdnter

r€tneves source program from diskette

saves data in addresses xxxx through yyyy to cassett€
r€trieves data from cassette

displays 6502 registers A, X, y, p, alld S.
purs an x into the y_rcgister.

displays cont€nts ofaddresses xxxx through yyn,

75

36

36

Cxxxx < yy

Mxxxx<yryy, zzzz

Vxxxx< yyr.y, zzzz

Gxxxx

x

puts yy into address xxxx.

copi€s memory block yyyy t}rroltg}tr zzzz \r]to block starting

compares memory block yyw tbro.ug}] zzzz with block
starting at xxxx, displaying mismatches.

disassembles memory starting at addrese xxxx.

activates mini-assembler [no labels, one line at a time).

runs object program at xxxx.

trace; displays 6502 registerE while running object program
ai addre$ xxxx at readable speed.

single-steps object program at xxxx, displaying r€giste$.

37

3a

41,

38

3a

40

40

40

APPENDIX 11
MODIFYING DOS I TO MAKE

BINARY HEADERS COMPATIBLE WITH
ASSEMBLER EDITOR CARTRIDGE

The following assembly language proqrar

fq+'i*$'r:r*.:nf""rH.iri';i*,I.tl-.I;"+*"a,+l#;,."m
;:,fi?,f :;H",fl '1",*:# j#?*:n|::#jj;i;;FFFi;;''til;;

EDIT

10
20
30
40
50
60
70

LDA
STA
STA
STA
STA

r : 6 0 0
r$IF
$u41
$2448
$148F
$14C0

END

To assemble the modification program, rype ASM and press G@.

To mn this prograrn, you must be in DEBUG mode so, t}T'e the following.

. Type BUG and prcss @.. Type c600 and press @.

The screen will display:

DoS I will now have header bles that are fully compatible with the Assembler
Editor cart dge.

To chang€ DOS I permanently on your diskette:

1. Run the Modilication Program.
2. T}?e x G@ to g€t out ofBUG.
3. Typ€ DOS En@ to enter DOS.
a. Type H l@ to $ryite a fully compatible Dos on diskette.

CIIANGES AND LOCATIONS

LOCATION
DECIMAL HEX
9281 2441
9288 2444

5311
5312

PR.ESENT CONTENTS
DECIMAL HEX
132 84
9 0 9

CIIANGE TO
DECIMA]- HEX
255 FF

14BF
14CO

732 84
9 0 9

FF 'LOAD

FF
FF .SAVE

Instead of using the Modilication Program, you could use BASIC io POKE
d€cimal255 inio memory locations 9281J 9284,5311r and 5312. A{ier making
the pokes, t}?e DoS @ to display the Dos M€nu. Type H l@l to writ€
the DoS modification onto diskeite.

NOTES:

INSTRUCTION SET(oPERAT|ON CODES)

A" " ' s . r l . I " i , , " d -
l 1l1l Lr!r!' l ! " I ' [r] i l ' j '

!L! l

t rfl

{ I
i I =

tr t- t

++
1 1

r!t!:r"t tl1,r!

I +
- l --t +rT -

/ \

ATART
a warner commuf,calions companyO

