

l

This book is an independent production of Ing. W. HOFACKER G mbH
International . It is pub l i shed as a service to al l ATARI personal computer
users worldwide.
Al l r ights reserved. No part of this book may be reproduced by any means
without the express written permission of the publ i sher. Example programs
are for personal use only. Every reasonable effort has been made to ensure
accuracy throughout this book, but neither the author or publ i sher can
assume responsibil ity for any errors or omissions. N o l i abi l i ty is assumed for
any d i rect, or ind irect, damages �ulting from the use of i nformation con
tained herein.

ELCO M P P U B LISHING, INC. hereby warrants that the programs contained
in this book wi l l load and run on the standard manufacturer's configuration
of the computer l i sted. Except for such warranty this product is suppl ied on
an "as i s" basis without warranty as to merchantabi l i ty or its fi tness for any
particu lar use or purpose.
Ne ither ELCOMP PUB LISHING.INC nor the author(s) of the programs are
l iable or responsible to the purchaser and/or user for loss or damage caused,
or a l leged to be caused, d i rectly or ind irectly by this software and its atten
dent documentation, incl uding (but not l imited to) interruption of service,
l oss of business or anticipatory profits.

IMPORTANT:
Do not use the delivered disks for your own files. It wil l destroy itself!

Fi rst Edi tion
Fi rst Printing
December 1982 in the Federal Republ ic of Germany
©Copyright 1982 by Winfried Hofacker

Reference is made to AT AR I throughout this book. AT AR I is a trademark of AT AR I

Inc., a division of Warner Communications Company.

Publ isher.
Ing. W. HOFACKER G mbH, Tegernseerstr. 18, D-8150 Holzki rchen,
W.-Germany

US-Distributor
ELCOMP PUB LISHING.INC., 53 Redrock Lane, Pomona, CA 91766

PREFACE

This book conta ins the descriptions of our software products
for the ATA R I 800 and ATA R I 400.
You can f ind the descriptions you need by looki ng through the
contents of th is booklet .

Los Angeles
December 1 982

TABLE OF CONTENTS

Printer I nterface . 0 1
Printi ng via the RS232 I nterface . 09
ATMASD r-Editor/Assembler (MAC R O) 1 0
I ntroduction to the use of MAC ROs . 23
A sample session with the AT AS-1 . 24
A TMONA- 1 . 28
ATMONA-2 . 3 1
H ow t o work with A TMONA-2 . 36
L EA R N F O RTH . 38
FO RTH HAN DY R E F E R E NCE . 39
POWE R- F O RTH . 45
H ow to use the Astrology program for the ATA R I 800 68
EPROM Cartridge for the ATA R I 800/400 68
ATEXT . · : . . 69
A sample session with ATEXT� 1 . 84
E P ROM Bu rner for ATA R I . 88
ATEXT- 1 Writers R E F E R E N C E CA R D 97
I nventory Contro l . 1 03
Mai l i ng List for the ATA R l-800 1 05
I nvoice Writer for ATA R I 400/800 . 1 08
G U N F IGHT . 1 1 1
KNAUS OG I NO . 1 1 3

Printer Interface
Order-No. 7211 s 1-9 .95

Screen tc;> Printer Interface for the ATARI 400/800

Many ATA R I users wou ld l i ke to connect a para l le l i nterface to
the computer. For many people buy ing an interface is too ex
pensive . On the other hand , they may not have the experience to
bu i ld one by their own . Also a lot of software is needed .

The fo l lowing instructions make it easy , to hook u p an E PSO N ,
Centron ics o r an Okidata printer to the ATA R I .
O n ly seven of the eight b its of the data l i n k are used for a pri nt
out. The eight bit creates a strobe i mpu lse . A lso the trigger input
of port 4 is used for the B USY-request of the pri nter.
There is a formfeed every 66 print l i nes. So it is necessary to
adjust the paper before start ing the printing . You may need to
make severa l tria ls to f ind the best position of the paper. After
each system reset the l i ne cou nter is set to zero, so you have to
privide your own formfeed for a correct paper position .

You can contro l the length of a l i ne by a PO KE 1 770, xxx. After
doing so, press system reset and enter LP R I NT .

The program SC R E E N P R I NT is ca l led b y BAS I C thru an USR
(1 670) and by the assembler with a GOTO S0687 .

You may i nsta l l pnp transistors between the game output and the
printer, as it i s shown in th is smal l figure .

�- M X80

PNP-TRANSISTO R

2N722 or sim i lar
-

-

1

The next figure shows the connection of the AT A R I game outlets
and the connector for the MX-80 printer. Th is is a so-ca l led
Centronics interface and the program can

·
be used with each

printer and this interface .

2

EPSON MX80 - ATA R I 400/800
I ntercon nection-Scheme

MX80-Connector ATA R I -Connectors

Pin#
1 (1 9) ST R O BE
2 (20) DATA 1
3 (2 1) DATA 2
4 (22) DATA 3
5 (23) DATA 4
6 (24) DATA 5
7 (25) DATA 6
8 (26) DATA 7
9 (27) DATA 8
1 1 (29) BUSY

Port3 Port 4
Pin# Pin#

1
2
3
4

4

1
2
3
8
6

(GND) 8 8
(1 9)-(29) =Ground (GND)

Plugs seen from the rear view.
Front view of the computer outlets. 1

1 5 1 5

• •
eo•o

6 9 6 9

POR T 3 PORT 4

0

The next figure shows the program .

* UNIVERSAL .PRINT FOR ATARI *
' *
* 400/800 VERSION ELCOMP *
* *
* *
* *
* *
* *

0600: 00
060 1 : 02
0602: 0006
0604: 6E06
0606: A93C
0608: 8002D3
0608: A9EB
0600: 80E702
0610: A906
0612: 80E802
0615: A96E
0617: 850A
0619: A906
061B: 850B
0610: .18
061E: 60

061F: 2B0642
0622: 063F06
0625: 42063F

BASIS
PT
PST

EPZ $58
EPZ $FE
EQU $600

ORG PST

OFB 0
DFB 2
OFW PST
DFW INIT
LOA #$3C
STA $D302
LOA #PNO
STA $02E7
LDA #PN0/256
STA $02E8
LOA #INIT
STA $0A
LOA #INIT/256
STA $OB
CLC
RTS

0628: 063F06 HANOLTAB DFW DUMMY,

WRITE-1,RTS1-1,WRITE-1.RTS1-1.
RTS1-1

. . .

0628: 01 DUMMY OFB 1

3

062C: A930 OPEN LOA #$:30
062E: 800303 STA $0303
0631: A9FF LOA #$FF
t)633: 800103 STA $0301
0636: A934 LDA #$34
0638: 8D03D3 STA $D�;o3
063B: A980 LDA #$80
063D: 8D01D3 STA $0301
0640: A001 RTS1 LDY #l
0642: 60 RTS
0643: C99B vJRITE CMP #$9B
0645: 0010 BNE PF: INT
0647: AOEA06 CARR LDA LINLEN
064A: 80E906 STA LCOUNT
0640: CEE806 DEC COUNT
0650: 1000 BPL NOFF
0652: A90C LOA #12
0654: 206406 ,JSR PRINT
0657: EEE906 INC LCOUNT
065A: A941 LOA #65
065C: 80E806 STA COUNT
065F: EEE906 NOFF INC LCOUNT
0662: A900 LDA #13
0664: 200106 PRINT JSR OUT CHAR
0667: CEE906 DEC LC DUNT

066A: FOOB BEQ CARR
066C: 0002 BNE RTS1
066E: A1':11F INIT LOA #HANOLTAB
0670: 801803 STA $031B
0673: A906 LOA #HANDLTAB/256
0675: 801C03 STA $031C
0678: A941 LOA #65
067A: 80E806 STA COUNT
0670: AOEA06 LDA LINLEN
0680: 80E906 STA LC DUNT
0683: 4C2C06 JMP OPEN

0686: 68 BASIC PLA
0687: A558 NORMAL LOA BASIS
0689: 85FE STA PT
068B: A559 LOA BASIS+1
0680: 85FF STA PT+1
068F: A917 LOA #23

4

0691: 8DE606 STA ROW
0694: A927 ROWLOOP LDA #39
0696: 8DE706 STA COLUMN
0699: A200 LD X #0
069B: A1FE LOOP LDA < PT , X >
0690: 297F AND #$7F
069F: 'c960 CMP #$60
06A1: 8002 BCS L.OOP1
06A3: 6920 ADC #$20
06A5: 200106 UJOP1 JSR OUTCHAF:
06A8: E6FE . INC PT
06AA: 0002 BNE *+4
06AC: E6FF I NC PT+1
06AE: CEE706 DEC COLUMN
06B1: 10E8 BPL LOOP
06B3: A90D LOA #13
06B5: 200106 JSR OUT CHAR
0688: CEE606 DEC ROW
06BB: 10D7 BPL ROWLOOP
06BD: 60 RTS

06BE: 48414E
06C1: 532057
06C4: 41474E
06C7: 455220
06CA: 32372E
06CD.: 372E38
0600: 31 AUTHOR ASC "HANS WAGNER

0601: AC13DO OUTCHAF: LOY $0013
0604: DOFB BNE OUT CHAR
0606: A080 LOY #$80
0608: 0980 ORA #$80
06DA: 800103 STA $0301
0600: 297F AND #$7F
06DF:· 800103 STA $0301
06E2: 8C01D3 STY $0301
06E5: 60 RTS

06E6: 17 ROW DFB 23
06E7: 27 COLUMN DFB 39
06E8: 41 COUNT DFB 65
06E9: FF LCOUNT DFB 255

5

06EA: FF

BASI S
PT
PST
HANDLTAB
DUMMY
OPEN
F:TS1
WRI TE
CARF:
NOFF
PF:I NT
!NI T
BASI C
NOF:MAL
ROWLOOP
LOOP
LOOP1
AUTHOR
OUT CHAR
ROW
COLUMN
COUNT
LCOUNT
LI NLEN
PND

LI NLEN
PND

$58
$FE
$0600
$061F
$062B
$062C
$0640
$0643
$0647
$065F
$0664.
$066E
$0686
$0687
$0694
$069B
$06A5
$06BE
$06D1
$06E6
$06E7
$06E8
$06E9
$06EA
$06EB

DFB 255
EQLI *

UNUSED
UNUSED

UNUSED

Program description:

Address
0600 -061E
0610-062B
062C -0642
0643-0660
066E -0685

0686-06BD

6

end of the booting part
H ANTAB for the ATA R I OS
opens the ports for output
printer driver
I nitia lize . Now LPR I NT and P R I NT "P"
uses the printer d river
labe l BAS I C starting address for a ca l l by
BAS I C
Label NOR MA L starting address for a ca l l by
assembler.

06BE -0600
06DL-06E5

06E6-06EA

Boot-Routine

PST EQU
PND EQU
FLEN EQU

6000: A210
6002:' A903
6004: 904203
6007: A908
6009: 904A03
600C: A980
600E: 904803
6011: A94A
6013: 904403
6016: A960
6018: 904503
6018: 2056E4
601E: 3029
6020: A908
6022: 904203
6025: A900
6027: 904403
602A: A906
602C: 904503
602F: A900

Copyright notice
Subroutine, puls one ASCII character from
the accumulator to the printer
values for the various counters
ROW sets the number of horizontal lines to
23.
COLUMN sets the number of characters of
one line to 39.
COUNT sets the number of lines between
two formfeeds to 65
LCOUNT, LINLEN contains the actual para
meters for the number of characters and
lines.

$0600
$070(1
PND-PST+127/128*128

ORG $6000

800T8 LOX #$10
LOA #3
STA $0342,X
LOA #8
STA $034A,X
LDA #$80
STA $0348,X
LDA #CF I LE
STA $0344, X
LDA #CFI LE/256
STA $0345, X
JSR $E456
8MI CERR
LDA #$08
STA $0342,X
LDA #PST
STA $0344,X
LDA #PST/256
STA $0345,X
LDA #FLEN

7

6031: 9D4803 STA $0348,X
6034: A901 LDA #FLEN/256
6036: 904903 STA $0349, X
6039: 2056E4 ..JSR $E456
603C: 300B BMI CERR
603E: A90C LDA #$0C
6040: 904203 STA' $0342,X
6043: 2056E4 JSR $E456
6046: 3001 BMI CERR
6048: 00 BRI<
6049: 00 CP::: R BRI<
604A: 433A CF ILE ASC lie: II

604C: 9B DFB $98

PST $0600
PND $0700
FLEN $0100
BO OTB $6000 UNUSED
CERR $6049
CF ILE $6(14A

The program on cassette comes as a bootable driver and you can
use it either with the ATARI BASIC ROM or the Editor/As
sembler cartridge from ATARI.
You can print via your interface with LIST "P:
and use the other PRINT command as described In your manuals
from ATARI®.
How to load the cassette:

8

Turn.off the computer
Press the start key
Turn on the computer
Release the start key
Press PLAY on the recorder and
Press RETURN

Order�No. 7291 S 19.95
PRINTING VIA THE RS232 INTERFACE

The file RS232.SYS on your disk allows you to use the ELCOMP
RS232-interface. The screen will flicker during operation, but
don' t pay any attention to that.

The interface only works with 300 Baud. For the connections
see figure below.
After the file was loaded you can use the DOS-command B to get
to a cartridge, if there' s one installed.

After RESET the file has to be loaded again.
The following BASIC program:

7 O 0 PEN # 7, 8, O, n R: "

20 FOR X=1 TO 70

30 PRINT #7,"ELCOMP-RS232",X
40 NEXT X

50 CLOSE #7

will generate the following printout:

7

2
3
"

5

The program on cassette
comes as a bootable driver
and you can use it either
with the A TAR I BASIC
ROM or the Editor/Assem
bler cartridge from ATARI.
You can print v ia your
interface with LIST"R: and
use the other P R I NT com·
mand as described i8!> your
manuals from ATARI .

How to load the cassette:

- Turn off the computer
- Press the start key

ELCOMP-RS232

ELCOMP-RS232
ELCOMP-RS232
ELCOMP-RS232

ELCOMP-RS232
ELCOMP-R5232

ELCOMP-RS232

ELCOMP-R5232
ELCOMP-RS232
ELCOMP-RS232

6
7
8
9
70

- Tu rn on the computer

6 9

GAME PORT 3

0

- Release the start key
- Press PLAY on the re·

corder and
- Press R ETURN

TRANSMIT
DATA

GND

9

IMPORTANT:

Do not use the delivered disks for your own files. It will destroy itself!

ATMASD
Order-No. 7099
Order-No. 7999

disk version
cartridge vers.

s 89.00
S129.00

ATMASD

Disk-Version

Instructions Working with the MACRO-
ASS EMB L E R

1. Remove all cartridges
2. Insert the disk into drive 1 of your ATA R I
• 800/48K RAM
3. Turn on the console, the system will start to

boot. After booting, the DOS menue will
appear.

4. Type L for binary LOAD and load the file
named ATMASD.OBJ
After loading the ATMAS Machinelanguage
monitor starts automatically.

5 . Typing K for a Coldstart brings you directly
into the Editor of the Assembler .

How to get back to DOS
a) from the monitor ATMASD-1: by typing Q
b) from the Editor: by typing M in the command

line followed by ESCAP E/ ESCAP E
c) System Reset

The RUN Assembler Command from the DOS
menue can be used only when the editor/
assembler objectcode is loaded. Run Assembler
initiates the monitor. Typing E with the object
code in memory then causes a warmstart.

The A TMASD Printer options

For the convenience of the user:,
The editor/assembler and the machinelanguage
monitor are equipped with printer routines for

three different devices:

1. Using a printer in the machinelanguage
monitor
a) Y ES (Y) after P R INT? gives you three

options.
(1) Output to printer via serial port of the

ATA R I RS2 32 Interface
(2) Output via the parallel port of the

ATA R I Interface
(3) Output via the expansion from Elcomp

Publishing, Inc.

2. Using a printer in the Editor
Enter the command line by typing ESCAP E
and type L ESCAP E/ ESCAP E. This command
lists the source code to the screen only.
With the CTR L 1 you can stop the listing
and restart it again.
L followed by one of the following numbers
brings the source code to your printer via:

(0) RS2 32 Port 1 of the ATA R I Interface
(1) Parallel port of the ATA R I Interface
(2) Port- Interface from Elcomp

3. Using a printer in the assembler
An assembly listing on the printer can be
generated by placing the pseudo opcode
OUT at the beginning of the source listing.
Example:
OUT [Option] P u
Options: LN (Listing and symboltable)

LNM not expanded Macros
u ist the Device as mentioned above.

0 = RS232
1 =Parallel
2 = E LCOMP

This description applies also to
ATAS-1 32K / 48K

1 0

Order No. 7098

Order No. 7998

ATAS-1 is identical to ATMASD,
but ATAS-1 has no macro capabi lity.

Editor/Assembler for ATARI 800
32k or 48k

Version 1.1. 1 7 .12.81 by Hans-Christoph Wagner

User Manual

Editor and Assembler are delivered as a com
bined machine language program on casse tte or
diskette. If desired, they can also be run as
stand-alone programs . For example, the Editor
could also be effectively used for higher pro
gramming languages like PASCA L etc.

The Editor and Assembler as delivered can
be run directly on the 48k or 32k - Version.
ATMAS runs on 48k Disk only. Please specity
your system when you order.

The Editor and Assembler programs are stored
beginning at location 0 700 (Cassette Version).

1. EDITOR

The Editor partitions the screen display area
into three parts:

- 'Status Line' =fist line on top
- 'Text Window'= mid-area of the screen
- 'Command line'= dotted line on bottom

1.1 . Status Line

On the Status Line the actual Editor status is
displayed in the status line on top of the screen.

P : nnnnn display the number of bytes from
beginning of text to cursor position.

T : nnnnn shows the number of bytes still
free in the textbuffer.

C : nnnnn displays the number of bytes still
free in the C-register.

The last two characters display either C-register
status or an error message .

1 .2. Text Window

The Text Window occupies the mid-area of the
screen and comprises 21 lines . When executing
an editing operation the result is displayed
immediately in.the Text Window . The cursor
can be moved backwards and forwards as well
as linewise up and down (scrolling-up and
scrolling-down).

1 .3. Command Line

The commands for the Command Mode
operations of the editor have to be written into
this line (see 1.4. 2).

©1982 by Ing. W. Hofacker GmbH

1.4. Modes of operation

The Editor can be operated in two different
modes: Direct mode and Command mode.

1 .4.1 . Direct Mode

In the Direct Mode, text can be written into the
textbuffer, i . e. when thext is typed in, it is dis
played in the Text Window on screen and
simultanously stored in the textbuffer . Every
character is inserted at the actual cursor positon
on screen.

When pressing a key longer than one sec., the
key-function will be repeated about eight
times/second . This repeat function works as
long as the cursor remains blinking i. e. only
within the Text Window an screen.

For cursor moving, text manipulation etc., a
number of direct commands are available . They
are all initiated by pressing the CT R L-Key plus
the command assigned 'Character key' and
directly executed .

There are the following direct commands:

CT R L - A Cursor one position forward

- C Causes switching between two
modes when consecutively applied:
lowest possible cursor position
within Text Window either on
bottom line or Sifth line from
bottom

- D Cursor to text end

- E Cursor to text beginning

- F Closing C-register

- G Reexecute command on Command
Line

- H Delete one character back

- I 'TAB': cursor to next Tab position

- J Insert content of C- Register at
actual cursor position

- K Erase C- Register

- L ' Formfeed': inserts CT R L-'L'

- P Jump into ATMONA- 1 Monitor .
When you want to jump back to
the Editor you have to key in E .
You then return to the same Editor
status as before. The cassette
version automaticly starts in the
ATMONA-Monitor . Hit the K-key
for coldstart of the Editor I
Assembler.

1 1

The cassette version automatically starts in the
ATMONA-Monitor. Hit the K-key for coldstart
of the Editor/Assembler.

- 0 Cursor one position backward

- R Open C-Register

- S Cursor to beginning of next line

- T Control display; all control charac-
ters are displayed 'reverse' (switched
on/off by applying the command
consecutively)

- U Delete one character forward

- V Full Line Mode. The first 76
characters of a line are shown; a
maximum of 10 lines are displayed.
The mode can be switched on/off
by applying the command conse
cutively.

- W Cursor to begin on same line or
preceding line.

- X Deletes current line from beginning
till cursor position/or whole
previous line (when cursor is placed
at first position of the line).

- Y Jump into Assembler

- Z Insert CT R L-'Z' (Assembler stop
sign)

ESCAP E -K EY Opens Command Line when
entering the Command Mode

- t Deletes all text from text-begin
till the actual cursor position.

1.4.2. Command Mode

With 'ESCAP E' one enters the Command Mode
by opening the Command Line. ESCAP E is
displayed as a S sign. Commands to be executed
are written into the Command Line. For the
numerous commands in this mode, different
single characters (not shifted!) are assigned.

The following 'Command Mode' options are
available:

@ n : Set Tabulator to value n

B : Cursor one position back

D : Delete one character back

E : Erase C-Register

F : Cursor one position forward

1 2

G : Insert C-Register at actual cursor
position

H (byte } : Insert Hex byte at actual cursor
position

I (string) : Insert ASC I I string at actual
cursor position

J : Jump to beginning of Command
Line (i. e. reexecute w hole
Command Line)

K : Erase textbuffer (!I I)

L : Lists text on screen .

L 1 : Lists text on Screen and printer
via Microtroni.cs Interface.

If you want to print via the joystickinterface
3 + 4, please connect your Centronics printer
according to the following figure.

EPSON ATARI

PORT3 PORT4

PIN# PIN# PIN#

(19) STROBE 4
,2 (20) DATA

�' <21) DATA 2 2

4 <22) DATA 3 3

5 <23.) DATA 4 4

6 (24) DATA 5

7 (25> DATA 6 2

8 (26) DATA 7 3

9 (27) DATA 8 8

11 (29) BUSY 6

<GNDl 8 8

R : Read .text file from cassette or
diskette

ATMAS needs
R (Device) [NAM E) ESC (Example: R D1
: F I L E) Reads Source File from Disk 1 with the
name " F I L E". Extensions .SRC will be added
automatically. If you want to read from cassette
R C : E SCAP E
Reads next source file from cassette.
The text will be inserted at the actual cursor
position. (Chaining, appending).

S (string) : Search for 'string' (ASCII-string)
in text between actual cursor
position and text end.

T : Delete all characters between
actual cursor position and begin of
next line.

U : Jump to user program starting on
location SA800 hex (SA800 for
disk and saooo for cartridge).

W : Write text from text beginning till
actual cursor position on cassette
or diskette refer to Read
Command

Syntax legend:
n : numbers 1 to 9 are allowed;

default value of program as
delivered is preset to 9

byte : Hex byte between 00 and FF
string : ASiCll string ended by 'ESCAPE',

same as with name
: Space; obligatory as delimiter
when a name is used; otherwise
optional

0 [) = optional

In the Command Mode there are additionally
two Direct Mode commands allowed:

CTRL-X

CTRL-H

: Erase Command Line and jump
back to Direct Mode

: Delete last character on the
Command Line

Different commands can be chained in the
Command Line. They can be separated by
'ESCAPE' as delimiter is obiigatory; in all other
cases it can be used optionally. If an integer
number n between 2 and 255 is set before a
command, it will be executed n times; excepted
are the commands R, W and Z. When finally
'ESCAPE' is key ed in twice the comman_ds
on the Command Line are immediately exe
cuted. The Editor prompts the exel:ution by
displaying a # sign at the latest position on the
Command Line and switches automatically over
to Direct Mode.

For example, assume that the following
commands have been written to the Command
Line: (S=display form of 'ESC')

S2SINTS3DITESTSJS(S) IS) = replaced by
prompt # after execution

Starting from the actual cursor position, a search
for 'INT' ist started twice. When 'INT' is
found the second time three characters in se
quence will be deleted and 'TEST' inserted
back. This whole operation will be repeated in
the text which follows over and over till the
search for 'INT' is exhausted, which is doubly
indicated by the error message S? (see below)
at the end of the Status Line.

In short, one. can see in this example that every
second 'INT' string in the text between the
actual cursor position and the text end will be
replaced by 'TEST'.

1 .5 Status and Error Messages
The Status and Error Messages are displayed
at the last two positions on the Status Line
on top.
Status Messages:
OK normal status; C-Register closed
CR C-Register open

Error-Messages:

RW illegal Read or Write command:
e.g. illegal device # I no character
preceding, actual cursor position
if write, ERROR caused by a
nonexisting device or file or error
during write or read

CO Command line overflow
E? illegal or no command on

Command Line
H 7 wrong or no Hex-argument
17 textbuffer overflow (T:OOOO)
L? wrong 1/0 - device for listing

/aborted listing I device not
present

S? string search exhausted/string not
present in text?

T? illegal Tabulator value
C? C-Register overflow
? illegal argument for repetitive

execution of a command.
All error messages are skipped by the next
following Direct Mode cc>mmand.

1 .6 C-Register
The socalled C-Register is in fact an addi
tional textbuffer as a mean for text copying
to any place in the text stored in the main
textbuffer. To copy text into the C-Register
one has to open it by the command 'CTR L
R'. The C-Register when opened is then
connected parallel to the main textbuffer
and editing commands will be executed

1 3

equally in both text areas. Text is copied
to the C-Register by the editing commands
which are moving the cursor backwards
through the text (e.g. CTRL-Q;, CTRL-W;
CTRL-E, CTRL-H, CTRL-X). At the end of
the text copying one has to close the C
Register by 'CTRL-F'. The text within the
G-Register is now protected during normal
editing operations but can be inserted or
copied as many times as wanted by giving
the available appropriate editing commands.

The C-Register is automatically closed after
execution of Command Line or by a jump

· into the Assembler.

2. Assembler
The Assembler can be started directly from
the Editor by pressing CTRL-Y. The
Assembler translates (in three passes) the
source-<:ode text stored in the Editor text

. buffer starting from textbegin till a CTRL
'Z' (Assembler stop sign) is encountered.
If no CTRL'Z' is set in the text, assembling
is executed till the end of the text. When
"the Assembler enters the second pass an
action indication is displayed on screen at
the last position of the line on top. As
output option you can get from the third
pass on a list of the assembledctext, a label
list or both together edited on screen.
These lists can also be output to a printer.

If during assembling no errors have been en
countered, the Assembler stops after completion.
By pressing any key you can return to the
Editor.
If an error is found during assembling, the
Assembler stops immediately and a self-expla
natory error message is displayed on screen.By
pressing any key you return to the Editor with
the cursor positioned directly after the
erroneous text part. These features contribute
considerably to a quicker correction.

ATAS ERRORS
There exist the following error messages:
'DIVISION BY ZERO'
'SAME LABEL TWICE'
'TOO MANY LABELS' : LABEL-List overflow
'WRONG OPCODE'
'NO HEX' Illegal HEX-Argument
'ORG - ERROR'
'LABEL NOT DEFINED'
'BAD BRANCH'
'OPCODE UNKNOWN;CHECK ADDRESSING'
'STRING TOO LONG': more than 250 char.

1 4

'NO ASCII' no or illegal ASCII
Argument as CTRL
'Z' (=CTRL-Z)or CR
(CTRL-M or RE
TURN)

48K ATMAS has the following error messages:
"LINE TOO LONG" (If line more than 127 ch.)
''TOO MANY LABELS"
"DIVISION BY ZERO"
"NO ASCII"
"UNDEFINED EXPRESSION"
"NUMBER ERROR"
"SYNTAX ERROR"
"NAME UNKNOWN"
" ORG ERROR"
"SAME LABEL TWICE"
''WRONG DELIMITER"
" MACRO ERROR"
" IMPOSSIBLE BRANCH"
"ADDRESSING ERROR"

"OPCODE DIFFERENT" Opcode is recognized
different between
pass 2 and pass 3. For
instance a table was
recognized as an
absolute label in the
second pass and then
in 3 pass it turned
out as zero page in
struction.

WARNING

Define the table more
carefully I

Another example:
Two ORG-Commands
were in conflict.

During the list of the assembled code a warning
can appear:

''WARNING OPERAND OVERFLOW". This
happens, if you want to put a two byte expres�
sion into a one byte location. This must not be
an error, because it can happen on purpose. If
no warnings occur at the end the assembler
prints "NO WARNINGS".

2.1 Formats and Syntax
The Assembler interprets all existing Opcodes
of the 65XX-Assembler language set as well
as a few additional Pseudo-Opcodes which
are in fact control commands for the
Assembler

2.1.1 65XX-0Pcodes:

ADC; AND; ASL; BCC; BCS; BEO; BIT; BMI; BNE; BPL; BRK;
BVC; CLC; CLD; CLI; CLV; CMP; CPX; CPY; DEC; DEX; DEY;
EOR; INC; INX; INY; JMP; JSR; LDA; LDX; LDY; LSR; NOP;
ORA; PHA; PHP; PLA; PLP; ROL; ROR; RTI; RTS; SBC; SEC;
SED; SEI; STA; STX; STY;TAX; TAY; TSX; TXA; TXS; TVA

2.2.2 Pseudo-OPcodes:
EOU EOUal
EPZ Equal Page Zero
O RG ORGanize, fix start address
DFB . . DEFine Byte, insertion of a byte
DFW DeFine Word, insertion of a word (= 2 bytes, lower and

higher byte)
ASC ASCII-String, insertion of ASCII-string
OUT OUT put

The new ATMAS 48K has the following Pseudo
opcodes:

and the following 6502 Opcodes: GOTO = JMP
(both opcodes are existing)

MACRO, MEND JSR can be omitted.

ATMAS
ASC

OUT

2.2.3 Format of Addressing-Modes:
lmpl. Accu : [Label lwOPC [w;(Com) I (RETU RN)
Immediate : [Label LOPCu# (Expr) !w<Com) I (Return)
Abs, Zp, Rel : [Label LOPCu(Expr) [....,(Com)] (Return)
AbsX;ZpX : [Label]L,OPCw(Expr), X [._,(Com)] (Return)
AbsY;ZpY : [Label]uOPCJ Expr), Y[w(Com)] (Return)
lndX. : [Label]...,OPCu((Expr.>, X) [...,(Com) I (Return)
lndY. :[Label]u<OPCw(< Expr)), Y [w< Com) I (Return)
Ind. : [Label lwOPCw((Expr)) [u(Com)] (Return)

2.2.4 Format of Pseudo-OPcodes:
EOU (Label)u EOUw (Expr) [....,(Com)] (Return)
EPZ (Label) wEPZw<Expr) [J Com)] (Return)
ORG [Label]....O RGu(PU [.(PP)] [.JC.om >) (Return)
DFB [Label)._, DFBu(Expr) [. (Expr) I " [u(Com) I (Return)
DFW [Label]uDFV\L(Expr) [. (Expr)) " [._,(Com)) (Return)

[LABEL]..__,ASCw(DELIM) [STRING] (DELIM) [, (DELIM)
[STRING) (DELIM)) "[u(COMM)] (RETU RN)

[LABEL].._,OUT..,[L] [N] [M] [P)µ(COMM)] (RETURN)
[m] = MACROS not expanded

ATAS ASC: [LABEL)wASCu(DELIM) [STRING] (DELIM) [u COMM] (RETURN)
OUT : [LABEL)wOUTw [L) [N) [P] [wCOMM) (RETURN>

2.2.5 Syntax legend
Expressions within () are mandatory. Ex
pressions within [] are optional. A " after]
indicates that the whole expression within
[] can be repeated as many times as desired.
A .._, indicates that at least one Space or one
CTR L-1 must be inserted. OPC indicates a legal
OPcode.

Textlines beginning with • or CTRL-L are
skipped by the Assembler as comment. An
empty line,i. e. a line containing only
(RETURN) is also skipped.
Label: Label consisting of at least one and

up to a maximum of eight letters
or digits where the first character
must always be a letter. All eight

15

characters of a label are significant.
String: String of ASCII-characters; their

values will be inserted here according
to their position within the string.
A string may contain a maximum of
250 characters and must be opened
and closed by the same delimiter
(DELIM).

DE LIM: All non-alphanumeric characters
The use of \ as delimiter increases
automatically the value of the last
string character by sao or 128.

COM: Comment may be placed here.
REturn: Carriage return (CR); effectuated

by RETURN-key or CTRL-M.
Expr : for AT AS - Expr stands for an

expression of which its arithmeti
cally calculated value will be used as
argument for the OPcode. Expr can
be a decimal number, a Hexnumber
(as 915, S F62A etc.). a label, an
ASCll-<:haracter (as 'A, 'B, '#etc.).
or in combination with the arith
metic operators + - * I an Expr
containing sums, products or
quotients of Expr's. The arithmetic
value range is -65535 to +65535.
ASCII-characters imply immediate
addressing and will be used as seven
bit value' argument. E. g., LOA 'X
is identical to LOA # S 58 or LOA
88. An asterisk • as term in an
Expr will be interpreted as the value
of the actual program pointer, which
makes relative indexing very easy.

For A TMAS use brackets for priority

PL, PP:

1 6

PL = logical start address of the
assembled program
PP = physical start address, which
means that the assembled program
has been only dumped to a memory
range with PP as start location.
This feature enables the user to
assemble a program for a memory
range which, for instance, is at the
time of assembling occupied by
another program and then dump
it on a memory area starting at PP.
Later he can transfer the program
by a simple block transfer to its
final destination.
L : L = Assembler output listing
N : N = Label listing
P : Printer option

Short description of the "Normal Demo"
program

First the labels are defined. EXW EPZ S F0.1
means that memory location FO and F 1 are
defined as the hexbuffer. The number 1 (F0.1)
is a comment and no definition! It is not re
cognized as a pseudo op during assembly.

After that we define the operating system
routines, we use in the program. To show
you that we can use EPZ or EOU for definitions
we wrote SC ROUT EOU S F6A4.
(EOU = EPZ)

EOL defining ATASCI or ASCII values
CLS CRN }
CR

ORG sets the beginning of the program to A800
hex. With the command U you can start the
program for texting from the editor. Physical
and logical addresses are the same.

In location A80C we can use the word
MESSAGE instead of JSR MESSAGE. The
following ASC Pseudo-OPcode followed by
a string between delimiters puts this string into
mem'ory. (A80F-A817). The assembler adds
128 to the last character of the string, because
the delimiter (bad slash) performs this function.
Message prints the string to the screen. After
performing this subroutine the program will be
continued at A818 hex. Because of stack mani
pulation the locations A80F to A817 are
skipped by the CPU. This combination is con
venient for a powerful MACRO, if you work
with programs containing a lot of text.

To perform the same operation with a MACRO,
we define the MACRO with the name PRINT
(see MACRO DEMO) with formate parameter
STRING.

PRINT MACRO STRING
MESSAGE
ASC STRING
MEND

Definition
of the
MACRO

At address A83D hex (see MACRO DEMO).
for instance, we can find a macrocall wit the
actual parameter \ HEXADECIMAL: S \ .
The assembler replaces now in the macro defi
nition the formal parameter STRING by the
actual parameter \HEXADECIMAL: S\. Thus
every formate parameter now can be replaced
by the. actual parameter by the MACRO. A
MACRO can have more than one formal para-

meter, which are separated by a komma.
During a macrocall the formal parameter has
been replaced by the actual parameter in the
same order. A macro can have local labels. The
look alike normal global labels, however, must
be followed by a @. During every macro call
this @ will be replaced by a different four digit
decimal number. This gives you the option for

nested MACROS as long as the hardware stack.

The following program shall demonstrate the
use of a macro assembler. The savings are not
extremely high, because most of the macros are
only used once in the text.
For more information and tutorials about
macros refer to literature on the subject.

* *
*
*
*
*
*

MACRO DEMO

FOR ATMASD

ATARI 800 48K

*
*
*
*
*

* *

* MACRO-DEFINITIONS

INPUT MACRO STOPCHAR MACRO WITH PARAM.
GETLOOPO> GET CHAR

CMP tlSTOPCHAR
PHP
ROR LASTDIG IF STOPCHARTHEN SET LASTDIG
PLP
BEQ OKO> PRINT STOPCHAR
CMP 'O
BCC GETLOOPO> IF ASCII <O THEN WAIT
CMP '9+1
BCS GETLOOPO> IF ASCII >9 THEN WAIT

OK@ SCROUT PRINT ON SCREEN
MEND MACROEND

OUTPUT MACRO EXPRESSION
LDA EXPRESSIDN+l LOAD HIGHBYTE
BYTEDUT PRINT IT
LDA EXPRESSION LOAD LOWBYTE
BYTEDUT PRINT IT
MEND

PRINT MACRO STRING
MESSAGE JUMP SUBROUTINE
ASC STRING DEF.STRING
MEND

INIT MACRO LDCATION,FLAG,LINE
LDA 110
STA LOCATION CLEAR LOCATION
STA LOCATION+l
STA FLAG CLEAR FLAG
MESSAGE
DFB CLSCRN+128 CLEAR SCREEN
PRINT LINE
MEND

INC2 MACRO PT
INC PT INCREMENT LOWBYTE

17

*

EXW
AUX

LASTDIG

SCROUT
GET CHAR

CLSCRN
EOL
CR

*

ABOO: A90085+START
AB03: FOB5F1+
AB06: 85F420+
AB09: 72ABFD+
ABOC: 2072AB+
ABOF: 444543+
AB12: 494041+
AB15: 4C20BA+
A818: 20DDF6+INLOOP
A81B: C99BOB+
ABl E: 66F42B+
A821: F008C9+
A824: 3090F1+
A827: C93ABO+
A82A: ED20A4+
A82D: F6 +
A82E: 24F4
A830: 3006
A832: 205FA8
A835: 4C1BA8
A838: 2072A8 FINISH
A83B: ODBD
A83D: 2072A8+
A840: 484558+
A843: 414445+
A846: 434940+
A849: 414C20+
A84C: 3A20A4+
AB4F: A:5F120+
A852: 9AA8A5+
A855: F0209A+
A858: AS +
A859: 20DDF6
A85C: 4COOA8

A8:5F: 290F
A861: A211

18

*

DECHEX

BNE *+4 NO OVERFLOW
INC PT+l OTHERWISE ALSO HIGHBYTE
MEND

DEFINE LABELS

EPZ •F0.1 HEXEXPRESSIONBUFFER
EPZ SF2.3 AUX.POINTER FOR PRINTROUTINE
EPZ SF4 FLAG TO SHOW END OF INPUT

EQU $F6A4 SCREENOUT
EQU SF6DD WAIT FOR "INPUT ASCII <KEY> =

>ACCU
EQU $70
EQU $9B
EQU $00

ORG SABOO

MAINLOOP

INIT EXW,LASTDIG,\DECIMAL :\ INITIALISE PAR.,
PRINT STRING

INPUT EOL

BIT LASTDIG
BMI FINISH
DECHEX
JMP INLOOP
MESSAGE
DFB CR,CR+128

KEY INPUT

IF RETURN THEN FINISH
NEXT DECIMAL POSITION TO EXW
ALWAYS TAKEN

PRINT \HEXADECIMAL : $\

OUTPUT EXW

GET CHAR
GOTO START

SUBROUTINES:

AND #7.00001111
LOX #17

WAIT FOR ANY KEY
STARTS AGAIN

MAKE ASCII => BIN.
16 BIT HEXADECIMAL

A863: 0005 BNE DEC3 A.T. ALWAYS TAKEN
A865: 9002 DEC2 BCC *+4 IF B IT=O ONLY ROTATE
A867: 6909 ADC #9 OTHERWISE ADD 9+CARRY=10
AB69: 4A LSR ROTATE ACCU THROUGH CARRY IN EXW
A86A: 66F1 DEC3 ROR EXW+1
AB6C: 66FO ROR EXW BIT = > CARRY
A86E: CA DEX ONLY X-1 BITS
AB6F: DOF4 BNE DEC2 IF X<>O THEN ROTATE
AB71: 60 RTS

AB72: 68 MESSAGE PLA <STACK>=>AUX
A873: 85F2 STA AUX
AB75: 68 PLA
A876: 85F3 STA AUX+1
A878: A200 LOX #0
A87A: E6F2DO+MESLOOP INC2 AUX
A87D: 02E6F3+
ABBO: A1F2 LOA <AUX, Xl NEXT PR INT-CHARACTER
ABB2: 297F AND #7.01111111 B IT 7:=0
A884: C90D CMP #CR
AB86: 0002 BNE MESS2 IF CHAR=CR THEN CHAR=EOL : ATASCII
ABBS: A99B LOA 41EOL RETURN
ABBA: 20A4F6 MESS2 SCROUT PRINT CHAR
ABBD: A200 LOX #0
ABBF: A1F2 LOA <AUX,Xl
AB91: 10E7 BPL ME SLOOP IF .ASC II <CHAR> >*128 THEN MESLOOP
ASSED :TEXT P

AB93: A5F3 LOA AUX+1 AUX => <STACK>
A895: 48 PHA
A896: A5F2 LOA AUX
A898: 48 PHA
A899: 60 RTS JUMP TO NEXT OPCODE

A89A: 48 BYTE OUT PHA ACCU = > <STAC�'.l
A89B: 4A LSR ACCU := HIGHNIPPLE <ACCUl
A89C: 4A LSR
A89D: 4A LSR
A89E: 4A LSR
A89F: 20A5AB HEX OUT PR INT HEXADECIMAL
ABA2: 68 PLA <STACK> => ACCU
ABA3: 290F AND 417.00001111 ACCU := LOWN IPPLE <ACCUl
ABA5: C90A HEX OUT CMP 419+1
ABA7: 8004 BCS ALFA IF NIPPLE >9 THEN ALFA :10-15 ARE
TERS CHARAC

ABA9: 0930 ORA 'O ACCU := ASCI I <ACCU> MAKE ASCII
ABAB: 0003 BNE HEXOUT2 A. T. NUMBERS
ABADr 18 ALFA CLC
ABAE: 6937 ADC

A-F
ABBO: 4CA4F6 HEXOUT2 GOTO

PHYSICAL ENDADDRESS:$ABB3

*** NO WARNINGS

INPUT
PRINT
INC2
AUX
SCROUT
CLSCRN
CR

MACRO
MACRO
MACRO
$F2
$F6A4
$70
$00

'A-10

SCRO UT

ACCU :=

RTS V IA

OUTPUT
INIT
EXW
LASTDIG
GET CHAR
EOL
START

ASC II <ACCU> MAKE ASCII
CHARACTERS

SCROUTROUTINE

MACRO
MACRO
$FO
$F4
SF6DD
$98
SA BOO

1 9

INLOOP
OK0003
DECHEX
DEC3
ME SLOOP
BYTE OUT
ALFA

ABOO: A900
A802: 85FO
A804: 85Fl
AB06: 85F4
ABOS: 2072AB
ABOB: FD
ABOC: 2072AB
ABOF: 444543
AB121 494041
A815: 4C20BA
A81B: 20DDF6
AB1B: C99B
AB1D: OB
AB1E: 66F4
AB20: 28
AB21: FOOS
AB23: C930
AB25: 90Fl
AB27: C93A
AB29: BOED
AB2B: 20A4F6
AB2E: 24F4
AB30: 3006
AB32: 205FA8
AB35: 4C1BAB
AB3B: 2072AB

20

$A818 GETLOOP0003

$A82B FINISH

$A85F DEC2

$A86A MESSAGE

$A87A MESS2

$A89A HEX OUT

$ABAD HEXOUT2

*
* *
* NORMAL DEMO *
* *
* FOR ATMASD l *
* *
* ATARI 800 48K *
* *
* * * * * * * * * * * * **

* DEFINE LABELS

$A818
$A838
$A865
$A872
$ABBA
$A8A5
$A8BO

EXW EPZ $F0.1 HEXEXPRESSIONBUFFER
AUX EPZ $F2.3 AUX.POINTER FOR PRINTROUTINE
LASTDIG EPZ $F4 FLAG TO SHOW END OF INPUT

SCROUT EQU $F6A4 SCREENOUT
GETCHAR EQU $F6DD WAIT FOR INPUT ASCII <KEY>=

>ACCU
CL SC RN EQU $70
EOL EQU $98
CR EQU $00

ORG $A800

* MAINLOOP

START LOA #0
STA EXW CLEAR EXW
STA EXW+l
STA LASTDIG CLEAR FLAG
MESSAGE
DFB CLSCRN+l 28 CLEAR SCREEN
MESSAGE
ASC \DECIMAL . \

GET LOOP GET CHAR
CMP #EOL
PHP
ROR LASTDIG IF EOL THEN SET LASTDIG
PLP
BEQ OK PRINT EOL
CMP ·o
BCC GET LOOP IF ASCII <O THEN WAIT
CMPr '9+1
BCS GETLOOP IF ASCII >9 THEN WAIT

OK SCROUT PRINT ON SCREEN
BIT LASTDIG
BMI FINISH IF RETURN THEN FINISH
DECHEX NEXT DECIMAL POSITION TO EXW
JMP GETLOOP ALWAYS TAKEN

FINISH MESSAGE

A83B: 0080 DFB CR,CR+128
A83D: 2072A8 MESSAGE
A840: 484558 ASC \HEXADECIMAL $\
A843: 414445
A846: 434940
A849: 414C20
A84C: 3A20A4
A84F: A5F1 LOA EXW+1 LOAD HIGHBYTE
A851: 209AAB BYTEOUT PRINT IT
A854: A5FO LOA EXW LOAD LOWBYTE
A856: 209AA8 BYTE OUT PRINT IT
AB59: 20DDF6 GET CHAR WAIT FOR ANY KEY
A85C: 4COOA8 GOTO START STARTS AGAIN

* SUBROUTINES:

A85F: 290F DECHEX AND !1%00001111 MAKE ASCII => BIN.
A861: A211 LOX !117 16 BIT HEXADECIMAL
A863: D005 BNE DEC3 A.T. ALWAYS TAKEN
A865: 9002 DEC2 BCC *+4 IF BIT=O ONLY ROTATE
A867: 6909 ADC 119 OTHERWISE ADD 9+CARRY=10
A869: 4A LSR ROTATE ACCU THROUGH CARRY IN EXW
AB6A: 66F1 DEC3 ROR EXW+ l
A86C: 66FO ROR EXW BIT => CARRY
A86E: CA DEX ONLY X-1 BITS
A86F: DOF4 BNE DEC2 IF X< >O THEN ROTATE
A871: 60 RTS

A872: 68 MESSAGE PLA <STACK>= >AUX
A873: 85F2 STA AUX
A875: 68 PLA
A876: 85F3 STA AUX+l
A878: A200 LDX !10
A87A: E6F2 MESLOOP INC AUX INCREMENT LOWBYTE
A87C: D002 BNE *+4 NO OVERFLOW
A87E: E6F3 INC AUX+l OTHERWISE ALSO HIGHBYTE
A8801 A1F2 LOA <AUX,X> NEXT PRINT-CHARACTER
A882: 297F AND !1%01111111 BIT 7:=0
A884: C90D CMP #CR
A886: D002 BNE MESS2 IF CHAR=CR THEN CHAR=EOL : ATASCI I
ABBS: A99B LDA !IEOL RETURN
ABBA: 20A4F6 MESS2 SCROUT PRINT CHAR
A88D: A200 LDX 110
A88F: A1F2 LDA (AUX,X>
A891: 10E7 BPL MESLOOP IF ASCII<CHAR>>=128 THEN ME SLOOP
ASSED :TEXT P
A893: A5F3 LDA AUX+ l AUX => <STACK>
A895: 48 PHA
A896: A5F2 LDA. AUX
A898: 48 PHA
A899: 60 RTS JUMP TO NEXT OPCODE

A89A: 48 BYTEOUT PHA ACCU => <STACK>
A89B: 4A LSR ACCU 1= HIGHNIPPLE <ACCU>
A89C: 4A LSR
A8901 4A LSR
A89E: 4A LSR
A89F: 20A5A8 HEX OUT PRINT HEXADECIMAL
ABA2: 68 PLA <STACK>=> ACCU
A8A3: 290F AND 11%00001111 ACCU := LOWNIPPLE <ACCU>
A8A5: C90A HEX OUT CMP 119+1

21

A8A7: 8004 BCS ALFA
TERS
ASA9: 0930 ORA
ASAB: D003 BNE
ASAD: 18 ALFA CLC
ASAE: 6937 ADC

A-F
A8B01 4CA4F6 HEXOUT2 GOTO

PH�SICAL ENDADDRESS: $A8B3

* * * NO WARNINGS

EXW
LASTDIG
GETCHAR
EOL
START
OK
DECHEX
DEC3
MESLOOP
BYTEOUT
ALFA

22

SFO
$F4
SF6DD
$98
$A800
SA82B
SA85F
SA86A
SA87A
SA89A
SABAD

·o
HEXOUT2 A. T.

'A-10

SCROUT

IF NIPPLE >9 THEN ALFA 110-15

ACCU 1=

ACCU :=

RTS VIA

AUX
SC ROUT
CLSCRN
CR
GETLOOP
FINISH
DEC2
MESSAGE
MESS2
HEX OUT
HEXOUT2

ARE CHARAC

ASCII<ACCU> MAKE ASCII
NUMBERS

ASCil<ACCU> MAKE ASCII
CHARACTERS

SCROUTROUTJ NE

SF2
SF6A4
$7D
SOD
SA818
SA838
SA865
SA872
$ASSA
SA8A5
SASBO

Introduction to the use of
MACROS

Introduction to the use of MACROs

The purpose of macros as well as of subroutines
is to replace often needed routines by a simple
"811.

Although macros and subroutines are similar
there are differences which you have know in
order to be able to use them the best way. The
next figure shows the difference:

subroutine

. . I

I .. .:

'\
'I
'I
' I
: I

I

I

macro

macro

macro

Subroutines as well as macros are written only
once by the programmer but the assembler
writes subroutines only once while inserting the
whole macro every time they are called. By that
technique the stackoperations necessary with
the use of subroutines are sowed.

In general we can say:
macros need more memory but they are faster
subroutines are easier to use.

At the beginning of the main program where
the macro is defined, we use formal parameters.
These formal parameters are used instead of the
actual parameters handled over to the macro
every time we call ist. Parameters .used only
within the macro are named local parameters.

Example:
macro-definition: INC2 MACRO PT

INC PT
BN E *+4
INC PT+ 1
M END

Name of the macro ist INC2, name of the
formal parameter ist PT.
Call of macro. INC2 A UX
Name of the actual parameter is A UX.

Another example shows a blocktransfer-routine .
This routine moves a block of bytes between
STARTP and ENDP to a location beginning at
INTOP.

MOV LOA
CMP [��!
CMP
B EQ
LOX
LOA

STARTP
END

STARTP+ 1
ENDP+ 1
ENDMOV
#0
(STARTP,X)
(INTOP,X)
STARTP

STA
INC
BN E
INC
INC
BNE
INC
JMP

*+4 INC2 STARTP

ENDMOV RTS

STARTP+ 1
INTOP
*+4
INTOP+1
MOV

INC2 INTOP

If you have defined the following macro at the
beginning:

INC2 MACRO PT
INC PT
BN E *+4
INC PT+ 1
M END

you can replace the parts of the program marked
by brachets by calling macro INC2 STARTP
and I NC2 tNTOP.

23

24

A s ample s es s ion with the ATAS- 1

Order-No. 7098 32k RAM
Order-No. 7998 48k RAM

S 49.95
S 49.95

For loading see the ins truct ions given for locating ATMONA- 1

(ATMONA- 1 + ATARI MONITOR Vers ion 1) . The ATMONA- 1 is part

of the assemb ler ATAS - 1 .

Important : This as s emb ler is written for a 3 2K sys tem , either

ATARI 400 or ATARI 800 . It wil l only run in this environment .

If you have less memory , it wil l not work , but if you have

more memory it also wi ll not work . Therefore , if you have a

48K system , you have to remove the upper 16K of memor Y .

After loading you wil l see t h e mes s age ATAS - 1 .

To s tart the assemb ler , type K for colds tart . This wil l eras e

the text buffer and should only be typed i n a t the beginning

of a new s e s s ion .

After doing this , you s e e two lines on the s creen . One on

the top :

P : OOOOO T : 09984 C : 00512 OK

and a line of dots on the bottom .

The cursor is a t the beginning of the text window . I f you

type in s ome text , you wi l l see an increas ing number at P :

and a decreas ing number at T : .

The number at P : shows you how many bytes you have used for

your text ; the number at T : shows you how many bytes of the

textbuffer are free .

Now , let ' s eras e the text you have written by typing

ESC K ESC ESC

After typing the fir s t ESC , you wil l see a $ s ign at the

beginning of the command line . This means you have opened

the commandline for entering commands . The letter K indicates

you wi l l eras e the textbuffer . The next ESC closes the command

and it is executed with the next ESC . The command line now

looks like following :

Kft

The number s ign indicates that you executed the command .

As an example we wil l type in the following program :

EOU TC H EQU $F6A4
PUTL I N EQU $ F 3 8 5

ORG $AC0 0 ATMAS I 4 8 K

* ORG $A800 ATMAS 4 8 K
* ORG $ 8000 ATAS 4 8K
* ORG $ 6 0 0 0 ATAS 3 2 K

LOA t $7 D
J S R EOUTCH
LOX t MES : L ATMAS & ATMASI
LDY t MES : H ATMAS & ATMAS I

* LDX tMES ATAS 32K & 4 8 K
* LDY tMES/ 2 56 ATAS 3 2 K ' 4 8 K

JSR PUTL I N
B RK

MES ASC "DI ESE MELDU NG W I RD"
ASC " AUF DEM B I LDSCH I RM AUSG EGEBEN"

D F B $ 9 B

25

This program uses two monitor routines of the ATARI monitor .

The routine EOUTCH puts one character on the s creen ; the

routine PUTLIN outputs text until a $ 9 B is encountered . The

maximum length of text is 1 2 8 bytes .

The ins truction ORG $ A800 means that our program s tarts at

memory location $ A800 .

In this program , we load the accumulator with $ 7D and put

this command on the s creen with JSR EOUTCH . This is the

internal command for the ATARI to eras e the s creen and set

the cursor in the upper left position of the s creen . Then

we use the subroutine PUTLIN to print text on the s creen .

The starting address of this text is trans ferred to the

subroutine PUTLIN via the X and the Y regis ters . The low

byte of the address mus t be in the X-register and the high

byte in the Y- regi s ter .

After the JSR PUTLIN

ins truction , the program is terminated by a BRK ins truction .

A new ORG $4050 tells the a s s emb ler to s tore the following

text beginning at this location .

The ps eudo instruction ASC is used for s toring the text .

The end of the text is indicated by the p s eudo ins truction

DFB $9B .

(DFB equals DeFine Byte) . ATARI us es $ 9 B for ending a text

ins tead of $ OD as it is
.

normally used as an ASC I I - character .

26

The ATAS - 1 u s e s the normal int erp r e t a t i on o f t ext j us t l ike

o ther as s emb l ers . A l ab e l s t a r t s in the f i r s t column o f a

t ext l ine : an opcode i s preceeded by at leas t one space

charac ter .

To get a neat lo oking output in our as s emb ler text , we u s e

t h e TAB fun c t i on o f t h e editor . Every l ab e l s tar t s in the

f ir s t c o lumn , every op- code s t ar t s in the 9 t� c o lumn .

We s e t the TAB - func t ion by typ ing

E S C @9ESC E S C

Our command l ine l o o k s l ike :

$@9$/J
Now we s t art wr i t ing the text :

EOUTCH

PUTL IN

CTRL I

CTRLI

CTRLI

CTRLI

EQU $F6A4
EQU $F385
ORG $ ACOO

LDA $ 70 and s o on .

CTRL I means , p r e s s ing b o th the CTRL and the I key at one

t ime .

I f you make a typ ing error , you can era s e the preceeding

char a c t e r b y CTRLN .

At the end of the text , type CTRL Z . Thi s indi c a t e s to the

a s s emb ler that the a s s emb l ing s tops here . ATAS I doesn ' ' t

u s e an END - ins truc t i on .

27

Order:No. 7022 cassette version S 19.95

Order-No. 7023 disk version S24.95

Order-No. 7024 cartridge version S 59.00

ATMONA-1
ATMONA-1 - Machine Language Monitor for the ATARI
ATMONA-1 was developed by Ing. W. Hofacker GmbH for the
AT AR I 400 and 800 computers. It is a machine language monitor
supplied on a bootable cassette.
For loading the cassette, use the following instructions:
1. Turn off the computer, remove all cartridges and turn off the

disk (if any).
2. Insert the cassette in the program recorder and press PLAY.
3. While holding down the START key, turn on the computer.
4. When the computer beeps, release the ST ART key and press

RETURN
The program is now loaded into the computer.

After loading, the computer will show a copyright notice and the
title "ATMONA-1 ".

Now you can enter one of the following instructions :
D Disassemble
M Memory dump, with or without ASCII characters
C Change the content of a memory location
F Fill a memory block with a specified byte
'B Block transfer
L Load machine code from tape
S Save machine code on tape
G Goto a specified address (Start a program)
X Breaks the executed instruction and goes back to input

level. Same as SYSTEM RESET

Commands:
You must type in only. what's underlinded.

QISASSEMBLER
START? 1000
PRINT? N

28

Disassemble starts at 1000 HEX.
No print (see note).
Now disassembling begins, printing 16 lines

�
M
D U M P
F ROM : 1 000
TO : 1 1 00
ASC I I ? Y

N
P R I NT? · N

x

on the screen . H it any key (except the X key)
for the next 1 6 l i nes.
Term inates the d isassembl i ng .
Starts memory dump.

Dump begins at 1 000 H EX
Dump ends at 1 1 00 H EX
H ex bytes are a lso printed as ASC I I charac
ters.
O n ly hex bytes are printed • .

No prin.ter is used (see note) .
The dump starts, d isplay ing 1 6 l i nes on
screen . H it any key except the X key for the
next 1 6 l i nes. D ump ends at the ending
address, or
Terminates the dump.

Note : Pr int ing only with pri nter option (See appendix) .

�HAN G E .
AD D R ESS : 1 000
1 000 00 =) F F

1 00 1 00 =)
R ETU R N
1 002 00 =) x

f i l l
F ROM : 1 000

TO : 1 1 00

W I TH : AA

!!lOC KT RANSF E R

The content of memory address 1 000 H EX is
changed from 00 HEX to F F H EX.
The content of memory address 1 00 1 is
not changed .
Term inates the change.

F i l ls the memory b lock starti ng at 1 000
H EX unti l 1 1 00 H EX with the hex byte AA.

F ROM : 1QOO The contents of the memory block (starting
at 1 000 H EX, end ing at 1 1 00 H EX) are

TO : 1 1 00 transfered to 2000 H EX unt i l 2 1 00' H EX.

I NTO : 2000

29

.bOAD

.SAVE

FROM: 1 000

TO: 1 1 00

g_OTO 1 000

Appendix:

30

Loads a machine language program into
memory. Insert cassette, press PLAY and
RETURN.

Saves machine code on tape. Starting address
of the code is 1 000 HEX, ending
address is 1 1 00 HEX. Press RECORD and
PLAY on the tape recorder, then RETURN.

Starts a machine language program at memory
location 1 000 HEX. This address must be the
start ing address of the program.

Using a printer in the machinelanguage
monitor
a) YES (Y) after PR I NT? gives you three

options.
(1) Output to printer via serial port of the

ATARI RS232 Interface
(2) Output via the paral lel port of the

ATARI Interface
(3) Output via the expansion from Elcomp

. Publishing, Inc.

Order-No. 7049

Order-No. 7050

cassette venion

disk venion

149.95

154.00

ATMONA-2
ATMONA-2
The ATMONA-2 consists of two separate programs:
the ATMONA-1 which comes up when the cassette is booted
and the SUPE RTRACE R which starts at memory location
OFOO.
For loading the cassette, see the loading instructions given for
ATMONA-1.
After booting the cassette you can use all the functions of
ATMONA-1.
To start the SUPE RTRACER, type �OTO OFOO.
(For d isk version refer to page 35 !)
You will see the first command line of the SUPE RTRACE R:

SUPERTRACER (T) (G) (X) (C) (P)

T Start tracing thru a program. The starting address is
momentary content of the program counter' PC. Every
single step is d isplayed on the screen, showing you the
contents of the program counter PC, the accumulator
AC, the X- and the Y-register XR, YR, the stackpointer
SP, the flags in binary representation, and the
mnemonic code of the next instruction. To execute
this instruction, type SPACE or any other key except
those keys shown in the command line.

G The same as T, but now the steps are executed auto
matically until a stop condition is executed. If the
program doesn't f ind anyt hit SYSTEM RESET.

X Terminates the SUPE RTRACE R and switches back to
ATMONA-1.

C Enters the CHANGE command level.

P Sets the PRINTE R option (see note ATMONA-1).

31

The CHANG E command level :

Th is level is reached by typing C i n the f i rst command leve l . You
wi l l see the change command l ine :

CHAN G E (A) (O) (R) (X)

A Changes address. When the program is started by the G
command, it wi l l ha lt and d i sp lay the contents of the

registers every t ime this address is encountered .

0 The program wi l l noW •$top every time th is g iven operand
is encountered .
With both of these i nstructions you can set the address
stop or the operand stop. Both can be set i nd ividua l ly .

R Changes the contents of the registers. These are not stop
ping cond itions. The program executes the next instruc
tion with these predefined va lues. When you type R you
enter the th ird command level (see below) .

X Term inates the CHAN G E command leve l . The contents
of a l l registers is shown on the screen .

R E G ISTE R CHANG E level :
The command l i ne is :

CHAN G E PC, X R , Y R , AC, SP, F LAGS

_fC Sets the program counter to a predefined va lue. The next
T or G instruction wi l l start the program at this address.

� R , Y R , AC, �p The contents of these registers can be changed .

t_LAGS
S R : 80 80 H EX is equal to 1 000 0000 binary . Therefore the N

bit of the status .register is set to 1 .
R ETU R N

Terminates the reg ister change leve l .

The ATMO NA-2 can be used in three d ifferent ways:
1 . Search ing for bugs in mach ine language programs.
2 . Steppi ng thru unknown programs.
3. For educationa l pu rposes. Learn ing 6502 mach ine code.

32

The fo l lowing is a n example of item # 3. For those who want to
learn 6502 code, it shows the execution of some instructions.
We wi l l use the fo l lowing program m i n i -CO U NT . The program
cou nts the X and the Y reg isters as a 1 6-bit number u nti l this
number is equa l to a 1 6-bit number stored in the memory
locat ions S 1 F F E and S 1 F F F . (H ex numbers wi l l be indicated
by a preced ing S sign) .

Program CO UNT :

S 2000 A9 00

S 2002 AA
S 2003 AB
S 2004 CC F F 1 F
S 2007 DO 05
S 2009 EC F E 1 F
S 200C FO 07
S 200E EB
S 200 F DO F3

s 20 1 1 ca
S 20 1 2 1 8
S 20 1 3 90 E F
S 20 1 5 4C 47 07

M EM L = $ 1 F F E
M EM H = S 1 F F F
LOA # 00 Load accu with 00

TAX
TAY

MO CPY M EM H
B N E M 1
CPX M E M L
B EO F I N

M 1 I N X
B N E MO

I NY
C LC
BCC MO

F I N JMP 0747

immed iate ly
Transfer accu to X reg .
Transfer accu to Y reg .
Yreg = M EM H ?
I f not equa l , goto M 1
Xreg = M E M L ?
I f equa l then end
I ncrement Xreg .
I F Xreg not equa l 0, goto
MO
I ncrement Yreg

Jump to MO
Jump to ATMONA

Using the CHAN G E option of A TM ONA 1 , we enter the program
at start ing address S 2000 :

�HAN G E 2000

2000 00 =) A9

20 1 7 00 =) 07
u nt i l

We l eave the CHAN G E option by typ ing X and look at the pro
gram by Q isassemb l i ng . The program on the screen must be the
same as the l isti ng above, except there are no symbo l ic names.

33

Before we trace th is program, we change the contents of the two
memory locations S 1 F F E to 0 1 and S 1 F F F to 00.

Now we enter the SUP E RTRAC E R by yOTO OFOO and CHANG E
the R EG I STE R .fC to 2000, AC to F F , � R to F F and Y R to F F .

We l eave this program level by h itti ng the R ETU R N key and the
CHANG E option by typi ng X .

The fo l lowi ng two l ines must now appear on the screen :

PC
2000

AC X R Y R SP
F F · F F F F F F

N V . B D I ZC M N M OPE RAN D
00000000 LOA # 00

and a lso the ST command l ine :

SUP E RTRAC E R (T) (G) (X) (C) (P)

You wi l l note that a l l the reg isters have the va lue we entered . The
programcounter is S 2000 and the next instruction wh ich wi l l be
executed is LOA # 00 wh ich means to load the accumu lator with
00 immed iate ly .

Th is instruction is executed when we type T for T RACE . The
program stops at the next instruction, and the screen shows two
new l ines :

PC
2000

AC X R Y R SP
00 F F F F F F

N V .B D I Z E M N M O P E R A N D
00 1 1 00 1 0 TAX

The content of the accumu lator has changed to 00 (as it shou ld)
and the zero f lag i n the status reg ister is set to 1 because a zero
has been read i nto the accumu lator.

I f we type T once more we can see the resu lt of the instruction
TAX :

PC
2003

AC X R Y R SP
00 00 F F F F

N V . B D I Z E M N M OP E RA N D
00 1 000 1 0 TAY

I n this manner we can trace our who le program and we see that
each instruction accompl ishes.

34

For another short demonstration we wi l l use the AD D R ESS STOP
and the GO function . F i rst we step back to the ATMONA- 1 by

typing X and CHANG E S 1 F F E to 05. After leaving the change
option , we restart the SUP E RTRAC E R by GOTO OFOO. We
CHANG E ADD R ESS to 200E and R E G I STE R PC to 2000. With
R ETU R N and X we step back to the ST command leve l .
After starti ng the program with G , i t stops at address S 2007

because there is reference to our stopping address 200E in the
operand field (B N E 200E) . A new GO forces the program to con
t inue u nti l address 200E is reached .
Type G aga in if you wish to step thru the program unti l the Com
pare instruction in memory location S 2009 is fu l lf i l led .
The program wi l l then start tracing the ATMONA 1 .

The ATMONA-2 D isk Version comes on a bootable d isk. After loadi ng, you
enter the ATMO NA-1, which i s incl uded . Then you type Q to enter DOS.
In DOS you load the Superstepper object code, using the L-command .

The fi lename is : SUPRSTEP.OBJ.

Then you go back to the ATM O N A-1 with B-R U N ATMO N A.

To get to the Superstepper type G OTO 2AOO.

35

How to work with
ATMONA·-2

How to work with ATMONA-2

With ATMONA-2 you ca n step through a mach i ne language pro
gram in 6502 code. You can stop at a previously entered address,
opcode or operand . You can T (race i n single steps or simu late the
program with a G (oto .

Lets do an example:
F i rst load the ATMONA-2 .
Now you can look at the code of ATMONA- 1 by D (isassem bl ing
D 0747, P=No. You wi l l see the d isassembled l ist ing on the screen .
At address 0758 you shou ld see a JSR 0763 . F or debugg ing pur
poses we wi l l ha lt the program at that address .
By typ ing X we return to ATMONA-1 (i ncl uded in ATM ONA-2) .
We start ATMONA-2 by GOTO OFOO . You wi l l see the fi rst com
mand l ine :

SUPE R T R AC E R (T) (G) (X) (P)

Let' s type C for change.
Now you wi l l see the second command l ine :

C H AN G E (A) (0) (C) (R) (X)

To define a stop address we type A.
I t wi l l respond with:

A D D R ESS :

and here you enter 0758 . The second command l i ne wi l l return
and you can define other stopping cond itions. To start our test
program we change the contents of the program counter by
typing R for reg ister and we wi l l see the fo l l owing prompt l ine:

CHAN G E PC, X R , Y R , AC, SP, F LAGS

36

Here you can change the contents of the 6502 CPU reg isters.
I n our example we change the program cou nter by typing P, and
after the prompt PC : we enter 0747 wh ich is the starting address
of the testprogram . N ow we type R ETU R N for exit of this
command level and X for reach ing the h ighest command level .

ATMONA-2 wi l l d isp lay you r start ing address and the starti ng
cond itions.
Type G (oto and the supertracer wi l l si mu late the program u nt i l it
reaches a stopping cond ition . You wi l l see a slow execution of
ATMONA-1 because 0747 is its starting address . After a few
seconds it stops at address 0758, showi ng us the contents of the
reg isters and the mnemonic code of the next instruction to be
executed .
You are i n the fi rst command leve l and you can T (race (s ingle
step) or define new stoppi ng conditions.

I nstead of stopping at an address you a l so can stop at a defi ned
opcode or a defi ned operand .
The su pertracer ATMONA-2 stops at non executable opcodes,
R T I or B R K instruction .
Wh i le ru nn ing the supertracer may be stopped by pressi ng the
R ESET button .

37

LEARN FORTH
Order-No. 7053 119.911

LP.ARN FORnl has been developed by ELCDIP for the ATARI 400/800 . It allows
you to type in and run the sanple programs published recently in boolts
about FORm (Brodie, FORnl Leaming By Using , etc .)
LF.ARN FORm is available on cassette or on disk and will work even with a
cassette based ATARI 400 .
LF.ARN FORm by ELCDIP is a subset of fig-FOR'IH. It contains all
definitions of f ig-FOR.m, but it does not have an editor or screen windows
(SCREFNS) . It allows you to save your definitions. Camland VLIST shows the
definitions already inplemented.

Loading the disk-version

The disk-version boots itself and canes up with a message on the screen .

Loading the cassette-version

LF.ARN FORm for ATARI canes on two cassettes . Load the first one like a
bootable cassette (turn the coop.tter on while holding down th.e yellow
STAR!' key, load the program after the beep) • Your ATARI will cane up with
a message on the screen. Now enter L and load the second cassette with the
object code on it . After that you can do a coldstart by pressing 'K ' . You
then are in LEARN FOR'IH.
If you have extended LEARN FOR'IH by your own definitions you save the
object code on a new cassette using camnand SAVE.

Error messages :

STAPEL LEER
STAPEL VCLL
<NAME> ?
FALSCH

Warnings

the stack is empty
the stack is full
<NAME> is unknown
error during COll\l)ilation

<NAME> SCHOO VOOHANDEN <NAME> defined before

<NAME> GESCHUE'l'ZT <NAME> is in protected area of the dictionary

If an error FALSCH occurred during conpilation you may erase the name
entered fran the dictionary by

SMUDGE �ET <NAME>

A hint :

The length of the program is about 5 .5 kbyte. All definitions are tested,
but it is possible that there are hidden errors included. In case you
detect an error please let us know about it and where it occurred. You
help us and others by doing so.

NOTE :
Typing in MON in the Learn FORTH brings you back into the LOADER.
(LOAD E R = 1 . Cassetta)
Than you can go back to Learn FORTH by pressing W for warmstart or K for coldstart.

38

w
(0

FORTH HAN DY R E F E R E N C E
Stack inputs and outputs are shown; top of stack on r ight
This card follows usage of the Forth Interest Group

(S. F. Bay Area); usage aligned with the Forth 78
International Standard.

Operand key: n , n 1 ,
d, d 1 , .
u

For more info: Forth Interest Group
P. O. Box 1 1 05
San Carlos, CA 94070.

STACK MANIPULATION
(n - n n)
(n -)
(n 1 n2 - n2 n 1)
(n 1 n2 - n 1 n2 n 1)
(n 1 n2 n3 - n2 n3 n 1
(n - n ?)

Dupl icate top of stac k .
Throw away t o p o f stac k .
Reverse t o p two stack i tems
Make copy of second i tem on top .
Rotate third item to top .
Dupl icate only ii non-zero.

addr
b
c
I

1 6-b1t signed n u m be rs
32-bit si gned n u m be rs
1 6-bit unsi gned number
address
8-bit byte
7-bit ascii c haracter value
boolean flag

DUP
DROP
SWAP
OVER
ROT
-OUP
> R
R>

(n -)
(- n)

Move top item to "return stack" for temporary storage (use caut ion) .
Retrieve i t e m from return stack

R (- n)

NUMBER BASES
DECIMAL
H EX
BASE

-)

-)
- a'ddr)

Copy top of return stack onto stac k .

S e t decimal base.
Set hexadecimal base
System variable contain i n g number base

.j::>.
0

ARITHMETIC AND LOGICAL
+
D+

I
MOD
/MOD
•/MOD
·1
MAX
MIN
ABS
DABS
MINUS
DMINUS
AND
OR
XOR

COMPARISON
<
>
=
O<
O=

(n 1 n2 - sum)
(d 1 d2 - sum)
(n 1 n2 - diff)
(n 1 n2 - prod)
(n 1 n2 - quot)
(n 1 n2 - rem)
(n 1 n2 - rem quot)
(n 1 n2 n3 - rem quot)
(n 1 n2 n3 - quot)
(n 1 n2 - max)
(n 1 n2 - min)
(n - absolute)
(d - absolute)
(n - -n)
(d - -d)
(n 1 n2 - and)
(n 1 n2 - or)
(n 1 n2 - xor)

(n 1 n2 - f)
(n 1 n2 - f)
(n 1 n2 - f)
(n - f)
(n - f)

Add .
Add double-precision numbers .
Subtract (n 1 -n2) .
Mult iply .
Divide (n 1 /n2) .
Modulo (i. e. remainder from division) .
Divide, giving remainder and quotient.
Mult iply, then divide (n 1 "n2/n3), with double-precision intermediate .
Like */MOD, but g ive quot ient only.
Maximum
Min imum.
Absolute value .
Absolute va lue of double-precision number .
Change sign.
Change sign of double-precision number.
Logical AND (bitwise).
Logical OR (bitwise) .
Logical exc lusive OR (bitwise) .

True if n 1 less than n2.
True if n1 greater than n2 .
True if top two numbers are equal .
True if top number negative .
True if top number zero (i. e. , reverses truth value) .

.i::.
....

MEMORY
@ (addr - n)

(n addr -)
C@ (addr - b)
C! (b addr -)
? (addr -)
+! (n addr -)
CMOVE (from to u -)
FILL (addr u b -)
ERASE (addr u -)
BLANKS (addr u -)

CONTROL STRUCTURES
DO . . . LOOP
I
LEAVE
DO . . . +LOOP

IF . . . (true) . . . ENDIF
IF . . . (true) . . . ELSE

. . . (false) . . . ENDIF
BEGIN . . . UNTIL
BEGIN . . . WHILE

. . . REPEAT

do: (end+ 1 start -
(- index)

(-)
do: (end+1 start -

+loop: (n -)
if: (f -)
if : (f -)

unt i l : (f -)
while: (f -)

Replace word address by contents.
Store second word at address on top.
Fetch one byte only.
Store one byte only. ·

Print contents of address.
Add second number on stack to contents of address on top.
Move u bytes in memory.
Fi l l u bytes in mem'lry with b , beginning at address.
Fi l l u bytes in memory with zeroes . beginning at address.
Fi l l u bytes in memory with blanks , beginning at address .

Set up loop, given index range .
Place current index value on stack .
Terminate loop at next LOOP or + LOOP.
Like DO . . . LOOP, but adds stack value (instead of always ' 1 ') to inde x .

I f top o f stack true (non-zero) , execute. [Note : Forth 7 8 uses I F . . . THEN.)
Same, but if false. execute ELSE clause . [Note : Forth 78 uses IF . . ELSE . . . THEN.)

Loop back to BEGIN unt i l t rue at UNTIL . [Note: Forth 78 uses BEGI N . . . ENO.)
Loop while true at WHILE; REPEAT loops unconditionally to BEGIN .

[Note : Forth 78 uses BEGIN . . IF . . . AGAI N .)

�
""

TERMINAL INPUT-OUTPUT

I n -)
R (n fieldwidth -

D (d ·-)
D R (d fieldw1dth -
CR (-)
SPACE (-)
SPACES I n -)

I -)
DUMP I addr u -
TYPE (addr u · •

COUNT I addr - addr+ 1 u)
?TERMINAL (. • f)
KEY (-- c I
EMIT (c -- I
EXPECT (addr n -)
WORD (r; -)

INPUT ·OUTPUT FORMATTING
NUMBER (addr - d)
< # (-·)
(d - d)
S (d - 0 0)
SIGN (n d - d)
> (d - addr u)
HOLD (c -)

Print number
Print number, right·justified in field.
Prrnt double·precision number
Print double·precision number . rrght·justified in field.
Do a carriage return .
Type one space .
Type n spaces
Print message (terminated by ")
Dump u words starting at address
Type string of u characters start ing at address
Change length·byte stri ng to TYPE form .
True if tP.rminal break reQuest present
Read key . put asci1 value on stac k .
Type asc 1 1 value from stack
Read n craracters (or unti l carriage return) from input to address
Read one word from input stream. using given character (usually blank) as delimiter

Convert str ing at address to double·precision number .
Start output strmg.
Convert next digit of double-precision number and add character to output string .
Convert al l significant digits of double·precision number t o output string.
Insert sign of n into output string .
Terminate output st r ing (ready f o r TYPE)
Insert asci1 character into output str ing.

�
w

DISK HANDLING
LIST
LOAD
BLOCK
B/BUF
BLK
SCR
UPDATE
FLUSH
EMPTY·BUFFERS

(screen -)
(screen -)
(block - addr I
(• n)
(• addr)
(-· addr)

(-)
(-)
(-)

DEFINING WORDS
xxx

VARIABLE xxx

CONSTANT xxx

CODE xxx
CODE

(-

(-)
(n - I

xxx (- addr)
(n - I

xxx : (- n)
)

) .

< BUILDS . DOES> does (- addr l

List a disk screen
Load disk screen (compile or execute)
Read disk b lock to memory address.
System constant giving disk block size in bytes .
System variabie containing ciirrent block number
System variable containing current screen number .
Mark last buffer accessed as updated .

Write al l updated buffers to disk
Erase al l buffers

Begin colon definit ion of xxx .
End colon definition
Create a variable named xxx with initial value n; returns address when executed.

Create a constant named xxx with value n; returns value when executed.

Begin def in i t ion of assembly-language primitive operation named xxx
Used to c reate a new defining word. with execution-time "code routine" for this data

type in assembly .
Used to create a new defin ing word. with execution-time routine for this data type in

h igher· level Forth

�
�

VOCABULARIES
CONT EXT
CURRENT
FORTH
EDITOR
AS S E M BLER
DEF I N ITIONS
VOCA BULARY x x x
VU ST

(- addr)
(- addr)
(-·)
(.•)

(.)
()
(-)
(-)

MISCELLANEOUS AND SYSTEM
(
FORGET xxx
ABORT

xxx
HERE
PAD
IN
SP@
/\LLOT

(-)
(-)
(-)
(- addr l
(- addr)
(-· addr l
(- addr)
(� addr)
(n -)
(n -)

Returns address of po inter to context vocabulary (searched first) .
Returns address of pomter to current vocabu lary (where new definitions are put)
Main Forth vocabulary (execution of FORTH sets CONTEXT vocabulary) .
Editor vocabulary; sets CONTEXT
Assembler vocabulary, sets CONTEXT
Sets CURRENT vocabulary to CONTEXT
Create new vocabulary named x xx
Pnnt names of al l words ;n CONTEXT vocabulary

· Begin comment. terminated by r ight paren on same l ine; space after (
Forget al l defin i t ions back to and including xxx
Error term inat ion of operat ion
Find the addre ss of x x x in the d1ct 1onary ; i f used in definition . compile address
Returns address of next unused byte in the dictionary .
Returns address of scratch area (u s u ally 68 bytes beyond HERE).
System variable contain i ng offset into input buffer . used, e. g. , by WORD.
Returns address of top stack item
Leave a gap of n bytes in the dictiona ry .
C o m p i l e a number i nto t he dictionary

f)Yil• 100f'I Forth Interest Group , P. O . Box 1 1 05, San Carlos , CA 94070

Order-No. 7055 disk S39.95

POWER-FORTH is a develO:EJllent of FIG-FOR'llI 1 . 1 .
POWER-FORTH consists of two parts . The first part
is written in machine-language and will be loaded
as you turn the computer on . The second part, which
is on the backside of your disk , is written in
FORTH and can be loaded only in FOR'IH.

This second part again consists of different parts
(packages) • For example the UTILI'lY package which
should be loaded first, because it is required by
the other packages . To do so use the FOR'IH-command
' 6 LOAD ' • After the package has been loaded the
comp.iter will respond with ' OK ' .

Besides the UTILI'lY-package there are others for
screen-editing , for graphics and I/O, and for
special player-missile graphics .

The comnands for the different packages are
described seperately later .

Besides the different packages POWER-FORTH

includes a short arcade-game for demonstration of
the PM-graphics .

Lots of fun with these powerful programs wishes

IMPORTANT:

.ELCC:H> PUBLISHIN:; INC .
53 Redrock Lane
PCH>NA CA 91766

Do not use the del ivered disks for your own fi les. It w i l l destroy itself !

45

Instead of HGiE in FOR'IH-79 POWER-FORTH uses the
definition LEER.

(CREATE FOR ADAP!'IN.; FORIH 79 OR OOLY-FOR'IH 'ID FIG
FCRI'H)

CREATE 0 VARIABLE -2 ALim ;

Description of the POWER-FORTH kernel

Sarne like FIG-FOR'IH 1 . 1 but the following
differences :

' TERMINAL asks the yellow keys . If no key is
pressed then 0 is put to the stack ,
otherwise :
STARl'=l , OPl'ION=2 , SELOCT=4 .

C/ L ha s the value 3 2 (ch a r act e r s/ l i n e)

LEER erases the screen . LEER 7D EMIT ;

HALLO prints the copyright statement

K:N is illegal (jl.Dllp $2B47)

. SCREEN prints the contents of the screen via
ports 3&4

SOC/DR contains ntmi>er of sectors/drive (720)

DUNIT variable for dr ive #

DSTAT (VAR) I/O STATUS after use of disk

IOSOC (VAR) SEX:TOR#

IOBUF (VAR) SECI'O�BUFFER ADIRESS

DRIVE instead of DRO/DRI (n ->) n is dr ive #
then you can work on another disk
"direct" , using camnand CFSfil' (drive 1
simulation)

46

PaVER-FORIH always uses

IOCB#3 and #4
IOCB#3 input f ran keyboard
IOCB#4 output to screen

Note :
Not each block K*720 can be accessed (ERROR 139)
this is sector zero of the disk . (k= [O , l • • •]

l1rILITY PAa<AGE

DOS

CASE

(- >}

(- >}

jt.nnp to DOS (frontside of disk)

similar to ON • • GaID in BASIC.
For example : CASE A K L ;
def ines A and if A is called K or
L is executed , depending on
whether a 0 or a 1 is in the
stack . This is true for n
different words .

DUMP (adr n ->) pr ints n bytes starting at adr
in hexadecimal and ASCII .

. (->) DEXXNPILER. The word following .

I I
will be dispe rsed i f it is a
double function ; : (no blank)

' S (-> SP) puts actual value of stack-
pointer to stack

. s (->) prints stack without changing it

LCW:r-ED (->) loads editor-package

LCW:r-IO (->) loads I/O package

LCW:r-PM (->) loads player-missile package

47

DISKCOPY (->) c op i e s by s ec t o r w i t h o n e d r ive
Th i s way i t i s p o s s i b l e t o c o py
a d i s k w i t h t ex t (f o r 3 2 k - v e r
s i o n c h ang e in c o l o r d e f i n i t i on s :

" READ " and " WR I T E " o n SCR# l l B 8 0 0 i n t o ? C O O hex .

DR1->DR2 (->) copies drivel to drive2 by sector .

Editor package

The editor descr ibed here is for creating text
screens with POWER-FORTH •

The editor is stored on the backside of the POWER

FORTH disk and can be loaded while in FOR'IH by

6 IDAD (loading the utility package)

and then

LQZID-ED

In a similar way you can load

LQZID-IO and
LQZID-PM

After the editor has been loaded it can be
activated with command EDITOR. If a screen should
be entered you first have to enter 45 LIST.

If the text area is already occupied then you have
to search for another (anpty) one. If it is empty
only the line nurcbers appear (without text) .

48

SCR # 45
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Now the editor expects the input of a conunand .

O M (blank between 0 and M)

will place the cursor one line down . Now you can
enter line O .

You can enter a maxim.rm of 32 characters . After
32nd character it will be cut off . For more than 32
characters you have to continue in the next line
(in our case 1 M) .

To check what has been entered so far use conunand L .

To finish the input enter FLUSH • This wr ites the
contents of the buffer to disk .

Conmand EDI'IDR opens the vocabulary of the editor .

49

L (->)

E (n->)

s (n->)

D (n->)

M (n->)

erases the screen and shows the actual
text-window (SCREm) assigned to the
variable SCR.

erases lines of text-window

inserts a blank line at line n

deletes line n

deletes line n and waits for input

CLFAR (n->) deletes text-window n

COPY (nln2->) copies text-window nl to n2

-> (->)

<- (->)

shows next text-array

shows preceeding text-array

I/O-Package

These carmands bring addresses to the stack . (Now
you can use them like variables)

!Cent (->adr) address of CIO-Camnand-byte

ICSl'A C->adr) address of CIO-statµs-byte

ICBAD (->adr) address of CIO-buf fer

ICBLE (->adr) address of CIO-buf fer length

Ic.AXl (->adr) 1st CIO-auxiliary-byte

ICAX2 (->adr) 2nd CIO-auxiliary-byte

'ID# (n->) changes channel # in CIO-
addresses

50

To open the single devices

K: l S ·
E; (->adr)
P :
C:

proper address to stack

Check . of status-byte

2 ICERR (->)

Opening of a file

if there is an Icrerror it is
printed

OPEN (FILE AUXl AUX2 n- >)
opens Icrchannel n. For example :

CLOSE (n- >)

GEI' (n- >d)

PUT (dn->)

PR-00 (->)

PR-OFF (->)

E : 8 0 4 OPEN is the same as the
BASIC-command OPEN#4 , 8 , 0 , "E : "

closes Icrchannel #n

gets byte d f ran rcrchannel n

sends byte d via channel n

output goes via pr inter (P :)

undo command PR-00

SOOND (nl n2 n3 n4 ->)

RESSND (->)

GR. (n->)

GR. 16 (n->)

turns on channel_ n4 with the
frequency n3 , the distortion n2 ,
and the volume n1

turns off all sound channels

opens the screen on channel 6
with graphics-mode n (mixed mode)

like GR. but full graphics

5 1

Smt:OLOR (nl n2 n3 ->)

COLOR (n- >)

register n3 is loaded with
color n2 and brightness nl

register n is defined for
carmands PLO!' and DRAWl'O

PLO!' (x y -->) a dot is pr inted at location x , y

DRAWro (x y ->) a line is drawn fran the actual
position to position x , y

POSITION (x y -->) cursor is placed at x , y

• #6G" • • •

STICK (n->d)

STRIG (n->d)

prints string via channel 6
(suitable for KDEl & MODE2)

gets f ran stick n the value d

gets f ran trig n the value d

Player-Missile-Graphics with l?Cl'iER-FOR'IH

PCl'JER-FORl'H comes with a :package , which allows you
to take advantage of the graphics- and sound
ca:pabilities of your ATARI-800 also in FOR'IH .
Note : aexp=nunber on the stack

I.llUirFplayer nunt>er
The following camnands are available

HSTICK
VSTICK
aexpHSTICK
aexpVSTICK

The last two camnanc;ls are for asking of the
joysticks .

n VSTICK reads j oystick #n and del ivers the
following to the stack :

52

= l i f t h e j oy s t i c k i s pu s h ed f o rw a rd
+l i f t h e j oy s t i c k is pu s h ed b a c k w a r d

_ 0 i f t h e j oy s t i c k i s i n s t and a r d po s i t i o n

n HSTICK reads joystick in and delivers :

+l if the j oystick is pushed to the right
-1 if the joystick is pushed to the left

0 if the j oystick is in standard position
aexp PKi

This command is for initializing of the player
missile-graphics .
aexp can be O , 1 , or 2 .

0 = turn off PM3
1 = turn on PM3 for single line resolution
2 = turn on Pr.ri for double line resolution

The two kinds of resolution will be called PK;-nx>de
f ran now on. Ole bit defines , whether one or two
lines on the screen are occupied . Ole line is the
height of one pixel in graphics mode 8 . In graphics
mode 7 ·the height of one pixel i� two lines on the
screen, similar to 2 PM3 (note the blank between 2
and PKi !)

Double line resolution only requires half of the
manory necessary for single line resolution : 128
byte per player instead of 256 .

PMCLR
format : pnrn..nn PMCLR
example · : 4 PMCLR

This comnand deletes the area in memory for that
particular player . PMCLR considers the mode and
only deletes the matching area.
Note, that 4 PMCLR and 7 PMCLR will clear all
missiles , not just the named ones .

53

PMCOLOR
format : aexp aexp pm.nn PMCDLOR
example : 8 13 2 PMCOLOR

PMCOLOR is used in P<l'JER-FORTH for a player-rnissile
set the same way SfilCOLOR is used • There is no
conmand cor responding with the general COLOR
conmand in Pr.t; . This command is not necessary
because each player has its own color . In the
example above player 2 and missile 6 are set at a
medium lurninence (8) and a green color (hue 13) •

Note that PM:i has no default colors after RESEI' or
after power up !

PftfiIDI'H
format : aexp pnurn PMVIDTH
example : 1 2 FMVIDTH

Similar to how you can select single or double line
resolution using command Pr.I; you can define the
width of players and missiles using command PMWIDTH .
The only difference is that PM:; def ines the

resolution for all players and missiles while
FMVIDI'H allows you to def ine each player and
missile separately. aexp def ines the width and can
be O , 1 , or 2 .

PMl«JVE
format : aexp aexp pnurn PMMJVE
example : 1 120 O PMMJVE

0 80 1 PMMJVE

Once a player or a missile has been def ined it can
be moved aroWld on the screen with command PMMJVE.
POWER-FORTH allows you to move around each player
and each missile independently.

54

The second p:irameter in the command def ines the
position referring to the left border . That ntmber
can range fran 0 to 255 . The lowest and the highest
positions are outside the visible area. Pf.IVIDTH
doesn' t affect the position, it only enlargens the
player to the right .

The first parameter in PMMJVE def ines a relative,
vertical movement . within 128 or 256 bytes of
memory .

Vertical movements are achieved by moving bytes
within memory . A relocation to higher memory
locations corresponds with a down-rnovement on the
screen, a relocation to lower memory locations
corresponds with an up-movement on the screen.
PCWER-FORl'H allows movements fran -255 (255 pixels
up) and +255 (255 pixels down) •

Note :
The +/- def inition referes to the values del ivered
by a joystick .

Example : 0 VSTICK 100 0 PMMJVE

This corrmand moves player O up or down on the
screen , depending on the joystick-position.

MISSILE
Format : aexp aexp pnum MISSILE
Example : 3 48 4 MISSILE

This command makes it easy to shoot with a missile.
The second aexp def ines the vertical position of the
missile . (0 means top of screen) . The first . aexp
defines the height of the missile.

Example : 3 64 4 MISSILE
Places a missile with a height of 3 · · or 6
(depending on the PM:}-rnode) at a position 64
away fran the top of the screen.

lines
pixels

55

Caution :
MISSILE does not turn on bits autanatically. '!be
defined bits are worked up with the actual missile
memory using an exclusiv-or function. That way you
can delete existing missiles by creating other ones.

Example : 4 40 5 MISSILE
8 40 5 MISSILE

The first conmand creates a 4 pixel high missile at
position 40 . '!be second command deletes the first
missile and places a 4 pixel high missile at
position 44 .

PMADR
Format : aexp PMADR
Example : 0 PMADR

This function can be used in every arithmetic
expression. It is used to find out the address of a
player or a missile . It is helpful , if the
programner wants to bring data into the area of the
player or if he wants to read data there.

caution :
m PMADR, where m is a mmber between 4
delivers the same address for all missiles .
are in the same rnanory area.

BUMP
F o rma t : aexp pmn um B UM P
Ex ampl e : 0 1 BUMP I F • • • EL S E • • •

and 7
they

pnum= [0 • • 3] o r [4 • • 7] a exp= [0 • • 3] o r [8 • • 1 1]
pl ay e r m i s s i l e p l a y e r pl ay f i e l d

BUMP may be used in all arithmetic expressions .
'!his conmand allows to read the collision registers .
It delivers a 1 , if a collision has been detected,
otherwise it delivers O . This always referres to a
a pair of obj ects. The first parameter (aexp) can
be either a number of � player or a number of a
playfield c a - - 11) .

56

Possible BUMPs :
PLAYER -> PLAYER
PLAYER -> MISSILE
PLAYFIELD -> PLAYER
PLAYFIELD -> MISSILE

(0-3 to 0-3)
(0-3 to 4-7)
(8-11 to 0-3)
(8-11 to 4-7)

O=R.AYEIU
l=FLAYER2
2=PLAYER3
3=PLAYER4
4=MISSILEI.
5=MISSILE2
6=MISSILE3
7=MISSILFA
8=PLAYFIELD1
9=PLAYFIElD2
10=PLAYFIEID3

caution : ll=PLAYFIELD4

p p BUMP where p is a value f ran 0 to 3 (both the
same) always delivers O . Example : 0 0 BUMP

It is reconmended to set the collision registers to
zero after a certain period of time . You can use
for example : 0 0 BUMP, which doesn ' t br ing a value
to the �OS, but it deletes the collision registers .

SHAPE [byte] , ' aexp SHAPE NAME

This comnand allows to enter sanething or to read a
stack in the FORIH dictionary .

For example :

The figure can be used as a player .

2 8 1 6 16 16 56 6 0 6 3 56 56 16
24 28 24 126 24 15 SHAPE CCl'lBOY

It is inportant that the bytes are in the stack in
reverse sequence . Also inportant is the last nurrber
in the stack (TOS) • This nunber defines the size of
the shape . (length) For instance : CCMBOY now became a
new comnand .

CCMBOY

Format : addr 004lBOY
Example : O PMADR 128 + CCl'lBOY
will place the cowboy starting at the 128th

vertical position off player O . The player will be
displayed on the screen.

57

Demonstration for player/missile

24
1 26
24

28

24

1 6
56
56

63

60
56
1 6 ·
1 6
1 6

28

This demonstration program is well suited to learn
how to program your own games with player missile
graphics .
There are different screens. We start the
description with screen 55 .
To start the program we first have to enter the
following carmands

LCW>-ID
LCW>-IO
LCW>-PM
55 LON)

After that the program can be started by entering
GAME.

58

S C R # r::'. C:" ;;;J ...J

0 (D E M O G A M E H C W)
1 0 VAR I A B L E P O I NTS 0 VAR I A BL E X M

2 0 VA R I ABLE Y M 0 VAR i l�BLE YV
3 0 VAR I ABLE x v 0 VAR I ABLE x
4 (I VA R I ABLE Y M 1
c:-... i 1 26 1 26 1 26 �' S H A P E R A C K E T

6 H E R E V A R I A B L E RN D
7 R A N D O M RND @ 3 1 4 2 1 .. 6 9 7 2 +
8 DUP RN D ! .

. ,
9 R N D N R R A N D O M U * S W A P D R O P

1 0

1 1 PF I N I 5 GR . (I 0 ,:. SETCOLOR
1 2 1 COLOR 0 (l PLOT
1 3 7 9 0 D R A W T O 7 9 3 9 DRAWTO
1 4 (l ::::. 9 D R A W T O (l 0 D R A W TO ;
1 5 - - >
OK

First we define the variables needed .

POINTS is for the score
XM and YM are for the coordinates of the missile
YN and YV are for the movement-vector of the
missile
YMl. is for the next to last position of the missile
x is for the X-coordinate of the player . The shape
of the player is defined in l ine 5 . In our exanple
we use a randan nurrber generator (lines 6-9) .
In lines 11 through 14 the canmand for drawing the
playf ield is defined (very similar to BASIC
carmands) .

59

SCR # 56
0 D E M O GAME HCW)
1 P L I N I 2 P M G 1 5 5 0 PM C O L OR

2 0 PMCLR 1 0 PMW I DTH
3 0 P M A D R 85 + RACKET

4 1 20 x ! 0 1 20 0 PMMOVE ;
i:::· ,J

6 ! N I T P F I N I P L I N I 0 PO I N T S ! .
'

"/
8 I N I T M 4 P M C L R 1 1 9 4 M I S S I L E

9
1 0 M V E C T 2 RNDNR 1 + Y V !
1 1

r\
,,;.. R N DNR 2 + M I NUS x v

1 2 1 9 DUP Y M ! Y M l !
1 3 1 20 X M ! . '
1 4

1 5 - -·- >
OK

PLINI will activate and initialize the
player/missile graphics. n2 PK;n turns .on the
player/missile graphics , which results in a pink
�lor for the player and the missile. PftfiID'1H
results in twice the width. Line 3 places the
previously def ined shape at the 85th vertical
position and f inally the player will be placed in
the middle of the screen.

INIT carbines these two camnands and in addition
deletes the variable POINI'S .
INI'IM deletes the missile area and generates the
missile belonging to the player at the 19th
vertical position. ·
MVECr calculates the start vectors of the missile
using the randan ntmber generator . It also def ines
the start coordinates of the missile.

60

S C R #
(l (
1

2
'
·-·

4

5

6
7
8
9

1 0

1 1
1 2
1 3
1 4

1 5

OK

5 7

D E M O GAME HCW)
S E T P 0 H S T I CK 2 * DUP O<

I F X @ 4 7 > *

E L S E X @ 1 9 3 < *

THEN X + !
0 X @ 0 PMMOVE

M X Y XV @ XM + ! YV @ Y M + ! ;

MM Y M @ Y M 1 ! M X Y
X M @ 5 0 < X M @ 2 0 5 > OR
I F 1 5 2 0 1 0 0 S O U N D R E S S N D

X V @ M I NU S X V ! M X Y M X Y
END I F

Y M @ 1 9 < Y M @ 9 2 > O R
I F 1 5 2 0 1 0 0 S O U N D R E S S N D

Y V @ M I NU S Y V ! M X Y M X Y
END I F - - >

SETP mqves the player horizontal within the borders .
Very handy for that is command HSTICK which
converts the joystick position into a nt.mber
relative to the actual position (-1 0 +l) .
MXY adds the vectors YV and XV to the actual
coordinates of the missile.
MM checks whether the missile· is withir) the borders
of the playf ield . If it is not it lets it rebounce
with the same angle that it hit the border. During
the bounce a noise is turned on for a short time.
(lines 9 and 13) •

SEnM moves the missile relative to the last
position (YMl) •

SCORE prints the score for the player .
WAIT waits for the r ed fire button on the joystick
to be pressed.

61

SCR *"
0 (
1
2
3
4
C" .J

6
7

8
9

1 0

1 1
1 2

1 3
1 4
1 5
OK

58
DEMO GAME HCW
SETM Y M @ YM 1 @ - XM @ 4

PMMOVE
. SCORE . " SCORE I I PO I NT S ? ;
WA I T BE G I N 0 STR I G O= UNT I L

G A M E I N I T BEG I N I N I TM MVECT

UNT I L.

0 0 BUMP

B E G I N S E T P

S E T M
MM
0 4 BUMP

U N T I L

1 .PO I NT S + !
L E E R . SC O R E

W A I T ? T E R M I NAL
; s

GAME canbines all commands described so far. If you
enter GAME now the game will start. After a score a
a game may be interrupted by pressing the red fire
button and the yellow START key at the same time.

Demo for HSTICK and VSTICK

This program can be loaded with ' 59 LOAD ' and
started with ' DEM> ' .

Screen 59 contains a short sarcple program for the
use of VSTICK and HSTICK.

62

SCR

0

1:.

3
4

5
6
7
8
9

1 0

1 1
1 2
1 3
1 4

1 5
O K

*
(

4

59
D E M O H S T I CK VST I C K H C W >
D I M X
MDV >R R H S T I CK 2 * R X + !

R V S T I CK 2 * R X @ R >

P M MOVE

I N I 1 20 0 X ! 1 5 0 1 X !
2 PMG 1 0 5 0 PMCOLOR
1 0 1 3 1 P M C O L U R 1 PMCLR
0 PMCLR 0 PMADR 6 0 +
COWBOY 1 P M A D R 60 +

COWBOY 0 1 2 0 0 PMMOVE
0 1 50 1 P M M O V E ;

D E M O I N I B E G I N 0 MDV 1 M D V
? T E R M I N AL UNT I L ;

In line 1 an array of size 4 is defined.
l'{N moves a player depending on the joystick
position .
HSTICK delivers a value different fran 0 if STICK
indicates a horizontal movement (-1 for left , +l
for right) .
VS'l'l;CK is the same as HS'I'ICK, but for vertical
movements (-1 for up, +l for down) •

63

DICTIC!U\RY

V L I S T

BUMP BMP H I T C L R MBUMP PBUMP

MF B U M P MPBUMP PPBUMP PF BUMP

MASK MSK 3 M I SS I LE VST I CK
HST I CK HOR I VERT MONE ONE
NULL COWBOY SHAPE PM COLOR
PMMOVE MMOVE MVMOVE MUPDOWN
MD OWN MUP PMOVE PVMOVE PUP DOWN
PUP PDOWN PMW I DTH P W I DTH
MW I D T H M S K 2 M S K l 4A D I M
PMCLR PM A D R PMG PMGO PMG2

PMG 1 MS I Z P T PMBAS GRACTL
DMACTL PMBASE PMOFFSET I N I T 2
I N I T l < M UP > < MDWN > < PDOWN >

< PU P > N E X T S T R I G S T R I G 4 S T R I G3
S T R I G2 ST RIG l S T I CK S T I CK 4
S T I C K 3 S T I C l< 2 S T I CK ! • # 6 "
(. #6 ") T Y P E # 6 P OS I T I ON PLOT

2DUP DRAWTO COLOR COLR SET COLOR

GR . 1 6 GR . GRN RESSND SOUND
P R -OFF PR -ON PUT G E T C L O SE

OPEN ? I C E R R C : P : E : S :
K : F I LE TO# I CA X 2 I CA X l
I C BLE I C B A D I CS T A I C COM + I ONO

I OCB C I D < C I D > E D I T O R DR 1 - >DR2
D I S K C O P Y WR I T E ? S E C W R E A D
S E C W S E C L O A D -PM L O A D - F L O A T
L OAD - I O L O A D - E D . S D E E P ' S
; : ? ; ? ; S ? ; C O D E P F A - > I D .
?COLONDEF DO C O L G E T P F A N O T
U . R DUMP . AD R . ASC . HE X
CASE DOS I ND E X L I S T R / W
-D I S C - B C D - - > L O A D . L I NE
C L I NE > BLOCK B U F F E R DR I VE

EMP T Y - B U F F E R S F L U S H UPDATE
?LOAD I NG +BUF P R E V USE I OBUF
I O S E C DSTAT DUN I T S E C / DR

64

B / SCR B / BUF L I M I T F I RS T . SC R E E N
M O N H A L L O L E E R VL I S T ?
u . . R D . D . F: # S #
S I GN # > < # SPACES WH I LE

ELSE I F REPEAT AGA I N END

UNT I L +LOOP LOOP DO THEN
END I F BEG I N BACK FORGET
MESSAGE M / MO D * I * / MOD

I ! MOD * M/ M * M A X

DABS A B S D + - + - S - > D
ABORT QU I T < D EF I N I T I ON S

M O D

M I N

COLD

FORTH VOCABULARY I MM E D I A T E
I NTERPRET ?STACK D L I TERAL L I TERAL

[CO MP I LE J C R E A T E I D . ERROR
< ABORT > -F I ND NUMBER < NUMBER >

WORD P A D HOLD BLANKS E R A S E
F I L L . Q U E R Y E X PE C T II
(• II) -TRA I L I NG T Y P E COUNT

DOES > < BU I L D S t CO D E < ; CODE >
DEC I M A L HE X SMUDGE J [
COMP I L E ?CSP ? P A I RS ?E X E C
?COMP ?ERROR ! CSP P F A NF A
C F A L F A L A T E S T T R A V E R S E -DUP
SPACE R O T > < U < . -
C , ALLOT HE R E 2+ 1 +
HLD R # CSP DPL BASE S T A T E
C U R R E N T CONT E X T OFFSET SCR
OUT I N BLK VOC -L I NK DP
FENCE WARN I NG T I B . W I DT H
+OR I G I N C / L BL 3 2 i
0 USER VAR I AB L E C O N S T A N T

C ! C @ @ TOGGLE

so

+ ! DUP SWAP DROP OVER M I NUS
D+ + O < O = R R > >R
LEAVE ; S R P ! S P ! S P @ X OR
OR AND C R U / LI * CMOVE
?TERM I NA L K E Y E M I T ENCLOSE
< F I ND > D I G I T I < DO > (+L OOP >
< LOOP > OBRANCH BRANCH . E X ECUTE

CL I T L I T 01<

65

In addition to POWER-FORTH there is a floating
_ point package available.

Loading of the floating point package :

1 . go to · DQS
2 . load FLOr\T. Cl3J using camnand L
3 • go back to FOR'lH
4 . turn diskette (use backside)
5 . enter LOAI>-FLOr\T while in FOR'lH

Floating Point Package

F (->f) after this camnand you can enter
a floating point nunber

. F (f->) prints the floating point nunber
which is in the stack

F+ (fl f2->fs) adds two FP-nunbers

F- (flf2->fu) subtracts two FP-n\Dllbers

F* (fl f2->fm) nultipl ies two FP-n\Dllbers

F/ (flf2->fo) divides two FP-mmt>ers

LN (f->fin) calculates the LN of a nuni>er

LOO (f->flog) calculates the LOO of a nunber

EXP (f->fexp) calculates the �power of a
rumt>er

FIX (f->n) changes a FP-nunber into a
integer nunber

�T (n->f) changes an integer nunber into a
FP-nunber

FDUP (f->ff) doubles a FP-n\.Dli)er

66

FSWAP (flf2->f2fl) exchanges two FP-numbers

FVAR (f->) defines a FP-variable

FCOO (f->) defines a FP-constant

F ! (fadr->) stores a FP-number at adr

F@ (adr->f) gets a FP-number f ran adr

Fl/ (f->fr) calculates the reciprocal vaJ,ue

...

C f l f 2 - - > f 1 T f 2) c a l c u l a t e s f l pow e r f 2

SJRT (f-> f) calculates the square root

PI (->71') the nunt>er 11' is put to the stack

FLIT comp. (f->) like LITERAL but for FP-numbers
transit (->f)

� } (f->fr) calculates the gonianetric
TAN functions (0 - 90°)

F= (flf2->flag) like = with integers

F> (fl f2->flag) like > with integers

F< (flf2->flag) l�ke < with integers

67

Order-No. 7223 S29.95

HOW TO USE THE ASTROLOG Y-PROG RAM FOR T H E ATA R I 800

T he Astro logy Program from E LCOMP Pub li
shing a l lows you to calculate a complete horos
cope. T he program prints out the fo llowing:
1 . Planetary positions
2. Houses
3. Ascendent
4. Aspects

To run the program you must know:

1. Your birthdate
2. T he location (longitude and latitude) of your

birth
3. T he birth time H H,MMSS
4. T he time zone (how many houses away from

Greenwich)
East of Greenwich is positiv, west of Green
wich is negative .
Note: Do not forget the daylight savingstime ,
war time a . s. o .

How to sta rt the program

a) Insert Disk into disk drive I
b) Enter DOS
c) LOAD binary file AS TR OZ.B I N

d) G O T O BAS IC·type B
e) R UN "D:SC4"
f) Type in : 1 and 24
g) Wait one minute
h) Type : N
i) R U N "D :ASTR O . BAS "
j) Type in your information
k) You can print out the screen via :

S H I FT-$
S H I FT-D
S H I FT-X
S H I FT-C

if you have a MX-82 FT from EPS ON or a
MX-100 .

EPROM Bo.rd (C.rtridgel, Order-No. 7043 S29.96 /// EPROM Board KIT, Order-No. 7224 S 1 4.95

EPROM Cartridge for the ATA R I 800/400 below . Without any soldering you can use the
module for the 2532 right away .

With this versatile RO M-Module you can use
2716
2732

and 2532 type EPROMs

If you use only one EP ROM, insert it into the
right s ocket. If you use two EP ROMs , put the
one wi th the higher address into the right socket.

To set the board for the specific EP RO M , just
solder their jumpers according to the list shown

The modul must be plugged into the left slot of
your ATA R I -computer with the parts directed
to the back of the computer .

EPROM l 27 1 6 l 2732 l 25 1 6 I 2532 l
------- 1 ------ 1 ------ 1 ------ 1 - - - - - - 1

I I l I l
I V I 0 I V l V I
l l I I l

------- I ------ I ------ I ------ I ------ I
I I I l I

2 I O I V I O I O I
I I I I I

------- I ------ I ------ I ------ I ------ I
I I I I l

3 I V I V I V I O I
l l I l l ------- I ------ 1 ------ 1 ------ I ------ I
I I I l I

4 I O I O I O I V I
I I I I I

ATARI i1 • tl'Mlem8f'k of ATARI Inc.

68

V = means connected (jumper)
0 = means OP E N

Order-No. 721 0

Order-No. 721 6

Order-No. 721 7

ATEXT
PREFACE

cassette version

disk version

cartridge version

ATEXT canes on cartridge , disk , or cassette.

829.95

834.95

869.00

The disk version contains a file called AUTOIVN.
SYS and other systetrfiles described in APPENDIX
IV.

All versions of ATEXT are bootable. After the
program was loaded, the copyright statenent will
cane up. Now press K and the text window will cane
up.

To boot the cassette version hold down the STAR'l'
key when turning on the canputer and after the
beep press PLAY on the recorder and RE'1URN on the
canµ.iter .

'!he cartridge version plugs into the left slot and
is ready after you tum on the computer .

IMPORTANT:
Do not use the delivered disks for your own files. It will destroy itself !

69

'mE EDI'IDR

The EDI'IDR has two different modes :
Control-cattnands and coomands in the caunand-line
at the bottan ·of the screen.

The following control-camnands are available :

C1'RL A
C1'RL c
C1'RL D
C1'RL E
CTRL G
C1'RL H
C1'RL I
C1'RL J

CTRL K
C1'RL N
C1'RL 0
C1'RL p
C1'RL s
CTRL T
CTRL U
CTRL V
CTRL W
CTRL X
Cl'RL z
C1'RL -
CTRL =

CTRL +
C1'RL *

. ESC

cursor to next f ormat-camnand
delete up to next format-camnand
close COl?.f""register
open COl?.f""register
repeat camnand-line
delete last character
curso� to next TAB-position
insert contents of COJ?.f""register at
current cursor position
delete COJ?.f""register
delete last word
cursor to end of preceeding word
cursor to beginning of next word
cursor to end of text
display control-characters (on/off)
delete next character
delete to last format-carmand
cursor to beginning of text
delete last line
delete next line
cursor to beginning of preceeding line
cursor to beginning of next line
cursor one character backwards
cursor one cahracter forwards
open/close comand-line

All CTRircharacters not mentioned above will be
inserted at the current cursor-position.

70

'1be following ccmnands are available in the
carmand-line

@ set TAB-position
B one character backwards
c change string
D delete preceeding character
E delete string
F one character forwards
G insert contents of copy-register
H insert hexbyte
I insert string
J repeat command-line
K delete textbuf fer ! 1
L call formatter
M j\.lq> to DOS
R read file via CIO
s search for string
T delete next line
w write file via CIO

You reach the canmand-line by using the ESC-key.
The first dot in the command-line will be replaced
by the dollar-sign. Each character typed in now
will appear in the canandline. The camnend-line is
terminated by pressing the FS:!-key twice. 'nlen the
canand-line wil be executed and the rnmt>er
character (i) will be displayed.

'nlere can be 100re than one camnand on oomand-line
if they are seperated by single r.SC-signs . Sane
cannands can be executed several times by entering
a nunt>er f ran 2 to 255 in front of the command .
You ai·so can repeat the whole line using the J
ccmnand which brings you back to the beginning of
the line. Of course this is possible only if the
carmand was executed. It is not possible if an
error occured, because then the program j\.lq)S back
to the control-nDde .

7 1

In the upper lef thand corner of the screen there
is a counter , displaying the cursor position in
the current line. If you write a line longer than
255 characters , then the cursor will disappear. To
warn you , there will be a beep starting at the
250th character .

Beginning at the 20th character the text of the
current line will be scrolled.

The second counter shows the nunt>er of characters
in front of the cursor . The third counter shows
the remaining free memnory locations. The fourth
counter shows the renaining free locations in the
copy register .

In the upper righthand comer the status of the
copy-register (OK = closed, CR = opened) or error
messages of the editor are displayed.

You can read in a part of your text backwards into
the copy-register by using the camnands C1'RL + ,
Cl'RL - , C1'RL o, C1'RL Q or C1'RL w. It also is
possible to delete text and read it into the cow-
register at the same time by using the camnands
C1'RL H, C1'RL x, C1'RL v, or C1'RL N.

If you are finished with reading in, you can close
the copy-register with C1'RL D .

Now the text in th e cow-register can be inserted
as often as needed with C1'RL J.

The ccmnand C1'RL K deletes the contents of the
copy-register .

72

More detailed description of the camnand-line
ccmnands :

CIWliE {C)
Format: C<stringl>ESC [/<stringn>F.SC] ' <string2>ESC
Example: $CAtext l . 0$/Atext$/text$TEXT$t • •

'lb.is carmandline changes Atext 1 .0 into ATEXT 1 .0
Strings preceeded by I are searched locally, this
means that nested search is possible.

ERASE (E)

Format: E<string>ESC
Example: $FAtext$t • • •

Next ' Atext ' will be erased

HEX (H)

Format : H<byte>ESC
Example: HlDt • •
Inserts the hex-value lD which is an end-of-file
marker for a disk-/cassette-file.

INSERI' (I)

Format: I<string>ESC
Example: $IHello$t • • •
Inserts the word ' Hello' at the actual cur sor
position

SET TAB (@)

Format: @<n>ESC
where n= [l . . 9]

LIST (L)

Format: L [<2> 1 <file>] ESC ESC
Sends text starting at actual cursor-position via
the formatter to a device.

73

Devices :
LE: screen (unsplittedl
LP: printer
LR: RS-232
LDn : name diskdrive tn (n= [l • • 4])

After you have saved the file on disk it is
possible to send the file to a printer using the
COPY-ccmnand of OOS·.
Example in DOS: Dl :TFSI'.'IXT, P:

Splitted screen:

A single L Sends only the first 38 characters to

the screen, a L foll<7Wed by a 2 sends all
characters f ran the 38th positiori to the screen-
device.

Example: Lt • • • • •

RF.AD (R)

The first 38 characters of a line will be
displayed on screen.

$L2$i • • •

The characters fran the 38th position
will be shown.

Format: R<f ile>ESC ESC
Inserts file at actual cursor-position.
Example: RDn : name reads fran diskdrive (n= [l • • 4])

WRITE (W)

RC : reads f ran cassette

Format: W<f ile>ESC F.OC
Writes a file fran actual cursor-position to hex lD
or to end of text
Example: WDn:name writes to diskdrive (n= [l • • 4])

74

WC: writes to cassette

A format-camnand line looks like the following :

Cl'RL-L [ccmn] ' <OO
Each camiand-line , even empty ones , pits a space
between two paragraphs .
You can :put as many camnands in one line as you
want. It is not necessary to seperate the canmands.

There are the following format-camnands :

A<!r l F> autanatic line feed after each
paragraph default is false.

C<!r l F> center next lines. You only can center
if left and right margins were defined
earlier . This canmand has priority over
the right margin justification. Default
is false.

D [n] insert n line-feeds

E [n] indent n blanks at each new paragraph.
Default is zero. This only works after
the definition of the right margin.

F<!r l F> right margin justification. Default is
false

H Stop formatting and wait for pressing
' OP!'I<E ' or ' SELEC!' ' to continue.
' Sl'ART ' is abort formatting .
Use this camiand for exchange of the
fatt at a spinwriter e.g.

I<file> include file. For the file there are
the same camnands like with the
read/write camnand .

75

L (n] left margin is n blanks . Default is
zero. '!be left margin has to be bigger
or equal the right.

N<T [n] I F>pagenunt>ering starting at page n. The
first pagenunt>er is not printed . The
following nunt>ers are printed centered
at the top of the page.

o sets left and right margin as well as
the autanatic line feed to the default
values .

P form feed

R [n] right margin. If n=O then it is no
lalger printed in the zigzag-m:xle.

S [n] n lines per page. Default is 56

W[char] write char directly to the printer.
This carmand allows you to sem control
coomands to the printer . For exanple
(hex OF) turns the EPSOO MX80 to the
narrow font.

t [n] define new form-length. Default is . 72
For u�standard set form-length in the
beginning of the text to 66 .

@ [n] define new form-width. Default is 80

76

APPENDIX I

ERROR MESSAGES OF THE FORMA'rl'ER:

CIO ERROR DURI:OO PRINI'
An error occurred in the CIO--routine during print
of text or the BREAK-key has been pressed.

CIO ERROR DURIN3 INCLUDE
Something went wrong during the reading of the
file or the BREAK-key has been pressed.

LINE '100 LON;
The formatter reached a line longer than 256
characters .

ILLEGAL CCMWID
An unknown camnand is in the format-camnand l ine.

ZERO IS NJ!' ALIOVED
A zero is at not allowed location.

T(RUE OR F (ALSE EXPOCTED
The user forgot a T or a F .

CIO ERROR DURIN:; OPENIN:; FILE
During the opening of an include-file an error
occurred. Maybe the file does not exist at all.

FORMLEro'!H IDVER '!HEN PJ\.GELEN;'!H
The f ormlength never can be smaller than the
pagelength

INSPACES GREATER '!HEN (RIGHl'M-LEFTM)
You tried to indent more than the difference
between left and right margin.

LEF'IM GREATER '!HEN RIG'IHM
The left margin is bigger than the right.

77

(RIGHIM-LEF'IM) TOO SMALL
During justification no blank was found in a line.
Try to seperate a long word.

LIST .ABORI' WI'IH I START'

You stopped the printout by pressing the yellow
STARr-key.

I START' DURIN:; HALT
You stopped the pr intout by pressing the yellow
STARr-key during the H-carmand .

After the error-message you can press any key and
the cursor stays at the location of the error .

APPENDIX II

'IHE USE CF TABS WITH ATEXT

To print schedules or charts you need a function
to indent several lines the same nunber of blanks .
To do that conveniently there is a TAB-function.

The TAB-function only works :Ln the unformatted
print-irode.

The TAB-function sets the cursor to the next
predefined loaction. '!he default value for the
distance between the single TAB-positions is 9
blanks . This can be changed with the fuction TAB
SET (@) in the cormnand-line.

78

APPENDIX III

EXPLANATION TO '!HE SPOCIAL CHARACTERS

ESC this character stands for the one time use
of the F.SC-key.

[• •] the characters or nurrbers between these
brackets can be left out . Then 1 is
assumed for the value, except with the
camiands R, L, and E of the formatter.

[• •] ' means that the contents of the brackets
can be repeated as often as needed

< • • > the contents of these brackets can not
be left out

this synbol means OR

F,T these two characters stand for true or
false . This means you can turn a function
on or off .

APPENDIX "IV

PRINl'Ill; VIA OORI'S OR VIA ELCXJt1P-RS23 2-INl'ERFACE

en the disk with the wordprocessor there are two
additional files which can be loaded while in OOS.

If you load the file ' CENTRNX . SYS ' you can print
on a printer with CEN1'RCNIX interface. The signals
go via gameports 3 and 4 and the � interface
(for details see construction article) • (See page 1 l

79

If you load the file ' RS23 2 .SYS ' you can use the
ELCCJttP-RS232 interface via port 3 (for details see
construction article) . (See page 9)

After you loaded one of the two files you get back
to the editor by using camnand ' B ' of DOS .

Note that you have to load the files again after
you pressed the RESE!'-key.

The cassete-version -of ATEXT does not have the
features described above.

APPmDIX V

ERROR-MF.SSPGES CF '!HE EDI'IDR
The error-messages of the editor of ATEXT are only
two characters long and are displayed in the upper
righthand corner of the screen.

co

E?

#?

OI

I?

0.

H?

T?

S?

80

canmandline overflow; more than 40
characters in the canmandl ine

invalid character in cormnandline

the ntmi:>er in front of a camnand is
larger than 255

a string is missing at the camnand C

no more space in textbuf fer

copy-register full

wrong hex-nunt>er at cormnand H

TAB-value larger than 9 or smaller than 1

string not found

L? something went wrong during execution of
the Ir-camnand . (wrong file or stop during
printout)

RW read-/writ&-error . (file does not exist
or error during read-/writ&-operation)

APPENDIX VI

SEMI-AIJ'l'G1ATIC SEPERATION

A.TEXT has a feature to tell the formatter where a
word can be seperated . To do so you have to insert
a Cl'RL B between the syllables . Then, if it
becomes necessary, the formatter seperates the
word there.

Please note that the counter in the upper lefthand
corner of the screen counts one character to much,
because of the additional crRL B.

81

inserted in front of it . This can be seen, if you
enter Cl'RI.-T.

To print a letter several times the include
carmand has to be used . The letter has to be on
disk and should contain a forrnfeed command at the
end. Cl�ar the textbuffer (command K in the
command line) and enter :

Cl'RL-L ID:LETl'ER (Rfil'URN)

Open the copy register with CI'RL-E, move the
cursor up one line, and close the COP.f register
with Cl'RL-D. Now the COP.f register contains the
above command. This conunand can be inserted now as
often as needed, using coounand CI'RL-J (insert
contents of copy register at actual cursor
position) •

Place the cursor at the beginning of the text with
Cl'RL-L.

(ESC) LE (ESC) (ESC)

will now read the file fran disk and print it on
the screen as often as wished.

(ESC) LP (ESC) (ESC)

will print it on the printer .

82

FUXllP PUBLISHOO INC.
53 REDRJ(]{ LANE
:l?CJOlA, CA 91766

(7-14) 623-8314

YOOR CR>ER NJ. SLSMN. TERMS Oii.TE SHIPPED

Dear custaner :

'11lis is to inform you that EL<XMP has published a new
book, called •Games for the ATARI • . The book describes
step by step, how to program your CMn games. It tells
you how to create players and missiles and how to move
them on the screen. How to create sound, to generate
special effects, etc. There are many ready to type in and run programs listed in the book . Ckle program is in
mac�language. It is listed in assarbler language and as hex-<11.q> and is canpletely camnented. The name
of that program is GU?FIGlfl'.
Price for the book is $7 .95 .

Sincerely yours,

Linda Schwarz , office manager

BUSINESS PaXXJNl' : BANK OF AMERICA BANK NtJolBER 16-8 I 1220

Th is letter is written with ATEXT. For information refer to page 84.

83

A SAMPLE SESSION WI'IH ATEXT-1

'!he wordprocessor ATEXT-1 has so many camnands and
features , that it may be a bit confusing for those
of you with little experience with Cati>Uters . But
once you know how to use all the different
camiands you won ' t want to miss than anymore.

Here is what you have to enter to get a printout
like the attached letter (this letter is not a
standard letter , it is meant only to show
different techniques with the wordprocessor) :

CI'RL-L 0 (RE'IURN)

CI'RL-L D4 (RE'IURN)

CI'RL-L R66Ll0 (RE'IURN)

CI'RL-L CT (REIURN)

set default values

four line feeds

right margin at 66 ,
left margin at 10

centering mode
lines will be printed
centered , if possible,
otherwise they are
printed normal

ELm1P PUBLISHIN."; I:OC. (REIURN)

CI'RL-L (REIURN)

53 REDROCK LANE (RE'IURN)

CI'RL-L (RE'IURN)
� ' CA 91766 (RE'IURN)
CI'RL-L (RE'1URN)

(714) 623-8314 (RE'IURN)

84

a CTRL-L is needed to
start new lines a
a RE'1URN doesn' t start
a new line !

Cl'RL-L 05 (RF.WRN)

Cl'RL-L CF (RF.WRN)

Cl'RL-L 0 (RF.WRN)

five line feeds

no longer centering

no margins

YOOR ORDER NO. (12 blanks) SLSMN. (11 blanks)
TERMS (12 blanks) DATE SHIPPED (RE'IURN)

Cl'RL-L 05 (RF.WRN)

Cl'RL-L LlOR66 (RF.WRN)

Text

Cl'RL-L D4 (RE'IURN)

five line feeds

new margins

enter the text here.
If one line isn ' t
enough, just hit
RE'IURN and continue on
the next line .
Everything will be
printed one by one
later . Only Cl'RL-L
causes the start of a
new line . Lines on the
screen can be up to
255 characters long ,
but it is recommended
to go to the next line
after about 100 - 150
characters (see
counter in the upper
lefthand corner) . This
makes editing easier .
With long words you
should make
suggestions for
division. Insert Cl'RL
B between the
syllables . For ex&'f\Ple :
in ter est ing .

four line feeds

85

Cl'RL-L 130 (REIURN) new left margin

Sincerely yours , (RE'IURN)

Cl'RL-L 03 (RE.'IURN) three line feeds

Linda Schwarz , office manager (RE'IURN)

Cl'RL-L 0 (RE'lURN)

Cl'RL-L 012 (RE'lURN)

no margins

twelve line feeds

BUSINFSS ACCOONI' : BANK OF AMERICA (15 blanks)
BANK NO. 16-8 I 1220 (RE'IURN)

It is not necessary to start a new line for each
formatter command . For example a line could look
as follows :

CI'RL-L OSCFO (five line feeds , centering mode off,
default margins)

Now we want to save that letter . To do that we
first have to place the cursor at the beginning of
the text , which is done with Cl'RL-W. Then we press
ESC, to get to the command line at the bottan of

the screen . A "$" will be displayed there . We want
to save the letter on disk under the name "LE'ITER" .
To do that we enter : WD : LE'ITER(ESC) (ESC)
Now the text will be saved . After a successful
save a " # " will be displayed in the cormnand line.
If you don ' t have a disk drive, you can save the
text on cassette with : WC (ESC) (ESC)

Next we want to print the letter on the screen. To
do that we first have to leave the command line by
pressing FSC two times . Then we place the cursor
at the beginning of the text with CTRL-W. We go to
the canma.nd line again by pressing ESC. There we
want to call the formatter (L) and send the output
to the screen (device E) • Thus we have to enter :
LE (ESC) (ESC)

86

To send the output to another device just enter P
(for a parallel printer) or R (for a seriell
printer) instead of the E.

To load the file from disk later we enter :

(ESC) RD: LETITER(ESC) (ESC)

To change a word in the text we place the cursor
at the beginning of the file (Cl'RL-W) , go to the
cormnand line (ESC) , and search for the word to be
changed (cormnand S) • If we want to change the word
"called" into "named" , we proceed as follows :
We go to the command line (ESC) and there we enter

Scalled (ESC) (ESC)

This will place the cursor behind the first word
"called" after the actual cursor position. A Cl'RL
G would move the cursor to the next word "called"
if there would be one. Now we can delete the word
"called" with cormnand CTRL-N (delete last word)
and insert the new word .
Another way to do that is to use cormnand C
(change) . Go to the cormnand line (F.sC) and enter

Ccalled (ESC) named (ESC) (ESC)

The corrmand in the command line always can be
repeated with Cl'RL-G. Then the actual cormnand is
executed again, effective from the actual cursor
position on.

If you want to use the same form of a letter for a
different text, then you can renove the old text
by moving the cursor to the beginning of the text
and deleting all lines you want tenoved with
command Cl'RL-Z . Then you can create space for the
new text by pressing RE'1URN several times. If you
enter the new text later , then terminate the lines
with CI'RL-= , rather than with REIURN, because
RE'IURN is already there and the new text will be

87

Order-No. 7042
Order-No. 7292

completely -bled 8179.00
KIT 8 49.96

EPROM.·BURNER
FOR THE

ATARI B00/400®
EPRO'.vJBURNER FUR 'llIE ATARI 800/400 .

With this epranburner yw can burn ywr am EPI01S . I t
is poss ible to burn fwr different types . 'l'he fwr
types are the 2532 (4k) , �e 2732 (4k) , the 2516 (2k) and
the 2716 (2k) . 'lhe burner uses the gaire ports l , 2 and 3 .

1) 'IHE HARilVARE.

The circu it of the epranburner is sham in FIG. l .'l'he
data for the burner is exchanged via gmre port 1 and 2 .
The caitrol s ignals are provided by game port 3 . ":i'he
addresses are deccx1ed by two 7 bit cwnters 4024 . The
phys ical addresses for the EPR01S are always in the
range of 0000 to 07FF for 2k and 0000 to OFFF for 4k .
'Ibis cwnter is reset by a s ignal , deC<X.ied frqn PBO and
PBl via the 74LS139 . PB2 is used to decide if a 2532 ,
or a 2716 has to be burned .
Not all s ignals for the different types of EPRCJ1S are
switdJed by software .A three pole , dwble threw switch
is U$ed to . switd1 between the dif ferent types . The
software tells yw when y� have to set the switd1 into
the correct pos itioo. For burning , yw need a burnincJ
voltage of 25 Volts . 'I'h is voltage is caiverted fran the
5 Volts of the gane port to 28 Volt by the OCOC
caiverter OCP 528 . 'Ib is voltage is limi ted to 25 Volts
by � zener diodes in serie (ZN 24 and ZN 1) • 'I'hree
universal NPN trans istors are used to · switch between
lcw level voltages and the high level of the burning
voltage .

88

...
di �

l A

PBl._-i-::-1 1 9 l!I

PBl

PBO -

G33 I
PB2

�
�

GND

§
�

IC 1

vcc

1 6 1/6 404 9 IC5

1 2

1 4

1 5

2 x 1/6 4049 IC5

AO
Al

A2

A3
4 I A4

A5

A6

_J
1 2 1 A7

23
AB RES 02

22° A9 03
1 9 A l O

1 8 Al l

IC3
VCC

CD
� O>

� N - c:o
E � N

oo
0 1 2 1 e Vpp • Al l • Vpp

02 20 • �/PGIVe M/Npp. �
"'
;:::: 03 19 e A10 e A/O • A l Q

N 04 e EE 'CE - 1 8 e Al l •
DnDT A

c::i 05 "' 06

� 07 N "' 111 N oi; PGM l�l
Vpp

"'
l:i

co
0

•
• •

co
N
in
ICI.. .
CJ
c

� R4 T2 R2 R 1 R 1 •

Z D 1 ZD2

�:�;�!] �:�!��J2�·!::J �;:::::Jd r-- - - - ·-·- 1 I . C2
• I I +• • • • • • • • • • • 2::�s�!� J �
- - - - -, o A1 1 I EPROM SOCKET I = � � � � � � = "---"-!
Area for I I VPP r I

.. I • PGMI I
mounting l-- ... • • • • • • • • • •

l • 21 . _ _ _ l
the

switch

I • 20 4

I • PGM e • • • • • • • • • • • • • • e 'F'rnVf e 3 0 G N D VCC 7 Q

I

i Fig. 2 : Parts Layout
.s..._i

(; . . r' ,

-tit- +
C3

•

ATAR I Game connector
1 2 3 4 5 \0000000007

6 7 8 9
Male side

G32 means pin 2

of game port 3

r-..:

�
m �
== U.J
t"'
H

�
�
r3
�
z
!:?: ,.,, •

Figure 3

A 1 1

4

20
V p p

F ig . 4: Rear side of the 3P2T switch

9 1

Figure 3

A 1 1

P G M

4

20 V p p

F ig. 4: Rear side of the 3P2T switch

9 1

FIG . 2 shrns the parts layout. It is recanencled to use
sockets for the integrated circuits . Attention ! .The
ca:iponent side for the inte<3rated circuits is the side
sho.ving the text EPHa•lBURNER, but the socket for the
EP.R0-1 is roounted c::pposite to this carportent side . (see
FIG . 3) 'Ille picture of the burner is sham in FIG. 3 .
After asseiabli111.1 the board , the connections to the
ATARI ; are made . Use three female plugs and a flatband
cable. Last the three pole dooble thra..i switch is
asseroled . 'Ihe wiring of the switch and the connection
to the board is sho.m in FIG. 4 .

3) 'lliE SOF'IWAHE

The software for the burner is carpletely written in
machine code. It cares oo a bootable diskette. To load
the program, insert the disk and REMOVE ALL CARTII:GEs .
'l\Jrn en the disk drive and the ATARI . After a short
marent , yoo will see the first nenue:

Yw are asked what type of EPR0-1 you want to burn. After
typing the apprc.priate dlaracter, yoo get the nessage

--.. to set the switch to the correct pos itioo and insert
the EPRCJ1 . 'Ibis is sham in the follo.vin<J exarrple :

92

Then, press ing the space bar, you see the main roonue:

�irst we want to R) FAD an EPOCH . Type R and then the
addresses FRCM and 'IO. 'Ille physical addresses of the
EPI01 are always in range between 0000 and OFFF. Yru
can read the whole EPOCH or ooly a part of it. Next yru
have to type the address Imu which the cootent of the
EPI01 is read ." All adresses which are not used by the
system . or the burner software (ABOO to AFFF) are
accessible . By typing Y after the questioo OK (Y/N) ,
the prCXJram is loaded. 'lllere is a very inportant key ,
the X key. 'lhis key cancels the input and leads . back
into the main roonue. An exanple of reading an EPF0-1 is
shQ>Jfl in the next figure:

93

To verify that tile" content of the RAM is idetical to
the content of the EPRa1 , type v. After specifing the
adresses for the EPRa1 and the RAM and typing Y , the
contents are carpared. If there are any ai;ferences ,
yco get an error nessage , such as the folla1ing :

94

Yw may then make a rrernory dl.llll) • 'fype M for · M) EMORY ,
either R for R)AM or E for E) Pl\0'1 , and the address
range . 'll1ere is a sl ight difference in nemory dunps .
With the nernory dump of RAM , the bytes are printed , if
it is possible , as ASCI I characters .

Burning an EPRCM begins by testing as to whether or not
the EPRCl-1. is erased in the address range yw want to
burn. Type E and the address range . Yw wi ll get the
nessage EPRG'1 ERASED when the assigned address range
has been erased , or the nessage EPRa1. NOT ERASED IN
CELL NNN .
F'or writing the EPR01 , type w , the address range . in RAM ,
and the startin<J address in EPRG'1. After h itting Y , yw
have to wait two minutes for · burning 2k and fwr
minutes for oorning 4k . Don ' t get angry , the program
will st�. After burning ate cell the program does an
autanatic verify . If there is a difference yw recieve
the error nessage EPRG'1 NOT PRCX;RAMMED IN . CELL NNN and
the oorning steps . Othei:wise if all goes well the
nessage EPR01 PRCX;RAflMED is printed .
For manging the type of EPR01 yw want to oorn , type s .
The first nenue is shown and yw can begin a new
burnin:J procedure .

4) PARI'S LIST.

!Cl 74LS139
IC2 , .IC3 4024
IC4 4016
ICS 4049
Tl ,T2 ,T3 UNIVEI&L NPN TRANSIS'roR

30V , 0 . 3W (2N 3390 % 2N3399

Rl 470 K RESIS'roR

R2 ,R3 100 K RESIS'roR

R4 ,R5 33 K RESIS'roR
Zl l v ZENER DIODE

Z2 24 v ZENER DIODE

Ml OCP528 ococ �
ELPAC P<l'lER SYSTEMS

Cl ,C2 100 NF CAPACI'IDR

95

C3
Sl
1
3
2
3

10 MF TANTAL CAPACI'l'OR
3P2T SWI'IOI
24 PIN TEX'IOOL SOCKET

14 PIN IC SOCKET
16 . PIN IC SCX:KET
FEMALE PLUGS , ATARI GAME CCl-JNECIDRS

5) STEP BY srEP ASSEMBLING.
1 .
*

2 .
3 .
*

*

4 .
5 .
*

6 .
7 .
8 .
*

*

9 .
*

*

10 .
11 .
12.
*

Insert and solder sockets .
Canponent side shC"'1S the text EPRCt�IDURNER.
Insert and solder resistors.
Insert and solder Zener di00es.
'Ihe an00eS are closest to the to .the
transistors .
Insert 'iina solder trans istors .
Insert and solder capacitors .
'Ihe + pole of the tantal is marked .
Mo.mt the OCOC converter rrodule.
Turn the l:x:lard to the soldering side.
Insert fran this s ide the TFXlWL socket .
'Ihe knd:> shoold be in the
upper right corner. Solder the socket .
Make the connecticos on the switch . (FIG . 4)
Connect switch and l:x:lard via
a 7 lead flatband cable .
Connect the plugs to the board. (FIG. 5)
Insert the integrated circuits . (FIG . 2)
Turn of f the ATARI . Insert the plugs .
Insert the diskette and turn on the ATARI .

The burner software also allows you a memory dump (RAM or EPROM).

96

ATEX'r-1 WRITERS

REFERENCE CARD

cH means CI'RL H ; press both the CI'RL
arrl the character key .

ERASH�

ONE CHARACTER <--cH cu-->

ONE w::>RD <--cN

ONE LINE <--ex cZ-->

UNTIL FORMAT COOMAND <--cv ce-->

MOVING 'lliE CURSOR

ONE CHARACTER <--c+ c*-->

ONE w:>RD <--cO cP-->

ONE LINE <--c- c=->

BEGIN OF TEXT <--ctV

END OF TEXT cS->

FO�ARD NEXT TAB cl-->

FORWARD NEXT
FORMAT COOMAND cA-->

97

98

THE COPY BUFFER

CE
CD
cJ
cK

OPENING
CLOSING
INSERI'ING
ERASING
Entering text
cursor rrovement

into ccpy buff er by
or eras ing .

THE <XMMAND LINE

OPENING
CLOSING
EXECUTING
REPEATING

ESC
ESC
ESC
cG

ESC ITEans the ESC key . All canrnands
are executed fran the current cursor
pos it ion tONards the end of the text .

S EARCH ESC SAB ESC ESC
searches for string AB .

C HANGE

ESC CAB ESC � ESC ESC
changes string AB to BA .

E RASE

ESC FAB ESC ESC
erases the next string AS .

I NSERI'

ESC IHELW F.SC ESC
inserts the string HELW at the
current cursor pos ition .

'lliE CXM-Wm LINE cntd .

@n n=l • • 9 SETI'AB

ESC @5 ESC ESC
sets TAB to 5 .

H EX Inserts control characters .

ESC H2F FSC ESC
inserts the byte 2F into the text .
Th is ccmnand is used to send
cC11trol characters to the printer .
L I ST Sends text to the specified device .
ESC L ESC ESC f i rst 38th character

to screen
ESC L 2 ESC ESC from 38th charac-

ESC L E : ESC ESC
ESC LP : ESC ESC
ESC L R : ESC ESC

ter to EO L to
screen
To screen
To para l le l printer

To EI...CCJ-1P RS232 interface
ESC LD : NAME ESC ESC
To disc as f ile NAME . No format
camnands are saved CX1 disk .

R FAD Reads text f ran the
specif ied device .

ESC RD : NAME ESC ESC
Reads f ile NAME fran disk
ESC RC : ESC ESC
Reads next f ile fran cassette

W RITE Writes to specif ied device

ESC WD:NAME ESC ESC
Writes f ile NAME to disk

99

1 00

THE rulMAND LINE cntd

ESC W:: : ESC ESC
Writes text to the cassette

Attention ! All writing starts at
the current cursor po.s ition.
A f ile is read in at the current
cursor po.s ition.

K ILL

ESC K ESC ESC
erases the text buffer

D ELETE

ESC D ESC D ESC ESC
deletes two characters backward

T

ESC T ESC ESC
erases the next line

F

ESC F ESC ESC
moves the cursor one character
f oreward

J

ESC J ESC ESC
moves the cursor to the next
format canmand

G

ESC G ESC ESC
inserts the cq;>y buff er at cusor
pos ition

M

ESC M ESC ESC
exi t to DOS

Restart fran IX>S :
K Coldstart
E Warm.start

THE FORMAT C01MANOO

Every format carmand begins in a new
line , starts with cL and ends with
the RETURN key .

Ln sets left margin to n
Rn sets right margin to n
Dn insert n . linefeeds

Exarrple :
cLLlOR66D2 sets left margin to 10 ,
right margin to 66 and inserts 2
linefeeds .

En insert n blanks at each new
paragraph .
Sn sets lines per page .
#n sets form length
@n sets form width

The follcwing carmands rrust be set to
T RUE or F ASISE .

A autanatic line feed after
each paragraph .
c center next lines
F right margin justif ication
N n page numbering starts with n

1 01

1 02

O'IHER CXMMANOO :

We write control characters to
printer
IN.l\ME
0
p
H

include f ile NAME
sets the default values
f onnf eed
s top f orma t t i n g (pr i n t i n g)
and wa i t f o r pre s s i n g
" OPT I ON " or " SELE C T " to
con t i nue .

Ord.-No- 7214
Onle.-No. 7215

�•wnion
disk ¥Inion

819-95
824.95

INVENTORY CONTROL

Thi s inventory contro l program is for ATARI 400 / 800 . The number
o f items this program can handle depends on the memory s ize of
your computer .

Thi s program come s up with the menu on whi ch you s e l e c t the various
options by press ing one of the number keys . There is no need to
pre s s the RETURN key .

1 & 6 : Read or S tore Data

You can read or s tore data on disk or c a s s e t t e . When this
routine ends , the machine disp lays the menu again .

2 : Define the I t ems

You get a l i s t printed on the s creen on which you c an put your
informat ion . Each entry has the f o l l owing information :

Inventory numb er
Manufac turer
Re corder l eve l
Pre s ent l evel
Code numb er
Des cript i on

(IN-NO)
(MANUF)
(RECL)
(PL)
(COD)
(DESCRIPT)

Into each entry , you can record a lphanumeric characters except
the X key . I t i s not a l l owed , because i t i s the exit function .
The input of the recorder l eve l and the pre s ent leve l mus t b e
numer ic .

3 : Entry Edit ing

You can make changes us ing the cursor funct i ons . A SHIFT DELETE ,
deletes the art i c l e .

4 : Inventory Maintenance

In thi s mode you can keep track o f the merchandi s e sold and
received . The changes are d i s p l ayed as s o on as they are made .

5 : Report

You can get a printout o f a l l i t ems in a various des cription ,
i ike recorder leve l , and i t em 11umber e t c .

1 03

US ING THE KEYBOARD

You can use the cursor functions of the ATARI as normal .
CTRL� and CTRL� moves the cur s or to the right or to the
left wi thout changing the text . During option 3 , the curs or
can a l s o be moved up and down .

TAB key s e t s the cur s or to the next row . RETURN s e t s the
cursor in the l a s t free f i e l d of the entry (waiting pos i t ion) .
X-key leaves the current opt ion .

Hitting the return key whi l e in wai ting p o s i t i on leads to the
next entry . SHIFT DELETE eras e s the l ine . ·During option 3 ,
this l ine mus t not b e rewr i t t en .

The ESC key moves the next b l o ck of informat ion into the
s creen . Special hint : Erroneous input i s as far as pos s ib l e
ignored . But don ' t us e the CAPS LOWR and the inverse key .

1 04

MAILING LIST FOR THE ATARI - 8 0 0

�-No. 7212
0..,.No. 7213

Program Des crip t i on :

Cllletl9 .. nion
... .. -

1 11.811
HUI

The f o l l owing mai l ing l i s t program c an handle as many addre s s e s
as you want . F i fty addre s s e s e a c h a r e p u t .together t o- one
b lock and then s tored on disk . The addres s e s can be printed
on the s creen of your ATARI or printer as l i s t s or as lab el s .
(The lab e l s are format ted two in a row) b e s ide one ano ther . To
run this mai l ing l i s t , the user needs 16K byte o f usab l e RA:.'1: .
Please note that there is a l s o space for the DOS availab l e .

How to S tart the Program :
Ins ert the disk into dr ive one and type in , RUN"D : ADRE S S " Now

the program automa t i c ly come s up wi th a menu on the s creen .
Now you can make your s e l e c t ion of the appropriate function .

Input :
For your input of data , you wi l l get a form you can eas i ly f i l l
out . Name , s treet , s tate , zip , c i ty , phone number , and a l s o
a short n o t e can b e f i l led in . Thi s program a l l m�s only a
certain amount of characters for each s ingle entry . (Name : 2 5 char .
s treet : 2 5 char . , s tate : 3 char . , z ip : S char . , c i ty : 20 char . ,
phone : l 5 c�ar . , no t e : 2 5 char .) . I f you want t o put in more then
the characters a l l owed by the program , the cursor is locked .
To make change s and correct ions , you can us e edit functions
alr eady built in BAS IC . I f you type RETURN , the current l ine
wi l l b e s tored in the comput er . Lower c a s e characters are
pos s ib l e . But when the menu appear s , the computer swi t ches
to the upper case mode . With " * " you can exit thi s mode again . . .
NOTE : You cannot u s e the character * for input in your addres s
text .
I f you type space ins t ead o f a name , you can not acce s s to that
later . Therefore xou a l s o canno t de l e t e it later . "Be carefu l l
wi th the space bar ' !

Changing addres s e s :
The program asks for the name you want to change . You type

thi s name in and h i t RETURN . I f the name is in the comput er ,
it wi l l appear on the s creen . I f not there wi l l b e an erro�
mes s age . I f the name is in the computer , you can make change s
l ike , under funct ion 1 , INPUT i n t h e menu des cribed b e fore .
With RETURN you c an go to the next l ine for input . You have t o
go ta each l ine wi th t h e cur s o r , even to t h e note l ine to
comp lete the changing proces s . I f you don ' t do s o , the change
wi l l not b e accepted .

D e l e t e Addre s s :
After you s e l e c t thi s part of the menu , you wi l l be asked for
the name you want to delet e . Now you type. in that name and
"Y" (YES) for de l et e . A l l o ther input wi l l keep the name in
the mai l ing l i s t .

1 05

Output Data :
Data output c an be done in different ways . An addre s s l i s t ,
s ingle addre s s e s , addres s es from a certain c i ty , or a cert ain
parameter can b e outputed to the s c reen or to the printer . The
print out could be a l i s t ing (addr e s s l i s t , or on l ab l es , two
acro s s) . Though the l ab l e output prints two lab les acros s ,
s omet ime s the program asks fqr ano ther name . I f there are nor
other or s e c ond name . you have t o type in a dummy addres s .

How to Open a F i l e :
Before doing anything with thi s program , you have to open a
f i l e . The computer wi l l remind you in case you forget Lt .
Eight characters are a l l owed for f i l e name s . (C ap i tal l e t t e r s
o n l y - no graph i c s) . One f i l e a l l ows you to s t ore 5 0 addre s s e s .
The menu shows you the name of the f i l e , whi ch is acce s s e d or
handled at that t ime . The menu a l s o t e l l s you how many addre s s es
can s t i l l b e s tored .

How to Acc e s s a F i l e :
rhi s command a l lows you to work wi th a f i l e already f i l l ed with
names and so on .

S tore Data in a F i l e :
To s tore data b e fore · swit ching off the computer or go ing to
another f i l e , you have to s ave the addr e s s information on disk .
P le a s e check if there is any room l e f t on the diskette b e fore
you attemp t t o s ave a f i l e .

NOTE : Thi s program is protected again s t any wrong input . I f
you h i t t h e a s t er ik "* " yo_u leave the current mode and
return to the menu .

The BREAK-KEY is dis ab led .

C 1 9 8 2 Copyright by ELCOMP Pub l i shing , Inc .
All righ t s reserved

ATARI is a trademark of ATARI , Inc . a Warner C ommunicat ions Co .

Elcomp Pub l i shing . Inc .
53 Redrock Lane
Pomona , CA 9 17 6 6
(7 14) 6 2 3 - 8 3 1 4

1 06

MAILING LIST

The program can control as many addre s s e s as you want . F i fty
addre s s e s at a time are put together to a data- f i l e and stored .
The menu at the beginn ing g ives you the following funct ions :

1 .) Enter data :
You get a l i s t with name , street , state , z i p code , c i ty ,
telephone , note , and can enter the matching data . The
length of the input is l imited . I f you try to enter too
much , the cursor stop s . For corrections , you can use
the normal control function s . After you hit RETURN the
l ine is stored . I f you enter " * " you w i l l get back to
the menu .

2 .) Change data :
The program wi l l ask you for the name to be changed . I f
the name exists , the address will b e di splayed and you
can continue l ike under number one . I f you hit RETURN ,
you go to the next l ine . You have to enter a l l lines !

3 .) De lete addre s s e s :
The program w i l l ask you for the name to be deleted . I f
you enter " Y " the addre s s w i l l be deleted .

4 .) Output data :
You have the fol lowing options here : Total l i s t , s ingle
name s , all addre s s e s o f one town , search for special note .
You can direct the output to the screen or to the printe r .
o n the printer you c a n g e t a norma l printout or labe l s
(two addre s s e s in a l i ne) .

5 .) create a f i l e :
Before you enter datas you have to name a f i l e . In one
f i l e there is space for f i f ty addre s se s .

6 .) Read data :
Th i s command reads data out of existing f i l e s .

7 .) S tore data :
This command is used to save datas .

This program requires the BAS IC cartr idge in the left s lot .

1 07

Order-No. 720 1
Order-No. 7200

cassette version
disk version

Invoice Writer for
ATARl -400/800®

I nvoice Writer for ATAR l -400/800

S29.95

S 39.95

The ATA R l -400/800 are powerfu l consu mer computers for games
and educat ion . But the very sma l l busi ness man a l so can use them
for cutting costs.

The invoice program from E LCOM P is very s imple but does a
great job i n writing you r i nvoices . You need the fo l lowi ng hard
ware:

1 . ATA R I 400 or 800 with at least 1 6k of RAM
2 . ATA R I BAS I C in R O M
3 . interface modu le ATA R I 850
4 . pri nter with ser ia l (RS 232) i nterface

This program writes i nvoices for the very sma l l busi ness . The in
voice is written onto a specia l form that is suppl ied i n l i m ited
quantities with the program . An address label is i nc l uded in th is
form .

Program description :
Li nes 222, 224, 226 and l i nes 1 000, 1 002, 1 004 conta i n the
address of you r company. You can rep lace these th ree stri ngs by
you r company' s address.

L ines 360, 370, 380 ca lcu l ate the d iscou nt . S l is the number of
products so ld to that customer . I f S l is 1 5, then d iscou nt is
25%, if S l i s G 1 0 , then d i scou nt is 33 %, if S l is 1 1 or more,
then d iscount is 40 %. You can change these numbers eas i ly e .g . ,
if you want 33% discou nt for 620 products and 50% for more
than 20 products change l i ne 370 to :

1 08

I F S 1) 5) A N D (S1 (2 1) TH E N D=0.33

and l i ne 380 to:

I F S1) 20 TH E N D=0.5

Lines· 405, 4 1 0, 420, 430, 440 calcu late the costs for sh ipping :

I f S 1 is 1 1 4 , sh ipping costs (V) is S 2 .-, if S 1 is 1 5 . . . 29, then
V=S 1 .25, if S1 is 30 39, then V=S 1 .50, if S1 is 50 99, then
V= S 2 .-, if S1 is 1 00 or more, then V= S 2 .50 . This can a l so be
changed, if needed .

At the end of the program (l i nes 1 500 . . .) you can enter you r pro
duct fi le . Every record of this fi le is written i n a DATA-statement
and conta ins :

1 . order number
2 . description (up to 2 6 characters)
3. price

e .g . 1 600 DATA 1 1 7 ,50 B LAN K CASSETTES C 1 0, 1 9 .80

I mportant: The last statement has to conta in 0 ,0,0 (end of f i le
marker) .

Program hand l ing :
Start the program with R U N . The f i rst th ing you have to enter is
the TAX RATE, next is the DAT A (you have to enter it only once
at the beg inn ing) , then F I RST I NVO I C E N U M B E R (wi l l be in
cremented at every i nvoice) , then ACCOUNT N U M B E R , then
D I SCOU NT, yes or no, if you enter 1 for yes, d iscount is calcu
lated depend i ng on the number of products sold , if you enter 0 for
no, d iscou nt is 0%.

The next you have to enter is SH I PP I N G , here you have a choice
of automatic ca lcu lation of sh ipping costs, or you can enter a cer
ta in amount by hand.

Next th i ng to enter i s CUSTO M E RS O R D E R N UM B E R and h is
address, next you can select the way of payment and the way of
transportation . Then SH I P TO SAM E AD D R ESS wi l l appear , you
can enter Y or another address. After that the head of the i nvo ice
wi l l be printed .

1 09

The next th i ng you have to enter is the fi rst item number. If the
program reads the end of the fi le, you wi l l get ITEM N UM B E R
NOT FOU N D and you can enter another number.

When you want to f in ish the invoice, enter 0 and the program wi l l
fin ish that invoice.
Now you can enter the next account number and so on .

1 1 0

-'

G U N FIG HT

Order No. 7207 ' 19.95

G U N F I G HT is for two p layers. Each p layer uses one joystick . P lug
the joystick i n port 1 and 2 . Port 1 refers to the left p layer, port 2
to the right player.
G UN F I G H T starts with the Copyright-statement. Press one of the
two trigger buttons and the p layfield appears. Now you can move

the cowboys.

The Game
You shoot by press ing the trigger . Each player has 1 0 cowboys
and each cowboy 50 bul lets . By hold ing the button p ressed the
gun keeps f i r ing u nt i l the cowboy has no more bu l l ets. There are
2 ways to be k i l led : You r opponent can shoot you or you can
drown in the sea .
After each rou nd the game wa i ts for you to press the trigger. The
game-statu s appears . It shows you the actual n umber of cowboys
and bu l lets. When you press the trigger the game goes on with the
next round . The wi n ner of the game wi l l be shown after you press
the trigger. button . Pressi ng the trigger the game starts aga in with
the Copyright-statement.

The Sea
Don ' t touch this b lue a rea because you wi l l be drowned .

I f you run out of bul lets:
If you don' t have any bu l lets you can only f lee and hope that the
enemy wi l l touch the sea .

1 1 1

You can h ide your cowboy behind any one of the three rocks .
But when you r opponent a lso h ides beh ind a rock , he can shoot
you as long as h is gu n is beh ind the rock .

The program starts at hex 1 000. To key the program i n , you need
a mach i ne language monitor or the ATA R I® Ed itor/.A.ssemb ler
cartridge.
The sta rt i ng add ress of the program G U N F I G HT is 1 0 1 6 hex .
Start with G OTO 1 0 1 6 . Skip the location between 1 75F and 1 F 98.

1 F98 = Sta rt of d isplay l ist
2000 = E nd of d isplay l ist and beg i n n i ng of the background .

Type i n everyth ing l i ke it is . (U se the f i l l -command of
a mach ine language monitor) .

2 F F F E nd of background

1 1 2

I f you bought the program on cassette,you can l oad the
program as fol l ows:
1 .Switch the computer off
2.Switch the TV an cassette recorder on
3. Press the ST ART button
4. Hold the STA RT button down
5. Switch the computer on
6. Release the STA RT button
7 . Press P LAY on the recorder after the beep
8. Press R ETU R N

KNAUS.·OGINO
Birth control

KNAUS 0000

For thousands of years now man thinks about birth
control . 'l'tle present mean , the ' pill ' was developed
in the 1950s . All k inds of ways of bi rth-control
have been developed , fran droppings of · a crocodile
as a pessar (1850 B. c .) to abstinence (1st book of
Mose , Olapter 38 , verse 9) •

A ruch better method is the one developed in 1930
by two independent doctors . H . Knaus (Austria) and
D. O':Jino (Japan) a<X)Ui red this technique on the
basis of the female cycle . A surmnary can be found
in the Family &\cyclic by pope Pius XI . (1931) .
There it says : 'l'tle first fertile day can be
calculated by subtracting 19 days f ran the shortest
cycle known . 'l'tle last fertile day can be calculated
by subtracting 10 days fran the m.mt>er of days of
the loogest cycle known by that particular wanan .

Since this sounds like an estimate this technique
didn ' t disseminate very well . Nowadays we know that
a fertilization is possible only a short time after
the exµilsion of the ovum. With a healthy wanan
this time is. about six hours . We also know, since
Knaus and Ogino, that the expulsion of the ovum
haA;>ens pretty exactly 14 days before · the next
menstruation . Since the life-span of the sperm is
about two days the time , where a fertilization can
happen is elongated by that period .

If we use the results of the two scientists
together with statistics and error-rnathanatics we
are able to make nK>re accurate statements .

1 1 3

'!'he atly nanent known is the start of the
menstruation (date and time of day) . We subtract 14
days f ran that nanent and get the expulsion of the
ovum. Plus one and minus three days theref ran tells
the time of abstinence . If we add 266 days to the
time of the expulsion of the ovum we get the date
of birth (in case of a fertilization) .

'!'he program which canes with this article does all
the calculations and also saves all previous dates .
Every JOOnth you load the old dates and add the new
one . '!'he reliability becanes better and better with
every new date .

Finally a note :
All informations are without any guarantee

Order-No. 7222 S 29 .95

1 1 4

PRODUCTS FOR ATARI* 400/ 800 FROM E L C 0 M P

BOOKS :

ATARI BAS IC - Learning by us ing
An exce llent book for the beg inne r . Many short programs and learning
exe rcises . Al l important f ea tures of the ATARI computers are descr ibed
(sc reen drawings , special sounds , key s , paddle s , joy s t icks.,
s pecialized screen rou t ine� i graphics

!
sound appl icat ions , peeks ,

pokes , and special s tu f f) . Al.s o sugge s t o n s a r e ma d e t h a t chal lenge
you to change and wr i t e prog ram rou tine s .

Orde r # 1 6 4 $ 7 . 9 5
GAME S f o r the ATARI Computer
This book describes advanced programming t echniques l ike
playe r-mi s s i le-graphics and use of the hardwa re-regis ters . Contains
many ready to run prog rams in BAS I C and one called GUNFIGHT in
machine-language .

Order # 1 6 2 $ 7 . 9 5

SOFTWARE IN BASIC :

Invo ice Writ ing for Sma l l Bu s iness
This program makes writ ing invo ices eas y . S t ore your p roduc t s in DATA
s tatements with order-numbe r , description , and price . The program
later retrive s the descript ion and price ma tching to the entered
o rde r-numb e r . The shipp ing cos t and the dis count may be calculated
automa t ically d epending on the quant ity orde red o r entered manual ly .
The de script ion to the program tells you how to change the prog ram and
adap t it to your own needs . Come s wi th a couple of invoice forms to
write your f i r s t invoices o n t o i t .

Orde r # 7 2 0 1 c a s s e t t e vers ion $29 . 9 5
Order # 7 200 d i s k vers ion $39 . 9 5

Ma iling L i s t
This menu driven program allows the small bus i ne s s man
of vendors and cu s t ome r s . You can sea rch f o r a name or
certain town or for an address with a certain note . 5 0

to keep t rack
add ress of a
addr.esses are

put into one f ile .
Orde r #
Orde r #

7 2 1 2 c a s s e t t e ve rs ion ·$ 1 9 . 9 5
7 2 1 3 d i s k vers ion $24 . 9 5

Inventory Con t rol
This program i s menu driven. I t gives you the fol lowing opt ions :
read / s to re datal def ine i t ems , entry edit ing , inventory ma intenance
(incoming-outgo ng) , repo r t s . The produc t s are s tored with inveµtory
numb e r , manufacture r , recorder leve l , present leve l , code number ,
desc r ip t ion.

Order # 7 2 1 4 cas s e t t e vers ion $ 1 9 . 9 5
Orde r # 7 2 1 5 d i s k ve rsion $24 . 9 5

Programs f r om Book # 1 6 4
The programs f rom book no . 1 64 on ca s s e t te . (Book inc lyded)

Orde r # 7 100 $29 . 00
Game Package
Games on cas s e t te . (Bombe r , tennis , sma r t , cannon fodder 1 e t c) .

Orde r # 7 2 1 6 $ 9 . 9 5
--

SOFTWARE IN MACHINE LANGUAGE :

ATMONA- 1
This is a ma chine language moni tor that provides you with the mos t
impor t ant commands f o r prog ramming in machine-language . Disassemble l dump (hex and ASCI I) , change memory loca t ion , block t rans f e r , f il
memory block , save and load ma chine-language prog rams , s tart programs .
P r inter opt ion via three d i f f e rent interfaces .

·

ATMONA-2

Order U 7023 d i s k vers ion 24 . 9 5
Order # 7022 cas s e t te vers ion 1 1 9 . 9 5

O rde r U 7024 cart ridge ve rsion 5, . 00

This is a t racer (debugge r) tha t lets you explore the ATARI RAM/ROM
a rea . You can s top at previously selected addres s , opcode , or ope rand .
Also ve ry valuable in unders tanaing the microproce s s o r . At each s top ,
all reg i s ters of the CPU may be changed . Includes ATMONA- 1 .

Orde r U 7049 cas s e t t e vers ion $49 . 9 5
Orde r # 7050 d i s k vers ion $54 . 00

1 1 5

ATMAS
Macro-As sembler for ATARI-800/48k. One of the mos t powe rful ed i t o r
a s semblers on t h e marke t . Vers a t ile ed itor wi th s c rolling . U p t o 1 7 k
of source-code . Very fas t , t ranslates 5 k source-code i n about 5
seconds . Source code can be saved on disk or cas s e t t e . (Includes
ATMONA- 1)

ATAS

Orde r # 7099 disk ve rsion $89 . 00
O rde r I 7999 cart ridge version $ 1 29 . 00

Same as ATMAS bu t wi thou t macro-capabi l i ty . Cas s e t te-based .
Order I 7098 32k RAM
Order I 7998 48k RAM

ATEXT- 1

$49 . 9 5
$49 . 9 5

This wordproce s s o r is a n excellent buy f o r your money . I t features
s c reen oriented edi ting , scroll ing , s t r ing sea rch (even nes ted) , left
a nd right ma rg i n jus t i f ication. Ove r 30 commands . Text can be saved on
disk or casse t t e .

GUNFIGHT

Ord e r I 7 2 1 0 cas s e t t e version !29 . 9 5
Orde r U 7 2 1 6 disk version 34 . 9 5
O rde r U 7 2 1 7 cart ridge vers ion 69 . 00

This game (8 k machine-language) needs two joys t i ck s . Anima t ion and
sound . Two cowboys f ight agains t each other othe r . Comes o n a bootable
casse t t e .

Order # 7 20 7 $ 1 9 . 9 5

HARDWARE :

PRINTER INTERFACE
This cons truc t ion art icle come s with printed
s o f tware . You can use the EPSON printer without
interface . (Works wi th game po r t s 3 and 4) .

c i rcuit board and
the ATARI printer

Ord e r # 7 2 1 1 $ 1 9 . 9 5
EPROM BURNER (2 5 1 6 o r 253'2 EPROMs)
Works wi th gamepo r t s . No add i t iona l powe r supply needee .
completely assembled and wi th sof twa re .

Comes

EPROM BOARD (C ARTRIDGE}
Holds two 4k EPROMS (2 5 3 2) .

ELCOMP Publi shing Inc . , 53 Red rock Lane
Pomona CA 9 1 7 6 6 , Phone : (7 1 4) 623�8 3 1 4

Order I 7 0 4 2 $249 . 00

Order I 7043 $ 2 9 . 9 5

Pa)'lllent : check , money orde r , VISA, MASTERCHARGE , Eurocheck .
Orders f rom outs ide USA: add 1 5% shipping . CA res idents add 6 . 5% t ax
* ATARI is a reg i s tered t rademark of Atari Inc .

1 1 6

NOTES

NOTES

NOTES

NOTES

ATARI BASIC - L-..ing by Uling
An e•callent book for the beginner. Manv sho" programs
and k!ern1ng exe<c•"""· All 1mparun1 fMtures of the ATARI
comi>utars aro described lscreen drawings, special sounds.
keys. paddles. JOyot1cks. specialized screen routines.graphics.
sound ,.pplicotions. peeh, polces, and s1>ecial stuff! Also
.uooes11ons are made that challer>go you to chenge and wdti!
program routines
Or #164

6- for tM ATAAICompu-
Thos book descr i bes advar>eed programminQ techniques like
player-missile-<,1raphics �nd u.., of the hardware-registe<s
Conta•n• n;>anv ro•ady to run programs 1n BASIC and one
coiled G U N F IGHT in machine lang"811" 0rmr#1&2

Invoice Writing for Sm.Ill Busi MM
This program makes writing invoices easy. Store your
products in DATA statements with order-number,
description, and price. The program later retrives the
description and price matching to the entered order
number. The shipping cost and the discount may be
calculated automatically depending on the quantity
ordered or entered manually. The description to the
program tells you how to change the program and
adapt it to your own needs. Comes with a couple of
invoice forms to write your first invoices on to it.
Order #7201 caaett1I version 129.95
Order #7200 dilk version 139.95

Mlliling List
This menu driven program allows the small business
man to keep track of vendors and customers. You can
search for a name or address of a certain town or for
an address with a certain note. 50 addresses are put
into one file.
Order #7212 Cim9tte venion
Order #7213 dilk version

lnvantorf Control
This program is menu driven. It gives you the
following options: read/store data, define items.
entry editing, in1111ntory maintenance (incoming
outgoing), reports. The products are stored with
Inventory number, manufacturer, reorder level,
present level, code number, description.
Order # 7214 caaette version
Order # 7215 dilk venion

Programs from Book # 164
The programs from book no. 164 on cassette. (Book
included)
Order #7100

GamePack11911
Games on cassette. lBornber, tennis, smart, cannon
fodder, etc.)
a # 7216 �f:!:�[;;

cessor; and suppan

c;i:�ST for the hard·
waret>uff.

On:Mr-No. 29
S14.96

ATMONA-1
This is a machine language monitor that provides you
with the most important commends for programming
in machine-language. Disassemble, dump (hex end
ASC l l l , change memory location, block transfM, fill
memory block, save and load machine-language pro
grams, start programs. Printer option via three
different interfaces.
Order # 7022 cMRtt1I wnion
Order # 70Zl dilk ve�ion
Order # 7024 cartridge version

ATMONA-2
This is a tracer (debugger) that leu you explore the
ATA R I RAM/ROM area. You can stop 1t previously
selected address. opcode, or operand. Also very
valuable in understanding the microprocessor. At
each stop. all registers of the CPU may be changed.
Includes ATMONA-1 .
Ordw #7049 1;11aetut venion
Ordw # 7050 disk. version

ATMAS
Macro-Assembler for ATA R l -800/48k. One of the
most powerful editor assemblers on the market.
Versatile editor with scrolling. Up to 17k of source
Code. Very fast. translates 5k source-code in about 5
seconds. Source code can be $lived on disk or cassette.
(Includes ATMONA-11
Order # 7099 di$k version
Ord« #7999 cartridge version

ATAS
Same as ATMAS but without macro-.capability.
Cassette-based.
Order # 7098 32k RAM
Order #7998 48k RAM

ATEXT-1
This wordprocessor is an u:oellent buy for your
money. It features screen oriented editing, SCJolling,
string search (even nested) , left and right margin
justification. Over 30 commands. Text can be $ll'lt!d
on disk or cassette.
Order #7210 cassette venion
Order # 7216 di$k venion
Ordlr # 7217 cartridge venion

FORTH from Elcomp Publishing, Inc. is an extended
Fig-Forth-version, Editor end 1/0 package included.
Utility package includes decompiler. sector copy ,Hex
dump (ASC I I) , ATA R I Filehandling, total graphic
and sound, joystick program and player missile.
Extremely powerful !
Ordw # 7055 disk

• •
EPROM BOARD KIT
Same as above but bare board only with description.
Order # 7224 114.96

� - fDI' YOllr ATARI 400/800 =14'7
2
�� Biorythm for ATAR I (cass. osg�s

-
��

Birth control with the ATA R I (Knaus Ogino)
Order # 7222 cass. or disk

Books + Software for VIC-20 (requim3k RAM Exp.I
#4870 Wordprocessor for VIC-20, Bk RAM $19.95
#4883 Mailing List for VIC-20, 1 6k RAM $14.95
1 4 1 Tricksfor VICs -The V ICstoryProgr. S9.95
#4880 TIC TAC VIC S9.95
#4881 GAMEPACK I (3 Games) 114.95
#4885 Dual Joystick Instruction S9.95
INPUT/OUTPUT Programming with your V I C
Order #4886
#4896 Miniassembler for VIC-20
#4881 Tennis, Squash, Break
#4894 Runfill for V I C
Universal Experimenter Board for the VIC-20
�Saw money with this great board). This board
plugs right into the expansion $lot of the VIC-20
The board contains a large prototyping area for your
own circuit design and expansion. The construction
article shows you how to bu1l·l y.�ur own 3k RAM
expander and ROM-board.
Order # 4844
Software for S INCLAIR ZX-81 and TIMEX 1000
#2399 Machine Language Monitor SQ.95
#2398 Mailing List $19.95
Programming in BASIC •nd machine language with
the ZX-81 (82) or TIMEX 1000.
Order # 1 40 (bookl

57.95
57.95
57.95
57.95
s1_g5

151 SK Microsoft BASIC Ref. Man. S9.95
1 52 Expansion Handbook for 6502 and 6802 $9.95
1 53 Microcomputer Appl. Notes S9.95

Complex Sound Ge"'31"ation
New revised applications manual for the Texas
Instruments SN 76477 Complex Sound Gitnerator.
Order # 154 16.95
Small Business Programs Order # 1 56
Complete listings for the business user. Inventory,
Invoice Writi!'lg, Mailing Lin and much more. Intro·
duction lo Business Applications. S�4.90

