This booklet contains information for advanced program-
mers who want to modify the keypad handler program or
create their own program to read data from the keypad. The
ATARI® CX85™ Numerical Keypad Owner’s Guide contains ad-
ditional information with which you should be familiar.

The diskette that came with this package contains
a keypad handler program which is written with the ATARI
Macro Assembler AMAC. You can modify or rewrite this pro-
gram with the Program-Text Editor. When your modifications
are complete, reassemble the code with AMAC using a unique
filename.

The keypad uses eight signals on the controller port. Posi-
tive 5 volts (+ 5 v) is on pin 7, and signal ground on pin 8. A
5-bit binary code is presented on pins 1 through 5, correspond-
ing to the signals FWD, BACK, LEFT, RIGHT and BPOT. A data
valid signal, presented on pin 6, corresponds to TRIGGER.
TRIGGER goes low to indicate a valid code.

Timing is as follows:

e With no key pressed, the code for the previously
pressed key remains on pins 1 through 5 and TRIGGER
remains high (logic 1 or True).

e When a key is pressed, the TRIGGER signal goes low
(logic 0 or False) and the keycode for that key is
established on pins 1 through 5.

e TRIGGER stays low as long as the key remains pressed.
When the key is released, TRIGGER returns high but
the keycode does not change.

e Two-key rollover handles simultaneous or multiple
keystrokes. If one or more additional keys are pressed
while the first key is still pressed, nothing happens; the
additional keys are locked out. When the first key is
released, TRIGGER goes high and the scanning elec-
tronics searches for the next active key in the se-
guence. TRIGGER then goes low and the new keycode
is presented.

After the system receives the TRIGGER signal there
is a slight delay before BPOT data is valid. This can be com-
pensated for by inserting a delay in your program. Details
about this timing difference are provided on page 5.

Signals generated by the keypad electronics are delivered
to specific registers in your computer's memory through the
joystick port. The keypad makes use of registers normally
used for both joystick and paddle controllers. The sequence in
which your program reads these signals and the operations
your program performs on the signals are both important fac-
tors. TRIGGER must be read first to see if a key has been
pressed. If a key has been pressed, it must be decoded. Four
bits of the 5-bit keycode are sent to the joystick registers and
the fifth bit is read through the paddle (BPOT) register. These
bits must be manipulated and logically combined for your pro-
gram to know which key has been pressed. Once the keypad
key has been decoded, it can be associated with any key on
the keyboard, or any operation for which your keypad handler
is designed.

The handler program, as written, allows the keypad to
work only through joystick port 2. However, it can be rewritten
to allow the keypad to work through any one of the four con-
troller ports. You'll have to modify the handler to use alternate
registers or write those registers into a new program to
recognize the port.

To determine if a key has been pressed, your program
must read the OS shadow for the joystick controller port to
which the keypad is connected.

For port 1 read STRIGO ($284).
For port 2 read STRIG1 ($285).
For port 3 read STRIG2 ($286).
For port 4 read STRIG3 ($287).

Only the least significant bit is used (bit 0). If a key has
been pressed, the LSB will contain a zero (0). If the bit con-
tains a one (1) no key has been pressed. The remaining seven
bits will contain zeroes.



Once the STRIG value has been read and a data-valid
signal exists, the incoming 5-bit code must be decoded. To do
this, you must read the hardware registers, not the OS
shadows. Read the joystick byte first.

Registers PORTA ($D300) and PORTB ($D301) pick up the
first four incoming bits (see Figures 1 and 2). Depending on
which port is selected, the bits will come into positions 1
through 4 (bits 0-3), or positions 5 through 8 (bits 4-7). They
must be shifted to bits 0 through 3, and bits 4 through 7 must
be forced to zero.

T 0

PORTA ($D300)

RIGHT LEFT BACK FWD RIGHT LEFT BACK FWD
A — N >y

— —

PORT 1 PORT 2

PORTB ($D301)

RIGHT LEFT BACK FWD RIGHT LEFT BACK FWD
N A —

FORT 3 PORT 4

Note: All shifting and masking operations must be done in the
accumulator—do not use memory address shift instructions.

BPOT is extracted from ALLPOT ($D208)—see Figure 3.
All bits in the byte, except the bit for the desired port, must be
forced to zero. The chosen BPOT bit must be complemented
and shifted so that it's in the fifth position (bit 4).

7 6 5 4 3 2 1 0

ALLPOT ($D208)

BPOT APOT BPOT APOT BPOT APOT BPOT APOT

PORT 4 PORT 3 PORT 2 PORT 1

Finally, a logical OR must be used to integrate the BPOT
value and the values of the joystick operation. The resultant
binary value, represented in Figure 4, can be decoded from
the truth table on pages 6-7.

il BPOT RIGHT LEFT BACK FWD

ZERO FORCED JOYSTICK OPERATION OF
DESIRED PORT

o,

A7 i
COMPLEMENT OF BPOT VALUE FOR
DESIRED PORT

The BPOT value is input to POKEY through a resistor-
capacitor delay circuit in your computer. The TRIGGER signal
indicating a new keypress occurs instantly, while the BPOT
signal might be delayed up to 150 microseconds. Insert an in-
tentional delay in your program to compensate for this time
difference—150 microseconds corresponds to approximately
150 NOPs—or insert a loop decrementing a register from 30
to zero.

To use the serial ports on your ATARI 850™ Interface
Module and load the keypad handler at the same time, you
must append KEYPAD.OBJ to the end of the DOS |l
AUTORUN.SYS file. The interface module is booted
automatically with the AUTORUN.SYS file. If you append the
keypad handler to the end of this file, the interface module will
be booted and your keypad enabled as well. This should be
done to a copy of the DOS |l Master Diskette using the COPY
FILE command in DOS |l. Please refer to the ATAR/ Disk
Operating System Il Reference Manual for the correct
procedures.

If you plan to load a keypad handler and use DOS more

than once while programming, your keypad handler diskette
must have a MEM.SAV file.



FWD
BACK
LEET
RIGHT

B POT
TRIGGER

Veo
GND

A POT

Ci1
01pf

v

i 8 5 MCM74C923N

_(‘)J_ _g_L _g_L “__S_L_
laie e

+, ENTER
i o 2L i 2 i

G ¢ R

J1
|
1 1
5 2 3 oA o
>>3 4 5 18] g I
5 7
> 5] _<)<:}“ 17 c X3 9
£ 10 9 16 .
> 4049B b &
S 12 11 15] ¢
e 15 LR vill
% 1C 1 ! :
l 161 FE! Y2
I N/IC  NIC 6 val2
4
03_L 7 Y4
Apf
o e
1C 2
=l 10 20
GND Ve
J
10
U A PIN | SIGNAL
8
> 1 FWD
| 2 BACK
| 3 LEFT
| 4 RIGHT
9 5 B POT
| 7 +5v
; 8 GND
9 | UNUSED

e

i s s wH i
O i O f_ O i O ?
YES (F4) DEL (F3) NO (F2) ESC (F1)
o it el i L ks
e s | e
|
< +5
SIGNAL DEFINITION KEY | BPOT | STICK | HEX
LOGIC 'O 0.4v AT 3.2 mA
LOGIC 1" 40v AT -0.7 mA 1+ [oot |00 | 856
2 0001 1010 $1A
B 0001 1011 $1B
4 0001 0001 $11
5 0001 0010 $12
6 0001 0011 $13
i D001 0101 S5
8 0001 0110 $16
9 0001 | 0111 $17
[ D001 1101 $1D
= 0001 | 1111 $1F
+ ENT| 0001 1110 $1E
El 0000 1100 $0C
E2 0001 0100 314
F3 0001 0000 310
F4 0001 1000 $18




Keypad Interrupt Handler Source Code

1 C
ver 1.0A PageD'\'.KEYPkD'SH

RUPT HANDLER

\
nandles al
et pandief pd;gapc*hs ﬂ“g a::; ;p'ort 2.
inter

on 2 s\;%s;?:' Macro ASS®

30

P START MASK

59 'gELECT W‘S‘M ,@i

SA '-_O'PT‘ogﬁ MASK
.'.BPOT JCAL BLAN

ppnunnd 4
SRRt

DOSINL* Lo ocESSING
STA cenpen VBN
D INTO evpAD EXIT g kD
KD FOR K el
2 STA TWBLKD +
gﬁ EXIT+2
INT
p ENTRY POD
TR KEYPAD Jiow K
WWBLKD Wt%\; ot ggg&m@ VBl
L1
g =

EM RESET
; D WHEN USE?{ \\:‘g(?"'gas PADVE! DOSING
s RN (oo o
| : JMFP

0664
0667

DB51  AD8502
0654
0B56
D658 854D
DE5A  ADOOD3
085D  4A
DBSE  4A
0B5F  4A
0B 4A
0661  BODBCO6
ADD8D2
2908
4908
DA
0DBCOS
ADDD

D92E0E
FO09 ADETF
ce

c8

BE2EDE
FO3C AOEB9
DOF2 0671

KEY VALUE MATCH

D044 ADE9A
AZ00

STA  ATTRACT
'DETERMINE VALUE

'SCAN TRANSLATION TABLE
KPADCK: oM

ATARI MACRO Assembler Ver 1.0A Page

D1:KEYPAD.SRC

IKEYPAD TRANSLATION TABLE

KPADTAB: : :FUNCTION 1
$14,534  :FUNCTION 2
$10,807
$18,526

(FUNCTION 3
\FUNCTION 4

T woYNonhuns

.+ ENTER
bB 0 END OF TABLE
(ENTERED AT EACH VBLANK TO READ THE KEYPAD
KPAD: LDA  STRIGI KEY PRESSED?
BNE  KPADDM EXIT FOR KEY NOT PRESSED
DA #0 ;RESET ATTRACT MODE
OF KEY PRESSED
LD, PORTA

\READ CABLE PIN OF PORT 2

\READ ALLPOT FOR 5TH CABLE PIN STAT:
MASK FOR 5TH PIN
{COMPLEMENT BIT (0 1S VALID)

A HAS KEY VALUE
JINIT COUNTER

KPADTAB,Y

TMA
KPADMAT

\MATCH KEYPAD TABLE ENTRY?
WUMP IF MATCH
JINC TO NEXT ENTRY
KPADTAB,Y \END OF TABLE?
EXIT (EXIT FOR END OF TABLE
KPADCK

PUT NEW

KPADM

ES
KEYCODE IN CH AND RESET AUTO-REPEAT
AT: ;I"??(( (SA

JGET
LDA  KPADTAB,Y A HAS KEYCODE
CMP  #3FF VECTOR ROUTINE?
BEQ  KPADFUN

JEXIT FOR VECTOR ROUTINE




Ag30
BDBEBBGGBF

(PADDM:
B0BD0B T

tc.---uut«ttcc

ATARI MAC
R
O Assembler Ver 1.0A
0A Page 4

LDA .
STA 8DBFOB D1-KEYPAD SRC

.................. ggﬂma

BNE BT AS0C §PADFR:
PADF2:
SAME AS PRIOR KEY. CHECK AUT O-REPEAT s
KPADS&M: LDA KPhDREP '..l\UTO*ﬁEP‘EN' EXP\RED'E KPA
DEX ‘DEC TIMER &0 DF3;
BNE KPADYX -.Bﬁmcﬂ \F NOT A0
STA cH 5T ORE KEYGODE 9 @i
LDA FTIMER! ‘RESET TIMER 60 DF4:
STA KPADREP
BNE EXITY
STX KPADREP

{LOAD DUMMY KEYCODE

X THIS VBLANK \NTERRUPT osats
EXIT: JMP 0
TEMP:

no ER

D8 TeMP VA afo R, 41 Labels, $4732
KPADCOD: DB 0 | E A'r"ﬁ;% free.
PADREP" ps S {AUTO-RE D208

i BPOT 004D
¢ NO SEE N, TRANSLATIO RBLE BHEA 0008
\ENCLOSED AL BAKFRS

tti...-ttllt-ttlci

BRKPRS: DB 4

{EUNCTION JECTOR TABLE
KPADFTE: ow KPADF1

ow
ow

{GET FUNCTION VECTOR
KPADFUN: DEY
0602 LDA
06CC BDDT08 STA
cB Y
0600 R9CO06 LOA
0603 STA
0606 200000
0609 2cBa08
06DC DBF
O%0F  FOOC AOBED
Oee1 A0
06E

sDDB06
CALL 10 FUNCT'.ON
KPADFY:

WPADF1




ATARI CX85 NUMERICAL KEYPAD

Technical Reference Notes




