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Atari BASIC: A High-Level Language Translator

The progranm ng | anguage which has becone the de facto standard for the
Atari Hone Conputer is the Atari 8K BASIC Cartridge, known sinply as
Atari BASIC. It was designed to serve the progranmm ng needs of hoth the
conput er novice and the experienced progranmer who is interested in
devel opi ng sophisticated applications prograns. In order to neet such a
wi de range of programm ng needs, Atari BASIC was designed with sone

uni que features.

In this chapter we will introduce the concepts of high | evel |anguage
translators and exam ne the design features of Atari BASIC that allow it
to satisfy such a wide variety of needs.

Language Transl ators
Atari BASIC is what is known as a high | evel |anguage translator

A language, as we ordinarily think of it, is a systemfor conmunication.
Most | anguages are constructed around a set of synbols and a set of

rul es for conbining those synbols. The English | anguage is a good
exanpl e. The synbols are the words you see on this page. The rules that
dictate how to conbine these words are the patterns of English gramar.
Wthout these patterns, comunication would be very difficult, if not

i mpossi ble: Qut sentence this believe, of nmake don't this trying if
sense you to! If we don't use the proper synbols, the results are al so
di sastrous: @wi2 yeggopt gjsiem keorw?

In order to use a conputer, we nust sonehow comunicate with it. The
only | anguage that our machine really understands is that strange but
| ogi cal sequence of ones and zeros known as nachi ne | anguage. In the
case of the Atari, this is known as 6502 machi ne | anguage.

When the 6502 central processing unit (CPU) "sees" the sequence 01001000
in just the right place according to its rules of syntax, it knows that
it should push the current contents of

the accurmul ator onto the CPU stack. (If you don't know what an

"accunul ator” or a "CPU stack" is' don't worry about it. For the

di scussion which follows, it is sufficient that you be aware of their

exi stence.)

Language translators are created to make it sinpler for humans to
conmuni cate with conputers. There are very few 6502 programers, even
among the nost expert of them who would recogni ze 01001000 as the push-
t he-accunul ator instruction. There are nore 6502 programers, but stil
not very many, who woul d recogni ze the hexadeci nal form of 01001000,
$48, as the push-the-accumul ator instruction. However, nost, if not all
6502 programmers will recognize the synbol PHA as the instruction which
wi Il cause the 6502 to push the accunul ator.

PHA, $48, and even 01001000, to sonme extent, are translations fromthe
machi ne's | anguage into a | anguage that humans can understand nore
easily. W would like to be able to communicate to the conputer in
synbols like PHA;, but if the machine is to understand us, we need a

| anguage translator to translate these synbols into nmachi ne | anguage

The Debug Mode of Atari's Editor/Assenbler cartridge, for exanple, can
be used to translate the synbols $48 and PHA to the ones and zeros that
t he machi ne understands. The debugger can also translate the nachine's
ones and zeros to $48 and PHA. The assenbler part of the

Edi tor/ Assenbl er cartridge can be used to translate entire groups of
synbol s |like PHA to nmachi ne code.
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Assenbl ers

An assenbler - for exanple, the one contained in the Assenbl er/Editor
cartridge - is a programwhich is used to translate synbols that a human
can easily understand into the ones and zeros that the machine can
understand. In order for the assenbler to know what we want it to do, we
must comunicate with it by using a set of synmbols arranged according to
a set of rules. The assenbler is a translator, and the |anguage it
understands is 6502 assenbly | anguage.

The purpose of 6502 assenbly |anguage is to aid program authors in
writing machi ne | anguage code. The designers of the 6502 assenbly

| anguage created a set of synbols and rules that natches 6502 nachi ne
| anguage as cl osely as possible.

This means that the assenbler retains sone of the di sadvantages of
machi ne | anguage. For instance, the process of adding two |arge nunbers
t akes dozens of instructions in 6502 nachi ne | anguage. |f human
programrers had to code those dozens of instructions in the ones and
zeros of machine | anguage, there would be very few human programmers

But the process of adding two | arge nunbers in 6502 assenbly | anguage
al so takes dozens of instructions. The assenbly | anguage instructions
are easier for a programrer to read and remenber, but they still have a
One-to-one core respondence with the dozens of machi ne | anguage
instructions. The progranming is easier, but the process remins the
sarne.

H gh Level Languages

Hi gh [ evel |anguages, like Atari BASIC, Atari PILOT, and Atari Pascal
are sinpler for people to use because they nore cl osely approximte
human speech and thought patterns. However, the conputer stil
under st ands only machi ne | anguage. So the high | evel |anguages, while
seeming sinple to their users, are really much nore conplex in their

i nternal operations than assenbly | anguage.

Each high | evel |anguage is designed to nmeet the specific need of sone
group of people. Atari Pascal is designed to inplement the concept of
structured progranm ng. Atari PILOT is designed as a teaching tool

Atari BASIC is designed to serve both the needs of the novice who is
just learning to program a conputer and the needs of the expert
programrer who is witing a sophisticated application program but wants
the programto be accessible to a | arge nunber of users.

Each of these |anguages uses a different set of synmbols and synbol -
conbining rules. But all these |anguage translators were thensel ves
witten in assenbly | anguage.

Language Transl ation Met hods

There are two different nethods of perform ng | anguage translation -
conpilation and interpretation. Languages which translate via
interpretation are called interpreters. Languages which translate via
conpilation are called conpilers.

Interpreters exam ne the program source text and sinulate the operations
desired. Conpilers translate the program source text into machine
| anguage for direct machi ne execution.

The conpilation method tends to produce faster, nore efficient prograns
than does the interpretation nethod. However, the interpretation method
can nmake progranm ng easier.

Problems with the Conpiler Method
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The conpiler user first creates a program source file on a disk, using a
text editing program Then the conpiler carefully exam nes the source
program text and generates the machi ne | anguage as required. Finally,

t he machi ne | anguage code is | oaded and executed. Wile this three-step
process sounds fairly sinmple, it has several serious 'gotchas."

Language translators are very particular about their symbols and synbol -
conbining rules. If a synbol is msspelled, if the wong synbol is used,
or if the synbol is not in exactly the right place, the | anguage
translator will reject it. Since a conpiler exam nes the enure progran
in one gulp, one msplaced synbol can prevent the conpiler from
under st andi ng any of the rest of the program- even though the rest of

t he program does not violate any rules! The result is that the user
often has to nmake several trips between the text editor and the conpiler
before the conpil er successfully generates a machi ne | anguage program

But this does not guarantee that the programw |l work. If the
programrer is very good or very lucky, the programwill execute
perfectly the very first time. Usually, however, the user nust debug the
progr am

This nearly always involves changi ng the source program usually many
ti mes. Each change in the source program sends the user back to step
one: after the text editor changes the program the conpiler still has
to agree that the changes are valid, and then the nachi ne code version
must be tested again. This process can be repeated dozens of tines if
the programis very conpl ex.

Faster Progranm ng or Faster Prograns?

The interpretation nethod of |anguage translation avoids many of these
probl ems. Instead of translating the source code into nmachi ne | anguage
during a separate conpiling step, the interpreter does all the
translation while the programis running. This neans that whenever you
want to test the programyou' re witing, you nerely have to tell the
interpreter to run it. If things don't work right; stop the program
make a few changes, and run the program again at once.

You nust pay a few penalties for the convenience of using the
interpreter's interactive process, but you can generally develop a
conpl ex program much nmore quickly than the conpiler user can

However, an interpreter is sinmlar to a conpiler in that the source code
fed to the interpreter must conformto the rules of the |anguage. The

di fference between a conpiler and an interpreter is that a conpiler has
to verify the synbols and synbol -conbining rules only once - when the
programis conpiled. No eval uation goes on when the programis running.
The interpreter, however, must verify the synmbols and symnbol - conbi ni ng
rules every time it attenpts to run the program If two identica
progranms are written, one for a conpiler and one for an interpreter, the
conpiled programwi |l generally execute at least ten to twenty tines
faster than the interpreted program

Pre-compiling Interpreter

Atari BASIC has been incorrectly called an interpreter. It does have
many of the advantages and features of an interpretive | anguage
translator, but it also has sone of the useful features of a conpiler. A
nore accurate termfor Atari's BASIC Language Translator is pre-
conpiling interpreter

Atari BASIC, like an interpreter, has a text editor built into it. \When
the user enters a source line, though, the line is not stored in text
form but is translated into an internediate code, a set of synbols

call ed tokens. The programis stored by the editor in token form as each
programline is enterred. Syntax and synbol errors are weeded out at
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that tine.

Then, when you run the program these tokens are examined and their
functions sinulated; but hecause nuch of the evaluation has al ready been
done, the execution of an Atari BASIC programis faster than-that of a
pure interpreter. Yet Atari BASIC s programbuil ding process is much
simpler than that of a conpiler.

Atari BASI C has advantages over conpilers and interpreters alike. Wth
Atari BASIC, every tine you enter a line it is verified for |anguage
correctness. You don't have to wait until conpilation; you don't even
have to wait until a test run. Wen you type RUN you al ready know there
are no syntax errors in your program

Converted 2006 by Andreas Bertelmann for ABBUC
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2 Internal Design

Atari BASIC is divided into two major functional areas: the Progran
Constructor and the Program Executor. The Program Constructor is used
when you enter and edit a BASIC program The source |ine pre-conpiler,
al so part of the Program Constructor, translates your BASIC programn
source text lines into tokenized |lines. The Program Executor is used to
execute the tokenized program - when you type RUN, the Program Execut or
t akes over.

Both the Program Constructor and the Program Executor are designed to
use data tables. Sone of these tables are already contained in BASIC s
ROM (read-only nenory). Others are constructed by BASIC in the user RAV
(random access nenory). Understanding these various tables is an

i nportant key to understanding the design of Atari BASIC.

Tokens

In Atari BASIC, tokens are the internedi ate code into which the source
text is translated. They represent source-|anguage synbols that cone in
various lengths - sone as long as 100 characters (a |ong variabl e nane)
and others as short as one character ("+" or "-"). Every token, however
is exactly one eight-bit byte in | ength.

Si nce nost BASI C Language Synbols are nore than one character |ong, the
representation of a nulticharacter BASIC Language Synbol with a single-
byte token can nean a consi derabl e saving of program storage space.

A single-byte token synbol is also easier for the Program Executor to
recogni ze than a multi-character synbol, since it can be eval uated by
machi ne | anguage routines nuch nore quickly. The SEARCH routine - 76
bytes long - located at $A462 isa good exanple of how nmuch assenbly

| anguage it takes to recognize a nmulti-character synbol. On the other
hand, the two instructions |ocated at $AB42 are enough to deternmine if a
one-byte token is a variable. Because routines to recognize Atari

BASI C so one-byte tokens take so nuch | ess nmachi ne | anguage, they
execute relatively quickly.

The 256 possible tokens are divided into |ogical nunerical groups that
al so make them sinpler to deal with in assenbly |anguage. For exanpl e,
any token whose value is 128 ($80) or greater represents a variable
nane. The | ogical grouping of the token val ues al so neans faster
execution speeds, since, in

effect, the conputer only has to check bit 7 to recognize a variable.

The nunerical grouping of the tokens is shown bel ow

Token Val ue (Hex) Description

00-0D Unused
OE Fl oati ng Poi nt Nuneric Constant.

The next six bytes will hold its val ue.
OF String Constant.

The next byte is the string |ength.
A string of that length foll ows.

10-3C Operat ors.
See table starting at $A7E3 for specific
operators and val ues.

39-54 Functi ons.
See table starting at $A820 for specific
functi ons and val ues.

55-7F Unused.
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80- FF Vari abl es.

In addition to the tokens |isted above, there is another set of single-
byte tokens, the Statement Name Tokens. Every statement in BASIC starts
with a uni que statenent nane, such as LET, PRINT, and POKE. (An

assi gnment statement such as "A =B + C, " without the word LET, is
considered to begin with an inplied LET.) Each of these unique statenent
nanes is represented by a unique Staterment Name Token. The Prograrm
Execut or does not confuse Statement Nanme Tokens with the other tokens
because the Statenent Nane Tokens are always | ocated in the sanme place
in every statement - at the beginning. The Statenment Nane Token value is
derived fromits entry nunber, starting with zero, in the Statement Nane
Tabl e at $A4AF.

Tabl es

A table is a systematic arrangenent of data or inforrnation. Tables in
Atari BASIC fall into two distinct types: tables that are part of the
Atari BASIC ROM and tables that Atari BASIC builds in the user RAM area.

ROM Tabl es

The following is a brief description of the various tables in the Atari
BASI C ROM The detail ed use of these tables will be explained in
subsequent chapters.

St at ement Nanme Table ($A4AF). The first two bytes in each entry point to
the information in the Statement Syntax Table for this statement. The
rest of the entry is the name of the statement nane in ATASCI|. Since
nane | engths vary, the last character of the statement nane has the npst
signiflcant bit turned on to indicate the end of the entry. The val ue of
the Statenent Name Token is derived fromthe relative (fromzero) entry
nunber of the statement name in this table.

St at ement Execution Table ($AA00). Each entry in this table is the two-
byte address of the 6502 machi ne | anguage code which will sinulate the
execution of the statenent. This table is organized with the statenents
in the same order as the statenents in the Statement Name Tabl e.
Therefore, the Statenent Name Token can be used as an index to this

t abl e.

Operator Nanme Table ($A7E3). Each entry conprises the ATASCI| text of an
Operator Synbol. The | ast character of each entry has the nost
significant bit turned on to indicate the end of the entry. The relative
(fromzero) entry nunber, plus 16 ($10), is the value of the token for
that entry. Each of the entries is also given a | abel whose value is the
val ue of the token for that synbol. For exanple, the ";" synbol at $A7E8

is the fifth (fromzero) entry in the table. The label for the ";" token
is CSC, and the value of CSC is $15, or 21 decimal (1 +5).

Operator Execution Table ($AA70). Each two-byte entry points to the
address, minus one, of the routine which sinulates the execution of an
operator. The token value, minus 16, is used to access the entries in
this table during execution tine: The entries in this table are in the
same order as in the Operator Nane Tabl e.

Operator Precedence Table ($AC3F). Each entry represents the relative
execution precedence of an individual operator. The table entries are
accessed by the operator tokens, mnus 16. Entries correspond with the
entries in the Operator Name Table. (See Chapter 7.)

Statement Syntax Table ($A60D). Entries in this table are used in the
process of translating the source programto tokens. The address pointer
inthe first part of each entry in the Statenent Nane Table is used to
access the specific syntax information for that statement in this table.
(See Chapter 5.)
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RAM Tabl es

The tables that BASIC builds in the user RAM area will be explained in
detail in Chapter 3. The following is a brief description of these

t abl es:

Vari abl e Nane Tabl e. Each entry contains the source ATASCI| text for the
correspondi ng user variable symbol in the program The relative (from
zero) entry number of each entry in this table, plus 128, becones the
val ue of the token representing the variable.

Variabl e Val ue Table. Each entry either contains or points to the
current value of a variable. The entries are accessed by the token
val ue, minus 128.

St at ement Tabl e. Each entry is one tokenized BASIC programline. The
tokeni zed lines are kept in this table in ascending numnerical order by
i ne nunber.

Array/ String Table. This table contains the current values for al
strings and nunerical arrays. The |location of the specific values for
each string and/or array variable is accessed frominformation in the
Vari abl e Val ue Tabl e.

Runtime Stack. This is the LIFO Runti ne Stack, used to control the
executi on of GOSUB/ RETURN and simnilar
st at enent s.

Pre-compi |l er

Atari BASIC translates the BASIC source lines fromtext to tokens as
soon as they are entered. To do this, Atari BASIC nust recognize the
synmbol s of the BASI C Language. BASIC also requires that its symbols be
conbined in certain specific patterns. If the synbols don't follow the
required patterns, then Atari BASIC cannot translate the line. The
process of checking a source line for the required synbol patterns is
cal l ed syntax checking.

BASI C performs syntax checking as part of the tokenizing process. Wen
the Program Editor receives a conpleted line of input, the editor hands
the line to the syntax routine, which exanines the first word of the
line for a statenent nanme. If a valid statement name is not found, then
the line is assuned to

be an inplied LET statenent.

The grammatical rules for each statement are contained in the Statenent
Syntax Table. A special section of code exam nes the synbols in the
source line, under the dfrection of the granmatical rules set forth in
the Statenent Syntax Table. If the source line does not conformto the
rules, then it is reported

back as an error. Otherwise, the line is translated to tokens. The
result of this process is returned to the Program Editor for further
processi ng.

Pr ogram Edi t or

VWhen Atari BASIC is not executing statenents, it is in the edit node.
VWen the user enters a source line and hits return, the editor accepts
the line into a line buffer, where it is examned by the pre-conpiler.
The pre-compiler returns either tokens or an error text I|ine.

If the line started with a |line nunber, the editor inserts the tokenized
line into the Statement Table. If the Statement Table already contains a
line with the same |ine nunber, then the old line is renpbved fromthe
Statenment Table. The new line is then inserted just after the statenent
with the next |ower line

nunber and just before the statement with the next higher |ine nunber.
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If the line has no line nunber, the editor inserts the line at the end
of the Statenent Table. It then passes control to the Program Execut or
which will carry out the statenment(s) in the line at the end of the

St at enment Tabl e.

Pr ogr am Execut or

The Program Executor has a pointer to the statenment that it is to
execute. When control is passed to the executor, the pointer points to
the direct (command) line at the end of the statement table. If that
statenment causes sone other line to be executed (RUN, GOTO, GOSUB
etc.), the pointer is changed to the

new |l ine. Lines continue to be executed as |ong as nothing stops that
execution (END, STOP, error, etc.). Wen the program execution is

st opped, the Program Executor returns control to the editor

VWen a statenment is to be executed, the Statenent Nane Token (the first
code in the statenent) directs the interpreter to the specific code that
executes that statement. For instance, if that token represents the

PRI NT statement, the PRINT execution code is called. The execution code
for each statenent then exam nes the other tokens and sinulates their
operations.

Execut e Expression

Arithmetic and | ogi cal expressions (A+B, C/ D+E, F<G etc.) are sinulated
with the Execute Expression code. Expression operators (+,-,*,etc.) have
execution precedence - sone operators nust be executed before sone
others. The expression 1 + 3*4 has a value of 13 rather than 16 because
* had a hi gher precedence than + . To properly simul ate expressions,
BASI C rearranges the expression wth higher precedence first.

BASI C uses two tenporary storage areas to hold parts of the rearranged
expression. One tenporary storage area, the Argunent Stack, holds
argunents - val ues consisting of constants, variables, and tenporary

val ues resulting from previ ous operator sinulations. The other tenporary
storage area, the Operator Stack, holds operators. Both tenporary
storage areas are managed as Last-In/First-Qut (LIFO stacks.

LI FO St acks
A LIFO (Last In/First Qut) stack operates on the principle that the | ast
object placed in the stack storage area will be the first object renoved

fromit. If the letters A, B, C, and D, in that order, were placed in a
LI FO stack, then D would be the first letter renoved, followed by C, B
and A. The operations

required to rearrange the expression using these stacks will be

expl ained in Chapter 7

BASI C al so uses anot her LIFO stack, the Runtinme Stack, in the sinulation
of statements such as GOSUB and FOR. GOSUB requires that BASIC renmenber

where in the statenent table the GOSUB was | ocated so it will return to

the right spot

Then RETURN is executed. If nore than one GOSUB is executed before a
RETURN, BASIC returns to the statenent after the nost recent GOSUB.

Converted 2006 by Andreas Bertelmann for ABBUC



Part

Memory Usage

Converted 2006 by Andreas Bertelmann for ABBUC



13

Atari BASIC Source book

3

Memory Usage

Many of BASIC s functions are controlled by a set of tables built in
not al ready occupied by BASIC or the Qperating System (0S). Figure 3.
is a diagramof nenory use by both progranms. Every time a BASIC
programrer enters a statenment, nenory requirements for the RAM tables
change. Menory use by the OS also varies. Different graphics nodes, for
exanple, require different anpbunts of nenory.

RAN
1

These changi ng nenory requirenments are nonitored, and this series of
poi nters keeps BASIC and the OS from overl ayi ng each other in nenory:

* Hi gh nenory address (HVADR) at | ocation $02E5
* Application high nenory (APHM) at | ocation $000E
* Low nenory address (LMADR) at |ocation $02E7

When a graphics nbde requires | arger screen space, the OS checks the
application high nenory address (APHM that has been set by BASIC. |If
there is enough roomfor the new screen, the OS uses the upper portion
of space and sets the pointer HVADR to the bottom of the screen to tel
the application how nmuch space the OGS is now using

BASIC builds its table toward high nmenmory from |l ow nmenory. The pointer
to the |l owest nenory available to an application, called LMADR in the
BASIC listing, is set by the OSto tell BASIC the | owest menory address
that BASI C can use. Wen BASI C needs nmore room for one of its tables,
BASI C checks HVADR. |f there is enough room BASIC uses the space and
puts the highest address it has used into APHM for OS.

BASI C s operation consists primarily of building, reading, and nodifying
tables. Pointers to the RAM tables are kept in consecutive |locations in
zero page starting at $80. These tables are, in order

Mul ti pur pose Buffer
Vari abl e Nane Tabl e
Vari abl e Val ue Tabl e
String/ Array Tabl e
St atenent Tabl e
Runti me Stack

* %k % X X X

BASI C reserves space for a buffer at LMADR It then builds the tables
contiguously (w thout gaps), starting at the top of the buffer and
extending as far as necessary towards APHM Wen a new entry needs to be
added to a table, all data in the tables above is noved upward the exact
amount needed to fit the new entry into the right place.

Figure 3-1. Menory usage

FFFF | Operating System |
| ROM |
EOOO ------- i oo
| Fl oati ng Poi nt |
| ROM |
DBOO0 --------mmmmmea oo
| Hardware Registers
D000 -------mmmmm oo
| Unused |
BFFF - ---mem i -
| BASI C ROM |
ADOD -
| Screen |
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---------------------- <---- HVADR
Free RAN

---------------------- <---- APHV

| BASI C |

| RAM |

| Tabl es |

---------------------- <---- LMADR

Vari abl e Name Tabl e

The Vari abl e Name Table (VNT) is built during the pre-conpile process.
It is read, but not nodified, during execution but only by the LIST
statement. The VNT contains the nanes of the variables used in the
programin the order in which they were entered.

The length of entries in the Variable Nane Tabl e depends on the I ength
of the variable name. The high order bit of the |ast character of the
nane is on. For exanple, the ATASCI| code for the variable name ABC is
414243 (expressed in hexadecimal). In the Variable Name Table it | ooks
i ke this:

41 42 C3
The $ character of a string nane and the ( character of an array el ement

nane are stored as part of the variable name. The table entries for
variables C, AA3, and X(3) would look like this:

C c3
AA$ 41 41 A4
X(3) 58 A8

It takes only two bytes to store X(3) because this table stores only X(.

A variable is represented in BASIC by a token. The value of this token
is the position (relative to zero) of the variable name in the Variable
Nanme Table, plus $80. BASIC references an entry in the table by using
the token, mnus $80, as an index. The Variable Nane Table is not
changed during execution tine.

The zero page pointer to the Variable Nane Table is called VNTP in the
BASI C listing.

Vari abl e Val ue Tabl e

The Vari abl e Value Table (WT) is also built during the preconpile
process. It is both read and nodified during execution. There is a one-
t o-one correspondence in the order of entries between the Variable Nane
Tabl e and the Variable Value Table. If XXX is the fifth variable in the
Variabl e Name Table, then XXX's value is the fifth entry in the Variable
Val ue Table. BASIC references a table entry by using the variable token,
m nus $80, as an index

Each entry in the Variable Value Table consists of eight bytes. The
first two bytes have the foll ow ng neaning:
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type = one byte, which indicates the type of variable

$00 for floating point variable

$40 for array variable

$80 for string variable
vnum = one byte, which indicates the relative position of the
variable in the tables

The neani ng of the next six bytes varies, depending on the type of
variable (floating point, string, or array). In all three cases, these
bytes are initialized to zero during syntaxing and during the execution
of the RUN or CLR

VWen the variable is a floating point nunber, the six bytes represent
its val ue.

VWen the variable is an array, the remaining six bytes have the
foll ow ng format

1 2 3 4 5 6 7 8

|disp | diml| din2

disp = the two-byte displacenment into string/array space of
this array variable

two bytes indicating the first dinmension val ue

two bytes indicating the second di mension val ue

di mL
di n2

Al three of these values are set appropriately when the array is
Dl Mensi oned during execution.

VWen the variable is a string, the remaining six bytes have the
fol |l ow ng mneani ng:

1 2 3 4 5 6 7 8

|disp | curl]| maxl

disp = the two-byte displacenment into string/array space of this
string variable. This value is set when the string is DI Mensioned during
executi on.

curl = the two-byte current length of the string. This val ue
changes as the length of the string changes during execution
max|l = t he two-byte maxi num possible length of this string. This

value is set to the DI M value during execution

VWen either a string or an array is Dl Mensioned during execution, the
| ow-order bit in the type byte is turned on, so that the array type is
set to $41 and the string type to $81. The zero page pointer to the
Variable Value Table is called WTP in the BASIC listing.

Statenment Tabl e

The Statenent Table, built as each statenent is entered during editing,
contains tokenized forms of the statenents that were entered. This table
det ermi nes what happens during execution. The format of a Statenent
Table entry is shown in Figure 3-2. There can be several tokens per
statenment and several statenents per |ine.
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Figure 3-2. Format of a Statenment Table Entry

Y
I I I I I | I I I | I I
Y
[Inum | Ilen] slen| snt | toks | eos |slen | snt | toks | eos | eol |

[ nur = the two-byte |ine nunber (Iow order, high-order)

[len = the one-byte Iine length (the displacenent to the next line in

t he table)

slen = the one-byte statement length (the displacenent to the next
statement in the line)

snt = the one-byte Statenent Nane Token

toks = the other tokens that make up the statement (this is variable in
| engt h)

eos = the one-byte end of statenment token

eol = the one-byte end of |ine token

The zero page pointer to the Statenment Table is called STMIAB in the
BASI C listing.

String/ Array Table

The String/Array Table (also called String/ Array Space) is created and
nodi fi ed during execution. Strings and arrays can

be internmixed in the table, but they have different formats. Each array
or string is pointed to by an entry in the Variable Value Table. The
entry in the String/Array Table is created when the string or array is
Dl Mensi oned during execution. The data in the entry changes during
execution as the value of the string or an el enent of the array changes.

An entry in the String/Array Table is not initialized to any particul ar

value when it is created. The elements of arrays and the characters in a
string cannot be counted upon to have any particul ar value. They can be

zero, but they can al so be garbage-data previously stored at those

| ocati ons.

Array Entry

For an array, the String/Array Table contains one six-byte entry for
each array element. Each elenent is a floating point nunmber, stored in
ravel ed order. For exanple, the entry in the String/Array Table for an
array that was di nensioned as A(1,2) contains six elements, in this
order: A(0,0) A(0,1) A(O0,2) A(1,0) A(1,1) A(L,2)

String Entry

A string entry in the String/Array Table is created during execution,
when the string is D Mensioned. The size of the entry is determ ned by
the DI M value. The "value" of the string to BASIC at any tine is
deternmined by the data in the String/Array Table and the current |ength
of the string as set in the Variable Value Tabl e.

The zero page pointer to the String/Array Table is called STARP in the
BASI C listing.

The Runtine Stack is created during execution. BASIC uses this LIFC
stack to control processing of FOR/ NEXT | oops and GOSUBs. \When either a
FOR or a GOSUB statenent is encountered during execution, an entry is
put on the Runtinme Stack. When a NEXT, RETURN, or a POP statement is
encountered, entries are pulled off the stack.

Both the FOR entry and the GOSUB entry have a four-byte header:
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type Inum disp
type = one byte indicating the type of el enent
GOSUB type = 0
FOR type = non-zero
[ nur = the two-byte nunber of the line which contains the statenent
(1 ow order, high-order)
disp = one byte indicating the displacenent into the line in the

St atenent Tabl e of the token which caused this stack entry.

The FOR-type byte is actually the token representing the |oop contro
variable fromthe FOR statenent. (In the statenment FOR 1 =1 to 10, | is
the I oop control variable.) So the FOR-type byte will have a val ue of
$80 t hrough $FF - the possible values of a variable token. The FOR entry
contains 12 additional bytes, formatted like this:

1 2 3 4 5 6 7 8 9 10 11 12

----- T o T
I I I
----- T o T
sval step
sval = the six-byte (floating point) limt value at which to stop
t he | oop
step = the six-byte (floating point) STEP value to increment by

The GOSUB entry consists entirely of the four-byte header. The LI ST and
READ st atenents al so put a GOSUB type entry on the Runtime Stack, so
that the Iine containing the LI ST or READ can be found again when the
statenment has finished executing.

The zero page pointer to the Runtime Stack is called RUNSTK in the BASIC
[isting.

Zero Page Table Pointers

The starting addresses of the tables change dynamically during both
program constructi on and program executi on. BASIC keeps the current
start addresses of the tables and other pointers required to nanage
menory space in contiguous zeropage cells. Each pointer is a two-byte
address, low byte first.

Since these zero page cell addresses remmin constant, BASIC is al ways
able to find the tables. Here are the zero page pointers used in nmenory
managenent, their names in the BASIC listing, and their addresses:

Mul ti pur pose Buffer $80, $81
Vari abl e Nanme Tabl e VNTP $82, $83
VNT dumy end VNTD $84, $85
Vari abl e Val ue Tabl e WTP $86, $87
St at ement Tabl e STMIAB $88, $89
Current Statenment Pointer STMCUR $8A, $8B
Stringl Array Table STARP $8C, $8D
Runti me Stack RUNSTK $8C, $8E
Top of used nenory MEMTOP $90, $91

Menory Managenent Routi nes

Menory Managenent routines allocate space to the BASIC tabl es as needed.
There are two routines: expand, to add space, and contract, to delete
space. Each routine has one entry point for cases in which the nunmber of
bytes to be added or deleted is |less than 256, and another when it is
greater than or equal to 256.
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The EXPAND and CONTRACT routines often nove many thousands of bytes each
time they are called. The 6502 m croprocessor is designed to nove fewer
than 256 bytes of data very quickly. \When |arger blocks of data are
noved, the additional 6502 instructions required can nmake the process
very slow. The EXPAND and CONTRACT routines circunvent this by using the
| ess-than-256- byte fast-nove capabilities in the novenment of thousands
of bytes. The end result is a set of very fast and very conpl ex data
novenent routines.

Al of this conmplexity does have a drawback. The infanpbus Atari BASIC
| ock-up problemlives in these two routines. If an EXPAND or CONTRACT
requires that an exact nultiple of 256 bytes be noved, then the routines
nmove things fromthe wong place in nenory to the wong place in nmenory,
wher eupon the conputer |ocks up and won't respond. The only way to avoid
| osing hours of work this way is to SAVE to di sk or cassette frequently.

EXPAND ( $A881)
Paraneters at ent ry:

register
X = the zero page address containing the pointer to
the | ocation after which space is to be added

Y = the loworder part of the number of bytes to
expand

A = the high-order part of the nunmber of bytes to
expand

The routine creates a hole in the table nenory, starting at a requested
| ocation and continuing the requested nunmber of bytes. The routine first
checks to see that there is enough free nenory space to satisfy the
request. It adds the requested expand size to each of the zero-page
tabl e pointers between the one pointed to by the X register and MEMIOP
Then each pointer will point to the correct address when EXPAND is done.

EXPAND t hen creates space at the address indicated by the X register.
The nunber of bytes required is contained in the Y and A registers. (Y
contains the |east significant byte, while A contains the nost
significant.) Al data fromthe requested address to the address pointed
to by MEMIOP is noved toward high menory by the requested nunmber of
bytes. This creates a hole of the proper size.

The routine then sets Application Hi gh Menory (APHV) to the value in
MEMIOP. This tells the OS the highest nenory address that BASIC is
currently using.

EXPLOW ( $A87F)
Par anet ers at entry:

register
X = zero page address containing the pointer to the
| ocation after which space is to be added
Y = nunber of bytes to expand (|l ow order byte only)

This is an additional entry point for the EXPAND routine. It is used
when the nunber of bytes to be added to the table is

| ess than 256. This routine first |oads the 6502 accunul ator with zero
to indicate the nost significant byte of the expand length. It then
functions exactly |ike EXPAND.

CONTRACT ( $A8FD)
Par anet ers at entry:

register
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X = zero page address containing the pointer to the starting
| ocati on where space is to be renoved

Y = the loworder part of the number of bytes to contract

A = the high-order part of the nunmber of bytes to contract

This routine removes a requested nunber of bytes at a requested | ocation
by nmoving all the data from higher in the tables downward the exact
amount needed to replace the unwanted bytes.

It subtracts the requested contract size fromeach of the zero page
tabl e pointers between the one pointed to by the X register and MEMIOP
Then each pointer will point to the correct address when CONTRACT is
done. The routine sets application high menmory (APHV) to the value in
MEMIOP to indicate to the OS the highest nenory address that BASIC is
currently using. The block of data to be noved downward is defined by
starting at the address pointed to by the zero-page address pointed to
in X, plus the offset number stored in Y and A, and then continuing to
the address specified at MEMIOP. Each byte of data in that block is
noved downward in nenory by the nunber of bytes specified in Y and A
effectively erasing all the data between the specified address and that
address plus the requested offset.

CONTLOW ( $ABFB)
Par anet ers at entry:

register
X = the zero page address containing the pointer to the |ocation
at which space is to be renpved
Y = the nunber of bytes to contract (low order byte only)

This routine is used to renove fewer than 256 bytes fromthe tables at a
requested |l ocation by noving all the data from higher in the tables
downward t he exact anobunt needed to replace the unwanted bytes. This
routine first |oads the 6502 accumnul ator with zero to serve as the nost
significant byte of the contract length. It then functions exactly like
CONThACT.

M scel | aneous Menory Al l ocati ons

Besi des the tables, which change dynami cally, BASIC al so uses buffers
and stacks at fixed |ocations. The Argunment/Qperator Stack is allocated
at BASIC s | ow nenory address and occupi es 256 bytes. During pre-
conpiling it is used as the output buffer for the tokens. During
execution, it is used while evaluating an expression. This buffer/stack
is referenced by a pointer at |location $80. This pointer has severa
nanes in the BASIC listing: LOVEM ARGOPS, ARGSTK, and OUTBUFF.

The Syntax Stack is used during the process of syntaxing a statenent. It
is referenced directly that is, not through a pointer. It is located at
$480 and is 256 bytes long. The Line Buffer is the storage area where
the statenent is placed when it is EN TERed. It is the input buffer for
the edit and pre-conpile processes. It is 128 bytes long and is
referenced directly as LBUFF. O'ten the address of LBUFF is al so put
into | NBUFF so that the buffer can be referenced through a pointer

t hough | NBUFF can point to other |ocations during various phases of
BASI C s executi on.
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Program Editor

The Atari keyboard is the master Control panel for Atari BASIC
Everything BASI C does has its origins at this control panel. The Program
Editor's job is to service the control panel and respond to the commands
that come fromit. The editor gets a line fromthe user at the keyboard;
does sone prelinmnary processing on the line; passes the line to the
pre-conpiler for further processing; inserts, deletes, or replaces the
line in the Statenent Table; calls the Program Executor when necessary;
and then waits to receive the user's next |ine input.

Li ne Processing The Program Editor, which starts at $A060, begins its
process by resetting the 6502 CPU stack. Resetting the CPU stack is a
drastic operation that can only occur at the beginning of a |logica
process. Each time Atari BASIC prepares to get a new line fromthe user,
it restarts its entire logical process.

Getting a Line The Program Editor gets a user's line by calling ClO The
origin of the line is transparent to the Program Editor. The line may
have been typed in at the keyboard or entered from sone external device
like the disk (if the ENTER comand was given). The Program Editor
sinmply calls CIO and asks it to put a line of not nore than 255 bytes
into the buffer pointed to by INBUFF (sF3). INBUFF points to the 128-
byte area defined at LBUFF ($580). The OS' S screen editor, which is
involved in getting a line fromthe keyboard, will not pass BASIC a |ine
that is longer than 120 bytes. Normally, then, the 128-byte buffer at
LBUFF i s big enough to contain the user's line. Sonetines, however, if a
line was originally entered fromthe keyboard with few bl anks and many
abbreviations, then LISTed to and re-ENTERed fromthe di sk, an input
line nay be |onger than 128 bytes. Wen this happens, data in the $600
page is overlaid. A LINE TOO LONG error will not necessarily 25 occur at
this point. A LINE TOO LONG error occurs only if the Pre-conpiler
exceeds its stack while processing the line or if the tokenized |ine
QUTBUFF exceeds 256 bytes. These overfl ows depend on the conplexity of
the Iine rather than on its actual length. When CIO has put a line into
the Iine buffer (LBUFF) and the Program Editor has regai ned control, it
checks to see if the user has changed his mind and hit the break key. If
the user did indeed hit break, the Program Editor starts over and asks
Cl O for another Iline.

Flags and Indices In order to help control its processing, the Program
Editor uses flags and indices. These nust be given initial values.

Cl X and COX. The index Cl X (sF2) is used to access the user's input line
in the line buffer (LBUFF), while COX ($94) is used to access the

t okeni zed statenment in the output buffer (OUTBUFF). These buffers and
their indices are also used by the pre-conpiler. The indices are
initialized to zero to indicate the beginning of the buffers.

DI RFLC. This flag byte ($A6) is used by the editor to renenber whether a
line did or did not have a line nunber, and also to renenber if the pre-
conpiler found an error in that line. DIRFLGis initialized to zero to
indicate that the line has a |line nunber and that the pre-conpil er has
not found an error

MAXCI X. This byte ($9F) is nmaintained in case the line contains a syntax
error. It indicates the displacenent into LBUFF of the error. The
character at this location will then be displayed in inverse video. The
Program Editor gives this byte the same initial value as CI X, which is
zero.

SWNTP. The pointer to the current top of the Variable Nane Tabl e (VNTD)
is saved as SVVUNTP (SAD) so that if there is a syntax error in this
line, any variables that were added can be renpved. If a user entered an
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erroneous line, such as 100 A=XAND B, the variable XAND woul d al r eady
have been added to the variable tables before the syntax error was

di scovered. The user probably meant to enter 100 A=X AND B, and, since
there can only be 128 variables in BASIC, he probably does not want the
variabl e XAND using up a place in the variable tables. The Progran
Editor uses SVWNIP to find the entry in the Variabl e Name Table soit can
be renmoved. 26

SWYTE. The process used to indicate which variable entries to renove
fromthe Variable Value Table in case of error is different. The nunber
of new variables in the line (SVYWWTEL1$Bl) is initialized to zero. The
Program Pre-conpil er increments the value every tine it adds a variable
to the Variable Value Table. If a syntax error is detected, this nunber
is multiplied by eight (the nunber of bytes in each entry on the

Vari abl e Value Table) to get the nunber of bytes to renove, counting
backward from the nost recent value entered

Handl i ng Bl anks In many places in the BASIC | anguage, bl anks are not
significant. For exanple, 100 | FX=6THENGOT(500 has the same meani ng as
100 IF X = 6 THEN GOTO 500. The Program Editor, using the SKIPBLANK
routine ($DBA1l), skips over unnecessary bl anks.

Processing the Line Number Once the editor has skipped over any | eading
bl anks, it begins to examine the input line, starting with the line
nunber. The floating point package is called to deternmine if a line
nunber is present, and, if so, to convert the ATASCI| l|ine nunber to a
floating point nunber. The floating point nunber is converted to an

i nteger, saved in TSLNUM for | ater use, and stored in the tokenized |ine
in the output buffer (OUTBUFF). The routine used to store data into
QUTBUFF is called : SETCODE ($A2C8). When : SETCODE stores a byte into
QUTBUFF, it also increnents COX, that buffer's index. BASIC could
convert the ATASCI| |ine number directly to an integer, but the routine
to do this would not be used any other time. Routines to convert ATASCI
to floating point and floating point to integer already exist in BASIC
for other purposes. Using these existing routines conserves ROM space

An interesting result of this sequence is that it is valid to enter a
floating point nunber as a |ine nunber. For exanple, 100.1, 10.9, or
2.05E2 are valid line nunbers. They would be converted to 100, 11, and
205 respectively If the input line does not start with a |ine nunber,
the line is considered to be a direct statement. DIRFLG is set to $80 so
27

Chapter Four that the editor can renenber this fact. The |ine nunber is
set to 32768 ($8000). This is one larger than the largest |ine nunber a
user is allowed to enter. BASIC | ater nmakes use of this fact in
processing the direct statenent.

Line length. The byte after the line nunber in the tokenized line in
QUTBUFF is reserved so that the line length (actually the displacenent
to the next line) can be inserted later. (See Chapter 2.) The routine
:SETCODE is called to reserve the byte by increnenting (COX) to indicate
t he next byte.

Saving erroneous lines. In the byte |abel ed STMSTART, the Program Editor
saves the index intQthe line buffer (LBUFF) of the first non-bl ank
character after the line nunber. This index is used only if there is a
syntax error, so that all the characters in the erroneous |line can be
noved into the tokenized Iline buffer and fromthere into the Statenent
Tabl e. There are advantages to saving an erroneous line in the Statenent
Tabl e, because you can LIST the error line later. The advantage is
greatest, not when entering a program at the keyboard, but when entering
a programoriginally witten in a different BASIC on anot her nachine
(via a nodem perhaps). Then, when a line that is not correct in Atari
BASIC is entered, the line is flagged and stored - not discarded. The
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user can later list the program find the error lines, and re-enter them
with the correct syntax for Atari BASIC.

Deleting lines. If the input line consists solely of a |ine nunber, the
Program Editor deletes the line in the Statenent Table which has that

[ ine number. The deletion is done by pointing to the line in the
Statenment Table, getting its length, and calling CONTRACT. (See Chapter
3.)

St at ement Processing The user's input |ine may consist of one or nore
statements. The Program Editor repeats a specific set of functions for
each statement in the line.

Initializing The current index (COX) into the output buffer (OUTBUFF) is
saved in a byte called STM.BD. A byte is reserved in OQUTBUFF by the
routine : SETCODE. Later, the value in 28 STM.BD will be used to access
this byte, and the statenent |length (the displacenent to the next
statenment) will be stored here.

Recogni zing the Statenment Nane After the editor calls SKBLANK to skip

bl anks, it processes the statenment nane, now pointed to by the input
index (ClX). The editor calls the routi ne SEARCH ($A462) to | ook for
this statenent nanme in the Statenment Name Tabl e. SEARCH saves the table
entry nunmber of this statement nane into | ocation STENUM The entry
nunber is also the Statenent Name Token value, and it is stored into the
t okeni zed out put buffer (OQUTBUFF) as such by :SETCODE. The SEARCH
routi ne al so saves the address of the entry in SRCADR for use by the
pre-conpiler. If the first word in the statenent was not found in the
Statenment Name Table, the editor assumes that the statenent is an
implied LET, and the appropriate token is stored. It is left to the pre-
conpiler to determine if the statement has the correct syntax for LET
The editor now gives control to the pre-conpiler, which places the
appropriate tokens in OUTBUFF, increnents the indices ClX and COX to
show current |ocations, and indicates whether a syntax error was
detected by setting the 6502 carry flag on if there was an error and
clearing the carry flag if there was not. (See Chapter 5.)

If a Syntax Error |Is Detected If the 6502 carry flag is set when the
editor regains control, the editor does error processing. In MAXCl X, the
pre-conpiler stored the displacenent into LBUFF at which it detected the
error. The Program Editor changes the character at this location to

i nverse video. The character in inverse video may not be the point of
error fromyour point of view, but it is where the pre-conpiler detected
an error. For exanple, assume you entered X YAND Z. You probably neant
to enter X Y AND Z, and therefore would consider the error to be between
Y and AND. However, since YAND is a valid variable name, X=YAND is a
valid BASIC statement. The pre-conpil er doesn't know there is an error
until it encounters B. The value of highlighting the error with inverse
29 video is that it gives the user an approximtion of where the error
is. This can be a big advantage, espedally if the input line contained
multiple statements or conpl ex expressions. The next thing the editor
does when a syntax error has been detected is set a value in DIRFLG to
indicate this fact for future reference. Since the DIRE LG byte al so

i ndi cates whether this is a direct statenent, the error indicator of $40
is ORed with the value already in DIRELG The editor takes the val ue
that it saved in STMSTRT and puts it into Cl X so that Cl X now points to
the start of the first statement in the input line in LBUFF. STMLBD is
set to indicate the location of the first statement length byte in
QUTBUFF. (A length will be stored into OUTBUFF at this displacenent at a
later tinme.) The editor sets the index into OQUTBUFF (COX) to indicate
the Statement Nanme Token of the first statement in OUTBUFF, and stores a
token at that location to indicate that this line has a syntax error.
The entire line (after the line nunber) is noved into OUTBUFF. At this
poi nt COX indicates the end of the line in OQUTBUFF. (Later, the contents
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of OUTBUFF will be nmoved to the Statement Table.) This is the end of the
speci al processing for an erroneous line. The process that follows is
done for both correct and erroneous |ines.

Final Statement processing During initial |ine processing, the Prograrm
Editor saved in STMLBD a value that represents the |ocation in OUTBUFF
at which the statement |ength (displacenment to the next statenent)
shoul d be stored. The Program Editor now retrieves that value from
STMLBD. Using this value as an index, the editor stores the value from
COX in OUTBUFF as the displacenent to the next statement The Progran
Edi tor checks the next character in LBUFF. If this character is not a
carriage return (indicating end of the line), then the statenent
processing is repeated. Wen the carriage return is found, COX will be
t he di spl acenent to the next line. The Program Editor stores COX as the
line length at a displacenment of two into OUTBUFF. 30

St at ement Tabl e Processing The final tokenized formof the line exists
in OQUTBUFF at this point. The Program Editor's next task is to insert or
replace the line in the Statement Table. The Program Editor first needs
to create the correct size hole in the Statement Table. The editor calls
the GETSTMI routine ($A9A2) to find the address where this |line should
go in the Statenent Table. If a line with the sane |ine nunber already
exists, the routine returns with the address in STMCUR and with the 6502
carry flag off. Otherwi se, the routine puts the address where the new
l'ine should be inserted in the Statenent Table into STMCUR and turns on
the 6502 carry flag. (See Chapter 6.) If the line does not exist in the
Statenment Table, the editor |oads zero into the 6502 accurmulator. If the
line does exist, the editor calls the GETLL routine ($A9DD) to put the
line length into the accumul ator. The editor then conpares the |ength of
the line already in the Statement Table (old line) with the length of
the line in OQUTBUFF (new line). If nore roomis needed in the Statenent
Table, the editor calls the EXPLOW ($A87F; see Chapter 3). If |ess space
is needed for the newline, it calls a routine to point to the next |ine
(GNXTL, at |ocation $A9D0; see Chapter 6), and then calls the CONTLOA
($A8FB; see Chapter 3). Now that we have the right size hole, the

t okeni zed line is noved from QUTBUFF into the Statenent Table at the

| ocation indicated by STMCUR

Line Wap-up After the line has been added to the Statenent Table, the
editor checks DI RFLG for the syntax error indicator. |If the second nost
significant bit ($40) is on, then there is an error

Error Wap-up If there is an error, the editor renobves any variabl es
that were added by this line by getting the nunber of bytes that were
added to the Variable Name Table and the Variable Value Table from
SWNTP and SVWTE. It then calls CONTRACT ($A8FD) to renove the bytes
fromeach table. Next, the editor lists the line. The Statement Nane
Token, which was set to indicate an error, causes the word "ERROR' 31 to
be printed. An inverse video character indicates where the error was
detected. The editor now waits for you to enter another Iine.

Handling Correct Lines If the line was syntactically correct, the editor
again examines DIRFLG 1In earlier processing, the nost significant bit
($80) of this byte was set on if the line was a direct statement. If it
is not a direct statement, then the editor is finished with the Iine,
and it waits for another input line. If the line is a direct statenent,
earlier processing already assigned it a |line nunber of 32768 ($8000),
one larger than the largest |ine number a user can enter. Since lines
are arranged in the Statenent Table in ascending nunerical order, this
l[ine will have been inserted at the end of the table. The current
statenment pointer (STMCUR-$8A $8B) points to this line. The Progran
Editor transfers control to a Program Executor routine, Execution
Control (EXECNL at |ocation $A95F), which will handl e the execution of
the direct statement. (See Chapter 6.) 32
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5

Pre-Compiler

The synbol s and synbol -conbining rules of Atari BASIC are coded into
Synt ax Tabl es, which direct the Program Pre—conpiler in exam ning
source code and producing tokens. The information in the Syntax Tabl es
is a transcription of a neta—I| anguage definition of Atari BASIC

The Atari BASIC Meta-| anguage A neta-language is a | anguage which

descri bes or defines another |anguage. Since a neta-language is itself a
| anguage, it also has synbols and synbol -conbining rules - which define
with precision the synbols and synbol - conbi ning rules of the subject

| anguage. Atari BASIC is precisely defined with a specially devel oped
net a- | anguage called the Atari BASIC Meta-l anguage, or ABM,. (ABM. was
derived froma conmmonly used conpil er- technol ogy neta-|anguage cal |l ed
BNF.) The synbols and synbol -conbining rules of ABM. were intentionally
kept very sinple.

Maki ng Up a Language To show you how ABML works, we'll create an
extrenely sinple | anguage called SAP, for Sinple Arithnetic Process. SAP
synbol s consi st of variables, constants, and operators.

e Variables: The letters A B, and C only.

e Constants: The nunbers 1,2,3,4,5,6,7,8, and 9 only.

e (perators: The characters +, -, *, /, and ! only. O course, you
al ready know the functions of all the operators except "!" The
character! is a pseudo-operator of the SAP | anguage used to denote
the end of the expression, like the period that ends this
sent ence.

The grammar of the SAP | anguage is precisely defined by the ABM.
definition in Figure 5-1. 33

Figure 5-1 The SAP Language Expressed in ABM
SAP : = <expression>!
<expressi on> : = <val ue> <operation>
<operation> : = <operator> <expression>
<val ue> : = <constant> | <vari abl e>
<constant>:=11] 2| 3| 4| 5| 6] 7| 8] 9
<variable> := A| B| C
<operator> :=+ | - | * | [/

The ABM. synbol s used to define the SAP | anguage in Figure
5-1 are:

D= is defined as VWhatever is on the left of : = is defined as
consi sting of whatever is on the right of :=
and in that order.

or The synbol | allows choices for what
something is defined as. For instance, in the
sixth line <variable> can be A or B or C
I f does not appear between two synbol s,
then there is no choice. For exanple, in the
second |ine <expression> nust have both
<val ue> and <operation>, in that order
to be valid.

<> | abel VWhat ever cones between < and> is an
ABM. | abel. Al labels, as non-term nal
synmbol s, nust be defined at sone point,

t hough the definitions can be circul ar -
noti ce that <operation> is part of the
definition of <expression> in the second
line, while in the third |ine <expression>
is part of the definition of <operation>.
term nal Synbol s used in definitions, which are not

Converted 2006 by Andreas Bertelmann for ABBUC



27

Atari BASIC Source book

symbol s encl osed by < and > and are al so not one
of the ABML synbols, are terminal synbols
in the | anguage being defined by ABM.. In
SAP, sone term nal symbols are A !, B, *,
and 1. They cannot be defined as consisting
of other symbols - they are thensel ves the
synmbol s that the SAP | anguage mani pu-
| ates, and must appear exactly as they are
shown to be valid in SAP. In effect, they are
t he vocabul ary of the SAP | anguage.

Figure 5-2. The Generation of One Possi bl e SAP St at enent

(1) SAP : = <expressi on>!

(2) SAP : = <val ue> <operati on>!

(3) SAP : = <vari abl e> <operation>!

(4) SAP : = B< operation>!

(5) SAP : = B<oper at or > <expr essi on>!
(6) SAP : = B* <expr essi on>!

(7) SAP : = B*<val ue> <operati on>!

(8) SAP : = B* <const ant > <operati on>!
(9) SAP : = B* 4<oper ati on>

(10) SAP := B*4< oper at or > <expressi on>!
(11) SAP := B* 4+<expr essi on>!

(12) SAP := 8* 4+<val ue> <operati on>!
(13) SAP := B*4+<vari abl e> <operati on>!
(14) SAP := B* 4+C<oper ati on>!

(15) SAP := B*4+C

In (2), <value> <operation> replaces <expression> because the ABM
definition of SAP (FigureS-1) defines <expression> as <val ue>
<oper ati on>.

In (3), the non-term nal <value> is replaced with <variable>. The
definition of <value> gives two choices for the substitution of <val ue>.
W happened to choose <vari abl e>.

In (4), we reach a termnminal synbol, and the process of defining <val ue>
ends. W happened to choose B to replace <variabl e>.

In (5), we go back and start defining <operation> There are two choices
for the replacenent of <operation>, either <operator> <expression> or
nothing at all (since there is nothing to the right of in the second
line of Figures 5-1). If nothing had been chosen, then (5) would have
been: SAP :=B! The statenent B! has no further non-termnals; the
process woul d have been finished, and a valid statenent would have been
produced. |Instead we happened to choose <operator> <expression>

The SAP definition for <expression> is
<val ue> <operation>. If we replace <operation> with its
definition we get:

<expression> : = <val ue> <operat or> <expressi on>

The definition of <expression> includes <expression> as part of its
definition. If the <operator> <expression> choice were always nade for
<operation> then the process of replacenment would never stop. A SAP
statenment can be infinitely long by definition. The only thing which
prevents us from always having an infinitely |l ong SAP statenent is that
there is a second choice for the replacenent of <operation>: nothing

The repl acements in (5) and (10) reflect the repetitive choices of
defining <expression> in terns of itself. The choice in (15) reflects
t he not hi ng choice and thus finishes the replacenent process.

Conput eri zed Statement Generation If we slightly nmodify our procedure
for generating statenents, we will have a process that could be easily
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programred into a conputer. Instead of arbitrarily replacing the
definition of non- terminals, we can think of the non-termnal as a
GOSUB. When we see <X> := <Y> <Z>, we can think of <Y> as being a
subroutine-type procedure:

(a) Go to the line that has <Y> on the left side

(b) Process the definition (right side) of <Y>.

(c) If while processing the definition of <Y> other non- terninals are
found, GOSUB to them (d) If while processing the definition of <Y> we
encounter a termnal, output the term nal synbol as the next symbol of

t he generated statenent.

(e) When the definition of <Y> is finished, return to the place that <Y>
was called fromand continue.

Since ABM. is structured so that it can be programred, a fascinating
exercise is to design a sinple English sentence grammar with ABM., then
wite a BASIC programto generate valid English sentences at random The
randommess of the sentences woul d be derived by using the RND function
to select fromthe definitions or choices. An exanple of such a granmmar
is shown in Figure 5-3. (The programm ng exercise is left to you.)

Figure 5-3. A Sinple English Sentence Gramar in ABM

SENTENCE : = <subj ect > <adver b> <verb> <obj ect >.
<subj ect> : = The <adj ective> <noun>
<verb> := eats | sleeps | drinks | talks | hugs
<adverb> := quickly | silently | slowly | viciously |
lovingly | sadly |
<object> := at home | in the car | at the table | at
school | <subject>
<noun> := boy | girl | dog | programmer | conputer
| teacher
<adj ective> := happy | sad | blue | light | round | smart
| cool | nice

Syntactical Analysis The process of exanmining a | anguage statenment for
grammatical correctness is called syntactical analysis, or syntaxing.
Statenment verification is simlar to statement generation. Instead of
arbitrarily choosing which or definition to use, however, the choices
are already nade, and we nust check to see whether the statenment synbols
are used in valid patterns. To do this, we nust process through each or
definition until we find a matching valid termnal synbol. The result of
statenment generation is a valid, grammatically correct statement, but
the result of statenent verification is a statenent validity indication
which is a sinple yes or no. Either the statement is grammatically
correct or it is not.Failure occurs when sone statenent symbol cannot be
matched with a valid term nal symbol under the rules of the grammar.

The Reporting System To use the pass/fail result of statenment
verification, we must build a reporting systeminto the nondermi na
checki ng process. Wenever we, in effect, GOSUB to a non-termna
definition, that non-terminal definition nust report its pass/fai

status. A fail status is generated and returned by a non-termna
definition when it finds no matching terminal for the current statenent
synmbol. If the current statement synbol is B and the <constant>
definition in the SAP | anguage is called, then <constant> would report a
fail status to the routine that called it. A pass status is returned
when a termnal synbol is found which matches the current statenent
synmbol . If our current statenment synbol had been 7 instead of B, then
<constant > woul d have reported pass. \Whenever such a match does occur

we return to the statement, and the next synmbol to the right becones the
new current synmbol for exam nation and verification.

Cycling Through the Definitions In SAP, the <constant> definition is
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called fromthe <value> definition. If <constant> reports fail, then we
exam ne the next or choice, which is <variable> The current synbol is
B, so <variable> reports pass. Since at |east one of the or choices of
<val ue> has reported pass, <value> will report pass to its caller. If
bot h <constant> and <vari abl e> had reported fail, then <val ue> woul d
report fail to its caller. The caller of <value> is <expression>. |f
<val ue> reports pass, <operation> is called. If <operation> reports
pass, then <expression> can report pass to its caller. If either <val ue>
or <operation> reports fail, then <expression> nust report fail, since
there are no other or choices for <expression> The definition of
<operation> contains a special pass/fail property. If either <operator>
or <expression> reports fail, 38

Chapter Five then the or choice nmust be examined. In this case the or
choice is nothing. The or nothing nmeans sonething special: report pass,
but do not advance to the next synbol. The final pass/fail report is
generated fromthe first Iine of the definition. If <expression> reports
pass and the next synbol is!, then SAP reports pass. |If either one of
these conditions has a fail status, then SAP nust report fail to

what ever call ed SAP from outside the |anguage.

Backing Up Sonetimes it is necessary to back up over synbols which have
al ready been processed. Let's assune that there was a definition of the
type <X> : <Y>I<z> |t is possible that while <Y> is attenpting to
conplete its definition, it will find a nunmber of valid matching

term nal synbols before it discovers a synbol that it cannot match. In
this case, <Y> would have consumed a nunber of synbols before it decided
to report fail. Al of the synbols that <Y> consunmed nust be unconsumned
before <Z> can be called, since <Z> will need to check those sane
synmbol s. The process of unconsumi ng synbols is called backup. Backup is
usual ly performed by the caller of <Y> which remenbers which source
synbol was current when it called <Y> |If <Y>reports fail, then the
caller of <Y> restores the current synbol pointer before calling <zZ>

Locating Syntax Error When a final report of fail is given for a
statenment, it is often possible to guess where the error occurred. In a
left-to-right system the synmbol causing the failure is usually the
synmbol which follows the rightnost synmbol found to be valid. If we keep
track of the rightnost valid synbol during the various backups, we can
report a best guess as to where the failure- causing error is |ocated.
This is exactly what Atari BASIC does with the inverse video character
in the ERROR Iine. For sinmplicity, our exanple was coded for SAP, but
the syntactical analysis we have just described is essentially the
process that the Atari BASIC pre-conpiler uses to verify the grammar of
a source statement. The Syntax Tables are an ABM. description of Atari
BASI C. The pre-conpiler, also known as the syntaxer, contains the

routi nes which verify BASIC statenments. 39

Chapter Five Statenment Syntax Tables There is one entry in the Syntax
Tabl es for each BASIC statenent. Each statenent entry in the Syntax
Table is a transcription of an ABML definition of the grammar for that
particul ar statenent. The starting address of the table entry for a
particul ar statenent is pointed to by that statement's entry in the

St at ement Nane Table. The data in the Syntax Tables is very much like a
conput er machi ne | anguage. The pseudo-conmputer which executes this
pseudo- machi ne | anguage is the pre-conpiler code. Like any nachine

| anguage, the pseudo-nachi ne | anguage of the Syntax Tabl es has

i nstructions and instruction operands. For exanple, an ABM. nondermi na
symbol is transcribed to a code which the pre-conpiler executes as a
type of "GOSUB and report pass/fail" command. Here are the pseudo-
instruction codes in the Syntax Tables; each is one byte in |ength.

Absol ut e Non- Term nal Vector

Converted 2006 by Andreas Bertelmann for ABBUC



Pre-Compiler 30

Name: ANTV
Code: $00

This is one of the forms of the non-terminal GOSUB. It is followed by
the address, minus 1, of the nonAerninal's definition within the Syntax
Table. The address is two bytes long, with the |east significant byte
first.

Ext ernal Subroutine Call
Name: ESRT
Code: $01

This instruction is a special type of term nal symbol checker. It is
foll omed by the address, nminus 1, of a 6502 machi ne | anguage routine
The address is two bytes long, with the | east significant byte first.
The ESRT instruction is a deus ex machina - the "god fromthe machi ne"
who sol ved everybody's problenms at the end of classical G eek plays.
There are sonme termnals whose definition in ABM. woul d be very conpl ex
and require a great many instructions to describe. In these cases, we go
out si de the pseudo-machi ne | anguage of the Syntax Tables and get help
from 6502 machi ne | anguage routines - the deus ex nmachina that quickly
gives the desired result. A nuneric constant is one exanple of where
this outside help is required.

ABM. or
Name: OR
Val ue: $02

This is the familiar ABM. or synbol ( | ). It provides for an
alternative definition of a non-term nal

Ret urn
Name: RTN
Val ue: $03

This code signals the end of an ABML definition line. Wen we wite an
ABML st aterment on paper, the end of a definition line is obvious - there
is no further witing on the line. Wien ABM. is transcribed to machi ne
codes, the definitions are all pushed up agai nst each other. Since the
function that is performed at the end of a definition is a return, the
end of definition is called return (RTN).

Unused (Codes $04 through $0D are unused.)

Expressi on Non- Term nal Vect or
Nanme: VFXP
Val ue: $0E

The ABM. definition for an Atari BASIC expression is |located at $A60D
Nearly every BASIC statement definition contains the possibility of
havi ng <expression> as part of it. VEXP is a single-byte call to
<expression>, to avoid wasting the two extra bytes that ANTV woul d take.
The pseudo- machi ne understands that this instruction is the sanme as an
ANTV call to <expression> at $A60D

Change Last Token
Name: CHNC
Val ue: $0F

This instruction is followed by a one-byte change to token val ue. The
operator token instructions cause a token to be placed into the output
buffer. Sonetimes it is necessary to change the token that was just
produced. For exanple, there are several = operators. One = operator is
for the assignnent statenent LET X = 4. Another = operator is for
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conpari son operations like I[F Y = 5. The pseudo-nachine will generate

t he assignment = token when it matches =. The context of the granmar at
that point may have required a compari son = token. The CHNG i nstruction
rectifies this problem

Oper at or Token
Nane: (nmany)
Val ue: $10 through $7F

These instructions are ternminal codes for the Atari BASIC Operators. The
code val ues are the values of each operator token. The val ues, value
nanes, and operator synbols are defined in the Operator Name Table (see
Chapter 2). Wen the pseudo-nmachi ne sees these termnal synbo
representations, it conmpares the synmbol it represents to the current
synmbol in the source statenment. If the synmbols do not match, then fai
status is generated. If the synbols match, then pass status is
generated, the token (instruction value) is placed in the token output
buf fer, and the next statenent source synbol becones the current synbo
for verification.

Rel ati ve Non-Term nal Vectors
Nane: (none)
Val ue: $80- $BF (Plus) $C0 - $FF (M nus)

This instruction is simlar to ANTV, except that it is a single byte.
The upper bit is enough to signal that this one-byte code is a non-
term nal GOSUB. The destination address of the GOSUB is given as a
position relative to the current table location. The val ues $80 through
$BF correspond to an address which is at the current table address plus
$00 through $31'. The val ues $CO through $FF correspond to an address
which is at the current table address m nus $01 through $31'.

Pre-conpil er Main Code Description The pre-conpiler, which starts at
SYNENT ($A1C3), uses the pseudo-instructions in the Syntax Tables to
verify the correctness of the source Iine and to generate the tokenized
statenments. The pre-conpiler uses a LIFO stack in its processing. Each
time a non-terminal vector ("GOSUB") is executed, the pre-conpiler mnust
remenber where the call was nade from It nust al so renmenber the current
locations in the input buffer (source statenment) and the output buffer
(tokeni zed statenent) in case the called routine reports fail and backup
is required. This LIFO stack is called the Syntax Stack. The Syntax
Stack starts at 5480 at the label SIX The stack is 256 bytes in size.
Each entry in the stack is four bytes long. The stack can hold 64 |evels
of nonderminal calls. If a sixty-fifth stack entry is attenpted, the
LINE TOO LONG error is reported. (This error should be called LINE TCC
COWPLEX, but the line is nost likely too long also.) The first byte of
each stack entry is the current input index (ClX). The second byte is
the current output index (COX). The final two bytes are the current
address within the syntax tables. The current stack level is managed by
the STKLVL ($A9) cell. STKLVL maintains a value from $00 to $FC, which
is the displacenment to the current top of the stack entry.

Initialization The editor has saved an address in SRCADR ($96). This
address is the address, minus 1, of the current statement's ABM
instructions in the Syntax Tables. The current input index (ClX) and the
current output index (COX) are also preset by the editor. The
initialization code resets the syntax stack nanager (STKLVL) to zero and
|l oads the first stack entry with the values in Cl X, COX, and CPC - the
current program counter, which holds the address of the next pseudo-
instruction in the Syntax Tabl es.

PUSH Val ues are placed on the stack by the PUSH routine ($A228). PUSH is
entered with the new current pseudo-program counter value on the CPU
stack. PUSH saves the current Cl X, COX, and CPC on the syntax stack and
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increnments STKLVL. Next, it sets a new CPC value fromthe data on the
CPU stack. Finally, PUSH goes to NEXT.

POP Val ues are renpoved fromthe stack with the POP routine ($A252). POP
is entered with the 6502 carry flag indicating pass/fail. If the carry
is clear, then pass is indicated. If the carry is set, then fail is

i ndi cated. POP first checks STKLVL. If the current value is zero, then
the pre-conpiler is done. In this case, POP returns to the editor via
RTS. The carry bit status inforns the editor of the pass/fail status. If
STKLVL is not zero, POP decrements STKLVL. At this point, POP exani nes
the carry bit status. If the carry is clear (pass), POP goes to NEXT. If
the carry is set (fail), POP goes to FAIL.

NEXT and the Processes It Calls After initialization is finished and
after each Syntax Table instruction is processed, NEXT is entered to
process the next syntax instruction. NEXT starts by calling NXSC to

i ncrenent CPC and get the next syntax instruction into the A register.
The instruction value is then tested to determ ne which syntax
instruction code it is and where to go to process it. If the Syntax
Instruction is OR ($02) or RTN ($03), then exit is via POP. Wen POP is
called due to these two instructions, the carry bit is always clear

i ndi cating pass.

ERNTV. If the instruction is RNTV ("GOSUB" $80-$FF), then ERNTV ($A201)
is entered. This code cal cul ates the new CPC val ue, then exits via PUSH

GETADR. |f the instruction is ANTV ($00) or the deus ex machi na ESRT
($01) instruction, then GETADR is call ed. GETADR obtains the follow ng
two- byte address fromthe Syntax Table. If the instruction was ANTV,
then CGETADR exits via PUSH. |f the instruction was ESRT, then GETADR
calls the external routine indicated. The external routine will report
pass/fail via the carry bit. The pass/fail condition is exam ned at
$ALFO. |If pass is indicated, then NEXT is entered. If fail is indicated
then FAIL is entered.

TERMIST. |f the instruction is VEXP ($0E), then the code at $ALF9 wil |
go to TERMIST ($A2A9), which will cause the code at $A2AF to be executed
for VEXP. This code obtains the address, minus 1, of the ABM. for the
<expression> in the Syntax Table and exits via PUSH

ECHNC. If the instruction was CHNG ($0F), then ECHNG ($A2BA) is entered

via tests at $ALF9 and $A2AB. ECHNG wi ||l increment CPC and obtain the
change-to token which will then replace the last previously generated
token in OQUTBUFF. ECHNG exits via RTS, which will take control back to
NEXT.

SRCONT. The Operator Token Instructions ($10-$7F) are handl ed by the
SRCONT routine. SRCONT is called via tests at $A1F9 and $A2AD. SRCONT

wi Il exam ne the current source synbol to see if it matches the synbol
represented by the operator token. When SRCONT has made its
determi nation, it will return to the code at $ALFC. This code wil |l

exam ne the pass/fail (carry cleariset) indicator returned by SRCONT and
take the appropriate action. (The SRCONT routine is detailed on the next

page.)

FAIL If any routine returns a fail indicator, the FAIL code at $A26C
will be entered. FAIL will sequentially examnmi ne the instructions,
starting at the Syntax Table address pointed to by CPC, |ooking for an
OR instruction. If an OR instruction is found, the code at $A27D wi |l be

entered. This code first determines if the current statement synbol is
the rightnost source synmbol to be examined thus far. If it is, it wll
update MAXCI X. The editor will use MAXCI X to set the inverse video flag
if the statenent is erroneous. Second, the code restores Cl X and COX to
their before-failure values and goes to NEXT to try this new OR choice
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If, while searching for an OR instruction, FAIL finds a RTN instruction,
it will call POP with the carry set. Since the carry is set, POP will
re-enter FAIL once it has restored things to the previous calling |evel
Al instruction codes other than OR and RTN are skipped over by FAIL.

Pre-conpil er Subroutine Descriptions SRCONT ($A2E6) The SRCONT code will
be entered when an operator token instruction is found in the Syntax
Tabl es by the main pre—conpiler code. The purpose of the routine is to
deternmine if the current source symbol in the user's line matches the
term nal synbol represented by the operator token. If the symbols natch,
the token is placed into the output buffer and pass is returned. If the
synmbol s do not match, fail is returned. SRCONT uses the value of the
operator token to access the termnal synbol name in the Operator Name
Tabl e. The characters in the source synbol are conpared to the
characters in the termnal synmbol. If all the characters match, pass is
i ndi cat ed.

TNVAR, TSVAR ($A32A) These deus ex machina routines are called by the
ESRT instruction. The purpose of the routines is to determne if the
current source synbol is a valid nuneric (TNVAR) or string (TSVAR
variable. If the source synbol is not a valid variable, fail is
returned. When pass is indicated, the routine will put a variable token
into the output buffer. The variable token ($80-$FF) is an index into
the Variabl e Name Table and the Variabl e Value Table, plus $80. The
Variable Name Table is searched. If the variable is already in the
table, the token value for the existing variable is used. If the
variable is not in the table, it will be inserted into both tables and a
new t oken value will be used. A source synbol is considered a valid
variable if it starts with an al phabetic character and it is not a
synmbol in the Operator Nanme Table, which includes all the reserved
words. The variable is considered to be a string if it ends with $;
otherwwse it is a numeric variable. If it is a string variable, $ is
stored with the variable name characters. The routine also determines if
the variable is an array by looking for (. If the variable is an array,
(is stored with the variable nane characters in the Variable Name Tabl e.
As a result, ABC, ABC$, and ABC(n) are all recognized as different
vari abl es.

TNCON ($A400) TNCON is called by the FSRT instruction. Its purpose is to
exami ne the current source synbol for a numeric constant, using the
floating point package. |If the synbol is not a numeric constant, the
routine returns fail. If the synbol is a nuneric constant, the floating
poi nt package has converted it to a floating point nunmber. The resulting
si x-byte constant is placed in the output buffer preceded by the $CE
nuneric constant token. The routine then exits with pass indicated.

TSCON ($A428) TSCON is called by the ESRT instruction. Its purpose is to
exami ne the current symbol for a string constant. If the synbol is not a
string constant, the routine returns fail. If the first character of the
synmbol is '', the synbol is a string constant. The routine will place
the string constant token ($0F) into the output buffer, followed by a
string length byte, followed by the string characters. The string
constant consists of all the characters that follow the starting double
quote up to the ending double quote. If the ECL character ($9B) is found
bef ore the endi ng doubl e quote, an ending double quote is assumed. The
EQL is not part of the string. The starting and endi ng doubl e quotes are
not saved with the string. Al 256 character codes except $9B (EOL) and
$22 (") are allowed in the string.

SEARCH ($A462) This is a general purpose table search routine used to
find a source synbol character string in a table. The table to be
searched is assumed to have entries which consist of a fixed | ength part
(0 to 255 bytes) followed by a variable length ATASCI| part. The | ast
character of the ATASCI| part is assumed to have the nost significant
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bit ($80) on. The last table entry is assuned to have the first ATASC
character as $00. Upon entry, the X register contains the length of the
fixed part of the table (0 to 255). The A, Y register pair points to the
start of the table to be searched. The source string for conparison is
pointed to by I NBUFF plus the value in Cl X. Upon exit, the 6502 carry
flag is clear if a match was found, and set if no match was found. The X
regi ster points to the end of the synbol, plus 1, in the buffer. The
SRCADR ($95) two- byte cell points to the matched table entry. STENUV
($AF) contains the nunber, relative to zero, of the matched table entry.

SETCODE (A2C8) The SETCODE routine is used to place a token in the next
avail abl e position in the output (token) buffer. The value in COX
determi nes the current displacenent into the token buffer. Mer the
token is placed in the buffer, COX is increnented by one. If COX exceeds
255, the LINE TOO LONG error mnessage is generated. 48

Converted 2006 by Andreas Bertelmann for ABBUC



Part

Execution

Converted 2006 by Andreas Bertelmann for ABBUC



Execution 36

6 Execution

During the editing and pre-conpiling phase, the user's statenents were
checked for correct syntax, tokenized, and put into the Statenent Table.
Then direct statenents were passed to the Program Executor for inmediate
processing, while program statenents awaited | ater processing by the
Program Executor. W now enter the execution phase of Atari BASIC. The
Pr ogram Executor consists of three parts: routines which simulate the
function of individual statement types; an expression execution routine
whi ch processes expressions (for exanple, A+B+3, A$(1,3), "HELP",

A(3)+7. 26E-13); and the Execution Control routine, which manages the
whol e process.

Execution Control Execution Control is invoked in tw situations. If the
user has entered a direct statenent, Execution Control does sone initia
processing and then calls the appropriate statenent execution routine to
simul ate the requested operation. If the user has entered RUN as a
direct statement, the statenent execution routine for RUN instructs
Execution Control to start processing statenents fromthe begi nning of
the statenent table. Wien the editor has finished processing a direct
statement, it initiates the Execution Control routine EXECNL ($A95F).
Execution Control's job is to manage the process of statenent

simul ation. The editor has saved the address of the statenent it
processed in STMCUR and has put the statenent in the Statenent Table
Since this is a direct statenment, the line nurmber is $8000, and the
statement is saved as the last line in the Statement Table. The fact
that a direct statenent is always the |ast statenent in the Statenent
Table gives a test for the end of a user's program The high- order byte
of the direct statenent |ine nunber ($8000) has its nost significant bit
on. Loading this byte ($80) into the 6502 accunulator will set the mnus
flag on. The line nunber of any program statenent isiess than; or equa
to $7FFF. Loading the high order byte ($7F or less) of a programline
nunber into the accunulator will set the 6502 minus flag off. This gives
a sinple test for a direct statenent.

Initialization Execution Control uses several paraneters to help it
nmanage the task of statenment execution. STMCUR hol ds the address in the
Statenment Table of the line currently being processed. LLNGTH hol ds the
I ength of the current line. NXTSTD hol ds the displacenent in the current
line of the next statenment to process. STMCUR al ready contains the
correct val ue when Execution Control begins processing. SETLNI ($B81B)
is called to store the correct values into LLNGTH and NXTSTD.

St at ement Execution Since the user may have changed his or her mnd
about execution, the routine checks to see if the user hit the break
key. If the user did hit BREAK, Execution Control carries out XSTOP
($B793), the sane routine that is executed when the STOP statenent is
encountered. At the end of its execution, the XSTOP routine gives
control to the beginning of the editor. If the user did not hit BREAK
Execution Control checks to see whether we are at the end of the
tokenized line. Since this is the first statement in the line, we can't
be at the end of the Iine. So why do the test? Because this part of the
routine is executed once for each statement in the line in order to tel
us when we do reach the end of the line. (The end-of-line procedure wll
be discussed later in this chapter.) The statenent |length byte (the

di spl acenent to the next statement in the line) is the first byte in a
statenent. (See Chapter 3.) The displacenent to this byte was saved in
NXTSTD. Execution Control now | oads this new statenent's di spl acenent
using the value in NXTSTD. The byte after the statenment length in the
line is the statement name token. Execution Control |oads the statenent
nane token into the A register. It saves the displacenent to the next
byte, the first of the statenent's tokens, in STINDEX for the use of the
statement sinmulation routines. The statenent nane token is used as an
index to find this statement's entry in the Statenent Execution Table.
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Each table entry consists of the address, nminus 1, of the routine that
will simulate that statenent. This sinulation routine is called by
pushing the address fromthe table onto the 6502 CPU stack and doi ng an
RTS. Later, when a simulation routine is finished, it can do an RTS and
return to Execution Control. (The name of npbst of the statenent
simulation routines in the BASIC listing is the statenent name preceded
by an X2 XFOR, XRUN, XLIST.) Mdst of the statenent simulation routines
return to Execution Control after processing. Execution Control again
tests for BREAK and checks for the end of the line. As long as we are
not at end-of-line, it continues to execute statements. Wen we reach
end-of-line, it does some end-of-line processing

End-of -1ine Handling in a Direct Statement When we come to the end of
the line in a direct statement, Execution Control has done its job and
jumps to SNX3. The READY nessage is printed and control goes back to the
Pr ogram Edi t or.

End- of -1i ne Handling during Program Executi on Program execution is
initiated when the user types RUN. Execution Control handles RUN I|ike
any other direct statenent. The statement simulation routine for RUN
initializes STMCUR, NXTSTD, and LLNGTH to indicate the first statenent
of the first line in the Statenent Table, then returns to Execution
Control. Execution Control treats this first program statenment as the
next statenent to be executed, picking up the statenent name tokens and
calling the sinulation routines. Usually, Execution Control is unaware
of whether it is processing a direct statement or a program statenent.
End-of- line is the only time the routine needs to make a distinction.
At the end of every programline, Execution Control gets the |ength of
the current Iine and calls GNXTL to update the address in STMCUR to make
the next line in the Statenent Table the new current line. Then it calls
TENDST ($A9E2) to test the new line nunber to see if it is another
programline or a direct statenment. If it is a direct statement, we are
at the end of the user's program Since the direct statenent includes
the RUN command that started program execution, Execution Control does
not execute the line. Instead, Execution Control calls the sanme routine
t hat woul d have been calle'lif the program had contai ned an END
statenent (XEND, at$B78D). XEND does some end-of- program processing,
causes READY to be printed, and returns to the beginning of the editor
If we are not at the end of the user's program processing continues
with the new current |ine.

Execution Control Subroutines TENDST ($A9E2) Exit paraneters: The m nus
flag is set on if we are at the end of program This routine checks for
the end of the user's programin the Statenent Table. The very | ast
entry in the Statement Table is always a direct statenent. \Wenever the
statement indicated by STMCUR is the direct statement, we have fi nished
processing the user's program The line nunber of a direct statement is
$8000. The line nunber of any other statement is $7FFF or |ess. TENDST
deternmines if the current statenent is the direct statement by | oading
the high-order byte of the line nunber into the A register. This byte is
at a displacenent of one fromthe address in STMCUR [|f this byte is $80
(a direct statenent), loading it turns the 6502 minus flag on

O herwise, the mnus flag is turned off.

GETSTMI ($A9A2) Entry paraneters: TSLNUM contains the |ine nunber of the
statenment whose address is required. Exit paraneters: If the |ine nunber
is found, the STMCUR contains the address of the statenent and the carry
flag is set off (clear). If the |ine number does not exist, STMCUR
contains the address where a statement with that |ine nunber should be,
and the carry flag is set on (set). The purpose of this routine is to
find the address of the statenent whose |line nunber is contained in
TSLNUM The routine saves the address currently in STMCUR into SAVCUR
and then sets STMCUR to indicate the top of the Statenent Table. The
line whose address is in STMCUR is called the current line or statenent.
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GETSTMI then searches the Statenent Table for the statenent whose |ine
nunber is in TSLNUM The line nunber in TSLNUM is conpared to the line
nunber of the current line. If they are equal, then the required
statement has been found. Its address is in STMCUR, so CGETSTMI cl ears
the 6502 carry flag and is finished. If TSLNUMis smaller than the
current statenment |ine nunber, GETSTMI gets the length of the current
statenment by executing GETLL ($A9DD). GNXTL ($A9D0) is executed to nmke
the next line in the statement table the current statement by putting
its address into STMCUR. GETSTMI then repeats the conparison of TSLNUV
and the line nunber of the current [ine in the same manner. |If TSLNUMi s
greater than the current line nunber, then a line with this |ine nunber
does not exist. STMCUR already points to where the line should be, the
6502 carry flag is already set, and the routine is done.

GETLL ($A9DD) Entry paraneters: STMCUR indicates the |line whose length
is desired. Exit paraneters: Register A contains the length of the
current line. CGETLL gets the length of the current line (that is, the
line whose address is in STMCUR). The line length is at a displacenent
of two into the line. GETLL-loads the length into the A register and is
done.

GNXTL ($A9D0) Entry paranmeters: STMCUR contains the address of the
current line, and register A contains the length of the current line.
Exit paranmeters: STMCUR contains the address of the next line. This
routine gets the next line in the statenent table and nakes it the
current line. GNXTL adds the length of the current line (contained in
the A register) to the address of the current line in STMCUR This
process yields the address of the next line in the statement table,
whi ch repl aces the value in STMCUR

SETLN1 ($B81B) Entry paranmeters: STMCUR contains the address of the
current line. Exit paranmeters: LLNGIH contains the length of the current
[ ine. NXTSTD contains the displacenent in the line to the next statenent
to be executed (in this case, the first statenent in the line). This
routine initializes several line paraneters so that Execution Contro

can process the line. The routine gets the length of the line, which is
at a displacement of two fromthe start of the line. SETLNl | oads a
value of three into the Y register to indicate the displacenment into the
line of the first statement and stores the value into NXTSTD as the

di spl acenment to the next statenent for execution.

SETLI NE ($B818) Entry paraneters: TSLNUM contains the |line nunber of a
statement. Exit paraneters: STMCUR contains the address of the statenent
whose line nunber is in TSLNUM LLNGIH contains the length of the line.
NXTSTD contains the displacement in the line to the next statement to be
executed (in this case, the first statenent in the line). Carry is set

if the l'ine nunmber does not exist. This routine initializes several |ine
paraneters so that execution control can process the line. SETLINE first
calls GETSTMI ($A9A2) to find the address of the |ine whose nunmber is in
TSLNUM and put that address into STMCUR It then continues exactly like
SETLNL1.

Converted 2006 by Andreas Bertelmann for ABBUC



Part

Execute Expression

Converted 2006 by Andreas Bertelmann for ABBUC



Execute Expression 40

7 Execute Expression

The Execute Expression routine is entered when the Program Execut or
needs to evaluate a BASIC expression within a statenent. It is also the
executor for the LET and inplied LET statements. Expression operators
have an order of precedence; sone nust be sinulated before others. To
properly eval uate an expression, Execute Expression rearranges it during
t he eval uati on.

Expressi on Rearrangenment Concepts Qperator precedence rules in algebraic
expressions are so sinple and so unconsci ous that nost people aren't
aware of followi ng them Wen you evaluate a sinple expression |like
Y=AX +BX+C, you don't think: "Exponentiation has a higher precedence
than multiplication, which has a higher precedence than addition
therefore, | will first square the X, then performthe nultiplication."
You just do it. Conputers don't devel op habits or commobn sense - they
have to be specifically commanded. It would be nice if we could just
type Y = AX2+BX+C into our nmachi ne and have the conputer understand, but
i nstead we nust separate all our variables with operators. W al so have
to learn a few new operators, such as * for nmultiply and ~ for
exponentiation. Gven that we are willing to adjust our thinking this
much, we enter Y=A*X"2+B*X+C. The new form of expression does not quite
have the sane feel as Y AX2+BX+C, we have translated normal human
patterns halfway into a formthe conputer can use. Even the operation
Xr2 causes anot her problem for the computer. It would really prefer that
we give it the two values first, then tell it what to do with them
Since the conputer still needs separators between itens, we should wite
Xr2 as X, 2,”~. Now we have sonething the conputer can work with. It can
obtain the two values X 2, apply the operator ”~, and get a result

wi t hout having to | ook ahead. If we were to transcribe X*"2*A in the sane
manner, we would have X 2,7, A *. The value returned by X, 2, is the
first value to nmultiply, so the value pair for multiplication is (X 2,%)
and A. Again we have two val ues followed by an operator, and the
conputer can understand. If we continue to transcribe the expression by
pairing values and operators, we find that we don't want to add the

val ue X*"2*A to B; we want to add the value X"2*A to B*X. Therefore, we
need to tell the conputer X 2, A *,B X *, +. The value pair for the
operator +is (X 2,", A *) and (B, X *). The value pair for the fina
operation, = is (X, 2,",A* B X * +C+) and Y. So the conplete
translation of Y=AX2+BX+ Cis X, 2,",A*,B X *,+C +, Y,=. Very few people
other than Forth progranmers put up with this form of expression
transcription. Therefore, Atari BASIC was designed to performthis
translation for us, provided we use the correct synbols, like * and ~.

The Expression Rearrangenent Al gorithm The al gorithm for expression
rearrangenent requires two LIFO stacks for tenporary storage of the
rearranged terns. The Operator Stack is used for tenporarily saving
operators; the Argunent Stack is used for saving argunents. Argunents
are val ues consisting of variables, constants, and the constant-Iike
val ues resulting from previ ous expressi on operations.

Qperator Precedence Table The Atari BASIC User's Manual lists the
operators by precedence. The highest-precedence operators, like <, >,
and = <, are at the top of the list; the | owest-precedence operator, OR
is at the bottom The operators at the top of the list get executed
before the operators at the bottomof the list. The operators in the
precedence table are arranged in the sane order as the Qperator Nane
Tabl e. Thus the token values can be used as direct indices to obtain an
operator precedence value. The entry for each operator in the Qperator
Precedence Tabl e contains two precedence val ues, the go-onto-stack
precedence and the come-of f-stack precedence. Wen a new operator has
been plucked from an expression, its go-onto- stack precedence is tested
inrelation to the top-of-stack operator's come-off-stack precedence
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Expressi on Rearrangenment Procedure The synbols of the expression (the
argunents and the operators) are accessed sequentially fromleft to
right, then rearranged into their correct order of precedence by the
foll ow ng procedure: 1. Initialize the Operator Stack with the Start O
Expression (SOE) operator. 2. Get the next symbol fromthe expression.
3. If the synbol is an argunent (variable or constant), place the
argunent on the top of the Argunent Stack. Go to step 2. 4. If the
synmbol is an operator, save the operator in the tenporary save cell
SAVEOP. 5. Conpare the go-onto-stack precedence of the operator in
SAVEOP to the come-of f stack precedence of the operator on the top of
the Operator Stack. 6. If the top-of-stack operator's precedence is |ess
than the precedence of the SAVECP operator, then the SAVEOP operator is
pushed onto the Operator Stack. Wen the push is done, go back to step
2. 7. If the top-of-stack operator's precedence is equal to or greater
than the precedence of the SAVECP operator, then pop the top-of-stack
operator and execute it. \Wen the execution is done, go back to step 5
and continue. The Expression Rearrangenent Procedure has one apparent
problem It seens that there is no way to stop it. There are no exits
for the "eval uation done" condition. This problemis handl ed by

encl osing the expression with two special operators: the Start O
Expression (SOE) operator, and the End Of Expression (EOE) operator.
Renenber that SCE was the first operator placed on the Operator Stack
in step 1. Execution code for the SCE operator will cause the procedure
to be exited in step 7, when SOE is popped and executed. The ECE
operator is never executed. EOF's function is to force the execution of
SOF. The precedence val ues of SOE and ECE are set to insure that SCE is
executed only when the expression evaluation is finished The SCE cone-
of f-stack precedence is set so that its value is always |ess than al

t he ot her operators' go-onto-stack precedence val ues. The EOE go-onto-
stack precedence is set so that its value is always equal to or less
than all the other operators' (including SOE s) corae-off-stack
precedence val ues. Because SCE and ECE precedence are set this way, no
operator other than ECE can cause SCE to be popped and executed. Second,

ECE will cause all stacked operators, including SCE, to be popped and
executed. Since SCE is always at the start of the expression and ECE is
al ways at the end of the expression, SOE will not be executed until the

expression is fully evaluated. In actual practice, the SCE operator is
not physically part of the expression in the Statenent Table. The
Expressi on Rearrangement Procedure initializes the Operator Stack with
the SCE operator before it begins to exam ne the expression. There is no
single operator defined as the End Of Expression (EOE) operator. Every
BASI C expression is followed by a symbol like :, THEN, or the EQL
character. Al of these synbols function as operators with precedence
equi valent to the precedence of our phantom ECE operator. The THEN

t oken, for exanple, serves a dual purpose. It not only indicates the
THEN action, but also acts as the ECE operator when it follows an

expr essi on.

Expressi on Rearrangenment Exanple To illustrate how the expression

eval uati on procedure works, including expression rearrangenment, we wl
evaluate our Y = A*X*"2 + B*X + C exanple and see how the expression is
rearranged to X, 2,", A *,B, X *, +,C +, Y,= with a correct result. To work
our exanple, we need to establish a precedence table for the operators.
The values in Figure 7-1 are sinmilar to the actual values of these
operators in Atari BASIC. The | owest precedence value is zero; the

hi ghest precedence val ue is $0F

Exanpl e precedence Tabl e operator go-on-stack come-off-stack symbo
precedence precedence SCE NA $00 + $09 $09 * $0A $0A ~ sOC $0C = $0F $01
I (ECE) $00 NA 58

Chapter Seven Synbol values and notations. In the exanple steps, the
term PSn refers to step n in the Expression Rearrangenent Procedure
(page 57). Step 5, for instance, will be called P55. In the actua
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expression, the current synbol will be underlined. If Bis the current
synmbol, then the actual expression will appear as Y=A*X 2+B*X+C . In the
rearranged expression, the synbols which have been eval uated up to that
point will also be underlined. The values of the variables are: A=2 C=6
B=4 X=3 The variabl e val ues are assuned to be accessed when the variable
argunents are popped for operator execution. The end- of - expression
operator is represented by!.

Exanpl e step 1. Actual Expression: Y=A*X"2 + B*X + C! Rearranged
Expression: X 2,", A * B X *, + C +,Y,= ! Argunment Stack: Operator Stack:
SCE SAVEOP: PS1 has been executed. The Operator Stack has been
initialized with the SOE operator. W are ready to start processing the
expressi on synbol s.

Exanpl e step 2. Actual Expression: Y= A*X"2+B*X+C! RearrangedExpression:
X2, A* B X * +C + Y, =1 Agument Stack: Y Operator Stack: SCE
SAVEOP: The first synbol, Y, has been obtained and stacked in the
Argument Stack according to PS2 and P53.

Exanpl e step 3. Actual Expression: Y=A*X"2+B*X+C! Rearranged Expression:
X2, A* B X * +C + Y, =1 Agunment Stack: Y Operator Stack: SCE, =
SAVEOP: = (Qperator = has been obtained via PS2. The relative precedences
of SOE ($00) and = ($0F) dictate that the = be placed on the Operator
Stack via PS6.

Exanpl e step 4. Actual Expression: Y=A*X"2+B*X+C! Rearranged Expression:
X2, A* B X * +C + Y, =1 Agunment Stack: Y,A Operator Stack: SOE, =
SAVEOP: The next synbol is A This synbol is pushed onto the Argunent
Stack via PS3.

Exanpl e step 5. Actual Expression: Y=A*X"2+B*X+C! Rearranged Expression:
X2, A* B X * +C +Y,=1 Agument Stack: Y,A Operator Stack: SOE, =,
* SAVEOP: * The next synbol is the operator *. The relative precedence
of * and = dictates that * be pushed onto the Qperator Stack.

Exanpl e step 6. Actual Expression: Y = A*X"2+B*X+C! Rearranged
Expression: X 2,", A * B X *, + C +,Y,= 1 Argunment Stack: Y,A X Operator
Stack: SOE, =, * SAVEOP: The next synmbol is the variable X. This synbol
is stacked on the Argument Stack according to PS3.

Exanpl e step 7. Actual Expression: Y=A*X"2+B*X+C! Rearranged Expression:
X2, A*, B X * +C +,Y,= ! Argunent Stack: Y,A X Operator Stack: SCE, =
,~ A U ' SAVEOP: A The next synbol is ~ The relative precedence of the
and the * dictate that * be stacked via PS6.

Exanpl e step 8. Actual Expression: Y=A*X"2+B*X+C! Rearranged Expression
X2, A* B X * +C + Y, =1 Agunment Stack: Y, A X 2 Operator Stack:

SCE, =, *, » SAVECOP: The next symnbol is 2. This symbol is stacked on the
Argument Stack via PS3.

Exanmpl e step 9. Actual Expression: Y=A*X"2+B*X+Cl! Rearranged Expression
X2, NA* B X * +C + Y, =l Argunent Stack: Y,A 9 Qperator Stack:

SCE, =, *, SAVEOP: + The next symbol is the operator +. The precedence of
the operator that was at the top of the stack, ~ , is greater than the
precedence of +. PS7 dictates that the top-of-stack operator be popped
and executed. The ™ operator is popped. Its execution causes argunents X
and 2 to be popped fromthe Argunent Stack, replacing the variable with
the value that it represents and operating on the two val ues yi el ded:
Xn2=372=9. The resulting value, 9, is pushed onto the Argunent Stack.
The + operator remains in SAVEOP. W continue at PS5. Note that in the
rearranged expression the first synbols, X 2,7, have been eval uated
according to plan.
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Exanpl e step 10. Actual Expression: Y=A*X"2+B*X+Cl Rearranged
Expression: X, 2, ", A * B X *,+ C +,Y,= ! Argument Stack: Y, 18 COperator
Stack: SOE, = SAVEOP: + This step originates at PS5. The SAVEOP operat or,
+, has a precedence that is less than the operator which was at the top
of the stack, *. Therefore, according to P57, the is popped and
executed. The execution of * results in A*9=2*9=18. The resulting val ue
i s pushed onto the Argunent Stack.

Exanpl e step 11. Actual Expression: Y = A*X"2+B*X+C! Rearranged

Expression: X, 2, ", A * B X *,+ C+,Y,= ! Argunent Stack: Y, 18 Operator
Stack: SOE, =, + SAVEOP: \Wen step 10 finished, we went to P55. The
operator in SAVEOP was +. Since + has a higher precedence than the top-
of -stack operator, =, the + operator was pushed onto the Qperator Stack
via PS6.

Exanpl e step 12. Actual Expression: Y=A*X"2+B*X+Cl Rearranged
Expression: X, 2, ", A * B X *, + C +,Y,= ! Argurment Stack: Y, 18, B Qperator
Stack: SOE, =, + SAVEOP: The next synbol is the variable B, which is

pushed onto the Argunment Stack via P53.

Exanpl e step 13. Actual Expression: Y = A*X"2+B*X+C! Rearranged
Expression: X, 2, ", A * B X *,+ C +,Y,= ! Argurment Stack: Y, 18, B Qperator
Stack: SOE, =, +,* SAVEOP: * The next synbol is the operator *. Since *
has a hi gher precedence than the top-of-stack +, * is pushed onto the
stack via PS6.

Exanpl e step 14. Actual Expression: Y = A*X"2+B*X+Cl! Rearranged
Expression: X, 2, ", A * B X *, + C +,Y,= ! Argument Stack: Y, 18, B, X
Qperator Stack: SOE, =, + * SAVEOP: The variable X is pushed onto the
Argument Stack via PS3.

Exanmpl e step 15. Actual Expression: Y=A*X"2+B*X+Cl Rearranged
Expression: X, 2, A * + C +,Y, = ! Argunent Stack: Y,18,12 Operator
Stack: SOE, =,+ SAVECOP: + The operator + is retneved fromthe
expression. Since + has a | ower precedence than which is at the top of
the stack, * is popped and executed. The execution of * causes

B* X=4*3=12. The resulting value of 12 is pushed onto the Argument Stack.
We will continue at PS5 via the P57 exit rule.

Exanpl e step 16. Actual Expression: Y=A*X"2+B*X+Cl Rearranged
Expression: X, 2, ", A * B X *, +, C+,Y,= ! Argunent Stack: Y,30 Operator
Stack: SOE, = SAVEOP: + This step starts at PS5. The SAVEOP operator, +,
has precedence that is equal to the precedence of the top-of-stack
operator, also +. Therefore, + is popped fromthe operator stack and
executed. The results of the execution cause 18+12, or 30, to be pushed
onto the Argument Stack. PS5 is called. Exanple step 17. Actual
Expression: Y=A*X"2+B*X+Cl Rearranged Expression:

X2, NA* B X* + C+,Y,=! Argunent Stack: Y,30 Operator Stack: SOE,
=, + SAVEOP: This step starts at PS5. The SAVECP is +. The top-of-stack
operator, =, has a |lower precedence than +; therefore, + is pushed onto
the stack via PS6. Exanple step 18. Actual Expression: Y=A*X"2+B*X+Cl
Rearranged Expression: X, 2, A * B X *,+ C +,Y,= 1 Argunment Stack:

Y, 30, C Operator Stack: SOE, =, + SAVEOP: The variable C is pushed onto
the Argument Stack via PS3. 63

Chapter Seven Exanple step 19. Actual Expression: Y=A*X"2+B* X+CL
Rearranged Expression: X, 2, A * B X *,+, C +,Y,= ! Argunent Stack: Y, 36
Operator Stack: SOE, SAVFOP: The ECE operator is plucked fromthe
expression. The ECE has a | ower precedence than the top-of-stack +
operator. Therefore, + is popped and executed. The resulting val ue of
30+6, 36, is pushed onto the Argunent Stack. PS5 wi |l execute next.

Exanpl e step 20. Actual Expression: Y=A*X"2+B*X+Cl Rearranged
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Expression: X, 2, ", A * B X *, +, C+,Y,= ! Argunent Stack: Operator Stack
SCE SAVEOP: | This step starts at P55. The ! operator has a | ower
precedence than the top-of-stack = operator, which is popped and
execut ed. The execution of = causes the value 36 to be assigned to Y.
This | eaves the Argunment Stack enpty. PS5 will be executed next.

Exanmpl e step 21. Actual Expression: Y=A*X"2+B*X+Cl Rearranged
Expression: X, 2, ", A * B X *, + C+, Y, = ! Argument Stack: Operator Stack
SAVEOP: ! The operator in SAVEOP causes the SCE operator to be popped
and executed. The execution of SOF terninates the expression eval uation.
Note that the rearranged expression was executed exactly as predicted.

Mai nl i ne Code The Execute Expression code inplenents the Expression

Rear rangenment Procedure. The nmainline code starts at the EXEXPR | abel at
$AAEO. The input to EXEXPR starts at the current token in the current
statement. STMCUR points to the current statenent. STINDEX contains the
di spl acenent to the current token in the STMCUR statenment. The out put of
EXEXPR i s whatever values remain on the top of the argunent stack when

t he expression evaluation is finished. In the follow ng di scussion, PSn
refers to the procedure step n in the Expression Rearrangenent

Procedure. PS1, initialization, occurs when EXEXPR is entered. EXPINT is
called to initialize the operator and argument stacks. EXPINT places the
SOF operator on the operator stack. PS2, which obtains the next token,
directly follows initialization at EXNXT ($AAE3). The code calls EGIOKEN
to get the next expression symbol and classify it. If the token is an
argunent, the carry will be set. If the token is an operator, the carry
will be clear. If the token is an argunment, P53 is inplemented via a
call to ARGPUSH. After the argument is pushed onto the argunent stack
EXNXT (PS2) will receive control. If the token was an operator, then the
code at EXOT ($AAEE) will be executed This code inplements P54 by saving
the token in EXSVOP. PS5, which conpares the precedents of the EXSVOP
token and the top-of-stack token, follows EXOTl at EXPTST ($AAFA). This
code al so executes the SCE operator If SCE is popped, then Execute
Expression finishes via RTS. If the top-of-stack operator precedence is
| ess than the EXSVOP operator precedencel PS6 is inplemented at EOPUSH
($AB15). EOPUSH pushes EXSVOP onto the operator stack and then goes to
EXNXT (PS2). If the top-of-stack operator precedence is greater than or
equal to the EXSVOP operator precedence, then PS7 is inplemented at
EXOPOP ($ABOB). EXOPOP will pop the top- of-stack operator and execute
it by calling EXOP. When EXOP is done, control passes to EXPTST (PS5).

Expressi on Eval uation Stacks The two expression eval uation stacks, the
Argument Stack and the Operator Stack, share a single 256-byte nenory
area. The Argument Stack grows upward fromthe | ower end of the 256-
byte area. The Operator Stack grows downward fromthe upper end of the
256-byte area. The 256-byte stack area is the nultipurpose buffer at the
start of the RAMtables. The buffer is pointed to by the ARGSTK (al so
ARGOPS) zero-page pointer at $80. The current index into the Argument
Stack is maintained by ARSLVL ($AA). Wen the Argument Stack is enpty,
ARSLVL is zero. The OPSTKX cell naintains the current index into the
Operator Stack. Wien the Operator Stack is initialized with the SCE
operator, OPSTKX is inihalized to $FF. As operators are added to the
Operator Stack, OPSTKX is decrenented. As argunents are added to the
Argument Stack, ARSLVL is incremented. Since the two stacks share a
single 256-byte nmenory area, there is a possibility that the stacks will
run into each other. The code at $ABCl is used to detect a stack
collision. It does this by conparing the values in ARSLVL and OPSTKX. If
ARSLVL is greater than or equal to OPSTKX, then a stack collision
occurs, sending the STACK OVERFLOW error to the user

Operator Stack Each entry on the Operator Stack is a single-byte
operator-type token. Qperators are pushed onto the stack at EXOPUSH
(SAB15) and are popped fromthe stack at EXOPOP ($ABOB).
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Argument Stack Each entry on the Argunent Stack is eight bytes [ong. The
format of these entries is described in Figures 7-2, 7-3, and 7-4, and
are the sane as the formats for entries in the Variable Value Table.

Unli ke the Variable Value Table, the Argunent Stack nust deal with both
vari abl es and constants. In Figure 7-2, we see that VNUMis used to

di stingui sh variable entries fromconstant entries. The SADR and AADR
fields in the entries for strings and arrays are of special interest.
(See Figures 7-3 and 7-4.) Wen a string or array variable is

di nrensi oned, space for the variable is created in the string/array
space. The displacenent to the start of the variable's area within the
string/array space is placed in the SADR/ AADR fields at that tinme. A

di spl acenment is used rather than an absol ute address because the

absol ute address can change if any program changes are nmade after the
DI M statement is executed. Execute Expression needs these values to be
absol ute address values within the 6502 address space. Wen a
string/array variable is retrieved fromthe Variable Val ue Table, the

di spl acenment is transformed to an absol ute address. Wen (and if) the
variable is put back into the Variable Value Table, the absol ute address
is converted back to a displacenent. The entries for string constants

al so deserve sone special attention. String constants are the quoted
strings within the user program These strings becone part of the

t okeni zed statenments in the Statement Tabl e. When Execute Expression
gets a string token, it will create a string constant Argument Stack
entry. This entry's SADR is an absol ute address pointer to the string in
the Statenent Table. SLEN and SDIM are set to the actual length of the
guoted string.

Argument Work Area An argunent which is currently being exam ned by
Execute Expression is kept in a special zero-page Argument Wrk Area
(AWA). The AWA starts at the |abel VTYPE at $D2.

Figure 7-2. Argument Stack Entry

0 1 2 8
Fommm e o - Femmmmmeaa- +
| VTYPE | VNUM | DATA |
Fommmm Fommm - Femmmmmeaa- +

Data Field. Format depends on VTYPE

I
I
I
|
| If VNUM >0, the entry is a variable. In this case,
|
|
|
I

---- If VNUM =0, the entry is a constant.
the VNUM value is the entry nunber in the Variable
Val ue Table. The token representing this variable is
VNUM+$80
+---- $00=Data is a six-byte floating point constant.

$80=Dat a represents an undi nensi oned string

$81=Data represents a di nmensioned string with
a relative address pointer

$83=Data represents a dinmensioned string with
an absol ute address pointer.

$40=Dat a represents an undi mensi oned arr ay.

$41=Data represents a di nmensioned array wth
a relative address pointer

$43=Data represents a di nensioned array with
an absol ute address pointer.

Figure 7-3. Argument Stack String Entry

| VIYPE | VNUM | SADR | SLEN | SDIM |
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+
| Dinensioned length of the string. Valid only if
+- VTYPE=$81 or $83.

--- Current length of the string. Valid only if VTYPE
=$81 or $83.

| String address. Valid only if VTYPE=$81 or $83.

| I'f VIYPE=$81, then SADR is the displ acenent

| of the start of the string fromthe start of the
| string/array space.
|
I
I

If VTYPE=$83, then SADR is the absol ute address
of the start of the string.

Figure 7-4. Argument Stack Array Entry
0 1 2 4 6 8
B S R Fom e - - Fomm e - - Fomm e o - +
| VIYPE| VNUM| SADR | DM | DM |

B S R Fom e - - Fomm e - - Fomm e o - +

I | |

B + | |

Fo e e e e e e e aaa o + |

| +
| | Wen an array has been dinmensioned as A(D, D2),
| +- this field contains the D2 value. If an array

| was di nensioned as A(DI), then this field is

| zero. The field is valid only if VTYPE=$41 or

| $43.

I

|

I

VWhen an array has been di nmensi oned, as A(D1, D2)
--- or as A(D1l), this field contains the Dl val ue.
The field is valid only if VIYPE=$41 or $43.

Array Address. Valid only if VTYPE=$41 or $43.

|
oo

| I'f VIYPE=$41, the AADR is the displacenent to

| the start of the array in the string/array space.

|

| If VTYPE=$43, the AADR is the absol ute address

| of the start of the string.
Array Address. Valid only if VTYPE=$41 or $43. +----| | |f VIYPE=$41
the AADR is the displacenment to | the start of the array in the
string/array space. | | |If VIYPE=$43, the AADR is the absol ute address

of the start of the string. 68

Operat or Executions An operaror is executed when it is popped fromthe
Operator Stack. Execute Expression calls EXOP at $AB20 to start this
execution. The EXOP routine uses the operator token value as an index
into the Operator Execution Table ($AA70). The operator execution
address fromthis table, mnus 1, is placed on the 6502 CPU stack. An
RTS is then executed to begin executing the operator's code. The nanes
of the operator execution routines all begin with the characters XP. Al
the Atari BASIC functions, such as PEEK, RND, and ABS, are executed as
operators. Mdst routines for the execution of the operators are very
sinmple and straightforward. For exanple, the * operator routine, XPMJL
($AC96), pops two argurments, multiplies themvia the floating point
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package, pushes the result onto the argument stack, and returns.

String, Array, DIM and Function Operations Any array reference in an
expression may be found in one of two forms: A(x) or A(x,y). The indices
x andy may be any valid expression. The intent of the indices is to
reference a specific array element. Before the specific el ement
reference can take place, the x and/or y index expressions nust be fully
evaluated. To do this, the characters '(' ',' and ')' are made
operators. The precedence of these operators forces things to happen in
the correct sequence. Figure 7-5 shows the relative precedence of these
operators for an array.

Figure 7-5. Array Operator Precedence

oper at or go- on- st ack cone- of f - st ack

synbol precedence precedence
$OF $02

, (conmm) $04 $03
$04 $0E

As a result of these precedence values, ( has a high enough precedence
to go onto the stack, no matter what other operator is on the top of the
st ack.

The conma's go-on-stack precedence will force all operators except ( to
be popped and executed. As a result, the x index sub-expression in the
expression A(X,y), will be fully evaluated and the final x index val ue

wi Il be pushed onto the Argument Stack.

The conmma will then be placed onto the Operator Stack. Its come-off-
stack precedence is such that no other operator, except ), will pop it
of f.

The ) operator precedence will force any y index expression to be fully

eval uated and the y index result value to be placed onto the Argunent
St ack.

It will then force the comma operator to be popped and executed. This
action results in a comma counter being incremented.

The ) will then force the ( to be popped and executed. The execution of
( results in the proper array elenent being referenced. The ( operator
will pop the indices fromthe Argunent Stack. The nunber of indices

(either zero or one) to be popped is governed by the conma counter
whi ch was increnmented by one for each comma that was popped and
execut ed.

Atari BASI C has nunerous ( tokens, and each causes a different ( routine
to be executed. These ( operators are array (CALPRN), string (CSLPRN)
array DIM (CDLPRN) string DIM (CDSLPR), function (CFLPRN), and the
expressi on groupi ng CLPRN operator. The Syntax Tabl e pseudo-instruction
CHNG i s used to change the CLPRN token to the other ( tokens in
accordance with the context of the granmar.

The expression operations for each of these various (operators in
relation to commas and ( is exactly the sane. When ( is executed, the
conma count will show how many argunents the operator's code nust pop
fromthe argument stack. Each of these argunents will have been

eval uated down to a single value in the formof a constant.
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Execution Boundary Conditions

BASI C Language statenments can be divided into groups with rel ated
functions. The execution boundary statenments, RUN, STOP, CONT and END,
cause a BASIC programto start or stop executing. The routines which
sinmul ate these statenments are XRUN, XSTOP, XCONT, and XEND.

Program Term nati on Routines Any BASIC statenent can be used as either a
direct statenent or a program statenent, but sonme only nmake sense in one
node. The STOP statenent has no real meani ng when entered as a direct
statement. When the statement sinulation routine for STOP is asked to
execute in direct node, it does as little processing as possible and
exits. Useful processing occurs only when STOP is a program statenent.

STOP ($B7A7). The XSTOP and XEND routines are simlar and perform some
of the sane tasks. The tasks common to both are handl ed by the STOP
routine. If this statement is not a direct statenent, the STOP routine
saves the line nunber of the current line in STOPLN. This |ine nunber is
used later for printing the STOPed nessage. It is also used by the CONT
simulation routine (XCONT) to determ ne where to restart program
execution. (Since XEND al so uses this routine, it is possible to

CONTi nue after an END statenent in the mddle of a program) The STOP
routine also resets the LI ST and ENTER devices to the screen and the
keyboard.

XSTOP ($B793). XSTOP does the common STOP processing and then calls

: LPRTOKEN( $B535) to print the STOPed nessage. It then calls one of the
error printing routines, :ERRM2 ($B974), to output the AT LINE nnn
portion. The : ERRM2 routine will not print anything if this was a direct
statenent. When :ERRM2 is finished, it junps back to the start of the
editor.

XEND ($B7SD). XEND calls the STOP routine to save the current |ine
nunber. It then transfers to the start of the editor via the SNX1 entry
point. This turns off the sound, closes any open I OCBs, and prints the
READY nessage. XEND al so | eaves val ues on the 6502 CPU stack. These

val ues are thrown away when the editor resets the stack

END OF PROGRAN. A user nay have neglected to include an END statenent in
his program In this case, when Execution Control conmes to the end of
the Statenent Table it calls XEND, and the programis term nated exactly
as if the last statenent in the programwere an END

Program I nitiation Routines The statenments that cause a user's prograrm
to begin execution are RUN and CONT. These statenents are simulated by
XRUN and XCONT

XCONT ($B7BE). The CONT statement has no neani ng when encountered as a
program statenent, so its execution has no effect. Wien the user enters
CONT as a direct statenent, XCONT uses the |ine nunber that was saved in
STOPLN to set Execution Control's line paraneters (STMCUR, NXTSTD, and
LLNGTH). This results in the current Iine being the Iine follow ng the
one whose line nunber is in STOPLN. This nmeans that any statenent
following STOP or END on a line will not be executed; therefore, STOP
and END shoul d al ways be the last statenent in the line. If we are at
the end of the Statement Table, XCONT terminates as if an END statenment
had been encountered in the program |f there are nore lines to process,
XCONT returns to Execution Control, which resunes processing at the |line
whose address was just put into STMCUR

XRUN ($B74D). The RUN statenent comes in two formats, RUN and RUN
<filespec> In the case of RUN <fil espec> XRUN executes XLOAD to | oad a
saved program which replaces the current one in nenory. The process
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then proceeds |like RUN. XRUN sets up Execution Control's line pointers
to indicate the first Iine in the Statement Table. It clears some flags
used to control various other BASIC statenents; for exanple, it resets
STOPLN to O It closes all 10CBs and executes XCLR to reset all the
variables to zero and get rid of any entries in the String/Array Table
or the Runtine Stack. If there is no program so the only thing in the
Statenment Table is the direct statenent, then XRUN does some cl ean-up
prints READY, and returns to the start of the editor, which resets the
6502 CPU stack. If there is a program XRUN returns to Execution
Control, which starts processing the first statement in the table as the
current statenment. Wen RUN <filespec> is used as a program statenent,

it performs the useful function of chaining to a new program but if RUN
alone is used as a program statenent, an infinite loop will probably
result.

Error Handling Routine There are other conditions besides the execution
boundary statements that termi nate a program s execution. The nopst

fam liar are errors. There are two kinds of errors that can occur during
execution: |nput/CQutput errors and BASIC | anguage errors. Any BASIC
routine that does I/O calls the I OTEST routine ($BCB3) to check the
outcone of the operation. If an error that needs to be reported to the
user is indicated, |OTEST gets the error nunmber that was returned by the
Operating System and joins the Error Handling Routine, ERROR ($B940),

whi ch finishes processing the error. When a BASI C | anguage error occurs,
the error nunmber is generated by the Error Handling Routine. This
routine calculates the error by having an entry point for every BASIC

| anguage error. At each entry point, there is a 6502 instruction that
increnents the error nunber. By the time the main routine, ERROR is
reached, the error nunber has been generated. The Error Handling Routine
calls STOP ($B7A7) to save the line nunber of the line causing the error
in STOPLN. It tests TRAPLN to see if errors are being TRAPed. The TRAP
option is on if TRAPLN contains a valid line nunber. In this case, the
Error Handl er does sone cl ean-up and joins XGOTO which transfers
processing to the desired line. If the high-order byte of the Iine
nunber is $80 (not a valid line nunmber), then we are not TRAPing errors.
In this case, the Error Handler prints the four-part error nessage,

whi ch consists of ERROR, the error nunber, AT LINE, and finally the Iine
nunber. If the line in error was a direct statenent, the AT LINE part is
not printed. The error handler resets ERRNUMto zero and is finished

The Error Handling Routine does not do an orderly return, but junps back
to the start of the editor at the SYNTAX entry point where the 6502
stack is reset, clearing it of the now unwanted return addresses.
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9 Program Flow Control Statements

Execution Control always processes the statenent in the Statenent Table
that follows the one it thinks it has just finished. This neans that
statenents in a BASIC program are usually processed in sequential order
Several statenments, however, can change that order: GOTO |F, TRAP, FOR
NEXT, GOSUB, RETURN, POP, and ON. They trick Execution Control by
changi ng the paraneters that it naintains.

Sinple Flow Control Statements XGOTO ($BGA3) The sinplest formof flow
control transfer is the GOTO statenent, sinulated by the XGOTO routi ne.
Fol I owi ng the GOTO token in the tokenized Iine is an expression
representing the line nunber of the statenment that the user wishes to
execute next. The first thing the XGOTO routine does is ask Execute
Expression to evaluate the expression and convert it to a positive

i nteger. XGOTO then calls the GETSTMI routine to find this |ine nunber
in the Statenent Table and change Execution Control's |line paraneters to
indicate this line. If the line nunber does not exist, XGOTO restores
the line paranmeters to indicate the line containing the original GOTQ
and transfers to the Error Handling Routine via the ERNOLN entry point.
The Error Handling Routine processes the error and junps to the start of
the editor. If the |ine number was found, XGOTO junps to the beginning
of Execution Control (EXECNL) rather than returning to the point in the
routine fromwhich it was called. This | eaves garbage on the 6502 CPU
stack, so XGOTO first pulls the return address off the stack

Xl F($8778) The |IF statenent changes the statenent flow based on a
condition. The sinulatiQ routine, xw, begins by calling a subroutine of
Execut e Expressionto evaluate the condition. Since this is a |logica
(rather than an arithnetic) operation, we are only interested in whether
the value is zero or non-zero. |If the expression was fal se (non-zero),
XI'F nodifies Execution Control's line paranmeters to indicate the end of
this line and then returns. Execution Control noves to the next |ine,
ski ppi ng any renmmi ning statenents on the original IF statenent line. If
the expression is true (zero), things get a little nore conplicated.
Back during syntaxing, when a statenent of the formIF <expressi on> THEN
<statenent> was encountered, the pre-conpiler generated an end-of -
statement token after THEN. XIF now tests for this token. If we are at
the end of the statement, XIF returns to Execution Control, which
processes what it thinks is the next statement in the current |ine, but
which is actually the THEN <statenent> part of the IF statenent. If X F
does not find the end-of-statement token, then the statement nust have
had the form I F <expressi on> THEN <line nunber>. XIF junps to XGOTO,

whi ch finishes processing by changi ng Execution Control's |ine
paraneters to indicate the new |ine.

XTRAP ($B7El) The TRAP statenment does not actually change the progran
flow when it is executed. Instead, the XTRAP sinulation routine calls a
subroutine of Execute Expression to evaluate the |ine nunber and then
saves the result in TRAPLN ($BC). The program flow is changed only if
there is an error. The Error Handling Routine checks TRAPLN. If it
contains a valid line nunber, the error routine does sone initial set-up
and joins the XGOTO routine to transfer to the new |ine.

Runtine Stack Routines The rest of the Program Fl ow Control Statenents
use the Runtine Stack. They put itens on the stack, inspect them and/or
renove them fromthe stack. Every itemon the Runtinme Stack contains a
four-byte header. This header consists of a one-byte type indication, a
two- byte |ine nunber, and a one-byte displacenent to the Statenent Nane
Token. (See pages 18-19.) The type byte is the last byte placed on the
stack for each entry. This neans that the pointer to the top of the
Runtine Stack (RUNSTK) points to the type byte of the nbst recent entry
on the stack. A zero type byte indicates a GOSUB-type entry. Any non-
zero type byte represents a FOR-type entry A GOSUB entry consists solely
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of the four-byte header. A FOR entry contains twelve additional bytes: a
six-byte limt value and a six-byte step value. Several routines are
used by nmore than one of the statement sinulation routines.

PSHRSTK ($B683) This routine expands the Runtinme Stack by calling EXPLOA
and then storing the type byte, line nunber, and di spl acenent of the
St at ement Nanme Token on the stack.

POPRSTK ($B841) This routine makes sure there really is an entry on the
Runtine Stack. POPRSTK saves the displacenent to the statement nane
token in SVI)ISP, saves the line nunber in TSLNUM and puts the
type/variabl e nunmber in the 6502 accunmulator. It then renpves the entry
by calling the CONTLOW routi ne.

: CETTOK ($B737) This routine first sets up Execution Control's line
paranmeters to point to the line whose nunber is in the entry just pulled
fromthe Runtine Stack. If the line was found, : CGETTOK updates the line
paranmeters to indicate that the statenent causing this entry is nowthe
current statenment. Finally, it |oads the 6502 accurmulator with the
statenment nane token fromthe statenent that created this entry and
returns to its caller. If the line nunber does not exist, : GETTK
restores the current statenent address and exits via the ERGFDEL entry
point in the Error Handling Routine. Now let's [ook at the simulation
routines for the statenents that utilize the Runtinme Stack.

XFOR ($B64B) XFOR is the nane of the simulation routine which executes a
FOR statenment. In the statement FOR 1=1 TO 10 STEP 2: | is the | oop
control variable 1 is its initial value 10 is the limt value 2 is the
step value XFOR calls Execute Expression, which evaluates the initial
value and puts it in the loop control variable's entry in the Variable
Val ue Table. Then it calls a routine to renove any currently unwanted
stack entries for exanple, a previous FOR statenent that used the sane

| oop control variable as this one. XFOR calls a subroutine of Execute
Expression to evaluate the linit and step values. If no step val ue was
given, a value of 1 is assigned. It expands the Runtine Stack using
EXPLOW and puts the values on the stack. XFOR uses PSHRSTK to put the
header entry on the stack. It uses the variable nunber ofthe | oop
control variable (machi ne-1anguage ORed with $80) as the type byte. XFOR
now returns to Execution Control, which processes the statenent

followi ng the FOR statenment. The FOR statenment does not change progran
flow It just sets up an entry on the Runtine Stack so that the NEXT
statenment can change the flow.

XNEXT ($B6CF) The XNEXT routine decides whether to alter the programr
flow, depending on the top Runtine Stack entry. XNEXT calls the POPRSTK
routine repeatedly to renove four-byte header entries fromthe top of
the stack until an entry is found whose variabl e nunber (type) matches
the NEXT statenent's variable token. If the top-of-stack or GOSUB-type
entry is encountered, XNEXT transfers control to an Error Handling
Routine via the ERNOFOR entry point. To conpute the new val ue of the

| oop variable, XNEXT calls a subroutine of Execute Expression to
retrieve the I oop control variable's current value fromthe Variabl e

Val ue Table, then gets the step value fromthe Runtime Stack, and
finally adds the step value to the variabl e value. XNEXT again calls an
Execut e Expression subroutine to update the variable's value in the
Variabl e Val ue Table. XNEXT gets the linit value fromthe stack to
deternmine if the variable's value is at or past the limt. If so, XNEXT
returns to Execution Control w thout changing the programflow, and the
next sequential statenent is processed. |f the variable' s value has not
reached the limt, XNEXT returns the entry to the Runtinme Stack and
changes the program fl ow. POPRSTK al ready saved the |ine nunber of the
FOR statement in TSLNUM and the displacenment to the statenent nanme token
in SVDI SP. XNEXT calls the GETTOK routine to indicate the FOR statenent
as the current statenent. If the token at the saved di spl acenent is not
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a FOR statement name token, then the Error Handling Routine is given
control at the ERGFDEL entry point. Otherwi se, XNEXT returns to
Execution Control, which starts processing with the statenment foll ow ng
the FOR statenent.

XGOSUB ($BGAO) The GOSUB st atenent causes an entry to be made on the
Runtine Stack and al so changes program fl ow. The XGOSUB routine puts the
GOSUB type indicator (zero) into the 6502 accunul ator and calls PSHRSTK
to put a four-byte header entry on the Runtinme Stack for later use by
the sinulation routine for RETURN. XGOSUB t hen processes exactly like
XGOTO.

XRTN ($B719) The RETURN statenent causes an entry to be renoved fromthe
Runtine Stack. The XRTN routine uses the information in this entry to
det ermi ne what statenent should be processed next. The XRTN first calls
POPRSTK to renpbve a GOSUB-type entry fromthe Runtime Stack. |If there
are no GOSUB entries on the stack, then the Error Handling Routine is
called at ERBRTN. Ot herwi se, XRTN calls GETTOK to indicate that the
statement which created the Runtine Stack entry is now the current
statement. |f the statement nane token at the saved displacenent is not
the correct type, then XRTN exits via the Error Handling Routine's
ERGFDEL entry point. Otherwi se, control is returned to the caller. \Wen
Execution Control was the caller, then GOSUB nmust have created the stack
entry, and processing will start at the statement follow ng the GOSUB.
Several other statenments put a GOSUB-type entry on the stack when they
need to mark their place in the program They do not affect program flow
and will be discussed in |ater chapters.

XPOP ($B841) The XPOP routine uses POPRSTK to renmpbve an entry fromthe
Runtine Stack. A user might want to do this il he decided not to RETURN
froma GOSUB.

XON ($B7ED) The ON statenent comes in two versions: ONGOTO and O\
GOSUB. Only ON-GOSUB uses the Runtime Stack. The XON routine eval uates
the variabl e and converts it to an integer (MOD 256). If the value is
zero, XON returns to Execution Control w thout changing the progran
flow. If the value is non-zero and this is an ON-GOSUB st atenment, XON
puts a GOSUB-type entry on the Runtinme Stack for RETURN to use later.
Fromthis point, ONGOSUB and ON-GOTO performin exactly the sane
manner. XON uses the integer value calculated earlier to index into the
t okeni zed statenent line to the correct GOTO or GOSUB |ine nunber. I|f
there is no |line nunber corresponding to the index, XON returns to
Execution Control w thout changing programflow. G herw se, XON joins
XGOro to finish processing.
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10 Tokenized Program Save and Load

The t okeni zed program can be saved to and rel oaded from a peri phera
devi ce, such as a disk or a cassette. The primary statenent for saving
t he tokeni zed programis SAVE. The saved programis rel oaded i nto RAV
with the LOAD statenent. The CSAVE and the CLOAD statenents are special
versions of SAVE and LOAD for use with a cassette.

Saved File Format The tokenized programis conpletely contained within
the Variabl e Name Table, the Variable Value Table, and the Statenent
Tabl e. However, since these tables vary in size, we nmust al so save sone
i nformati on about the size of the tables. The SAVE file format is shown
in Figure 10-1. The first part consists of seven fields, each of then
two bytes long, which tell where each table starts or ends. Part two
contains the saved programis Variable Nane Table (VNT), Variable Val ue
Table (WT), and Statenent Table (ST). The di splacenent value in all the
part-one fields is actually the displacenent p?us 256. W nust subtract
256 from each displ acenent value to obtain the true displacenent. The
VNT starts at relative byte zero in the file's second part. The second
field in part one holds that value plus 256. The DWT field in part one
contains the displacenent, minus 256, of the WT fromthe start of part
two. The DST val ue, minus 256, gives the displacenent of the Statenent
Table fromthe start of part two. The DEND val ue, m nus 256, gives the
end-of-file displacenment fromthe start of part two.

Figure 10-1. SAVE Fil e Fornat

PART 1 0 +---------- +
| 0 |
2 F--ememaoos +
| 256 | <--> The displacenent of the VNT fron
4 +---eeem - + t he begi nning of part two, plus 256
| Not Used
6 +----cnoon +
| DWT | <--> The di splacenent of VNT fromthe
8 +---------- + begi nning of part two, plus 256
| DST | <--> The displacenent of ST fromthe
10+---------- + begi nning of part two, plus 256
| Not Used
12+---cocoan +
| DEND | <--> The displacenent of the end of the
======14+==========+ file fromthe beginning of part two.
PART 2 O] VNT | <--> Variable Nane Tabl e
DWT- 256+---------- +
WT | <--> Variable Value Tabl e
DSNT- 256+---------- +
| ST | <--> Statenent Table
DEND- 256+- - - - ------ +

XSAVE( $BB5D) The code that inplements the SAVE statement starts at the
XSAVE ($BB5D) |abel. Its first task is to open the specified output

file, which it does by calling ELADVC. The next operation is to nove the
first seven RAM tabl e pointers from$80 to a tenporary area at $500.
Wil e these pointers are being noved, the value contained in the first
pointer is subtracted fromthe value in each of the seven pointers,
including the first. Since the first pointer held the absol ute address
of the first RAMtable, this results in a list of displacenents fromthe
first RAMtable to each of the other tables. These seven two-byte

di spl acenents are then witten fromthe tenporary area to the file via
103. These are the first fourteen bytes of the SAVE file. (See Figure
10-1.) The first RAMtable is the 256-byte buffer, which will not be
SAVEd. This is why the seven two-byte fields at the beginning of the
SAVEd file hold values exactly 256 nore than the true di splacenent of
the tables they point to. (The LOAD procedure will resolve the 256-byte
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di screpancy.) The next operation is to wite the three needed RAV
tables. The total length of these tables is determ ned fromthe value in
the seventh entry in the displacenent list, mnus 256. To wite the
three entries, we point to the start of the Variable Nane Table and call
104, with the length of the three tables. This saves the second part of
the file format. The file is then closed and XSAVE returns to Execution
Control .

XLOAD ($BAFB) The LOAD statenent is inplenmented at the XLOAD | abel

| ocated at $BAFB. XLOAD first opens the specified load file for input by
calling ELADVC. BASIC reads the first fourteen bytes fromthe file into
a tenporary area starting at $500. These fourteen bytes are the seven
RAM t abl e di spl acenents created by SAVE. The first two bytes will always
be zero, according to the SAVE file format. (See Figure 10-1.) BASIC
tests these two bytes for zero values. |If these bytes are not zero,
BASI C assunes the file is not a valid SAVE file and exits via the
ERRNSF, which generates error code 21 (Load File Error). If this is a
valid SAVE file, the value in the pointer at $80 (Low Menory Address) is
added to each of the seven displacenents in the tenporary area. These

values will be the nmenory addresses of the three RAMtables, if and when
they are read into nenory. The seventh pointer in the tenporary area
contains the address where the end of the Statenent Table will be. If

this address exceeds the current system high nenory val ue, the routine
exits via ERRPTL, which generates error code 19 (Load Program Too Big).
If the programwill fit, the seven addresses are noved fromthe
tenporary area to the RAMtable pointers at $80. The second part of the
file is then | oaded into the area now pointed to by the Variable Name
Tabl e pointer $82. The file is closed, CLRis executed, and a test for
RUN is made. If RUN called XLOAD, then a value of $FF was pushed onto
the CPU stack. If RUN did not call XLOAD, then $00 was pushed onto the
CPU stack. If RUN was the caller, then an RTS is done. |If XLOAD was
entered as a result of a LOAD or CLOAD statenent, then XLOAD exits
directly to the Program Editor, not to Execution Control.

CSAVE and CLOAD The CSAVE and CLOAD statenents are special forns of SAVE
and LOAD. These two statenents assune that the SAVE/ LOAD device is the
cassette device; CSAVE is not quite the same as SAVE "C. ". Using SAVE
with the "C:" device name will cause the programto be saved using |ong
cassette inter-record gaps. This is a time waster, and CSAVE uses short
inter-record gaps. CSAVE starts at XCSAVE ($BBAC). CLOAD starts at
XCLOAD ($BBA4) .
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11

The LIST and ENTER Statements

LI ST can be used to store a programon an external device and ENTER can
retrieve it. The difference between LOAD- SAVE and LI ST-ENTER i s that
LOAD- SAVE deals with the tokenized program while LIST-ENTER deals with
the programin its source (ATASCI1) form

The ENTER Statenent BASIC is in ENTER node whenever a programis not
RUNni ng. By default the Program Editor | ooks for lines to be ENTERed
fromthe keyboard, but the editor handles all ENTERed |lines alike,
whet her they cone fromthe keyboard or not.

The Enter Device To acconplish transparency of all input data (not just
ENTERed |ines), BASIC mmintains an enter device indicator, ENTDID ($B4).
When a BASIC routine (for exanple, the INPUT sinulation routine) needs
data, an I/ O operation is done to the I OCB specified in ENTDID. Wen the
value in ENTDTD is zero, indicating 10OCB 0, input will conme fromthe
keyboard. When data is to cone from sone other device, ENTDID contains a
nunber indicating the corresponding I OCB. During col dstart
initialization, the enter device is set to IOCB 0. It is also reset to O
at various other tines.

XENTER ($BACB) The XENTER routine is called by Execution Control to
simul ate the ENTER statenent. XENTER opens I OCB 7 for input using the
specified <filespec> stores a 7 in the enter device ENTDID, and then
jumps to the start of the editor

Entering froma Device Wen the Program Editor asks GL.GO, the get |ine
routine ($BA92), for the next line, L& tells CCOto get a line fronm
the device spedified in ENTDID - in this case, frO9mIQOCB 7. The editor
continues to process lines fromIQOCB 7 until an end-of- file error
occurs. The | OTEST routine detects the EOF condition, sees thatwe are
using 10CB 7 for ENTER, closes device 7, and junps to SNX2 to reset the
enter device (ENTDID) to O and print the READY nessage before restarting
at the beginning of the editor.

The LI ST Statenent The routine which sinulates the LIST statenent,

XLI ST, is actually another exanple of a |anguage translator, conplete

wi th symbol s and synbol -conbining rules. XLIST translates the tokens
generated by Atari BASIC back into the seni- English BASIC statenents in
ATASCI 1. This translation is a nuch sinpler task than the one done by
the pre-conpiler, since XLIST can assune that the statenent to be
translated is syntactically correct. Al that is required is to
translate the tokens and insert blanks in the appropriate places.

The List Device BASIC maintains a |list device indicator, LISTDID ($B5),
simlar to the enter device indicator discussed earlier. Wien a BASIC
routine wants to output sone data (an error nessage, for exanple), the
I/ O operation is done to the device (1OCB) specified in LISTDID. During
coldstart initialization and at various other tines, LISTDID is set to
zero, representing 10OCB 0, the editor, which will place the output on
the screen. Routines such as XPRINT or XLIST can change the LIST device
to indicate sone other 10CB. Thus the majority of the BASIC routines
need not be concerned about the output's destination. Renmenber that | QOCB
0 is always open to the editor, which gets input fromthe keyboard and
outputs to the screen. 1OCB 6 is the S: device, the direct access to
graphi cs screen, which is used in GRAPHI CS statenents. Atari BASIC uses
IOCB 7 for I/O commands that allow different devices, |ike SAVE, LOAD,
ENTER, and LI ST

XLI ST ($B483) The XLI ST routine considers the output's destination in
its initialization process and then forgets about it. It |ooks at the
first expression in the tokenized line. If it is the <filespec> string,
XLIST calls a routine to open the specified device using 10CB 7 and to
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store a 7 in LISTDTD. All of XLIST's other processing is exactly the
same, regardless of the LISTed data's final destination. XLIST marks its
place in the Statenent Table by calling a subroutine of XGOSUB to put a
GOSUB type entry on the Runtime Stack. Then XLI ST steps through the
Statenment Table in the sane way that Execution Control does, using
Execution Control's line paraneters and subroutines. When XLIST is

fini shed, Execution Control takes the entry off the Runtime Stack and
continues. The XLIST routine, assuning it is to LIST all prograrm
statements, sets default starting and ending line nunbers of 0 (in
TSLNUM) and $7FFF (in LELNUM) . XLIST then determ nes whether l|ine
nunbers were specified in the tokenized line that contained the LIST
statement. XLIST conpares the current index into the line (STINDEX) to

t he di spl acenent to the next statement (NXTSTD). |If STINDEX i s not
pointing to the next statenent, at |east one |line nunber is specified.
In this case, XLIST calls a subroutine of Execute Expression to eval uate
the Iine nunber and convert it to a positive integer, which XLIST stores
in TSLNUM as the starting |ine number. If a second line nunber is
specified, XLIST calls Execute Expression again and stores the value in
LELNUM as the final line to LIST. If there is no second |ine nunber

then XLI ST nakes the ending |ine nunber equal to the starting |line
nunber, and only one line will be LISTed. If no |line nunbers were
present, then TSLNUM and LELNUM still contain their default values, and
all the programlines will be LISTed. XLIST gets the first line to be

LI STed by calling the Execution Control subroutine GETSTMI to initialize
the Iine parameters to correspond to the line nunber in TSLNUM If we
are not at the end of the Statenent Table, and if the current line's
nunber is less than or equal to the final |ine nunber to be LI STed,
XLIST calls a subroutine :LLINE to list the line. After LISTing the
line, XLIST calls Execution Control's subroutines to point to the next
line. LISTing continues in this manner until the end of the Statenent
Table is reached or until the final line specified has been printed.
When XLIST is finished, it exits via XRTN at $B719, which nakes the LIST
statenment the current statenent again and then returns to Execution
Cont r ol

LI ST Subrouti nes

:LLINE ($BS5C) The LLINF routine LISTs the current line (the |ine whose
address is in STMCUR). :LLINE gets the |ine nunber fromthe begi nning of
the tokenized line. The floating point package is called to convert the
integer to floating point and then to printable ATASCII. The result is
stored in the buffer indicated by INBUFF. :LLINE calls a subroutine to
print the |ine number and then a bl ank. For every statement in the |ine,
:LLINE sets STINDEX to point to the statement nane token and calls the
:LSTMT routine ($B590) to LIST the statement. Wen all statenents have
been LI STed, :LLINE returns to its caller, XLIST.

: LSTMI ($B590) The :LSTMI routine LISTs the statement which starts at
the current displacenent (in INDEX) into the current line. This routine
does the actual |anguage translation fromtokens to BASIC statenents.
:LSTMI uses two subroutines, :LCGCT and :LGNT, to get the current and
next token, respectively. If the end of the statenent has been reached,
these routines both pull the return address of their caller off the 6502
CPU stack and return to :LSTMI's caller, :LLINE. Oherw se, they return
the requested token fromthe tokenized statement |line. The first token
in a statenment is the statenent nanme token. :LSTMI calls a routine which
prints the corresponding statement nane by calling :LSCAN to find the
entry and :LPRTOKEN to print it. In the discussion of the Program Editor
we saw that an erroneous statement was given a statenent nanme of ERROR
and saved in the Statenent Table. If the current statenent is this ERROR
statement or is REM or DATA, :LSTMI picks up each remaining character in
the statenent and calls PRCHAR ($BA9F) to print the character. Each type
of token is handled differently. :LSTMI determines the type (variable,
nuneric constant, string constant, or operator) and goes to the proper
code to translate it.
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Vari abl e Token. A variable token has a value greater than or equal to
$80. \Wen :LSTMI encounters a variable token, it turns off the nost
significant bit to get an index into the Variable Name Table. :LSTMI
asks the :LSCAN routine to get the address of this entry. :LSTMI then
calls :LPRTOKEN ($B535) to print the variable nane. If the |ast
character of the name is (, the next token is an array |eft parenthesis
operator, and :LSTMI skips it.

Nuneric Constant Token. A nuneric constant is indicated by a token of
$0E. The next six bytes are a floating point nunber. :LSTMI noves the
nuneric constant fromthe tokenized line to FRO ($D4) and asks the
floating point package to convert it to ATASCII. The result is in a
buf fer pointed to by INBUFF. :LSTMI noves the address of the ATASC
nunber to SRCADR and tells :LPRTOKEN to print it

String Constant Token. A string constant is indicated by a token of $0F
The next byte is the length of the string followed by the actual string
data. Since the double quotes are not stored with a string constant,
:LSTMI calls PRCHAR ($BA9F) to print the |eading double quote. The
string length tells :LSTMI how many follow ng characters to print

wi thout translation. :LSTMI repeatedly gets a character and calls PRCHAR
to print it until the whole string constant has been processed. It then
asks PRCHAR to print the ending doubl e quote.

Operator Token. An operator token is any token greater than or equal to
$10 and | ess than $80. By subtracting $10 fromthe token value, :LSTMI
creates an index into the Qperator Name Table. :LSTMI calls :LSCAN to
find the address of this entry. If the operator is a function (token
val ue greater than or equal to $3D), :LPROTCKEN is called to print it.
If this operator is not a function but its nane is al phabetic (such as
AND), the nanme is printed with a preceding and foll owi ng bl ank

O herwise, :LPRTOKEN is called to print just the operator nane.

: LSCAN ($B50C) This routine scans a table until it finds the translation
of a token into an ATASCI|I nanme. A token's value is based on its table
entry number; therefore, the entry nunber can be derived by nodifying
the token. For exanple, a variable token is created by machi ne-| anguage
ORing the table entry number of the variable nane with $80. The entry
nunber can be produced by ANDi ng out the high-order bit of the token. It
is this entry nunmber, stored in SCANT, that the :LSCAN routine uses. The
t abl es scanned by :LSCAN have a definite structure. Each entry consists
of a fixed length portion followed by a variable | ength ATASCI| portion
The | ast character in the ATASCI| portion has the high-order bit on.
Using these facts, :LSCAN in 5 he entry corresponding to the entry
nunber in SCANT and puts the address of the ATASCI| portion in SCRADR

: LPRTOKEN ($B535) This routine's task is to print the string of ATASC
characters whose address is in SCRADR :LPRTOKEN nmakes sure the nost
significant bit is off (except for a carriage return) and prints the
characters one at a tinme until it has printed the last character in the
string (the one with its nost significant bit on).
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12

Atari Hardware Control Statements

The Atari Hardware Control Statenents allow easy access to sone of the
conputer's graphics and audi o capabilities. The statenents in this group
are COLOR, CRAPHICS, PLOT, POSITION, DRAWIO, SETCOLOR, LOCATE, and
SOUND.

XGR ($BA50) The GRAPHI CS st atenent determ nes the current graphics node.
The XGR sinulation routine executes the GRAPHI CS statenent. The XGR
routine first closes IOCB 6. It then calls an Execute Expression
subroutine to evaluate the graphics node value and convert it to an
integer. XGR sets up to open the screen by putting the address of a
string "S." into INBUFF. It creates an AUX1 and AUX2 byte fromthe
graphics node integer. XGR calls a BASIC I/O routine which sets up |1 OCB
6 and calls C1Oto open the screen for the specified graphics node. Like
all BASICroutines that do I/OQ XGR junps to the | OTEST routine, which
determ nes what to do next based on the outconme of the I/0O

XCOLOR ($BA29) The COLOR statenent is simulated by the XCOLOR routi ne.
XCOLOR cal s a subroutine of Execute Expression to evaluate the col or
val ue and convert it to an integer. XCOLOR saves this value (MO 256) in
BASI C nmenory | ocation COLOR ($C8). This value is later retrieved by
XPLOT and XDRAWIO.

XSETCOLOR ($89B7) The routine that sinulates the SETCOLOR st atenent,
XSETCOLOR, calls a subroutine of Execute Expression to evaluate the
color register specified in the tokenized |line. The Execute Expression
routi ne produces a one-byte integer. If the value is not less than 5
(the nunber of color registers), XSETCOLOR exits via the Error Handling
Routine at entry point ERVAL. Otherwise, it calls Execute Expression to
get two nore integers fromthe tokenized Iine. To cal culate the col or
val ue, XSETCOLOR nmultiplies the tirst integer (MOD 256) byl 6 and adds
the second (MOD 256). Since the operating systemis five color registers
are in consecutive locations starting at $2C4 XSETCOLOR uses the

regi ster value specified as an index to the proper register |ocation and
stores the col or value there.

XPOS ($BA16) The POSI TI ON st atenent, which specifies the X and Y

coordi nates of the graphics cursor, is sinulated by the XPOS routine.
XPCS uses a subroutine of Execute Expression to evaluate the X

coordi nate of the graphics wi ndow cursor and convert it to an integer
value. The two-byte result is stored in the operating systenis X screen
coordinate | ocation (SCRX at $55). This is the colum numnber or

hori zontal position of the cursor. XPOS then calls another Execute
Expression subroutine to evaluate the Y coordinate and convert it to a
one-byte integer. The result is stored in the Y screen coordinate

| ocation (SCRY at $54). This is the row nunmber, or vertical position.

XLOCATE ($BC95) XLOCATE, which simulates the LOCATE statenent, first
calls XPCS to set up the X and Y screen coordinates. Next it initializes
IOCB 6 and joins a subroutine of XGET to do the actual I/Orequired to
get the screen data into the variable specified.

XPLOT ($5A76) XPLOT, which simulates the PLOT statenent, first calls
XPCOS to set the X and Y coordi nates of the graphics cursor. XPLOT gets
the value that was saved in COLOR ($C8) and joins a PUT subroutine (PRCX
at $BAAl) to do the I/Oto IOCB 6 (the screen).

XDRAWIO ($BA31) The XDRAWIO routine draws a line fromthe current XY
screen coordinates to the X Y coordinates specified in the statenent.
The routine calls XPOS to set the new X, Y coordinates. It places the
value fromBASIC s nenory |ocation COLOR into OS | ocati on SVCOLOR
($2FB). XDRAWIO does sone initialization of 10CB 6 specifying the draw
command ($11). It then calls a BASIC I/O routine which finishes the
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initialization of 1OCB 6 and calls CIOto draw the line. Finally,
XDRAWIO junps to the I OTEST routine, which will determ ne what to do
next based on the outcone of the I/0QO

XSOUND ($K9DD) The Atari conputer hardware uses a set of menory

| ocations to control sound capabilities. The SOUND statement gives the
user access to some of these capabilities. The XSOUND routine, which
simul ates the SOUND statenent, places fixed values in sone of the sound
| ocations and user specified values in others. The XSOUND routine uses
Execute Expression to get four integer values fromthe tokenized
statenment line. If the first integer (voice) is greater than or equal to
4, the Error Handling Routine is invoked at ERVAL. The OS audio contro
bits are all turned off by storing a 0 into $D208. Any bits left on from
previous serial port usage are cleared by storing 3 in $D20F. The Atar
has four sound registers (one for each voice) starting at $D200. The
first byte of each two-byte register determnes the pitch (frequency).
In the second byte, the four npbst significant bits are the distortion,
and the four least significant bits are the volune. The voice val ue
mentioned earlier is nultiplied by 2 and used as an index into the sound
regi sters. The second value fromthe tokenized line is stored as the
pitch in the first byte of one of the registers ($D200, $D202, $D204, or
$D206), depending on the voice index. The third value from the tokenized
line is multiplied by 16 and the fourth value is added to it to create
the value to be stored as distortion/volume. The voice, tines 2, is
again used as an index to store this value in the second byte of a sound
regi ster ($D201, $D203, $D205, or $D207). The XSOUND routine then
returns to Execution Control
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13 External Data I/O Statements

The external data |I/O statenents allow data which is not part of the
BASI C source programto flow into and out of BASIC External data can
cone fromthe keyboard, a disk, or a cassette. BASIC can al so create
external information by sending data to external devices such as the
screen, a printer, or a disk. The INPUT and CET statenents are the
primary statenents used for obtaining information from external devices.
The PRINT and PUT statenents are the prinmary statenents for sending data
to external devices. XIO LPRINT, OPEN, CLOSE, NOTE, PO NT and STATUS
are specialized I1/O statenents. LPRINT is used to print a single line to
the "P:" device. The other statenents assist in the |/O process.

XI NPUT ($B316) The execution of the | NPUT statenent starts at ) (1 NPUT
($B316).

Getting the Input Line. The first action of XINPUT is to read a line of
data fromthe indicated device. Aline is any conbination of up to 255
characters termnated by the ECL character ($9B). This line will be read
into the buffer located at $580. |If the I NPUT statenent contai ned was
foll owed by #<expression>, the data will be read fromthe | OCB whose
nunber was specified by <expression>. [|f there was no #<expression>,
IOCB O will be used. 10OCB 0 is the screen editor and keyboard device
(E:). If 10OCB 0 is indicated, the pronpt character (?) wll be displayed
before the input line request is nade; otherwi se, no pronpt is

di spl ayed.

Li ne Processing. Once the Iine has been read into the buffer, processing
of the data in that line starts at XINA ($B335). The input line data is
processed according to the tokens in the INPUT (or READ) statenents.
These tokens are nuneric or string variabl es separated by commas.

Processing a Nuneric Variable. If the new token is a nuneric variabl e,
the CVAFP routine is called to convert the next characters in the input
line to a floating point nunber. If this conversion does not report an
errorl and if the next input line character is a comma or an EO., the
floatixig point value is processed. The processing of a valid nuneric

i nput val ue consists of calling RTNVAR to return the variable and its
new value to the Variable Value Table. If there is an error, |NPUT
processing is aborted via the ERRINP routine. If there is no error, but
the user has hit BREAK, the process is aborted via XSTOP. If there is no
abort, XINX ($B389) is called to continue with I NPUT's next task

Processing a String Variable. If the next statenent token is a string
variable, it is processed at Xl STR ($B35E). This routine is al so used by
the READ statenent. If the calling statenent is INPUT, then all input
line characters fromthe current character up to but not including the
EQL character are considered to be part of the input string data. If the
routine was called by READ, all characters up to but not including the
next comma or EOL are considered to be part of the input string. The
process of assigning the data to the string variable is handled by

cal ling RISASN ($B386). |If RISASN does not abort the process because of
an error |ike DI MENSION TOO SMALL, XINX is called to continue with

I NPUT' s next task.

XINX. The XINX ($B389) routine is entered after each variable token in
an I NPUT or a READ statement is processed. If the next token in the
statenent is an EQL, the | NPUT/ READ statenent processing termnates at
XIRTS ($B3Al). XIRTS restores the line buffer pointer ($80) to the RAN
table buffer. It then restores the enter device to I1OCB 0 (in case it
had been changed to sone other input device). Finally, XIRTS executes an
RTS instruction. |If the next |NPUT/READ statenent token is a comm, nore
i nput data is needed. If the next input line character is an EQ,

another input line is obtained. If the statenent was | NPUT, the new |line
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is obtained by entering XINO ($B326). If the statenent was READ, the new
l'ineis obtained by entering XRD3 ($B2D0). The processing of the next
I NPUT/ READ st at ement vari abl e token continues at Xl NA.

XGET ($BC7F) The CET statenent obtains one character from sone specified
devi ce and assigns that character to a scalar (non-array) numeric
variabl e. The execution of GET starts at XGET ($BC7F) with a call to
GOOVC. dODVC will set the 1/0O device to whatever number is specified
in the #< expression> or to 10OCB zero if no #<expression> was specified.
(If the device is 10OCB 0 (E:), the user nust type RETURN to force E to
terminate the input.) The single character is obtained by calling 103.
The character is assigned to the nuneric variable by calling | SVARL
($BD2D). |1 SVARL al so term nates the GET statenment processing.

PRINT The PRINT statement is used to transnit text data to an externa
device. The arguments in the PRINT statement are a list of nuneric

and/ or string expressions separated by conmas or senmicolons. If the
argunent is numeric, the floating point value is converted to text form
If the argunent is a string, the string value is transnitted as is, If
an argunent separator is a commm, the arguments are output in tabular
fashion: each new argunent starts at the next tab stop in the output
line, with blanks separating the arguments. If the argunment separator is
a semicolon, the transmtted argunents are appended to each ot her

wi t hout separation. The transmitted line is termnated with an EQ,

unl ess a semicolon or comma directly precedes the statenent's EOL or
statenment separator (:).

XPRI NT ($B3B6). The PRINT routine begins at XPRINT ($B3B6). The tab
value is maintained in the PTABW($C9) cell. The cell is initialized
with a value of ten during BASIC s cold start, so that commas in the
PRI NT |ine cause each argunent to be displaced ten positions after the
begi nning of the last argunent. The user may POKE PTABWto set a
different tab val ue. XPRINT copies PTABWto SCANT ($AF). SCANT will be
used to contain the next nultiple-of-PTABW out put |ine displacenent -
the colum nunber of the next tab stop. COX is initialized to zero and
is used to maintain the current output colum or displacenent. 97

XPRC. XPRI NT exam nes the next statenent token at XPRO ($B3BE),
classifies it, and executes the proper routine.

# Token. If the next token is #, XPRI OD ($B437) is entered. This routine
nodifles the Iist device to the device specified in the # <expression>.
XPRO is then entered to process the next token.

, Token. The XPTAB ($B419) routine is called to process the , token. Its
job is to tab to the next tab colum. If COX (the current colum) is
greater than SCANT, we must skip to the next avail able tab position.
This is done by continuously adding PTABWto SCANT until COX is |ess
than or equal to SCANT. Wien COX is | ess than SCANT, blanks ($20) are
transmitted to the output device until COX is equal to SCANT. The next
token is then exanined at XPRO

EOL and: Tokens. The XPEOCS ($B446) routine is entered for EOL and
tokens. If the previous token was a; or, token, PRINT exits at XPRTN
($B458). If the previous token was not a; or, token, an EQL character is
transmitted before exiting via XPRTN

; Token. No special action is taken for the; token except to go to XPRC
to exam ne the next token.

Nunbers and Strings. If the next token is not one of the above tokens,
Execute Expression is called to evaluate the expression. The resultant
val ue is popped fromthe argunent stack and its type is tested for a
nunber or a string. If the argunent popped was nuneric, it will be
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converted to text formby calling CVFASC. The resulting text is
transmitted to the output device fromthe buffer pointed to by | NBUFF
($F3). XPRO is then entered to process the next token. If the argunent
popped was a string, it will be transmtted to the output device by the
code starting at : XPSTh ($B3F8). This code exani nes the argument
paranmeters to determne the current length of the string. Wen the
string has been transmitted, XPROis entered to process the next token.

XLPRI NT ($8464) LPRINT, a special formof the PRINT statenment, is used
to print aline to the printer device (P:). The XLPRINT routine starts
at $B464 by opening IOCB 7 for output to the P: device. XPRINT is then
called to do the printing. When the XPRINT is done, 10OCB 7 is closed via
CLSYS1 and LPRINT is terninated.

XPUT ($BC72) The PUT statement sends a single byte fromthe expression
in the PUT statement to a specified external device. Processing starts
at XPUT ($BC72) with a call to G ODVC. A ODVC sets the 1/0O device to the
| OCB specified in #<expression> |f a #< expression> does not exist, the
device will be set to IOCB zero (E:). The routine then calls GETINT to
execute PUT's expression and convert the resulting value to a two-byte
integer. The least significant byte of this integer is then sent to the
PUT device via PRCX. PRCX also term nates the PUT processing.

XXI' O ($BBE5) The XI O statenment, a general purpose |/O statement, is

i ntended to be used when no other BASIC I/ O statement will serve the
requirements. The Xl O paraneters are an |1 OCB |/ O comand, an | OCB

speci fyi ng expression, an AUXi val ue, an AUX2 value, and finally a
string expression to be used as a filespec parameter. XIO starts at XXIC
($BBE5) with a call to G OCVMD. CIOCMD gets the | OCB command par aneter.
XI'O then continues at XOP1 in the OPEN statenment code.

XOPEN ($BBEB) The OPEN statenent is used to open an external device for
i nput and/or output. OPEN has a # <expression>, the open type paraneter
(AUX1), an AUX2 paraneter, and a string expression to be used as a
filespec. OPEN starts at XOPFN at $BBEB. It |oads the open conmand code
into the A register and continues at XOP1.

XOP1. XOP1 continues the OPEN and Xl O statenent processing. It starts at
$BBED by storing the A register into the |OCVMD cell. Next it obtains the
AUX1(open type) and AUX2 values fromthe statement. The next paramneter
is the filespec string. In order to insure that the filespec has a
proper termnator, SETSEQL is called to place a tenmporary ECL at the end
of the string. The XIO or OPEN conmand is then executed via a call to
|OL. When IOl returns, the tenporary EOL at the end of the string is
replaced with its previous value by calling RSTSEOL. OPEN and Xl C
terminate by calling TOTEST to insure that the comand was executed

wi t hout error.

XCLOSE ($BCl1B) The CLCSE statenment, which closes the specified device,
starts at XCLOSE ($BCIB). It loads the 10CB close comand code into the
A register and continues at GDVCl O

GDVCEC. GDVCI O ($BC1D) is used for general purpose device I/O It stores
the A register into the IOCVD cell, calls QODVC to get the device from
# <expression>, then calls 107 to execute the 100. Wen |07 returns,

| OTEST is called to test the results of the I/O and terminate the
routine.

XSTATUS ($BC28) The STATUS statenent executes the | OCB status command.
Processing starts at XSTATUS ($BC28) by calling G ODVC to get the device
nunber from # <expression>. It then calls 18 with the status command in
the A register. Wen I8 returns, the status returned in the | OCB status
cell is assigned to the variable specified in the STATUS st at enent by
calling I SVARI. | SVARL al so termi nates the STATUS statenent processing.
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XNOTE ($BC3G The NOTE statenent is used specifically for disk randomr
access. NOTE executes the Di sk Device Dependent Note Conmand, $26, which
returns two val ues representing the current position within the file for
which the 10OCB is open. NOTE begins at XNOTE at $BC36. The code | oads
the command val ue, $26, into the A register and calls GDVCIO to do the
I/ O operation. When GDVCI O returns, the values are noved from AUX3 and
AUX4 to the first variable in the NOTE statenment. The next variable is
assigned the val ue from AUX5.

XPO NT ($8C4D) The PO NT statenent is used to position a disk file to a
previously NOTEd | ocation. Processing starts at XPO NT ($BCAD). This
routine conyerts the first PO NT paraneter to an integer and stores the
val ue in AUX3 and AUX4. The second paraneter is then converted to an
integer and its value stored in AUX5. The PO NT conmmand, $25, is
executed by calling GDIOl, which is part of GDVCI QO

M scel | aneous |/ O Subroutines | OTEST. | OTEST($BCB3) is a general purpose
routine that exanmines the results of an I/O operarion. If the I/C
processing has returned an error, |OTEST processes that error. |OTEST
starts by calling LD OSTA to get the status byte fromthe | OCB that
performed the last 1/0O operation. If the byte value is positive (Iless
than 128), | OTEST returns to the caller. If the status byte is negative,
the 1/ 0O operation was abnornmal and processing continues at SICKIO |f
the 1/0O aborted due to a BREAK key depression, BRKBYT ($11) is set to
zero to indicate BREAK. |f a LOAD was in progress when BREAK was hit,
exit is via COLDSTART; otherwise |OTEST returns to its caller. If the
error was not fromIQOCB 7 (the device BASIC uses), the error status
value is stored in ERRNUM and ERROR is called to print the error nessage
and abort program execution. If the error was fromIOCB 7, then I0OCB 7
is closed and ERROR is called with the error status value in ERRNUM -
unl ess ENTER was bei ng executed, and the error was an end- of-file
error. In this case, IOCCB 7 is closed, the enter device is reset to | OCB
0, and SNX2 is called to return control to the Program Editor.

/O Call Routine. Al 1/Ois initiated fromthe routine starting at 10L
($BDOA). This routine has eight entry points, 10l through 108, each of
whi ch stores predetermned values in an 10OCB. All IOn entry points
assune that the X register contains the 1OCB value, tines 16. 10l sets
the buffer length to 255. 1|2 sets the buffer length to zero. 13 sets
the buffer length to the value in the Y register plus a nost-significant
length byte of zero. 104 sets the buffer length fromthe values in the
Y,A register pair, with the A register being the nost-significant val ue.
| 6 sets the buffer address fromthe value in the INBUFF cell (sF3). 106
sets the buffer address fromthe Y, A register pair. The A register
contains the nmost significant byte. 107 sets the 1/0 command val ue fron
the value in the I1OCVMD cell. 138 sets the 1/O comand fromthe value in
the A register. All of this is followed by a call to the operating
system ClO entry point. This call executes the I/O Wen ClOreturns,
the general 1/Oroutine returns to its caller. 102
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14 Internal 1/O Statements

The READ, DATA, and RESTORE statements work together to allow the BASIC
user to pass predeternmined infornation to his or her program This is,
in a sense, internal 1/0O

XDATA ($A9E7) The information to be passed to the BASIC programis
stored in one or nore DATA statenents. A DATA statenment can occur any
place in the program but execution of a DATA statenent has no effect.
When Execution Control encounters a DATA statenent, it expects to
process this statenent just |like any other. Therefore an XDATA routine
is called, but XDATA sinply returns to Execution Control

XREAD ($B283) The XREAD routine nmust search the Statenment Table to find
DATA. It uses Execution Control's subroutines and |ine paraneters to do
this. Wien XREAD is done, it nust restore the |line paranmeters to point
to the READ statenent. In order to nark its place in the Statenent
Tabl e, XREAD calls a subroutine of XGOSUB to put a GOSUB-type entry on
the Runtine Stack. The BASI C program may need to READ sone DATA, do sone
ot her processing, and then READ nore DATA. Therefore, XREAD needs to
keep track of just where it is in which DATA statenment. There are two
paraneters that provide for this. DATALN ($B7) contains the |ine nunber
at which to start the search for the next DATA statenent. DATAD ($B6)
contai ns the displacenent of the next DATA elenent in the DATALN |ine.
Both values are set to zero as part of RUN and CLR statenent processing.
XREAD cal | s Execution Control's subroutine GETSTMI to get the |ine whose
nunber is stored in DATALN. If this is the first READ in the program and
a RESTORE has not set a different |ine nunber, DATALN contains zero, and
GETSTMI will get the first line in the program On subsequent READs,
CGETSTMI gets the | ast DATA statenment that was processed by the previous
READ. After getting its first line, XREAD calls the XRTN routine to
restore Execufion Control's line paraneters. The current |ine nunmber is
stored in DATALN. XREAD steps through the |ine, statenent by statenent,

| ooking for a DATA statenment. |If the line contains no DATA statenent,

t hen subsequent lines and statenents are exami ned until a DATA statenent
is found. When a DATA statenment has been found, XREAD inspects the

el enents of the DATA statenent until it finds the el ement whose

di spl acement is in DATAD. If no DATA is found, XREAD exits via the
ERROOD entry point in the Error Handling Routine. Oherwise, a flag is
set to indicate that a READ is bei ng done, and XREAD joi ns XI NPUT at

: XINA. XINPUT handl es the assignnent of the DATA values to the

vari abl es. (See Chapter 13.)

XREST ($B268) The RESTORE statenent allows the BASIC user to re-READ a
DATA statenent or change the order in which the DATA statenents are
processed. The XREST routine sinulates RESTORE. XREST sets DATALN to the
line nunber given, or to zero if no line nunber is specified. It sets
DATAD to zero, so that the next READ after a RESTORE will start at the
first elenent in the DATA line specified in DATALN
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15

Miscellaneous Statements

XDEG ($B261) and XRAD ($B266) The transcendental functions such as SIN
or COS will work with either degrees or radi ans depending on the setting
of RADFLG ($FB). The DEG and' RAD statenents cause RADFLG to be set.
These statenents are sinulated by the XDEG and XRAD routi nes,
respectiveW The XDEG routine stores a six in RADI'LG XRAD sets it to
zero. These particul ar values were chosen because they aid the
transcendental functions in their calculations. RADFLG is set to zero
during BASIC s initialization process and al so during sinmulation of the
RUN st at ement .

XPCKE ($B24C) The POKE statement is sinulated by the XPOKE routine.
XPOKE calls a subroutine of Execute Expression to get the address and
data integers fromthe tokenized |ine. XPOKE then stores the data at the
speci fi ed address.

XBYE ($A9E8) The XBYE routine sinulates the BYE statenment. XBYE cl oses
all 10CBs (devices and files) and then junps to location $E471 in the
Qperating System This ends BASIC and causes the nenp pad to be

di spl ayed.

XDOS ($A9EE) The DOS statenent is sinulated by the XDOS routine. The
XDOS routine closes all 10CBs and junps to whatever address is stored in
| ocation $0A. This will be the address of DOS if DOS has been | oaded. |f
DOS has not been | oaded, $0A will point to the neno pad.

XLET ($AAEO) The LET and inplied LET statenents assign values to
vari abl es. They both invoke the XLET routine, which consists of the
Execut e Expression routines. (See Chapter 7.)

XREM ($A9E7) The REM statenent is for docunentation purposes only and
has no effect on the running program The routine which simulates REM
XREM sinply executes an RTS instruction to return to Execution Control

XERR ($B91E) Wien a line containing a syntax error is entered, it is
given a special statement nane token to indicate the error. The entire
line is flagged as erroneous no natter how many previously good
statements are in the line. The line is then stored in the Statenent
Table. The error statenent is processed just |ike any other. Execution
Control calls a routine, XERR which is one of the entry points to the
Error Handling Routine. It causes error 17 (EXECUTI ON OF GARBAGE)

XDl M ($B1D9) The DI Mension statement, simulated by the XDIM routine,
reserves space in the String/Array Table for the D Mensioned vari abl e.
The XDIMroutine calls Execute Expression to get the variable to be

DI Mensi oned fromthe Variabl e Value Table. The variable entry is put
into a work area. In the process, Execute Expression gets the first and
second DI Mensi on val ues and sets a default of zero if only one value is
specified. XDIMchecks to see if the variable has already been

Dl Mensi oned. |If the variable was al ready DI Mensioned, XDIMexits via the
ERRDI M entry point in the Error Handling Routine. If not, a bit is set
in the variable type byte in the work area entry to nark this variable
as DI Mensi oned. Next, XDI M cal cul ates the anpbunt of space required. This
calculation is handled differently for strings and arrays.

Dl Mensi oning an Array. XDIMfirst increnents both di nension val ues by
one and then nultiplies themtogether to get the nunber of elenents in
the array. XDOIMnultiplies the result by 6 (the Iength of a floating
poi nt nunber) to get the nunber of bytes required. EXPAND is called to
expand the String/Array Table by that anmpount. XDIM nust finish building
the variable entry in the work area. It stores the first and second

di nension values in the entry. It also stores the array's displacenent
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into the String/Array Table. It then calls an Execute Expression
subroutine to return the variable to the Variable Value Table. (See
Chapter 3.)

Dl Mensioning a String. Reserving space for a string in the String/Array
Table is much sinpler. XDIM nerely calls the EXPAND routine to expand by
the user-specified size. XDIM nust also build the Variable Value Table
entry in the work area. It sets the current length to 0 and the naxi mun
length to the DI Mensioned val ue. The di splacenent of the string into the
String/ Array Table is also stored in the variable. XDIMthen calls a
subroutine of Execute Expression to return the variable entry to the
Vari abl e Val ue Table. (See Chapter 3.)
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16 Initialization

When the Atari conputer is powered up with the BASIC cartridge in place,
t he operating system does sone processing and then junps to a BASIC
routine. Between the tine that BASIC first gets control and the tine it
prints the READY nessage, initialization takes place. This
initialization is called a cold start. No data or tables are preserved
during a cold start. Initialization is repeated if things go terribly
awy. For example, if there is an I/O error while executing a LOAD
statenent, BASIC is totally confused. It gives up and begins all over
again with the COLDSTART routine. Sonmetinmes a |less drastic partia
initialization is necessary. This process is handl ed by the WARVSTART
routine, in which sone tables are preserved. Entering the NEW statenent,
simul ated by the XNEWroutine, has al nost the sane effect as a cold
start.

COLDSTART ($A000) Two flags, LOADFLG and WARMFLG, are used to determ ne
if acold or warmstart is required. The load flag, LOADFLG ($CA), is
zero except during the execution of a LOAD statenent. The XLQOAD routine
sets the flag to non-zero when it starts processing and resets it to
zero when it finishes. If an I/O error occurs during that interval

| OTEST notes that LOADFLG i s non-zero and junps to COLDSTART. The warm
start flag, WARMFLG ($08), is never set by BASIC. It is set by sone

ot her routine, such as the operating systemor DOS. If WARMFLG i s zero,
a cold start is done. If it is non-zero, a warmstart is done. During
its power-up processing, before BASIC is given control, OS sets WARMFLC
to zero to request a cold start. During System Reset processing, OS sets
the flag to non-zero, indicating a warmstart is desired. If DOS has

| oaded any data into BASIC s programarea during its processing, it wll
request a cold start. The COLDSTART routine checks both WARMFLG and
LOADFLG to determnmine whether to do a cold or warmstart. If a cold start
is required, COLDSTART initializes the 6502 CPU stack and clears the
decimal flag. The rest of its processing is exactly the sane as if the
NEW st at ement had been ent ered.

XNEW ( $A00C) The NEW statenent is simulated by the XNEWroutine. XNEW
resets the load flag, LOADFLG to zero. It initializes the zero- page
pointers to BASICs RAMtables. It reserves 256 bytes at the | oWnenory
address for the multipurpose buffer and stores its address in the zero-
page pointer |ocated at $80. Since none of the RAMtables are to retain
any data, their zero- page pointers ($82 through $90) are all set to | O/
nmenory plus 256. The Variable Nane Table is expanded by one byte, which
is set to zero. This creates a dunmy end-of-table entry. The Statenent
Tabl e is expanded by three bytes. The |ine nunber of the direct
statement ($8000) is stored there along with the length (three). This
marks the end of the Statenment Table. A default tab value of 10 is set
for the PRINT statenent.

WARMSTART ($A04D) A warm start is the |least drastic of the three types
of initialization. Everything the WARMSTART routine does is al so done by
COLDSTART and XNEW The stop line nunber (STOPLN), the error nunber
(ERRNUM, and the DATA paraneters (DATALN and DATAD) are all set to
zero. The RADFLG flag is set to zero, indicating that transcendenta
functions are working in radians. The break byte (BRKBYT) is set off and
$FF is stored in TRAPLN to indicate that errors are not being trapped.
Al 10CBs (devices and files) are closed. The enter and |list devices
(ENTDTD and LI STDTD) are set to zero to indicate the keyboard and the
screen, respectively. Finally, the READY nessage is printed and contro
passes to the Program Editor
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