
QETTINQ STAR TED WITH OSS

CONGRATULATIONS I I I

You have pu~chased what ~e believe is bV Tar the most
.dvanced software development package available for
the Atari 800 and Atari 400 personal computers.

This p.ckage will ~un on .n~ Atari 800 or Atari 400 ~ith

at lea~t 32K b~tes of RAM. Since no ass soft~are uses
.n~ routines in an~ cart~idge, ~ou may fully utilize all
the RAM in even. 48K b~te At.~i.

CAUTION: If vou hAve ANY c.~t~idge plugg_d into ~our

Atari, ~ou ~il1 not be .ble to utilize _are than 40K
b~tes of •••orv. This. ha~d~re f •• ture of the Atari
.nd can not be changed via .oft~re. If ~au need the
po~er of 48K bVtes of RAM, REMOVE ALL CARTRIDGES.

There are, ho~ever, some circu.stances under ~hich ~ou

~~ need. c.rtridge for ~our o~n development ~Qrk. ass
CP/A is completely compatible ~ith all known Atari
c48l"tridges.

HOW TO USE YOUR OSS PACKAGE

'1. Check the contents of vour package. If ~QU ordered Just
BASIC A+, there should be a BASIC A+ manual (an addendum to
the Atari Basic Manual). If ~ou ol"der.d CP/A, there 9hould
be a CP/A ••nual .nd an EASHD (Editor/ASseMbler/Debug)
..nual.

2. There should be a license agreement. FILL THIS OUT NOW AND
SEND IT TO US! Aside from its obvious purpose, the agree­
.ent is YOUR ticket to ***SUPPORT***. V_S, ~e do ans~er

phone ~uestions. Yes, ~e do respond to bugs. BUT ONLY for
those p.1"son~ who .end b.ck their license!!!

3. Turn on vour disk d1"iv.(s) .nd screen, leAve the Atari computer
off. If vou pU1"ch.sed CP/A, place the CP/A disk in drive 1.
If vau purch••ed onlv BASIC A+, pl.ce .n Atari DOS .aster disk
in d1"iv. 1. Boot up th••~st•• bV tu~ning on the co.puter's
po~er. That's all there is to it! Follow the manual direc­
tions for running th. progr•• vou desir•.
Note: .peci.l instructions fo~ ~unning BASIC A+ under At.1"i

DOS .~e in the beginning of the BASIC A+ manual.

4. We .t~onglv u~g. vau to i ••edi.t.l~ ..ke • backup cop~ of
Vou~ ass di~k.tte. You ••, do this using DUPDSK (see CP/A
..nu.l). [Or us. th. At.ri DUPLICATE DISK menu DOS command. J

5. Sit b.ck .nd .nJa~ the po~er of • REAL compute~ s~stem.

OPTIMIZED SYSTEMS SOFTWARE

ass EASMD

for the Atari 800 and Atari 400

MAY 1981

Version .1. 1

Cop~right (c) 1981, Optimized S~stems Soft~are

NOTICE

OPTIMIZED SYSTEMS SOFTWARE reserves the right to make changes O~

improvements in the product dec~ibed in this manual at any time
and ~ithout notice.

This manual is copyrighted and contains proprietary information.
All rights are reserved. This document may not, in whole or part,
be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without prior consent,
in writing, from OPTIMIZED SYSTEMS SOFTWARE.

ass EASMD is Copyright (c) 1981, Optimized S~stems Software

Optimized S~stems Software
10379 Lansdale Ave.

Cupertino CA. 95014

(408) 446-3099

Atar i and Atar i 800 are reg is tered trad emar k s of Atar i I INC.

TABLE OF CONTENTS

START UP
For start Up
Warm StaT't . .
Sac k-up Cop tJ .

5YNTAX CONVENTIONS

EDITOR
Text Format
Tables
Command Format .
Line Prompting
Editor Command S~ntax and Description

1
1
1
1

2

3
3
3
3
4
5

DEBUG 9
Command Format 9
Line Prompting . .. 9
Debug Command Syntax and Description. 9
Break Points. 12

ASSEMBLER
Assembler Input
Instruction Format .
Directives . . .
Expressions
Strings
Labels . .
Comments .

ERROR DESCRIPTION

NOTES

MEMORY MAP .

SYNTAX SUMMARY
Editor .
Debug
Assembler Directives.

ERROR SUMMARY
EASMD ErT'ors .
DOS Errol's . .

13
13
13
14

.. 1~

. . . . 16

. . . . 17
. . . . 17

18

· 20

· 22

23
· 23

24
· 24

25
· 25
· 26

START UP

Editor/Assembler/Debug (EASMD)

FOR START UP:

Put the ass diskette in disk drive 1 and turn on the power.

This will load the Operating System and execute OS/A+.

EASMD (return)

Now enter:

This will load the Editor/Assembler/Debug and start executing it.
See the OS/A+ manual for ather capabilities.

WARMSTART:

The user can return to OS/A+ using the EASMD command CP or bq using
the .SYSTEM RESET key. He can then re-enter EASMD by using the OS/A+
command RUN (if he has not loaded another program). This does a
warm start which preserves text lines already in memory_

BAC~-UP COPY:

On a dual drive system, simply use COpy or DUPDSK. an a single
drive s~stem, one can use DUPDSK or one can make a back-up copy
of EASMD on another diskette via the OS/A+ SAVE command.

System RAM size
Start address
End address
File Name: EASMD.COM

32k 40k 48k
5700 7700 9700
7COO 9COO BCOO
(or any . COM name of your choice)

NOTE: For a full explanation of OS/A+ commands see the OS/A+
reference manual.

-1-

SYNTAX CONVENTIONS

The following conventions are used in the discussion of
syntax in this manual.

1) Capital letters denote commands, etc. which must
be typed bV the user exactl~ as shown.
(eg. LIST, DEL)

2) Lower case letters denote types of items which
may be used. The various types are shown in the
next section. (eg. 1no)

3) Items in stluare brackets are optional (e q. [, Ln o L)

4) Multiple items in braces indicate that anyone may
be used. (eg. {A})

{G}

TYPES OF ITEMS:

The follo~ing types of items are used in describing syntax
command s.

Ino line number (in range 0 to 65535).

string A string of ASCII characters.

adr A memory address (given in hex).

data A list of hexadecimal values sepa~ated by
commas.

Examp Le : AB,12,FE

incr Increment a decimal value.

filespec See Atari DOS manual or OS/A+ reTerence
manual for full format.

Generally you may use
DCn]: xxxxxxxx. yyy for disk files
P: for the printer
etc.

Note that in EASMD filespecs must
ALWAYS be prefaced ~ith a pound sign (#>.

-2-

EDITOR

The Editor allo~s the user to enter and edit lines of ASCII
text.

TEXT FORMAT

Lines of ASCII text received by the Editor are stored in
memor~. A line consists of a line number (0 to 65535),
text information and a carriage return. The text information
that is bet~een the line number and the carriage return is
stored exactly as it is received. Thus any combination of
ASCII data is valid text.

Example: 10QOLITTLE GREEN APPLES

This is valid text as far as the Editor is concerned.

#0LOA

The, Assembler, however, expects a blank after
the line number and will not look at the first
characte~ after the line number. Thus

lOOOABC LDA #0
is seen as

1000 Be

NOTE:

Example: 100 PRINT X<SIN(X)

The Editor can be used to create and edit Basic
programs.

TABLES

The text area and other user tables are built starting at an
address in lQ~ memory and growing towards high memory. The user
can change this address using the LOMEM command.

The user can also change the highest address the Editor will use
for user text by using the change memory command in the Debug
monitor to change UHIMEM. (See memor~ map Tor UHIMEM address).

COMMAND FORMAT

The stored lines of text are manipulated by Editor commands. A
command is distingui5hed from text by the absence of a line number.
An~ line of data received by the p~ogram that does not begin
with an ASCII numeric is considered to be a command. The
Editor ~ill examine the characters to determine what function
to perform. If these characters do not form a valid command,
or if the command s~ntax is invalid, the Editor will respond
with:

WHAT?

-3-

LINE PROMPTING

The Editor will prompt the user each time a command has finished
executing by printing:

EDIT

The cursor will appear on the following line. Since some
commands take awhile to executel the prompt serves to tell
the user when more input is allowed.

-4-

EDITOR COMMAND SYNTAX AND DECRIPTION

NEW
NEW will delete all user text from the text area in
memory.

DEL Ino
DEL Inol, ln02

DEL deletes the specified line number (Ino) or all the
lines in the range Ino1 through ln02.

FIND
FIND
FIND
FIND

LIST
LIST
LIST
LIST

Istring/
Istring/,A
Istring/lnol[,ln02J
15tring/lno1[, 1n02J, A

The FIND command will search the specified lines (all
or 1no1 through Ino2> for the "string" between the
specified delimiters. The delimiters may be any
character other than blank. The second delimiter must
be the same as the first.

I of U AIt isspee i fie d , any 1 i nethat con t a ins a rnat chi n 9
string will be printed at the user terminal. lOP "Aft is
not specified, then only the first line that contains a
matching string will be printed.

4tfilespec
In01(,ln02J
.filespec, 1no1[, ln02J

The LIST command will cause all lines in the speci~ied

range to be listed to the screen (or to a device/file
whenfile4.ipec .. is specified).

If "lnoi te is less than the line number of the fir'st
text line, then listing will start with the first line.
If "1n02" is greater than the line number of the last
text line, then listing ~ill end with the last line.

Hitting the break key will stop the LIST.

Example:

Example: .

LIST #Dl:EX.TST

Will list all lines to a ~ile EX.TST
on drive 1.

LIST #P:

Will list to the printer.

-5-

""'-",

PRINT
PRINT
PRINT
PRINT

ENTER

.filespec
1no1(, Ino2]
.filespec, 1n01[, 1n023

Print is exactly the same as LIST except that the line
numbers are not PRINTed, and that the EDIT ready prompt
will not be printed after the last line until the user
hits the RETURN key.

#file'Spec[,MJ

The ENTER command causes previously LISTed text from the
device or file specified by #filespec to be re-entered.
The optional "Mil parameter specifies that the new text
is to be merged with the text currently in memory. If
11M" is not present, then the text area will be cleared
before starting the ENTER.

Example: ENTER #02: XXX
Will re-enter the text that was listed to
the ~ile XXX on drive 2.

NUM
NUM sIno, incr
NUM incr

The number command is used to automatically attach lin~

numbers to user lines. The user is prompted ~ith the
next line number. A blank automatically follows the
line number. The u s l n o " parameter specifies the starting
line number. The "incr" parameter is the line number
increment.

The d e fa u 1 t U inc r .. i s 1O. The de fa u 1 t .. s Lno fI i s the I a s t
text line number plus Hiner".

Hitting RETURN after the line number prompt terminates
NUMber mode.

REN
REN sIno. incr
REN incr

The REN command renumbers the text. The 'first line
number Ulill be "sino". The line numbers will increment by
r nc r-. The default "sIno" and "incr ll is 10.

REP lold string/new stringl
REP lold string/new string/,{A}

{C)}

REP lold string/new string/lnol[, In02J
REP fold $tring/new string/lnolC, lon2J,{A}

{Q}

The REP command will search the specified lines <all
or 1no1 through 1n02) for the lIold string" (between
specified delimiters). The delimit-ers follow the same

-6-

rules as the delimiters for FIND.

The "A" option causes all occurrence of flold string'· to
be replaced with "new string" (between the same specified
delimiters).

If the "0" option is specified then ~hen each match is
found, the line is listed and the user is allowed to
specify change (Y followed by RETURN) or don't change
(RETURN alone) this occurrence. Hitting BREAK will
terminate the REPlace and return to the Editor.

If neither etA tt or flon is specified, only the first occur­
rence of "old string" will be replaced with tf n e w string".

NOTE: Each time a replace is done the changed line is
listed.

SIZE
The SIZE command prints the users low memory address, the
highest used memory address, and the highest usable
memory address (UHIMEM).

LOMEM adr

LOMEM comman~ changes the ~ddress at which user tables
start.

CP
DOS

NOTE:

NOTE:

The LOMEM command will destroy any user statements
in memory.

This command can be used to reserve a space
between the default low memory and the new low
memory address. This space can then be used
for the obJect output from the assembler.

BYE

CP or DOS returns to the ass Control Program (OS/A+)

BYE returns to the Atari Memo Pad.

ASM
ASM [#of i 1 e s p @c1], C*., i 1 e5p ec2J I C4tf i 1esp ec3J

The ASM command assembles source code and produces obJect code
and a listing.

B~ default:
1) The SOUT'ce "device" is the user text area.
2) The listing ··device" is the screen.
3) The obJect "device" is memol'\J.

-7-

These defaults can be overridden as follows:
filespecl source code file or device
filespec2 listing Tile or device
filespec3 obJect file or device

A ufilespec" can be omitted by substituting a comma.
in which case the default holds ~or that parameter.

In this example, the source will come
from Dl:S0URCE, the listing will be
~ritten to D2:LIST, and the obJect will
be ~ritten to Dl:0BJ.

Example: ASH , I #D3: OBJ

In this example the source will come ~rom

useT' text al'ea in memoT'y, the listing will
go to the screen, and the object code will
be written to the file OBJ on disk drive 3.

Examp Ie: ASM , #P:

BUG

NOTE:

In this example the listing will go to
the pT'inter.

See the . OPTion directive for full information.
about when obJect is actually ~ritten to the
specified file (or memory).

The BUG command causes the debug monitor to be entered.

-8-

DEBUG

The Debug Monitor allows the U5er to perform controlled execution
of machine code, examine memory, alter memory, move memory blocks
and verifv the e~uality of memory blocks.

COMMAND FORMAT

The Debug Monitor assumes that any line of data that it receives
is a command. If the data does not form a valid c omman d , the
Debug Monitor responds with:

WHAT·?

LINE PROMPTING
The Debug Monitor will signal completion of a command by printing:

DEBUG

The cursor ~ill appear on the following line.

NOTE: If the user is getting a syntax error indication (WHAT?) on
what he thinks is a valid commandl he should check the
prompt message (DEBUG/EDIT) to verify that he is in the
c-o r r-e c b mode.

DEBUG COMMAND SYNTAX AND DESCRIPTION

G

T

s

[adr]

The G Command (Go) transfers cont~ol to the speciried
address via a JMP command. If "adr" is not specified,
then the current monitor program counter is used.

[adrJ

The T Command (Trace) causes instructions to be
e x e cut e d s taT' tingat " a d r " . If"ad T' If i s not
specified then the current monitor program
c o un e e r- is used. As each instruction is
executed, its addressl mnemonic and operand
will be displa~ed along with the cur~ent values
in the 6502 A,X,Y,P(status), & S(sta~k) registers.

Hitting the break key (BREAK) ~ill terminate trace.

[adrl

The S Command (Step) is exactly like the T command
except that only one instruction is executed.

-9-

D
o

c

ad,.lC,ad,.2J

The D command (Display Memo~y) will cause memory from
II a d1" 1 I' t 0 It ad r 2 If to bed i s P I ayedin hex ad e c i ma 1. I of
"adr2 u is omitted, then 8 bytes are displayed
(ie, adr2 = adrl + 8).
If "adrl" is omitted, then this display starts whe1'e
the last d i5P lay left off (i e . at the last lI a d r 2 " + 1).

Hitting the break key (BREAK) will terminate Di5pla~.

CadrlJ<data

The C command (Change Memory) is used to alter
memory starting at ffadr ll

• If "ad1'u is not
specified, then Change uses the most recent H a d r 1 "
if 0 ~a5 the last command, 01" the next unchanged address
if C ~as the last command.
The "data" is a list of 1 byte hex values
separated by commas.

Example: C 5000<3, CD, lF

Will change locations 5000 thru 5004
to 3,CD, IF,2,3 respectively.

Multiple commas may be used to skip over memory addresses
without changing the contents to reach the desired address.

L
L

Examp Ie:

adrl(,adr2J

C 5000<3" IF

will change hex location 5000 to 3,
location 5002 to 1F, and location
5001 will be unchanged.

M

The L command (list) will cause the instructions
located at "adrl ft to be disassembled and displayed
tIIith the address, instruction mnemonic and operand.
If "adr2" is not specified, then twenty instructions
will be listed. If the address field (fl a dr l ") is not
specified, then this list ~ill start where the last
one left off.

Hitting the break key (BREAK) will stop the listing.

tadr<fsadr,feadr

The M command (Move) moves data from the address "fsadr"
through the address "feadr" to the address specified
with Iitadr tl

•

tad,.
fsadr
feadr -

"move to" address
"move from" start address
"move from" end address

-10-

v

DR

adl'l<:adr2,ad1'3

The V Command (Verify) compares the memory starting at
"adr1 ft with the memory located at lI a dr 2 " through "adr3 t1

•

If an~ of the compared bytes mismatch, then address and
data b~tes will be displayed.

The DR command (Display Registers) will cause the A,X,V,
status (P) and stack (5) registers to be displayed in
hexidecimal.

CR <data

The CR Command (Change Registers) is used to change the
registers. Registers are assumed to be in the order:
A, X, V, status (P) stack (5), so that the first byte of
data goes into A reg ister the second into X, etc.

As in the C command, "data" is a list of hexadecimal values
separated by commas and field may be skipped by use of
mu 1tip 1e comma s .

x

Example: CR<:FF, ,3

will set A=FF and Y=3.
X,P and S unchanged.

It will leave

A

The X command <exit) will cause control to return to
the Editor.

The A command (Assemble) will cause the system to enter into the
Debug Assembler mode. No prompt other than the cursor is used
in this mode.

The Debug Assembler is a line-at-a-time assembler that uses
6502 mnemonics and operand format. Relative branch operands
are specified as the actual "branch to" address; the Assembler
creates the relative address.

The format of each line is:

[adrJ< assembler code

The Debug Assembler keeps track of the location counter so that
if "adr" is omitted, the next consecutive address is used.

Entering onl~ a carriage return will return the user to the
Debug monitor.

Examp Ie: While in Debug mode the user enters:

-11-

NOTE:

NOTE:

BREAK POINTS

A
5000< LDA#3
< BNE $5010

The "Au puts the user into the Debug
Assembler. The next two statements
will cause memor~ to contain the
following:

5000 A9 03
5002 DO OC

The blank after the "<." is required.

The Debug Assembler accepts both decimal and hex
numbers as operands; therefore, hex operands must
be preceeded by 11$11.

BRK instructions must be individually set and removed by the user.

Step and Trace intercept the BRK instruction and simulate its
execution.

-12-

ASSEMBLER

The Assembler gets control when ASM is typed into the Editor.
For the ASM command syntax, see the Editor section.

Hitting the break key (BREAK) will stop the assembly.

ASSEMBLER INPUT

Input to the Assembler is lines of ASCII data as entered into
the Editor. Source lines are of the form:

(line number> (blank) (source statement)

where source statement is of the form:

[labelJ {6502 instruction}
{ directive }

A source statement may consist of a label only, or it may be
blank.

In general the format is as specified in the MaS Technology
6502 Programming Manual. We recommend that the user unfamiliar
with 6502 assembly language programming should purchase:

UProgramming the 6502" by Rodney Zaks
or

Cl6502 Assembly Language Programming U by Lance Leventhal.

INSJRUCTION FORMAT:

A) Instruction mnemonics as described in the MOS
Technology 6502 Programming Manual.

B) Immediate operands begin ~ith #

C) tI(Operand,X)fI and n(Operand),V" for indirect
addressing.

D) "Operand, XII and "Operand,Y" for indexed
adeJressing.

E) Zero page and forward e~uates recognized and
evaluated within the limits of a two pass
assembler.

F) U*1f refers to the location counter.

G)

H)

Comment lines begin with

- Hex constants begin with

-13-

It ...,

"$11

I) The ItA" operand is reserved for accumulator
addressing.

DIRECTIVES

. TITLE IIstring"

The. TITLE directive allows the user to specify
a title to be used in conJunction with . PAGE

. PAGE

. BYTE

["string ll
]

The . PAGE directive allows the user to specify
a page heading. It issues an ASCII form feed
<hex OC) and prints the most recent title
and page headings.

NOTE: The most recent title and page headings
are also printed every time 52 lines of source
code have been assembled.

expression and/or "stT-ing" list

The . BYTE directive sets a one byte value for
each expression and the ASCII equivalent o~

each character of each string into the obJect
code.

Example: . BYTE 3, "ABC", 7, ux..

produces:

03 41 42 43 07 58

. WORD expresion list

The . WORD directive sets a two byte value into
the obJect code for each expression in the list.
The value is in 6502 address order (least
signi~icant byte, most significant byte>.

Example: .WORD $1000,$2000

prod uc es:

00 10 00 20

.DBYTE expression list

The .DBYTE directive sets a two bute value into
the obJect code for each expression in the list.
The value is in most significantl least significant
bvte order.

Examp Ie: .DBYTE $1000,$2000

-14-

. TAB

. OPT

10 00 20 00

expression, expression, expression

The . TAB directive sets displacements for the
printing of the op code, operandi and comment
fields of the source line. Each expression is
a one b~te value.
Defaults are 12, 17, 27 .

assembler option list

The . OPT directive allows the user to specify
certain options affecting the assembly.

Possible options are

LIST/NOLIST
NOOBJIOBJ
ERR/NOERR
EJECT/NOEJECT

LIST/NOLIST

NOOBJ/OBJ

E-RR/NOERR

EJECT/NOEJECT

De-faults are:

determines if a listing is
produced.
determines if object code is
produced.
determines if error messages
are printed.
determines if a Torm feedl titlel
and page are printed after 52
source lines.

OBJ - when the obJect is going to a device/file.
NOOBJ - when the obJect "device" is memory.
LIST, ERR, EJECT - in all cases.

*= expression

The *= directive serves the function o~ ORG.
It sets the current location counter for
sUbse~uent source statements.

NOTE: *= must be written with no intervening
blanks.

= expression

The = directive is an equate (EGU) statement.
It must always be written:

LABEL = expression

The value of the "expression" is assigned to
"LABEL" .

-15-

. IF e xp r e s s t cn ,label

The. IF statement allotals limited conditional
assemb 1'1.
If the "expression" is true t ncn-iz e r-o i . the Assembler
skips all following line5 up to the one that begins with
the "label". If the "expression" is false (zero),
assembly continues normally.

NOTE: There can be NO blank between the comma and label.

. INCLUDE 4tfilespec

The. INCLUDE directive allows source code from the device
or file specified in "filespec" to be inse-rted into the
assembly .

. END

NOTE:

NOTE:

. INCLUJ;>E's c.an not be nested. That is, a file that
'&las included cannot contain a . INCLUDE directive .

. INCLUDE cannot be the last statement. It must
be followed ~y a . END or some other statement .

The . END di~ective terminates the assembly.

EXPRESSIONS

Expressions are evaluated strictly left to right.
are not valid. Valid operators are:

Parentheses

+ * I & (~is a binary AND)

These are all binary operands. (11-5 + 3 tf is not valid, but
If 0 - 5· + 3" is val ide)

Example: LOX * ADDR/256
LDY .. ADDR8c255
Will put the MSB and LSB portions of the address
of "ADDR n into X and Y respectively.

STRINGS:

Strings must be enclosed in double ~uotes:

.BYTE "THIS IS A MESSAGE"

The single character representation for the immediate operand

.'e

-16-

LABEL:

Labels must start in the 1st colunm after (line number)(blank).
A label may consist of up to 255 characters. It must. start
with an alpha character and may be followed by alpha-numeric
characters or the character It. It •

NOTE: The character ItAn by itself can not be a label.

COMMENTS:

Comment lines start with the character "; fI

No special character is needed to delineate a comment
a~ter the assember code on a line. When the assember
recognizes the end oT the operand field (or op code
field for instructions without operands), the rest
of the line is assumed to be comment.

NOTE: This can give unexpected results in some cases.

Example: LDA 7A -GET NUM

will generate

AS 07

The decimal number "7"
by the character "A".
this case is:

A

is terminated
The comment in

GET NUM

If the user wishes to specify the
hex location 7A, he must use $7A.

-17-

ERROR DESCRIPTION

When an error occurs the system will print out:

ERROR- XX [message]

Where XX represents an error number. When the Assembler finds
more than 1 error in a line, up to 3 error numbers will be listed.
Most ERRORs will produce a message <similar to those below>.

ERROR NUMBERS

1

2

3

4

5

6

7

8

MEMORY FULL

All available memory has been used. If issued from Editor,
no more statements can be entered. If issued by the
Assembler, no more labels can be defined.

INVALID DELETE RANGE

The first number specified in a delete range does not
exist.

DEBUG ASSEMBLER ADDRESS ERROR

The origin address on an input line to the Debug Assemble~

is incorrectly speci~ied.

BLANK REGUIRED AFTER LINE NUMBER

The Assembler expects the first character after a line number
to be a blank. The first character was ignored.

UNDEFINED REFERENCE

Assembler has encountered an undefined label.

ASSEMBLER SYNTAX ERROR

DUPLICATE LABEL

The Assembler has encountered a label that is already defined.

BUFFER OVERFLOW

9

An internal buffer is full.
shorter.

EGUATE HAS NO LABEL

Try making the source code

An e~uate (=) must have a label.

10 VALUE OF EXPRESSION > 255

The value of an expression was greater than 255 but a one
byte value wa~ re~uired.

-18-

11 NULL STRING

A null string is invalid in . BYTE

12 INVALID ADDRESS OR ADDRESS TYPE

An invalid address type ~as specified for the mnemonic.

13 PHASE ERROR

The address generated for a label in pass 2 of the
Assembler is different from the address generated by
pass 1. Other errors can also cause this error to be
generated.

14 UNDEFINED/FORWARD REFERENCE FOR *= (ORG)

The operand for the *= directive must already be defined
when the directive is encountered. A forward reference an
an *= directive is invalid.

Example:

15 LINE TOO LONG

1000 *=ABC
2000 ABC = $1000

Will produce this e~ror.

The input line is too long. (This error results
when there are too many distinct items on a line for the
syntax processor to handle.) Break the input line into
multiple lines.

16 INVALID INPUT LINE

The Assembler received a line that does not start with a
valid line number.

17 LINE NUMBER TOO BIG

The line number on an Editor input line is too big.
<greater than 65535).

19 NO ORIGIN <*=) SPECIFIED
Either no origin <*=) was given or it was specified as O.
This error will cause the assembly to terminate.

20 OVERFLOW ON NUM OR REN

On NUM or REN command the line number generated went over
65535. If REN caused this error, the line numbers are now
invalid. Issuing a valid REN command ~ill correct the problem.

21 NESTED INCLUDE INVALID

An INCLUDEd file can not contain a . INCLUDE directive.

-19-

NOTES

LOMEM/HIMEM:

A default low memo~~ address is set when the system is booted up.
EASMD does NOT automatically reset this value.
If a program (for example, a device handler) sets lomem and then
EASMD is entered, this address remains unchanged.

EASMD does set a default UHIMEM (highest usable memory ~or EASMD
tables, including user text) which can be changed by using the
Change memory command in the Debug monitor.

IoeBs USED:

No command in the Debug monitor does I/O to a device other than
the screen or keyboard; therefore, IOCBs 1 through 7 are not used
by the system itself while in Debug mode.

Several commands in the Editor however, can do I/O to other devices
(ENTER, ASM, etc). In these cases, the Editor must use one or
more IOCBs. (The Editor uses IOCBs 1 through 4). Unpredictable
things can happen to a file that was allocated to one o~ these
IDeBs and neve~ closed. The user who is debugging code that does
I/O needs to be aware of this fact:

ALWAYS CLOSE FILES.

Note that returning to OS/A+ will ALWAYS cause all files to be
closed.

LOAD/SAVE:

To load and save code for debuggingl use the OS/A+ LOAD and SAVE
command. To return to EASMD after LOADing a filel the user must
enter RUN followed by the coldstart or warmstart address (see
memory map). This will work if the user's code did not overlay
any memory used by EASMD.

NUMBERS:

The Editor/Assembler/Debug (EASMD) uses positive integers and hex
numbers, but it uses a Floating Point package for ASCII to integer
conversion. This can give some unexpected results.

Example: LOA #6. 7

p'roduces

A9 07

Example: 100. 100.1 99.9

entered as line numbers each produces
the line number 100.

-20-

BASIC:

The Editor can be used to create and edit ass BASIC A+ programs. Of
course, the user must take care of changing line numbers in GOTO,
GOSUB, etc. whenever RENumber is used.

-21-

MEMORY MAP

The following are some memory addresses used by EASMD which may
be of interest to the user. All addresses are given in hex.

size of RAM 32K 40K 48K

zero page free for user BO-CF BO-CF BO-CF
user high memortJ (UHIMEM) 0498 0498 0498
Coldstart 5700 7700 9700
Wal'm'Start 5703 7703 9703

-22-

SYNTAX SUMMARY

EDITOR

ASM
ASM [#source filespecJ, [#list filespecJ, (#obJect filespecJ

BUG

BYE

CP

DEL Ino
DEL 1nol, In02

DOS

ENTER

FIND
FIND
FIND
FIND

LIST
LIST
LIST
LIST

LOMEM

NEW

NUM
NUM
NUM

PRINT
PRINT
PRINT
PRINT

REN
REN

REP
REP

REP
REP

SIZE

#filespec

/string/
Istring/,A
/string/lnolC,ln02J
Ist~ing/lnol[,1n02J, A

#filespec
1no1[,1n02]
.filespec, 1no1(, In02]

adr

sino, inc,..
inc,..

.filespec
lno1(,ln02J
#-filespec, InolC, In02J

s Lno , t nc r­
incr

fold string/new string/
lold string/new string/,{A}

{G}
lold string/new string/lnol[, In02J
lold string/new string/lnol[, In02J,{A)

{G}

-23-

DEBUG

A [adrJ< assembler code (blank required after <>

C CadrlJ< data

CR <data

D
D adrlC,adr2J

DR

G CadrJ

L
L adrlC,adr2J

M tadr < fsadr, ~easr

S CadrJ

T CadrJ

V adrl < adr2,adr3

x

ASSEMBLER DIRECTIVES

· BYTE

· DBYTE

· END

· IF

· INCLUDE

· OPT

. PAGE

· TAB

· TITLE

· WORD

=

expression and/or "string ft list

expression list

expression, label

#filespec

option list

["string lt
]

expression, expression, expression

"string"

expression list

expression

expression

-24-

ERROR SUMMARY

This is a summary of error messages produced by the EASMD program.
For a more detailed decripition see the section on ERROR
DESCRIPTION.

EASMD ERRORS:

1 MEMORY FULL
2 INVALID DELETE RANGE
3 DEBUG ASSEMBLER ADDRESS ERROR
4 BLANK REGUIRED AFTER LINE NUMBER
5 UNDEFINED REFERENCE
6 ASSEMBLER SYNTAX ERROR
7 DUPLICATE LABEL
8 BUFFER OVERFLOW
9 EGUATE HAS NO LABEL
10 VALUE OF EXPRESSION) 255
11 NULL STRING
12 INVALID ADDRESS OR ADDRESS TYPE
13 PHASE ERROR
14 UNDEFINED/FORWARD REFERENCE FOR *= (ORG)
15 LINE TOO LONG
16 INVALID INPUT LINE
17 LINE NUMBER TOO BIG
19 NO ORIGIN <*=) SPECIFIED
20 OVERFLOW ON NUM OR REN
21 NESTED INCLUDE INVALID

-25-

For the user convenience a summary of the er~or messages that
can be generated by DOS and passed to EASMD are included.

DOS ERRORS:

DEC

128
129
130
131
132
133
134
135
136
138
139
144
146
160
161
162
163
164
165
166
167
168
169
170
171

HEX

(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(SA)
(88)
(90)
(92)
(AO)
(Ai)
(A2)
(A3)
(A4)
(A5)
(A6)
(A7)
(AS)
(A9)
(AA)
(AB)

MESSAGE

BREAK ABORT
FILE ALREADY OPEN
NON EXISTENT DEVICE
FILE OPENED FOR WRITE ONLY
INVALID COMMAND
DEVICE OR FILE NOT OPEN
INVALID lOeB NUMBER
FILE OPENED FOR READ ONLY
END OF FILE
DEVICE TIMEOUT
DEVICE NAK
DEVICE DONE ERROR
FUNCTION NOT IMPLEMENTED
DRIVE * ERROR
TOO MANY OPEN FILES (NO SECTOR BUFFER AVAILABLE)
MEDIUM FULL (NO FREE SECTORS)
FATAL SYSTEM DATA I/O ERROR
FILE 4* MISMATCH
FILE NAME ERROR
POINT DATA LENGTH ERROR
FILE PROTECTED
COMMAND INVALID (SPECIAL OPERATION CODE)
DIRECTORY FULL
FILE NOT FOUND
POINT INVALID

-26-

