

(

30 DAYS TO UNDERSTANDING BASIC XL

by BILL WILKINSON
aM

DIANE GOLDSTEIN

This booK is Copyright (c) 1983 by
Optimized Systems Software, Inc.

1221-B Kentwood Avenue.
San Jose, CA 95129

All rights reserved. Reproduction or
translation of any part of this worK beyond
that permitted by sections 107 and 108 of the
United States Copyright Act without the
permission of .the copyright owner is
unlawful.

Contrary to
belief that
programmer.
programmer,
they work.
reading this
computers.

(

'--

Preface

The computer age is upon us. From young children to
senior citizens, the computer and the need for "computer
literacy" have caught the attention and curiosity of
many people. And, for <:better or worse, computer
literacy has come to mean "learning to program in
BASIC". However, learning to program is no easy task.
Most books are written in computerese. You have to
understand computers in order to understand the books.

Not so with "30 Days to Understanding Basic XL." While
avoiding computer "jargon" as much as possible, this
book is intended to introduce you to the fundamental
concepts of programming a computer using the BASIC
language.

BASIC (Beginner's All-purpose Symbolic Instruction Code)
is an introductory computer language. Because BASIC
uses many common English words, it is often considered
the easiest of computer languages for the beginning
programmer to learn.

Unfortunately, there are as many dialects of BASIC as
there are of English. While this book focuses on the
particular dialect known as BASIC XL, it nevertheless
attempts to teach concepts universal to most computer
languages.

Once you have mastered BASIC, you can then delve into
the other mysterious computer languages like C, Action,
and Pascal. For now, BASIC is the language you need to
understand in order to do elementary programs on your
ATARI Home Computer.

what you may have read previously, it is our
not everyone is intended to be a computer

However, even if you do not become a
you should become aware of computers and how
Hopefully, the knowledge you gain from
book will make you feel more relaxed around

By working through this book you will become more
familiar with your ATARI Hc;>me Computer. In additi.on,
you will learn common BASIC statements. This knowledge
will permit you to use commercially produced products.
You do not have to be a programmer to use programs
developed by other people.

Finally, the intent of this book is to introduce you to
BASIC XL and beginning computer concepts. In the
process we hope to make you computer literate.

page

7 INTRODUCTION

9 CHAPTER I:

14 CHAPTER II:

18 CHAPTER III:

23 CHAPTER IV:

28 CHAPTER V

TABLE OF CONTENTS

GETTING TO KNOW YOUR COMPUTER:
ALL THE CONCEPTS THAT ARE FIT TO PRINT

Cursor
Keyboard
(RETURN} Key
Error
Syntax
(DELETE}
(BACK S.}
Statement
PRINT
Character
String

ARITHMETIC:
COMPUTERS NEVER MAKE MISTEAKS

+

*
/

REMEMBERING NUMBERS:
VARY VERY IMPORTANT

Variable
Numeric Variable
LET

DIRECT MODE VS. PROGRAMMING MODE:
THE BIRTH OF A PROGRAM

Statement
Direct Mode
Program
Line Number
RUN·
LIST

A NEW BEGINNING:
WIPING THE SLATE CLEAN

NEW
(CLEAR}
(SYSTEM RESET}
I

--1--

33 CHAPTER VI REPETITION:
GETTING LOOPED

GOTO
Loop
{BREAK}

37 CHAPTER VII RELATIONAL OPERATORS:
IF YOU CAN PASS THE TEST

<
>

<>
<=
>=
IF
THEN

43 CHAPTER VIII INPUT:
TALKING BACK TO THE COMPUTER

INPUT Statement

47 CHAPTER IX LOGICAL OPERATORS:
DOES THIS MAKE SENSE?

AND
OR

51 CHAPTER X RANDOM:
I WON WHAT?

Random Selection
RANDOM
Integer

55 CHAPTER XI THE PROGRAM RECORDER:
HITS ON TAPE

Prog!1am Recorder
CLOAD
CSAVE
LIST "C:"
ENTER HC:
RUN

--2--

,
I

(

(

(

59 CHAPTER XII

66 CHAPTER XIII

69 CHAPTER XIV

76 CHAPTER XV

THE DISK DRIVE:
BEING FLOPPY ISN'T SLOPPY

Disk Drive
Diskette
File Name
File Name Extension
Boot
DOS
System Diskette
DIR
LOAD
SAVE
ENTER
LIST

THE PRINTERS:
HARDCOPY ISN'T HARD

Software
Hardware
Printer
Hardcopy
LPRINT
Output

GRAPHICS, PART I:
I GET THE PICTURE

Graphics
Pixels
Graphics Window
Text Window
COLOR
PLOT
DRAWTO

EDITING FEATURES:
THE SCREENING PROCESS

DELETE
BREAK
CTRL
~- .
-~

INSERT
t
+
TAB
SPACE BAR
CTRL 1
CTRL 2
ESC
CAPS/LOWR

--3--

85 CHAPTER XVI IF REVISITED:
THEN WE CAN DO ANYTHING

IF ••• THEN
END

88 CHAPTER XVII SUBROUTINES:
CALLING FOR HELP

Subroutine
GOSUB
RETURN

95 CHAPTER XVIII BETTER LOOPS:
WHAT'S THE NEXT STEP

FOR
NEXT
STEP
Negative Numbers

100 CHAPTER XIX FOR LOOPS REVISITED:
ANOTHER STEP UP

FOR
NEXT
Nest

106 CHAPTER XX STRING VARIABLES, PART I:
REMEMBERING WORDS

String Variable
DIM
$

<>

111 CHAPTER XXI STRING VARIABLES, PART II:
EVEN WORDIER

Destination String
Source String
Substring
Subscripts
LEN()

--4--

(
126 CHAPTER XXII

124 CHAPTER XXIII

127 CHAPTER XXIV

134 CHAPTER XXV

142 CHAPTER XXVI

145 CHAPTER XXVII

SOUND:
YOU CALL THAT MUSIC?

SOUND
Sound Channel
Pitch
Sound Quality
Volume

GRAPHICS, PART II:
I CAN WRITE BIGGER THAN YOU

Graphics Window
Text Window
PRINT '6:
POSITION

GRAPHICS, PART III:
MY PICTURE IS IMPROVING

Graphic Mode
Graphics Window
Text Window
Pixels
COLOR
PLOT
DRAWTO

GRAPHICS, PART IV:
ALL THE COLORS OF THE RAINBOW

Color Registers
COLOR
SETCOLOR
Luminance
Hue

GRAPHICS, PART V:
A REVOLUTION IN RESOLUTION

GRAPHICS 8
Luminance
Hue

PROGRAMMING AIDS:
COSMETIC SURGERY

REM
NUM
RENUM

--5--

1513 CHAPTER XXVII I THE JOYSTICK:
MANUAL OR AUTOMATIC

HSTICK
VSTICK
STRIG

154 CHAPTER XXIX A REAL LIVE VIDEO GAME:
SNAILS' TRAILS

163 CHAPTER XXX CONGRATULATIONS:
313 END

165 ANSWERS:

--6--

(

(

INTRODUCTION

Before you begin working in
BASIC XL" there are several
organization and the format of
understand.

"39 DAYS to UNDERSTANDING
details concerning the

this book that you should

Chapters I through V are introductory chapters, and they
describe concepts that must be understood before any
real programming techniques can be learned. Beginning
programming methods are covered in Chapters VI through
XV. Also, please note: in Chapters XII, XIII and XIV we
explain some equipment that can be used along with your
home computer. If you already own these devices, the
explanation should enhance your understanding of how
they operate. If you do not own any additional
equipment, you should read these chapters to obtain
information on support products available to expand the
usage of your home computer. In Chapter XV we assume
you are using a color monitor or color television screen
as your computer display. If your ATARI Home Computer
is not attached to a color display, please work through
the chapter anyway. The only difference will be in the
lack of color.

In Chapters XVI through XXI additional beginning
concepts are explained. The last section of the book,
Chapters XXII through XXVIII, further explores the
graphics and sound capabilities of the ATARI computer.
The last chapters, Chapters XXIX and XXX, are a summary
of concepts covered and a final example. Our example is

. a relatively easy video game which will indicate what
you can produce with a little creativity and the BASIC
commands covered in this book.

To make the learning process easier for you, we have
organized each chapter in the same manner. First, each
chapter begins with a glossary. Study this before you
start reading the main body of the chapter. The
glossary provides an introduction to the terms and
concepts covered within the chapter.

Following explanatory paragraphs are sections labelled
"Instruction". Please complete these sections. Usually
you will be asked to type commands or statements into
the computer. Instruction sections are intended to give
you hands-on experience or, in computer talk, give you
experience "interfacing" with your ATARI computer
system.

At the end of each chapter are exercises.
are also provided at the end of the

--7--

The answers
book. These

exercises are intended to provide
practice and to integrate new
previously explained.

you with
concepts

additional
with those

In order to visually emphasize certain words
we have employed several different print
fonts. First, {braces} indicate a key on the
keyboard. For example {RETURN} refers to the
keyboard and also means "push the key
·RETURN· ...

and ideas
styles or

computer's
key on the

labelled

Sometimes one key may have two or more names and
functions associated with it. In most cases we use only
one of the names to designate a particular key.

When necessary we use bold type to emphasize key words
and italics to give instructions or make commentary.

In some chapters we have enclosed additional information
in boxes. These boxes are intended to provide the
reader with supplementary information. Although
interesting and informative, these boxes are ancillary
to the explanations provided within the main body of the
text.

Finally, this book is to be used with your
Computer. Insert the OSS BASIC XL cartridge.
the computer and your monitor. If you do not
these instructions, please first refer to
operators Manual. Let's begin.

--8--

ATARI Home
Turn on

understand
your ATARI

(

(

Glossary:

CHAPTER I

GETTING TO KNOW YOUR COMPUTER:
ALL THE CONCEPTS THAT ARE FIT TO PRINT

Cursor The cursor is a white (or light
square on the monitor which indicates
the next letter or number you type
appear.

blue)
where
will

Keyboard The area on your Atari Home Computer which
contains letters, numbers, and additional
special keys.

(RETURN) The return on your computer
hitting this key, you tell
that you have completed
instruction or an answer.

keyboard. By
the computer
entering an

Error A mistake: the Atari Home Computer will
indicate an error when you have made a
typographical mistake, misplaced
punctuation, misspelled a word, or given a
command or statement in a form which the
computer does not recognize.

Syntax The pattern,
describe the
understands.

structure
language

or rules which
the computer

(DELETE) This key will "erase" any letter you type
by accident: it moves the cursor one space
to the left each time you hit the key,
deleting the letter. symbol. or number it
replaces.

(BACK S) This means
{DELETE} as
definition.

back space and is the same as
• described in the above

A common command that tells the computer
you want to see something on the screen.

(

Statement

PRINT

Is the
just as
English.

action part of a computer language
a verb .is the action part of

--9--

Character

String

Any number, letter, or special symbol on
the keyboard.

Any group of characters inside quotation
marks.

After you have properly connected your Atari Home
Computer, placed the BASIC XL cartridge into the
computer, and turned on the computer you will notice
that the monitor displays the word READY. Located
directly under the R is a white square. This square is
the cursor. It indicates where the next letter or
number you type will appear. A cursor is like a
pointer, and it will move as you type, indicating where
the next character will appear on the screen. Your
Atari computer keyboard is similar to an electric
typewriter's keyboard. It has some extra keys and some
additional special features, but in general the letters
and numbers are in the same location.

First, locate the {RETURN} key. You will find it on the
right side, second row from the top. Press the {RETURN}
key. By hitting {RETURN} you are telling the computer
that you are there. Also, you are telling the computer
that you are entering or have entered an answer or
information. When typing on the computer's keyboard,
usually nothing will happen until you press the {RETURN}
keyl

Your computer monitor or TV screen should say READY.
(If it does not, check the Atari Operators Manual to be
sure your computer is connected properly.) If. you
continue to press the {RETURN} key, the cursor will move
down the left hand margin. If you press the {SPACE
BAR}, the cursor will move toward the right hand margin.

Instruction:

You Type:

PINT
Press the {RETURN} key

Your computer should say
ERROR - PINT[]

([] is actually an inverse video space.)
This is a sample of a Syntax Error.

--lB--

(

(

(

Syntax refers to the well-defined set of rules that
comprises or makes up a computer language. Actually any
language--including English--has such a set of rules:
try to understand this, proper without syntax the. Did
you have trouble understanding that? The computer isn't
as smart as you, so you have to be even more careful
about what you tell itl

In the example shown above, you have told the computer
something it does not understand. Whenever you make a
typographical error, misplace punctuation, or misspell a
word, the computer will display the line you typed
together with the word "ERROR". It will show you the
location where it thinks your error is by reversing the
colors of the character and background at that spot.

Please note: For now, if you make a typographical error,
simply retype the line. If you notice the error before
you have pushed {RETURN}, use the {BACK S} key. {BACK
S} means "back space" and is located above the {RETURN}
key. Use this key to back up to your error and then
retype the line from that character to the end of the
line. The complete Atari editing system will be
discussed in Chapter 15.

Notice as you type information
into the computer and the
computer responds, there is a
great deal of data on your
monitor or television screen. If
the accumulation of data is
distracting, press the {SYSTEM
RESET}. This will clear the
screen and the word READY will
reappear.

Instruction:

You Type:

PRINT
Press the {RETURN} key.

A statement is the active part of any computer language.
Statements translate into an action you want the
computer to perform. In BASIC there are many different
statements. PRINT is a common statement and indicates
that you would like to see some information on your
screen.

--11--

Your screen should look like this:

READY
PINT
ERROR PINT[]
PRINT

READY

You have just told the computer to PRINT nothing, and it
did exactly that: it PRINTed a blank line. If you want
to see something on the screen you must tell the
computer to PRINT.

Originally, computers were
attached to printers: there were
no monitors or TV screens.
Today, a better word might be
"SHOW" or "DISPLAY". However,
we're still stuck with PRINT.

Instruction:

You Type:

PRINT "HELLO"
Press the {RETURN} key

Your screen should look like this:

READY
PRINT "HELLO"
HELLO

READY

Any words or numbers which you enclose in quotations
marks will be treated as a unit by the computer. Any
group of characters--that is, letters or numbers inside
quotation marks--is called a "string". When you tell
the computer to PRINT a string, it does exactly that.
Of course, the computer' doesn' t PRINT the quotation
marks. After all, if you told someone to say "HELLO",
you wouldn't expect them to say "OUOTATION-MARK HELLO
OUOTATI ON-MARK" , would you?

Being able to PRINT such quoted strings (which are also
sometimes called 'literal strings' or some other similar (
name) is invaluable. Most dialogues with the computer
will involve several PRINTs of strings.

--12--

/
(

Before you begin our practice exercises, here are some
additional facts that might help you relax as well as
learn computer programming:

Even the very best programmers make errors.
Errors are part of the learning process. Don't
let them upset you.

As you type, the computer will automatically
continue or "wrap around" to the next display
line. Even if something you type in occupies
more than one display line, the computer treats
the line or lines as a unit. However, you may
not exceed more than three display lines without
starting a new PRINT statement.

The only way the computer knows that you have
finished a thought or entry is by pressing the
(RETURN) key.

If you press the (RETURN) key before you have
finished a thought--say at the end of the
display line--the computer will execute what it
can. It may, however, consider what you have
typed to be illegal and give you an ERROR
message.

It is normal for your computer to use UPPER-CASE
LETTERS. Lower case is discussed in our chapter
on editing.

If you want to clear the screen of all confusing
characters, you may either turn your computer
off and then back on, or you may press the
(SYSTEM RESET) key.

Exercise:

1. Tell the computer to PRINT your name.

2. Tell the computer to PRINT a famous quotation like
"GIVE ME LIBERTY OR GIVIi: ME DEATH".

Reminder: Don't forget to use quotation marks.

--13--

CHAPTER II

ARITHMETIC:
COMPUTERS NEVER MAKE MISTEAKS

Glossary:

+

*

/

The symbol for addition which the computer
understands.

The symbol for subtraction.

The symbol for multiplication.

The symbol for division.

Using BASIC, a computer is capable of perfoming simple
arithmetic calculations such as: addition, subtraction,
multiplication, and division.

Instruction:

You Type:

PRINT 3+7

Press the (RETURN) key

Your screen should look like this:

READY

PRINT 3+7

HJ

READY

Instruction:

You type:

PRINT 9-5

Press the {RETURN} key

--14--

(

(
What does your screen look like?

Notice: it is neither necessary nor correct to hit the
equal sign key. The PRINT statement alone is sufficient
to tells the computer to automatically perform the
calculation and display the results.

The symbol for multiplication is the asterisk (*). If
you want to try mUltiplying, then you must use the
asterisk.

Instruction:

You Type:

PRINT 6*4

Press the (RETURN) key

The computer should reply with an answer of 24. But
also try typing these linesl

PRINT 6X4

PRINT (6) (4)

Even though such forms are used in Algebra and other
mathematics, they are not legal in BASIC. You must use
an asterisk to cause BASIC to multiply.

The symbol for division is the slash.

Type I PRINT 24/2
Press the (RETURN) key

The computer will respond with an answer of 12.

Instruction:

You type:

PRINT 72/9 (RETURN)
PRINT 7*8 (RETURN)
PRINT 2+4+6+8 {RETURN}
PRINT 3*21 (RETURN)
PRINT 3+4-2 (RETURN)

--15--

Computer Responds

8
56
28
63
11

Were you surprised by the last response? Did you expect
the answer to be 14? The computer normally performs
arithmetic functions in left to right order, but all
mUltiplication (*) and/or division (/) is performed
before any addition (+) and/or subtraction (-). Some
people call this the "MDAS rule" because the computer
executes all multiplication and lor division before
executing addition and/or subtraction.

Instruction:

You type:

PRINT 859 {RETURN}
PRINT "859" {RETURN}
PRINT 2+6 (RETURN}
PRINT "2+6" (RETURN}

Does the last result surprise you?

Remember a string is any group of
quotation marks. When confronted
computer treats the string as a unit.
goes in, comes out.

Instruction:

You type:

PRINT "5+9*7 CATS=1,9"9"(RETURN}
PRINT "XQR/U$" (RETURN}
PRINT "ADV*2197@" {RETURN}
PRINT "800-421-0009"
PRINT 809-421-ge99
PRINT "999-38-9191"
PRINT 999-38-91el

Computer Responds

859
859
8
2+6

characters inside
with a string, the

Literally, what

Computer Responds

5+9*7 CATS=1,9l'l9
XQR/% II $
ADV*2197@
8"0-421-9999
378
999-38-9191
869

In our examples above, the computer performed all
arithmetic operations it confronted EXCEPT on those
which were enclosed in quotation marks and just happened
to look like operations: Since anything in quotation
marks is a string, even arithmetic expressions enclosed
with quotation marks become strings.

Notice it does not matter what you place in a string.
When told to reconstruct the string, the computer does
so exactly in the manner in which it was entered.

From now
{RETURN} •

on, we won't usually show you when to press
Just remember to press the key when you

--16--

(

(

finish an instruction to the computer or when you give
it an answer. If the computer appears to be doing
nothing, press (RETURN). In most cases, this will cause
the computer to do something and then give you control.

Exercises:

1. Tell the computer to PRINT your name, address, and phone
number.

2. Write a PRINT statement that will allow the computer t6
compute each of the following:

a) 15 + 25

b) 38 - 14

c) 68" * 12

d) 25 / 5

3. Write a PRINT statement that will display your social
security number.

--17--

CHAPTER III

REMEMBERING NUMBERS:
VARY VERY IMPORTANT

Glossary:

Variable

Numeric
Variable

LET

Anything which has the capacity to change.
Examples include your age, the price of a
stock, and the rate of speed at which you
drive your car.

A variable which contains only numbers.

A statement which assigns a value to a
variable.

A variable is anything which is sUbject to change. The
weather is a variable because from day to day and season
to season, it is capable of changing. The prices of
food and gasoline are also variables. Given certain
conditions, the price of any given item might change.
These are variables.

To better understand the
OSS BASIC XL, imagine a
her classroom the first
elementary school.

concept of variables as used in
teacher standing at the door to
day of the new year in an

The first student arrives; she hands him a card with his
name on it and assigns him the first cubby hole to store
his possessions. He tapes his name to the cubby, and
then he puts his jacket inside the cubby.

The next student arrives and goes through the same
procedure taking the second cubby, but she has a jacket,
notebook, umbrella, and a lunchbox to put into her
cUbby.

As each student arrives, the next succeeding cubby is
assigned; each cubby is filled or not filled depending
on What the student has brought to school that day.
Anything which is placed in the cubby becomes associated
with that particular cubby hole, until something new is
added to the cubby.

In computer talk, a "value" is stored in a "variable".
Any child could have walked into class first and thus
been assigned any "variable" cubby. Also, each child

--18--

could have brought any number of items which became the
·value" in the variable.(
Each variable cubby is assigned a name.
chosen in a meaningful manner, using the
for identification. Computer variables
like our "cubby" example.

The name was
child's name
function much

Although there are different kinds of variables, each
numeric variable is represented by a name. In BASIC XL,
variable names always begin with a letter. A numeric
variable name may consist of one letter or a combination
of letters or numbers. Examples of legal variable names
are: N, X, STOCKPRICE, AC, or B3. There is no practical
limit (other than the line size) on the length of a
name. Some illegal variable names are: lABC, At>, or
A]B.

Although a single letter is sufficient to identify a
variable, it is helpfUl to use variable names which are
more descriptive. For example, the single letter 1° is
sufficient and acceptable as the name of a variable
associated with income. However, it is just as easy and
more meaningful to use INCOME as the name of the
variable for the value associated with income. As you
do more programming and as you use many variables within
the same program, the value of using meaningful names
for variables will become more apparent.

It is important to remember that each numeric variable
may hold a single number at any given time. Although
the value of a variable may change several times during
the course of a program, the variable can represent only
one value at a time.

In order to tell the computer you are going to use a
variable you must use a LET statement. A LET statement
assigns a value to a variable. The form of a LET
statement is:

LET name of variable K value of variable

Instruction:

You Type:

LET X 14
PRINT X

LET Xl - 35
PRINT Xl

--19--

Computer Responds:

14

35

LET APPLES .. 90
PRINT APPLES

LET R 9
PRINT R

90

9

In the above examples values were assigned to different
variables. The computer stores the value of the
variable in its memory. When given additional
instructions, (e.g., PRINT) the computer recalled the
value of the variable and used it (e.g., PRINTed its
value) •

Instruction:

You type:

LET A 5
PRINT A

LET A 7
PRINT A

computer Responds:

5

7

Notice in the examples above that the value of the
variable A changes from 5 to 7. Whenever the value of a
variable changes the computer remembers only the last
value. We could continue to change the value of our
variable A, but the computer would remember only the
most recent value and none of the previous ones.

You will recall from Chapter 2 that it was possible to
use more that one number in a PRINT statement as long as
the numbers were connected by an arithmetic operator.
The same is true for variables. A variable and a number
may be combined in a PRINT statement as long as they
are connected by an arithmetic operator.

Instruction:

You type:

PRINT A+1 8

(Remember, A had a value of 7, so the above statement is
equivalent to typing PRINT 7+1.) In addition. variables
may be used in conjunction with other variables and
numbers as long as they are used in an arithmetic
expression using arithmetic operators.

--20--

(

(
LET B A+l
PRINT B 8

Although we have named a new numeric variable B, the
computer still remembers the value of the variable A.
In the above example, we have asked the computer to add
1 to the value of A and to let that new value (7+1) be
the assigned as the value of the variable B.

Although A+l - B is an acceptable expression in algebra,
it is illegal in BASIC XL. Remember, computers are not
as smart as people. To a computer B=A+l and A+l=B are
two very different expressions. The former is permitted
in a programr the latter will produce an error. The
statements which assign a value to a variable, MUST
follow this formz

LET variable-expression.

Instructionz

You Typez

LET A-B
PRINT A

Computer Respondsz

8

Now, we are telling the computer to let the value of the
variable A be the same as the value of the variable B.
Notice that the computer remembers only the new value of
the variable Ar the old value of A is completely
disregarded.

We could also change the value of the variable in
another way.

Instruction:

You Type:

LET F 15
LET X F
PRINT X 15

The computer stores the value of a variable in its
memory. Each time you change the value, the computer
also changes the value of the variable.

The really neat thing about a variable is its ability to
change. During the course of a program, the value of a
variable can change as many times as you would like.

--21--

The use of variables will become more apparent when we
discuss loops. But for now, remember that a variable is
anything that can change, and that the purpose of using
a variable is to put the burden of remembering on the
computer and not on your brain. For example, if you
wanted to keep track of the days in a year, how many are
left, and how many have already passed, you could keep
track by using math and lots of paper. However, an
easier and quicker way would be to use the computer.

Exercise:

1) What do the following LET statements do?

LET statements:

a) LET X 15

b) LET B = 9 * B * 2

c) LET F2 = 111 * 3 + 5

d) LET Z = F2 - 15

2) Assign the sum of seven and
called TOTAL. Display the value
greater than that sum.

five to a variable
of a number one

3) Try the following:

LET GROSSPAY = 48 * B

LET DEDUCTIONS = 122

LET NETPAY = GROSSPAY - DEDUCTIONS

PRINT NETPAY

What does the computer display?

--22--

(

(

CHAPTER IV

DIRECT MODE VS. PROGRAMMING MODE:
THE BIRTH OF A PROGRAM

Glossary:

Statement

Direct
Mode

Pr09ram
Line

Line
Number

RUN

LIST

Is an instruction to the computer. An example
is PRINT as used in chapters 1, 2, and 3.

Allows the computer to respond immediately
to any instruction you give it.

Is any valid combination of symbols, values
and statements entered into the computer.
It instructs the computer to do a task.

Is a series of one or more statements which
tells the computer exactly what task it is
to perform.

Is a one to five digit number entered at
the beginning of a pr09ram line. Note that
an absence of a line number implies an
instruction which is executed in direct
mode.

Is the command which tells the computer. to
execute the pr09ram.

Is a command which tells the computer you
want to see the program lines it has stored
in its memory.

Up to this point, we have been using the computer in
"direct" mode. That is to say, when we gave the
computer a command, we wanted the response immediately.
Examples of statements includes:

PRINT "HELLO"
PRINT 7*964.

A computer pr09ram is a series of instructions which
tells the computer to perform a sequence of tasks that
hopefully will produce a desired output. These
instructions are called statements. LET X = 15 is a LET
statement. As stated earlier, a LET statement allows
you to assign a number value to a variable. These are
instructions for the computer.

--23--

It is important to tell the computer that you want to
give it a series of commands before it executes your
orders. Think about sending someone to the supermarket.
You need ten items: but as soon as you mention the first
one, the person runs out the door. He comes back five
minutes later with your one item. You explain to him
you need several products. This time he leaves after
you have mentioned three items. When he returns, you
are still missing six items. It would have been more
efficient if he had waited for the entire list in the
beginning.

The efficient way in which to tell the computer you have
a series of commands for it to execute is by assigning a
line number to each statement (command). When you type
19 or 29 or 39 before a statement, it tells the computer
that more commands might follow.

By using line numbers, you take the computer out of
direct mode and put it into programming mode. You do
not have to turn any knobs or change anything with the
computer: you just have to type a line number before
each statement. Each line of a BASIC program must have
a number. The computer executes statement lines in
numerical order, regardless of the order in which they
were typed into the machine. Even if you type in line
39 first and then type in line 19, the computer will act
on line 19 first. In addition, you should know that it
is often customary--but certainly not necessary--to
number lines in increments of 19.

One reason for numbering program lines in increments of
19 is to allow for insertions. If you begin your
program with the line number 19 and continue to number
each line in increments of 19, you will have enough room
to add a line anywhere in the program. Perhaps you
forgot a line in the beginning: your new line could be
assigned line number 5 or 6. Remember, the order in
which you enter a line is not important. What is
important to the computer is the number of the line.

Once you begin to use line numbers, the computer will
not execute the lines with numbers until you type RUN.
The command RUN indicates to the computer to begin
processing the statements you have entered. Remember,
it normally processes the lines in numerical or~er.

Instruction:

You type:

PRINT "PROGRAMMING IS FUN"

--24--

Computer Responds:

PROGRAMMING IS FUN

(

(

Now type.

18 PRINT -PROGRAMMING IS FUN-

Nothing happens until you also type RUNI

So now type RUN and prees the {RETURN} key.

PROGRAMMING IS FUN

Instruction.

You type.

18 LET A - 1
28 PRINT A
38 LET B A + 1
48 PRINT B
58 LET C - B + 1
68 PRINT C
RUN

Computer Responds.

1
2
3

READY

As mentioned earlier the computer will act on the lines
in line number order, not neces.arily the order in which
you entered the line.. Once you start using line
number., you are out of direct mode and in programming
lIIOde.

For example, sometimes as you are programming you may
forget a line.

Instruction.

('

You Type.

18 LET R ­
28 PRINT R
38 LET S - l8
48 LET T - 15
58 PRINT T
68LETY-R+T
78 PRINT Y
RUN

--25--

Computer Responds.

Note that nothing happened with 51
another line.

You Type:

35 PRINT 5

1
15
16

READY

50 let's insert

Now your program is out of
However, if you were to RUN the
would PRINT:

1
11/,
15
16

READY

order on the screen.
program, the computer

In order to get the computer to show you the program in
the correct order, type LI5T and hit the {RETURN} key.

You Type:

LI5T {RETURN} Computer Responds

1l!J LET R=l
2l!J PRINT R
3l!J LET 5=1l!J
35 PRINT 5
4l!J LET T=15
5l!J PRINT T
6l!J LET V=R+T
7l!J PRINT V

Now your program is in the correct numerical sequence on
the screen.

Remember, the order of entry of the lines does not
matter to the computer. Once again, the computer will
always act on the program in line number order, not the
order in which the lines were typed into the machine.

Before you begin the exercises below, please turn off (
your computer. This will erase the computers memory.
The next chapter will explain more about clearing the
screen and the computers' memory.

--26--

(

(

Exercises:

1) Write a program which assigns a value to two
variables. Then have it PRINT out the sum of the
two variables and their product. Be sure to LIST
and RUN your program.

2) Turn your computer off and then on again and type in
the same program (as in exercise 1) again. This
time, though, leave out the line which assigns a
value to the second variable. LIST and RUN the
program. What value does the computer assume for
the unassigned variable?

3) Without turning off the computer reinsert the line
which assigns a value to the second variahle.
Remember this line should now be the second line of
your program. What happens when you LIST and RUN?

--27--

Chapter V

A NEW BEGINNING:
WIPING THE SLATE CLEAN

Glossary:

NEW

{CLEAR}

A command Which tells the computer to erase
the portion of its memory that stores BASIC
programs.

A key that when pressed at the same time as
the shift key will erase the screen BUT NOT
THE MEMORY.

{SYSTEM
RESET}

A key that
screen and
direct mode.

when
place

pressed will clear the
the computer back in

Punctuation for the PRINT statement which
tells the computer to PRINT more on the
same line instead of going to the beginning
of the next line.

Allows the programmer to PRINT words or
numbers in columns.

All the information you have typed into your Atari Home
Computer in program mode is stored in its memory. In a
program each line number must be distinctive. No two
program lines can share the same number. If you use the
same program line number, the computer remembers only
the one which was most recently entered. To see how
this works, try this program:

HI PRINT "THIS IS THE ORIGINAL LINE HI"
l~ PRINT "THIS IS THE NEW LINE HI"
RUN

The computer should respond:

THIS IS THE NEW LINE 10.

READY

If you have been working with this book and have not
turned off your computer between Chapters IV and V, you (
may have found additional information PRINTed on your
screen. If so, don't worry about it. That is what this
chapter is all about.

--28--

(

(

Once you type in a program, the computer will normally
remember it until you turn the power off. A more
convenient way in which you tell the computer to
"forget" everything it has stored in its memory is by
typing the command NEW.

When you begin a new program, it is a good idea to first
type NEW. This command erases the computer's memory.
8y typing NEW you avoid having your new program mixed in
with your old program. Try this example:

Instruction:

You type:

NEW
1" PRINT "y"
2" PRINT "E"
3" PRINT "L"
4" PRINT "L"
5" PRINT "0"6" PRINT "W"
RUN

Does the computer do what you expected?

Now type:

1" PRINT "8"
2" PRINT tiL"
3" PRINT ."U"
4" PRINT "E"
RUN

Notice that 0 W is PRINTed after 8 L U E. Why did that
happen? The extra letters were PRINTed because lines 5"
and 6" from the last program are still in the computer's
memory. There are two things you can do to avoid this
problem. First, you could simply type "NEW" and press
{RETURN} into the machine and then retype lines 19
through 40. Remember, though, once you type "NEW" you
can NOT get a program back. Turning off your computer
or opening the cartridge' door will also erase your
program from the computer's memory.

However, you CAN save the program and just eliminate the
excess lines. To do this, just type the line number you
want to delete and press {RETURN}. In the example above
to get rid of the 0 W following 8 L U E, type,

51/1 {RETURN}
61/1 {RETURN}

--29--

Now type LIST and RUN. Notice that lines 50 and 60 are
no longer in the computer's memory and the 0 and Ware
not PRINTed.

Also, please note, there is a difference between
clearing the screen and clearing the computer's memory.
To clear the memory type "NEW." To clear the screen,
press the {CLEAR} key while holding down the {SHIFT}
key. Or, you can also clear the screen by pushing the
{SYSTEM RESET} key.

CAUTION I If a program is RUNning when {SYSTEM RESET} is
pushed, the program will halt but will remain intact.

In addition to clearing the screen, there are other
things that you can do to change the manner in which
items appear on the screen. A PRINT statement
automatically returns the computer to the left-hand
margin. You can suppress the return by putting a comma
or a semicolon after the last value in the PRINT
statement.

For example:
10 PRINT 8*3:
20 PRINT 956,
30 PRINT "CARS"

The only difference between the comma and the semicolon
is the semicolon tells the computer to stay on the same
line while the comma tells the computer to stay on the
same line and move to the next columnar position.
(Columnar positions are generally 10 characters apart,
but this can be changed by the user and is described in
the OSS BASIC XL Reference Manual).

Remember, if you want information PRINTed adjacent and
on the same line, use a semicolon(:). However, if you
want information PRINTed in columns on the same line,
use a comma.

Instruction:

You type:

NEW
10 PRINT 10*7,
20 PRINT 5+2:
30 PRINT "SEE"
RUN

Computer Responds

(

--30--

70 7SEE

It is also possible to have the computer display more
than one item using a single PRINT statement. The items
to be displayed may be separated by either a comma or a
semicolon. As you might expect, the comma will cause
the items to be PRINTed in columnar form. The semicolon
will cause the items to be PRINTed adjacent to each
other.

Instruction:

You type:

NEW

Computer Responds

U' LET A-12
2" LET B - A + 33" LET A - B
4" PRINT "THE VALUE OF A IS A
RUN

THE VALUE OF A IS 15

Type:

Now change line 4" to:

4" PRINT "The Value of A is" , A
RUN

Computer Responds

THE VALUE OF A IS 15

Notice the difference a single punctuation mark makes.
Although not as smart as people, computers are very
consistent. In BASIC xL, the computer will always
respond to statements using semicolons and commas in the
same way.

Exercises:

1. Write a program which will PRINT the values of two
different variables. Have the computer PRINT the values
adjacent to each other on the screen.

--31--

Suggestion: Once you enter the answer to exercise 1, you
need only to change one line. The lines in which you
set the value of your variables may be reused for all
three exercises.

2. Modify the above program so that the two values will
be PRINTed about Ie spaces apart.

3. Modify the above program so that the sum (+), the
difference {-l and the product (*) of the values of the
two variables are printed on the same line.

--32--

(

(

Chapter VI

REPETITION:
GETTING LOOPED

Glossary:

(

GOTO

Loop

(BREAK)

Initializing
a variable

counter

x - X + 1

Jl. statement which tells. the computer to
Jump or branch to a spec~r~ea l~ne number
and then continues to follow the program
instructions in the usual line number
order.

The repetition of one or more statements.

A key which when pressed stops whatever
the computer was doing.

Giving the first or the initial value to a
variable.

Keeps track of or counts the number of
times a loop has been executed.

A non algebraic expression that allows a
variable to act as a counter.

The commands or statements we have discussed so far have
permitted the computer to work in a "straight line"
sequence. First do line Ie, then line 2e, etc. In
order to get the computer to repeat a process, you need
to use a GOTO statement. This statement must be
followed by a line number, and 'this instruction tells the
computer to jump or branch to the line number following
the word GOTO. For example:

10 PRINT "My Name is Sally"
20 GOTO Ie

The computer will PRINT continuously MY
The computer executes line Ie then reads
goes back to Ie then back to line 2e etc.
a "loop".

NAME IS SALLY.
line 2e. It
The result is

(
A loop is the repetition of a sequence of instructidns.
An "endless loop" is one in which the computer
continuously loops back through the instructions and
never ends. To stop an endless loop press the (BREAK)
or {SYSTEM RESET} key.

--33--

A GOTO statement is VERY useful: it allows the computer
to execute the same command, or set of commands, under
various circumstances.

A computer language purist might
tell you not to use the GOTO
statement. It is true that there
are other commands in BASIC XL
which produce the same results as
GOTO (but in what is considered a
more structured and "elegant"
manner). However, these other
commands are more advanced and
require more background knowledge
in programming than we have
presented up to this time.

Instruction:

You type: Computer Responds

NEW
1f1l PRINT "N", "N-Squared"
2f1l LET N = I
3f1l PRINT N, N*N
RUN

N
I
READY

N-SQUARED
I

In analyzing
a problem.
write on the
"N-SQUARED"•

this program, line 1f1l should not have been
We simply asked the computer to PRINT or

screen "N" and, about 1f1l spaces later,

In Line 2f1l,
This is called
to a variable.
once.

we have set a value for our variable N.
initializating or giving a starting value
Notice that·this statement is executed

Again, in Line 3f1l,
or show the value of
screen. Since we
computer can execute

we have asked the computer to PRINT
"N" and the value of "N*N" on the
have assigned a value to "N", the
these 3 lines as a program.

--34--

(

(Instruction:

You type:

4" LET X • N + 1
59 LET N • X
69 GOTO 39
RUN

When you've seen enough, press the {BREAK} key.

In Line 49, we have indentified another variable called
"X". Furthermore, we have said "LET X = N + 1". You
should read that as: Let the value of X equal whatever
the value of N is plus 1 more. In other words, whatever
the value of N is, the value of X is equal to one more
than N.

Line 59 indicates that N is to be given a value equal to
the current value of X. This is to say: first we
decided that N would have a value of one. Then, X was
assigned a value of N + 1 or 2. Now we are saying that
really we want the values of N and X to be the same.

All of this is done so that when the computer gets to
Line 69 and then in turn goes back to Line 39, the value
of N changes. Each time the computer executes Line 30,
the value of N changes. This is a counter.
Essentially, the computer counts each time it has
executed Line 39.

An easier way to write our program is:

READY
19 PRINT "N", "N-SQUARED"
29 LET N • 1
39 PRINT N, N*N
49 LET N = N + 1
59 GOTO 39

(

Look at
NOT an
the New
more.

our new line 49. How can N = N + I? This is
algebraic equation I What is meant here is LET

value of N become the Old value of N plus one

LET N
(New value)

N + 1
(Old Value)

--35--

Exercises:

1) write a program which will display the number, the
square of the number, and double the number.

2) Write a program that will make the computer count
from one to forever.

3) Modify the above progam so that it will PRINT your
name and count at the same time.

4) Modify the above progam so that it will PRINT your
name and count at odd numbered increments only.

Hint: LET X = X + 2

5) Modify the above program so that it will begin
counting with 5 and increases in odd increments.

Remember with these programs, when you have seen enough,
press the {BREAK} key. Also since exercises 3, 4, 5,
are modifications of exercise 2, just retype the
particular line that needs to be changed. Be sure to
LIST the program and then RUN it.

--36--

(

(

Chapter VII

RELATIONAL OPERATORS:
IF YOU CAN PASS THE TEST

Glossary:

Relational Operators

(

>

(>

>..

IF

THEN

less than

greater than

equal to

not equal to

less than or equal to

greater than or equal to

a command which tells the computer to test
the truth of a comparison.

a special key word which always follows an
IF comparison. When IF finds a true
condition, the statement(s) following the
word THEN are performed.

(

A computer does only what you specifically tell it to
do. It cannot make decisions "on its own". However, as
a programmer, you can formulate statements in such a way
that the computer will .be forced to make certain
comparisons. Relational operators allow you to test two
values and to determine what relationship one has to the
other. The computer will then decide if the
relationship or comparison is true or false. The
relational operators most commonly used in BASIC are:

--37--

<

4 < 6

2"" < 4""
X < C

>

9 > 5

15 > "
Y > X

(less than)

read as: Is four less than 6?
read as: Is two hundred less than four
hundred?
read as: Is the value of X less than
the value of C?

(greater than)

read as: Is nine greater than 5?
read as: Is fifteen greater than zero?
read as: Is the value of Y greater than
the value of X?

(equal to)

read as: Is five not equal to ten?
read as: Is the value of A not equal to
the value of B?
read as: Is DOG not equal to CAT?

A equal to the

(not equal to)

4 .. 2 + 2
9 4 + 3 + 2

A B

<>

5 <> 1"
A <> B

DOG <> CAT

read as: Is
read as: Is
three, plus
read as: Is
value of B

four equal to
nine equal

two?
the value of

two plus two?
to four plus

For those of you who have studied algebra,
symbol is probably a new one. <> is the
however, the computer will understand only
is not available on the computer keyboard.

the above
same as.fl

<> since.f

<=

19 <= 2"

R <= D

N <- 1

(less than OR equal to)

read as: Is the value of nineteen less
than or equal to the value twenty?
read as: 1s the value of R less than or
equal to the value of D?
read as: Is the value of N less than or
equal to the value one?

--38--

(

(

)- (greater than or equal to)

'I)- 9 read as: Is one greater than or equal to
9?

H)- 4 read as: Is the value of H greater than
or equal to four?

E)- L read as: Is the value of E greater than
or equal to the value of L?

Again, the last two symbols are the closest the computer
can come to the conventional math symbols.

In programming in BASIC, the IF statement allows you to
set up comparisons using the relational operators. The
format of an IF statement requires the key word THEN to
follow a relational comparison. If the computer
determines that the comparison is true, it will perform
whatever instructions follow the THEN.

For example:

19 IF X) 5 THEN PRINT X

In the above program line, the computer will PRINT the
value of X if it determines that X is greater than 5.
If the computer concludes that the value of X is not
greater than 5, the computer will drop down to the next
program line. If none exits, it will do nothing else.

19 If Y < 4 THEN GOTO 69

If the computer, in the example above, finds the value
of Y to be less than 4, it will proceed to line 69. If
the value of Y is not less than 4, the computer will
drop down to the next consecutive program line.

Please note: Do not divide the two-character relational
operators «=,)-, and <» with a space. If you do, the
computer will list out an error.

Instruction:

You type:

19 LET F .. I
29 LET H - 6
39 IF F + H < 5 THEN PRINT "SUM IS LESS THAN 5"
49 IF F + H) 5 THEN PRINT "SUM IS GREATER THAN 5"
RUN

How does the computer respond? What does it PRINT? In
the above program "SUM IS LESS THAN 5" will never be

--39--

PRINTed.
computer
than 5.
(Try F •
line 2".

Given the values of the variables F and H, the
will always determine that F plus H is greater

Now, try other values for F and H for example,
1 and H ... 1) by typing in a new line 19 and/or

VI, we discussed- the
can now use these
operators to produce
all the classical

You will recall that in Chapter
GOTO statement and the loop. We
concepts along with our relational
for the first time an example with
elements of a true computer program.

Instruction:

You type:

NEW
1" LET G • 12" PRINT "HI, MOM"
3" LET G ... G+l
4" IF G < 8 THEN GOTO 2"
5" PRINT "END OF PROGRAM"
RUN

Notice that the computer has PRINTed "HI,HOM" seven
times.

What is the process the computer follows? First, the
computer reads line 1" and initializes the value of the
variable G at 1. Then, the computer executes line 29.
It PRINTs "HI, MOM". When the computer reaches line 3",
it changes the value of the variable G by adding 1 to
the old value of G as we did in Chapter VI. The
computer t~en replaces the old value of G with its new
value, 2. Each time the computer reaches line 4" it
"tests" or "decides" if the value of G is less than 8.
If the value of G is less than 8 the computer determines
that the rest of the statement must be performed. It
therefore obeys the command and loops back to line 2".
On the other hand, if the value of G is not less than 8,
the computer will determine that the rest of the
statement should not be executed. Anytime an IF
statement determines that the following comparison is
false, it causes control to pass to the next succeeding (
line number. Therefore, in this case, control passes to
line 5".

--4"--

(

(

Also, it is important to understand that if you wanted
"HI,MOM" PRINTed exactly 8 times, you would have to
change line 40 to read:

40 IF G <= 8 THEN GOTO 20

or

40 IF G <> 8 THEN GOTO 20

or

40 IF G < 9 THEN GOTO 20

Change line 40 to be the same as one of the lines 40
above. (Remember: just retype the line including the
line number. The computer will automatically disregard
the previous line 40.) RUN the resultant program and
verify that the loop now executes exactly 8 times.

Try changing line 20 to:

20 PRINT "HI, MOM", G
RUN

Remember, by using the comma, we force the computer to
display HI, MOM and the value of G on the same line one
column apart.

Now change line 30 to:

30 LET G 0= G + 2
RUN

How does this affect the program? How many times does
the computer display HI, MOM and the value of G? What
value does it display?

Change line 10 to say:

10 LET G = 100

What happens to the program? Why is HI, MOM and the
value of G displayed only once? Because we initialized
the value of the variable G at 100, the value is
already greater than the test value in line 40.

--41--

Exercises:

1) write a program which will count to lee by fives and
display the results.

2) Write a program which will PRINT this message Ie
times "COUNTING BY COMPUTER IS EASY."

3) Write a program which will assign a value to each of
two variables. It will then tell the user if the
numbers are equal and if not, which is the larger
number.

--42--

(

Chapter VIII

INPUT:
TALKING BACK TO THE COMPUTER (BASIC)

Glossary:

INPUT
Statement

A statement which allows data to be entered
from the keyboard into the program without
changing the BASIC program.

In the programs we have discussed up to this point, the
computer has done all of the work while a program ran.
An INPUT statement, though, causes the computer to stop
part way through the program. It waits while the user
types some data into the machine. When the user has
finished, the computer then continues to execute the
program. In addition to stopping the program, the INPUT
statement also acts in a manner similar to that of a LET
statement. The computer sees the INPUT statement as an
assignment to a variable. While the computer waits for
the user to type in data, it is, in essence, waiting for
a value to be assigned to the variable.

When the computer executes an INPUT statement, it PRINTs
or displays a question mark. The question mark acts as
a cue or a prompt. The purpose of this is to remind the
user that it is his/her turn to do something.

Software products almost always have INPUT statements.
These allow users to balance checkbooks, do financial
planning or play games by changing the numbers upon
which the program acts. Again, the important thing to
remember is that nothing will happen after the execution
of an INPUT statement until the computer receives an
acceptable answer.

Instruction:

You type:

1" PRINT "PICK A NUMBER"
2" INPUT A3" PRINT "PICK A NUMBER"
4" INPUT B
5" PRINT A+B,A-B,A*B,A/B

Let's analyze this program:

Line 10 is a PRINT statement which tells the user what
he/she should type into the computer.

--43--

Line 2B is an INPUT statement which forces the computer
to display a question mark and then wait until the user
provides some data. When the user types a number
(followed, of course, by (RETURN}), BASIC places the
value of the number into the variable named A.

Line 3B is a repetition of line lB.

Line 4B is a repetition of line 2B except that the
variable used is named B.

Line SB is a PRINT statement which tells the computer to
display the sum, difference, product and quotient of the
two numbers.

NOTE: In the description above,
we use the word "user" to mean
the person who is RUNning the
program. As the programmer, you
are or can be distinct from the
"user". Try it! Let someone
else RUN this program. The
difference between this and pre­
vious programs is that in this
example the program interacts
dynamically with the user.

Instruction:

You type:

RUN

Try this program several times with different answers.
Also, try purposely hitting just {RETURN} in response to
the prompts. Did you find any problems? Notice how the
computer must stop each time it reaches an INPUT
statement. Another way to write the program would be.

Instruction:

You type:

NEW
IB PRINT
2B INPUT
3B PRINT
RUN

"PICK TWO NUMBERS"
A, B

A+B, A-B, A*B, A/B

--44--

(

(
When you RUN this program, the computer will display the
PRINT statement. On the next line, a question mark will
be shown. Nothing will happen until the user enters two
numbers into the computer. This can be accomplished
either by typing two numbers separated by a comma or by
typing one number and {RETURN], and another number and
{RETURN}. The computer, in the latter case, will not
continue with the program until two numbers have been
entered. Also the computer will display another
question mark to remind the user that it is waiting for
another number.

There are some problems that you might encounter. If
the user enters two numbers without a comma to separate
them, the computer will display "ERROR B INPUT". This
simply means the computer has received inappropriate
data. Remember, computers are not as smart as people.
Information entered may not vary from the prescribed
format. A missing comma may be no big deal to a person:
but, to the computer, it is a huge deal.

Also the computer will not allow the user to put a space
before the comma. Spaces before each number are
permitted but not before the comma.

Acceptable Unacceptable

25,5
25, 5

25
25

5
5

For these and other reasons, it is generally advisable
to use only one variable per INPUT statement.

INPUT statements are often used in educational
By using INPUT statements one could test a
knowledge of mathematics. For example, if you
test a student's ability to determine the
rectangle, you might use a program like this:

Instruction:

You type:

programs.
students

wanted to
area of a

UI PRINT "WHAT IS THE LENGTH"
2fIJ INPUT L
3fIJ PRINT "WHAT IS THE WIDTH"
4fIJ INPUT W
5fIJ PRINT "WHAT IS THE AREA"
6fIJ INPUT A
7fIJ IF A ... L*W THEN PRINT "THAT'S CORRECT"
BfIJ IF A <> L*W THEN PRINT "SORRY, THAT'S NOT RIGHT"

--45--

compute the area of a
determining the area of a

If the student knows the formula for calculating the
area of a rectangle, this small program also will
provide an adequate test of his/her multiplication
skills.

Exercises:

1) Write a program that will
triangle. The formula for
triangle is BASE*HEIGHT/2.

2) Write a program that will allow 3 test scores to be
entered and which will then PRINT the average of those
scores.

3) Write a program which will display all whole numbers
and their squares, starting at one and ending at a
number determined by a user's INPUT.

--46--

(

(

Chapter IX

LOGICAL OPERATORS:
DOES THIS MAKE SENSE

Glossary:

Logical Operators

AND

OR

Is used to connect two conditions and to
determine if both conditions are met.

Is used to connect alternative conditions
and determine if either one condition or
the other is met.

In addition to the relational operators, discussed in
Chapter VII, BASIC also uses logical operators. These
operators include AND and OR. The logical operators
allow the computer to make more complex decisions than
were possible with just the relational operators.
Almost always logical operators are used in conjunction
with relational operators.

Examples:

69 IF X-9 AND Y>15 THEN PRINT X*Y
99 IF MONTH<12 OR DATE>26 THEN GOTO 19

Although AND and OR are similar, the computer reacts to
them in very different ways.

Using the AND operator, the chart below shows that the
only time a statement is true is if both conditions are
true:

True AND True = True

True AND False

False AND True

Fal'se

False

False AND False = False

You read this chart to mean (for example) "When the
first comparison is TRUE AND the second comparison is
TRUE the entire condition is TRUE." On the other hand,
the OR chart produces more true statements:

--47--

True OR True = True

True OR False

False OR True

True

True

False OR False = False

For a real life example using logical operators such as
AND and OR, imagine that you and a friend are shopping
for tonight's dessert. You will buy ice cream for
dessert if AND only if both you AND your friend choose
ice cream. On the other hand, if your allowances are a
bit more generous, perhaps you could buy ice cream if
either you OR your friend choose ice cream for dessert.

with the logical operator AND, you both must want the
ice cream. Two conditions must be true. Using the
logical operator OR, only one condition must be true -­
either you OR your friend must want ice cream.

In a computer statement using the logical operator AND,
if any part of the statement is false, the whole
statement is false. The logical operator AND forces the
computer to make a decision.

Remember, when using the IF statement, if the statement
is true, the computer will execute one set of
instructions (those following the THEN). If the
statement is false, the computer will skip those
instructions and will continue to execute the
instructions on the next line.

Examples:

IF 4<5 AND Ul>6 THEN PRINT "BOOK"

Whenever
ascertain
6. Since
are true,

the computer reaches the above line, it will
that 4 is less than 5 AND 10 is greater than
both relational conditions of the IF statement
the computer will PRINT the string "BOOK".

IF X=C OR D=T THEN PRINT X-T

In the above example, the computer must decide if X is
equal to C. It must also determine if D is equal to T.
If either is true, the .computer will diplay the
difference between X and T. One relational condition
(X=C) or the other relational condition (D=T) must be
true. If both are true, the computer will display the (/
difference between X and T. If both relational
conditons are false, the computer will simply drop down
to the next consecutive program line.

--48--

(
IF 80<100 AND Z<A THEN GOTO 40

Again, the computer will ascertain if each relational
conditon is true. If both and only if both are true,
the computer will proceed to line 40. If either
relational condition is not true, the computer will
proceed to the next consecutive program line. (Note
that, since 80 is always less than 100, this conditional
test actually depends only on the truth of Z<A.)

IF l00=G OR 15>5 THEN GOTO 50

In the above example, the computer will decide if 100 is
equal to the value of the variable G. If it is or if 15
is greater than 5, the computer will proceed to line 59.
If both relational conditions are false, the computer
will drop down to the next consecutive program line.
(Again, since 15 is always > 5, the conditional is
always TRUE, so the value of G really doesn't matter.)

NOTE: Since you, as the
programmer, can always know the
truth value of comparisons of
constants, you would seldom (if
ever) put such comparisons in a
program. They are included here
for illustration purposes only.

Instruction:

You type:

10 PRINT "WHAT WAS YESTERDAY'S TEMPERATURE":
20 INPUT YESTEMP
30 PRINT "WHAT IS TODAY'S TEMP":
40 INPUT TODTEMP
50 IF YESTEMP > 80 AND TODTEMP > 80 THEN PRINT "WE HAVE

A HEAT WAVE"

There are some important concepts in the above program.
First, notice the se~icolon following our PRINT
statements. Remember a semicolon suppresses the return
to the new line and an INPUT statement automatically
produces a question mark •. By using the semicolon in our
PRINT statement prior to the INPUT statement, the
question mark directly follows our question. This is no
big deal. If you don't use the semicolon, it will not
alter the function of the program. However, the
semicolon does make the screen look nicer when the
program runs.

--49--

In line se we have used our logical operator AND.
Notice the computer is forced into a decision. If the
computer ascertains that the statement is true, it
continues to execute the portion of the line following
THEN. On the other hand, if the computer finds that the
statement is false, it attempts to execute the next
line. Since there is no following line, the program
ends.

RUN this program
happens. Try it
temperatures.

Instruction:

You type:

and answer the question to see what
several times with different

se IF YESTEMP < 6e OR TODTEMP < 6e THEN PRINT
"MY, YOU SURE HAVE SOME COLD DAYS".

(Remember, we have changed line se by just typing se and
the new line. The computer will automatically disregard
the previous line Se).

Again, we have forced the computer to make a decision.
If either condition in line s~ is true, the computer
will continue to execute the line. If neither is true,
the computer stops.

Again, RUN the program several times, giving various
answers to the questions.

Exercises:

1) Write a program which will compare the scores of two
bowling games for you and your opponent.

2) Write a program which will PRINT a message if a
number INPUT by a user is between Ie and 2e.

3) Write
numbers.
by the
largest.

a program which al~ows the user to INPUT three
Display the numbers only if they were typed

user in numerical order, from smallest to

--se--

(

(

Chapter X

RANDOM:
I WON WHAT?

Glossary:

Random The process by which an
Selection without a pattern
aim.

item
or

is chosen
a definite

RANDOM A function which asks the
automatically select a random
between specified boundaries.

computer to
number from

Integer A whole number: a number with no fractional
or decimal part.

You have probably witnessed or taken part in a random
drawing. People buy tickets to win a prize. One part
of the ticket is kept by the buyer: the other part is
thrown in a hopper or a hat. One winning ticket is
selected without definite aim. All tickets have an
equal chance to be chosen. This is a random selection.

Another type of random selection involves board
These games usually come with a spinner, die, or
Although the number of choices is limited, the
number is selected by chance. Each number has an
opportunity to be selected.

games.
dice.

actual
equal

Using BASIC, a computer is capable of making random
selections. Because computers are often required to
select a random number, the function for choosing a
random number is built into the computer language. You
could write your own program that would select a number
at random, but it is easier to use the random function
which is built into the language.

In BASIC XL, the random function is written RANDOM(,).
The blank spaces indicate numbers to be supplied by the
programmer. The first number determines the lower limit
of the range of numbers to be selected. The second
number determines the upper limit of the range of
numbers to be selected. The two numbers are separated
by a comma. The RANDOM function always selects integers
(whole numbers).

Examples:

RANDOM(I,6) selects integers between I and 6
inclusively. This is identical to throwing a single die
in a dice game.

--51--

RANDOM(l,100) selects integers between 1 and 100
inclusively.

RANDOM (5, 50) selects integers between 5 and 50
inclusively.

RANDOM(100,1000) selects integers between 100 and 1000
inclusively.

Since BASIC XL considers the left I
parenthesis to be part of the name of I
the function 'RANDOMC', there can be nol
space after the 'M' when the name is I
typed in. This rule holds true for a111
BASIC XL functions. I

There is one major difference in the way the computer
chooses a random number and our random prize drawing
example. In the random prize drawing, if more than one
number is to be selected, the first number drawn is put
aside. The remaining numbers now have a better chance
of being selected. When the computer selects a random
number, it tosses the number back into the "hopper".
Each time a number is selected, it has the same
probability of being selected the next time. If, for
example, you wanted the computer to choose 15 numbers
between 1 and 100, it is possible that one or more
numbers might be repeated. It is not an easy task to
keep the computer from rese1ecting a number, and the
topic will not be discussed here.

Selecting a random number is
guessing game. As you learn
programming, you will be able to
game to form a more sophisticated

the basis for a simple
more about computer
use variations of this
program.

Also please note: to select a number with zero as the
lower limit, it is not necessary to write the zero in
the RANDOM function. When only one number is present,
the computer assumes the lower limit to be zero.
However, it then assumes that the upper limit is ONE
LESS than the number given. (There is a historical
reason for this: Apple II In~eger BASIC functions this
way.)

(

and '99obetweeninte~ersRANDOM(100) selects
inclusively.

RANDOM(50) selects integers between 0 and 49
inclusively. The RANDOM function tells the computer the
range of numbers from which it is to make its selection.
You must tell the computer how many numbers to select.

--52--

(

Instruction:

You type:

19 LET I = 1
29 PRINT RANDOM(1,199)
39 LET I = I + 1
49 IF I < 7 THEN GOTO 29

The above program will select 6 random numbers between 1
and 199. Let's analyze each statement line. First, we
initialized our variable I in line 19. In line 29 we
tell the computer to PRINT a random number. Next, we
use our non-algebraic equation as a counter. Each time
the computer executes line 39, the value of I increases
by one. Finally, we force the computer to make a
decision. The computer must decide if the value of I is
less than seven. If it is, the computer returns to line
29 and executes that line and the succeeding lines. On
the other hand, if the computer determines that I is
equal or greater than 7, it stops.

Instruction:

You type:

19 LET NUMBER = RANDOM(1,100)
29 PRINT "PICK A NUMBER BETWEEN 1 and 100"
3" INPUT GUESS
40 PRINT GUESS , NUMBER

The above program represents a game where the computer
selects a number, and the user tries to guess the
number. Notice the value of NUMBER is chosen at random
by the computer. The number 1 is the lower limit and
199 is the upper limit from which the computer might
make its selection. In line 20, the PRINT statement
indicates which kind of data the user should enter into
the program. The INPUT statement makes the computer
wait until the value of the numeric variable has been
entered. Notice GUESS is a numeric variable. The user
may chose any number between 1 and 190. Thus, any value
between 1 and 1"0 may be assigned to our variable GUESS.
In line 40, the PRINT statement tells the computer to
display the GUESS and the NUMBER it chose. The comma
suppresses the carriage return so that both the number
and GUESS are displayed on the same line. Again, this
line shows the two variables: the NUMBER variable whose
value was determined by the computer and the GUESS
variable whose value was determined by the user.

--53--

Exercises:

1) write a program to generate 18 random numbers in the
range 1 to 58.

2) Modify the above program so that the range of numbers
is 8 to 999.

3) Modify our guessing game example so that the computer
picks a random number between 1 and 58, and you try to
guess the number. Remember to use INPUT.

4) Modify the above program so that the computer PRINTs
hints to the user to trap the number. Hints might
include "TOO SMALL" and "TOO LARGE". Allow the user to
keep on guessing until he gets the correct answer.

--54--

(

GLOSSARY I

Program
Recorder I

CLOAD

CHAPTER XI

THE PROGRAM RECORDERI
HITS ON TAPE

The following is an explanation
of how to use the Atati program
recorder. If you own one of
these devices, this chapter will
explain how to preserve your
programs on tape and how to
retrieve them. If you do not own
a recorder, the information that
follows should enhance your
understanding of the product and
also help you to decide whether
or not to purchase a program
recorder.

Is a cassette tape recorder that can be
used to transfer programs to and from the
Atari Home Computer.

A command which is used to enter a program
from the program recorder to the computer's
memory and is used in conjunction with
CSAVE.

CSAVE Is a command which is
computer program from the
to the program recorder
conjunction with CLOAD.

used to store a
computer's memory
and is used in

LIST "CI"

ENTER "CI"

Is a command which directs the computer to
store programs or specified program lines
on a cassette tape and is used in
conjunction with ENTER "CI".

Is a command which directs the computer to
enter a program from the program recorder
to the computer's memory. It is always
used in conjunction with LIST "CI".

By now you are getting some ideas about computer
programming. Perhaps you are beginning to see how this
new skill will make life simpler, or perhaps you are

--55--

becoming aware of how the computer can be used in your
home, office, or school.

As discussed earlier, once you turn off your computer,
all the programs you were working on are erased from the
computer's memory. This is also true if you type "NEW"
into the computer (or open the cartridge door on the
Atari 4ee or ae9). However, there are times when you
want to save a program. You could use paper and pencil
and write down your program. Then, each time you want
to use it, you would have to re-enter the program into
the computer's memory. This is very time consuming and
also very frustrating, especially if it is a program you
often use.

Fortunately, there is an easy way to save your programs.
You can purchase an ATARI Program Recorder. This
recorder is very similar to a portable tape recorder,
but it is designed specifically to work with an ATARI
computer. A 33 minute cassette will conveniently hold
two of your computer programs, one on each side. Also,
if you own a program recorder, you can buy many program
tapes. These tapes contain various computer programs
that will help with family budgeting, learning a foreign
language, or games, just to name a few.

Be careful when handling the cassettes. They are easily
damaged, particularly if you touch the tape itself. Be
sure to store the cassettes in their cases when not in
use. Do not store the tapes in hot areas, oirect
sunlight, or near magnetic fields, such as those found
near motors, magnets, or airport security detectors.

It is a good idea to label every cassette with the names
of the programs it contains. This will make it easier
for you to locate a particular program when you want it.
Notice, each cassette has two notches in the rear edge.
The Program Recorder will not record on a cassette tape
which has the holes exposed. After recording one
program or two programs on a tape, you can protect the
program(s) from being erased or taped over by punching
out the square of plastic and exposing the holes.

That should be enough background information to get you
thinking about purchasing a Program Recorder. Now the
important stuff. You've just finished writing a
brillant program, and you want to save it. You may type
one of two statements in order to save your program.
One statement is CSAVE~ this can only be used for
storing programs on a cassette. The other statement is
LIST"C:". (A variation of this statement can be used
with other devices in addition to the program recorder.)

--56--

(

(

CSAVE will always save the entire program from the
computer's memory. With LIST"C:", you have two choices.
You can save the entire program or, if you wish, you can
specify the first through last lines to be saved. For
example,

LIST "C:",200,1500

would cause all program lines between 200 and 1500 to be
listed on a cassette.

Whichever statement you use, CSAVE or LIST"C:", each
causes the computer to react in the following manner.
First, the computer will beep twice. This is your
signal to put the cassette into the program recorder and
to move the tape using "Rewind" or "Fast Forwaro" to the
point at which you want the recording to begin. Press
the {Record} and {Play} levers. Since the computer
cannot determine when you are finished setting up the
tape, you must signal it by pressing the {RETURN} key.
Once you do that, the tape will start moving. If you
turn up the volume on your monitor, you will hear the
recording taking place. When the recording is
completed, the tape will stop moving and you can press
the (Stop) lever.

If you ~ave saved your program on cassette by using a
CSAVE statement, then you must use the CLOAD statement
to get your program from cassette into the computer's
memory. If you used LIST"C:" to store your program on
cassette, then you must use ENTER"C:" to load programs
back into the computer.

CLOAD will erase the program currently in memory before
loading a new one. On the other hand, the ENTER"C:"
statement will merge the program it loads with the
program in memory. However, if the incoming line
numbers are the same as the existing ones, the incoming
lines will replace the existing ones. To avoid the
merging, type "NEW" before using the "ENTER" statement.

When you use CLOAD or ENTER"C", the computer will beep
once. Again, this is your signal to get the cas~ette

into the program recorder and to adjust the tape to the
point at which the program begins. Press the {Play}
lever on the program recorder and then the {RETURN} key
on the computer's keyboard, The tape will begin moving.
When the tape stops, press the program recorder's {Stop}
lever.

After your program is loaded into the computer's memory,
simply type RUN and press the {RETURN} key. This
executes your program.

--57--

In order to see one advantage of using the LIST"C:", try
this exercise:

Instruction:

You type:

lee PRINT "THIS IS LINE lee."
11e PRINT "IN ORIGINAL PROGRAM"
2ee PRINT "THIS IS LINE 2ee"
2le PRINT "IN ORIGINAL PROGRAM"
3ee PRINT "THIS IS LINE 3ee"
3le PRINT "IN ORIGINAL PROGRAM"

Now RUN this program to see what it does.

Then type:

LIST"C:",2ee,2l"

When you hear the two beep signal, place the cassette
into the Program Recorder. Push the Play and Record
lever. Press the {RETURN} key. When the tape stops
moving, press the {Stop} lever on the Program Recorder.

Now type:
NEW

lee PRINT "THIS IS A NEW LINE lee"
2ee PRINT "THIS IS A NEW LINE 2ee"
3ee PRINT "THIS IS A NEW LINE 3ee"

Now RUN the program to see what is does. Rewind the
cassette tape and then type "ENTER "C:". After the
beep, press the {Play} lever on the recorder and the
{RETURN} key on the keyboard. When the tape stops,
press the {Stop} lever.

To see the results, type LIST and RUN. Notice how the
programs have merged. This may not seem important to
you now, but as your programming ability increases, this
will become a handy procedure. It allows you to alter
parts of programs or to combine programs easily. Again,
this can save you valuable time and expand your
programming horizons.

Exercise:

1) Practice using the program recorder by copying any of
the programs previously presented in this book.

--58--

(

(

Glossary:

Disk
Drive

Diskette

File Name

File Name
Extension

Boot

DOS

System
Diskette

Chapter XII

THE DISK DRIVE:
BEING FLOPPY ISN'T SLOPPY

The information contained in this
chapter is intended to give the
reader general information on
disk drives and their uses. If
you own one of these devices,
this chapter should enhance your
knOWledge of how to use the
drive. If you do not own one of
these devices, the information in
this chapter will help you
determine if you should or should
not purchase this additional
piece of equipment.

Is a device wich connects to the Atari Home
computer and reads or writes information on
a diskette.

Is a vinyl "record" enclosed in a stiff
plastic envelope.

Consists of up to eight characters and is
used to distinguish files on a diskette.

Is a suffix or an addition to a file name
and consists of a period and one, two, or
three characters.

Is the method for starting the disk drive
and loading its operating system into the
computer's memory.

An acronym for Disk Operating System. Also,
a command from BASIC XL which will transfer
control to DOS (not discussed in this
book) •

Any diskette which contains a DISK OPER­
ATING SYSTEM (DOS) on the diskette.

--59--

DIR Is a command which causes the computer to
list all the files currently located on a
particular diskette.

program
to be

This
SAVE

Is a command which causes a
previously stored on a diskette
entered into the computer's memory.
command is used in conjuction with
"0: FILENAME. FNE" •

LOAD

SAVE Is a command which causes a program in the
computer's memory to be stored on a
diskette. This command is used in
conjuction with LOAD "D:FILENAME.FNE".

ENTER Is a command which causes a program
previously stored on a diskette to be
entered into the computer's memory. This
command is used in conjunction with LIST
"0: FILENAME. FNE".

LIST Is a command which directs the computer to
store programs or specified program lines
on a diskette. This command is used in
conjuction with ENTER "D:FILENAME.FNE".

In the previous chapter, we discussed the advantage of
owning an Atari Program Recorder. If you enjoy
programming or if you are planning on using a great deal
of the commercially produced software programs, you
should consider purchasing a disk drive. Although it
initially costs more than the program recorder, the disk
drive substantially increases the usefulness of your
Atari Home Computer.

A disk drive is more effective as a program storage
device than a program recorder. A single diskette could
hold as many as 64 programs while a cassette
conveniently holds only two program. It operates
quicker and permits almost instantaneous access to
information. The disk drive also is more reliable.
With a disk drive, you have more choices of prepared
software. Also, the diskeete used with the disk drive
keeps track of all the information stored on it. Unlike
the program recorder, you do not have to remember where
a program is stored. The diskette (or, more properly,
the Disk Operating System) remembers for you. There are
other major advantages to disk drives versus casettes,
particularly as the programs written or used become more
sophisticated.

(

--60--

(

(

Before we get ahead of ourselves, let's begin by
explaining the physical aspect A of the disk drive.

The disk drive is a rectangular box which connects
directly into the Atari Home Computer. (In the Atari
l450XLD a disk drive is built into the system.) Imagine
a record player which only operates when the lid is
shut. Essentially that is how the disk drive works.
While a record player uses a needle to produce sound
from a record, the disk drive uses a magnetic hp.ad that
can read or write information on a special "vinyl
record" called a diskette.

If you examine a diskette carefully, you will notice
that there are openings in the plastic envelope
surrounding the "vinyl record", These openings allow
the disk drive to read information from or write
information on the diskette without having to remove the
protective plastic cover.

On the upper right side of the diskette, there is a
notch. This notch works in the same way as the plastic
squares on the rear edge of the cassette tape. If the
notch is present, then information can be recorded on
the diskette. If it is not present, the disk drive will
not write on that particular diskette. Some diskettes
contain no notch; thus, they are permanently protected
from accidental writing. If you store information on a
diskette and you want to be sure it is protected, you
can cover the notch with a special label called a "write
protect tab" or with a piece of opaque tape.

Although a diskette is small, 5 1/4 inches in diameter,
it can store a great deal of information. A diskette is
often compared to a file drawer. The diskette is
capable of holding many files in the same way that a
file drawer can hold many file folders.

In order to distinguish each file from the other files
stored on a diskette, a name is assigned to each file.
A name consists of a maximum of eight characters. The
first character must be a capital letter. However, the
name itself can contain a combination of capital letters
or capital letters and numbers. No blank spaces,
punctuation marks, or special characters are permitted
in file names.

To further distinguish one file from another, you might
include a file name extension. A file name extension
consists of one, two, or three characters and may
contain any combinations of letters and numbers. To
specify a file name extent ion, simply add a period to

--61--

the end of the file name and then add the extension.
For example, BUDGET.88 might be the name of your family
budget program for 1988.

A reserved section of the disk, called the directory,
remembers these names and file name extensions for you
(along with their locations and sizes). When you use
the name of a file that you think is already on the disk
(as in LOAD or ENTER), the directory for your file and
"connects" BASIC and your program with it if it exits.
If it doesn't exist, DOS indicates an error. When you
use the name of a new file (as in SAVE), DOS creates an
entry in the directory for you.

NOTE: If you have Atari DOS 2.e, DOS XL
version 2, or OS/A+ version 2, you may
ignore this note. If you have such a
DOS, you should refer to its reference
manual for information regarding
acceptable file names. Some Disk Oper­
ating Systems currently available for
the Atari allow longer and more complex
filenames. OS/A+ version 4.1, for
example, allows 3e-character names and
allows almost any character in a name.

In order to use a disk drive, be sure that
properly connected to your Atari Home Computer.
have questions about this, check your Disk
Reference Manual.

it is
If you
Drive

Next, if your computer is on, turn it off. Turn on the
disk drive and insert a system diskette. Follow the
procedure for properly inserting the diskette according
to your disk drive manual. Be sure that your fingers
touch only the protective, plastic envelope. The
diskette should slide into the drive. Gently close the
disk drive door. If there is any resistance while
inserting the diskette or closing the disk drive door,
stop, remove the diskette, and try again. This is an
easy procedure and does not require brute strength. If
you use force, you could·ruin the diskette. Turn the
computer on: the disk drive will make a whirring noise.
This means the disk operating system is loading from the
diskette into the computer1s memory. This procedure is
known as "booting". When the READY message appears, the
boot procedure is completed.

If you do not use the proper diskette, a BOOT ERROR will
result. A proper diskette is one that contains a disk
operating system, often referred to as DOS.

--62--

(

(Some DOS disks (such as OS/A+ version
2.1) do not automatically enter the
cartridge when the power is turned
on. The user must type some command
("CAR' in the case of OS/A+) to enter
the BASIC XL cartridge.

Once you have successfully booted a diskette,
want to know what programs are located on it.
the "directory" or listing of the files,
{RETURN} into the computer. This will list the
directory on the screen.

you will
To get

type DIR
diskette

(

If you have digested all of the above information, you
are now ready to use your diskette. Choose the program,
from the directory that you would like to run. Type
LOAD "<name. ext>" • When the computer has loaded the
program from the diskette to its memory, it will say
READY. Next, type RUN. The computer will execute the
program.

If you have created a program and you would like to
store it on your diskette, first choose one with DOS
(DISK OPERATING SYSTEM) already on it. Then, type SAVE
"D:<name.ext>". This will store an entire program from
the computer's memory onto the diskette.

Remember, if you use the command SAVE to store a program
on a diskette, then you must uses the command LOAD to
retrieve the program from the diskette and record it in
the computer's memory. SAVE and LOAD are used to store
and retrieve for an entire program.

If you want to keep part of a program, then you may use
the command LIST"D:<name.ext>",<line range>. This
command also allows you to preserve a particular program
line or range of files. For example:

LIST"D:INCOME.S?",3IA

will record on a diskette only line 310 (if it exists)
of the program currently' in memory. It gives the
filename "INCOME.S?" to the file containing that single
line.

If, you want to keep only lines 310 to 450, you would
use the following command:

LIST"D: INCOME.S?", 310, 450

--63--

This command will preserve only lines 31~ through 45~.

If there are additional lines in the program, they will
not be preserved on the diskette. To keep the entire
program, simply use LIST"D:INCOME.87" without any line
numbers.

Finally, the commands LIST and ENTER must be used
together. One advantage of using LIST and ENTER over
SAVE and LOAD is that the LIST and ENTER method allow
you to merge programs. LOAD will erase the program
currently in the computer's memory before loading a new
one. On the other hand, the ENTER: "D:FILENAME.FNE"
statement will merge the program it loads with the
program in memory. As with keyboard programming, if the
incoming line numbers are the same as the existing ones,
the incoming lines will replace the existing ones.

In order to see the advantage of using
"D:FILENAME.FNE", line, try this exercise:

Type:

llHl PRINT "THIS IS LINE Ul~"

lUI PRINT "IN ORIGINAL PROGRAM"
2~~ PRINT "THIS IS LINE 2~~"

21~ PRINT "IN ORIGINAL PROGRAM"
3e~ PRINT "THIS IS LINE 3"''''''
31'" PRINT "IN ORIGINAL PROGRAM"

LIST

Now RUN this program to see what it does. Then, type
LIST "D:SILLY.PRG", 2"'~,21~.

Now Type:

NEW
l~~ PRINT "THIS IS A NEW LINE l~~"

2~~ PRINT "THIS IS A NEW LINE 2"''''''
3"'''' PRINT "THIS IS A NEW LINE 3"''''''

Now RUN this program to see what it does.

Type:

ENTER "D:SILLY.PRG"

To see the results, type LIST and RUN. Notice how the
programs have merged. This may not seem important to
you now. but as your programming ability increases,
this will become a handy procedure. It allows you to
alter parts of programs or to easily combine programs.
Again, this can save you valuable time.

--64--

(

(
COMMENTARY: One use for the file name extension is as an
indicator of which command was used to store a program.
Once you see the program name in the directory, you will
know which command to use to retrieve the program into
the computers memory.

Here is a sample directory:

* DOS SYS 004
* INIT COM 006
* RS232 COM 001
* COPY COM 075

DEMO LIS 014
NEWDEMO LIS 007
MOVE1 SAV 004

* MOVE2 SAV 004
592 FREE SECTORS

The first file shown is DOS.SYS or the Disk Operating
System. The next several files are for utility programs
which were previously stored on the diskette and permits
access to the diskette in different ways. Also, several
programs are preceeded by an asterisk. The asterisk
indicates that that program is protected and cannot be
renamed or erased or written to until it is unprotected.
If you desire more information, please consult the OS/A+
or DOS XL Reference Manual.

The other programs stored on the diskette were those
used as examples in this book. Notice the file name
extensions. Some programs use LIS for programs which
had been LISTed to the diskette, and others use SAV for
programs previously SAVEd to the diskette.

In the process of placing a program in the computer's
memory from the diskette, it is important to follow the
correct procedure. That is, if the user employs ENTER
with a program previously stored with SAVE or LOAD with
a program previously with LIST, an ERROR will be the
result.

Exercises:

1)

2)

3)

Type in a program. SAVE it to a disk file with a
name of your choice. Type NEW and then LOAD your
program and RUN it. Did it work?

Try to LOAD a LISTed file. What ERROR did you get?

Try to ENTER a SAVEd file. What ERROR did you get?

--65--

CHAPTER XIII

THE PRINTERS:
HARDCOPY ISN'T HARD

As with the previous two chapters, this
chapter is intended to give the reader some
general information concerning printers. If
you already own one of these devices, the
information which follows will enhance your
understanding. If you do not own one of these
devices, the information contained in this
chapter should help you determine whether or
not to purchase a printer.

Glossary:

Software

Hardware

Printer

Hardcopy

LIST"P:"

LPRINT

The programs or instructions which make the
computer perform specified tasks.

The equipment which makes up a computer
system. Hardware includes the computer,
monitor, disk drive, program recorner and
printer.

A device which produces on paper characters
previously stored in the computer's memory.
Printers are also known as line printers.

Is the same as a paper copy.

A statement used for obtaining a hardcopy
listing of a program previously stored in
the computers memory.

A statement which causes the computer to
produce output on paper.

Output Many progra~s utilize BASIC statements
which cause information to appear on the
screen or printer. Such information is
referred to as output because the computer
puts the information out on the screen or
on the printer.

Throughout this book we have made a concerted effort in (
our explanations not to use jargon or computerese.
Perhaps a few buzz words won't hurt now.

--66--

(

(

Often computer discussions will include the terms
"software" and "hardware". Software refers to computer
programs. If you buy a computer game or any program,
you are buying software. Hardware, on the other hand,
is the equipment and includes the computer itself, the
monitor or television, the disk drive, program recorder,
and the printer.

A printer is a device which produces, on paper,
characters previously stored in the computer's memory.
Printers are manufactured by ATARI and many other
companies. Some are designed to operate with your Atari
Home Computer. Before you purchase a printer, check
with the dealer to be certain that the printer will work
with your computer.

Why do you need a printer? Truthfully, you may not. A
printer produces a paper copy of your program or the
information produced by your program. A paper copy in
computer jargon is called a hardcopy. What you see on
your monitor or television is softcopy. Hardcopy can be
held in your hand: softcopy cannot be held.

Hardcopy is desirable if you want to produce business or
financial reports. Also, hardcopy is essential if you
use your computer to produce letters. For a programmer,
hardcopy provides a means for reviewing a program whose
length exceeds one screen size.

Printers come in a variety of sizes. The amount you pay
for a printer will be determined by its speed and the
quality of the print. Typewriter quality print is the
most expensive kind of print. Other printers are
capable of producing graphic displays. Some are even
able to reproduce color.

If you decide to buy a printer, spend some time looking
at the various models available. Then determine the
features you want and make your selection.

In order to use a printer there are two commands you
need to know. LIST"P:" will cause the computer to PRINT
your entire program. If you want only one line to
appear on paper add the line number to the LIST"P:"
statement. Alternatively,. if you include two numbers
separated by a comma following the LIST"P:" statement,
the computer will PRINT those lines inclusively.

Examples:

LIST"P:" Will list your entire program.

--67--

LIST"P:",15 Will list only line 15.

LIST"P:",3f1J,56 Will list lines 3f1J through 56
inclusively.

The other command used in conjunction with a printer is
LPRINT. LPRINT (Line PRINT) causes the computer to
PRINT data or output on paper rather than on the screen.
If you want to see results on paper instead of the
screen use LPRINT.

Example:

lf1J LET P=l
2f1J LET X = RANDOM(l,lf1Jf1J)
3f1J PRINT X
4f1J LET P=P+l
5f1J IF P<ll THEN GOTO 2f1J

The above program will produce lf1J random numbers between
1 and lf1Jf1J on your monitor screen. By changing line 3f1J
to:

3f1J LPRINT X

the same results will be produced on paper.

You must have a printer and you must turn on your
printer in order to use the LPRINT and LIST"P:"
statements. If you try to use these statements without
a printer, an ERROR 138 will be the usual result.

The command LPRINT forces the computer to ,
the beginning of a new line. Using: or , ,
as we did with PRINT on the end of a line I
may not produce the results you desire. If I
you need to produce more complex printed I
output, you may have to avoid LPRINT. I
Please refer to the OPEN and PRINT sections I
of your BASIC XL Reference Manual. I

Exercises:

1) Use LPRINT statements to write on your printer a note
to a friend.

2) List your program to the printer.

--68--

(

(

CHAPTER XIV

GRAPHICS PART I:
I GET THE PICTURE

Glossary:

Graphics

Pixels

Graphics
Window

Text
Window

COLOR

PLOT

ORAWTO

A state in which the computer responds
to Mode instructions for the purposes of
drawing pictures, designs, graphs, or
variations of the standard characters.

Shaded blocks of colors used in GRAPHICS
modes to create pictures, designs and
graphs.

The large area of the monitor or
television screen in which graphics,
words, designs, or pictures can be
displayed.

An area at the bottom of the monitor or
televison screen which contains enough
space for four lines of text.

A statement which selects one of the
available colors which will be used with
subsequent PLOT and ORAWTO statements.

A statement which illuminates a single
point on the screen.

A statement which causes a line to be
drawn from a point (the last plotted
point) to a specified location.

One of the most exciting features of your ATARI Home
Computer is its graphics capabilities. Using the
various graphics modes can enhance any program you
write. Your ATARI is capable of being used in many
different graphic modes •• Some graphics require more
than a beginner's understanding of programming and
computer design. This chapter is intended to give you
an introduction into the world of graphics and for that
reason we will be discussing only modes 0 and 7, the
most commonly used modes.

To enter the graphics mode, type GRAPHICS and the number
of the mode you desire. In this chapter, as noted, we
will only use GRAPHICS 0 and GRAPHICS 7.

--69--

To better conceptualize the graphics modes, think of
your screen as a piece of graph paper. In mode 0, the
screen is equal to 40 columns X 24 rows. In mode 7 the
full screen is equal to 160 rows X 96 columns. (Rows
run horizontally and columns run vertically.)

GRAPHICS 8 is the mode we have been using throughout
this book. Whenever you turn on your ATARI, the screen
mode is automatically set to GRAPHICS 0. In some ways,
it might be easier to think of GRAPHICS 0 as turning OFF
graphics. In GRAPHICS 0 you cannot PLOT and DRAWTO as
you can in other modes.

Also, in GRAPHICS 8 what appears on the screen are
characters. The numbers, letters and special symbols
that are on the ATARI keyboard are also displayed on the
screen.

In graphics mode 7, you have more choices. First, there
are more columns and rows than were found in mode 0.
Unlike GRAPHICS 8, though, GRAPHICS 7 uses pixels
instead of characters. Pixels are shaded blocks of
color. Remember our comparison of the monitor screen to
a piece of graph paper. A pixel represents one square
which is or can be filled with color.

Instruction:

You type:

GRAPHICS 7

What changes took place? Notice the physical changes in
the screen. First, the screen is split. There is a
graphics window which is black and a text window which
is blue. (If you have a black and white monitor or TV,
obviously you will only see shades of gray. In most
cases you will be able to distinguish the various colors
anyway.) The graphics window is the large area of the
monitor or television screen in which graphics words,
designs or pictures can be displayed. The text window
is the area at the bottom of the monitor or television
screen which contains enough room for four lines of text
or program statements to be displayed.

The pictures or designs you. create will appear in the
larger, graphics screen, while your program statements,
prompts, messages, etc., appear in the text window.
Note that displays in the text window appear to be the ('
same as those in GRAPHICS 0. This is proper, since the
text window is actually and simply a small GRAPHICS 8
screen.

--78--

(

(-

Also in mode 7, you have a choice of colors. The COLOR
statement allows you to select one of the available
colors and to draw with that color. In graphics mode 7,
there are four available colors: black, orange, green,
and blue. The black is used for background: but, along
with the other colors, it may also be used by PLOT and
DRAWTO.

The PLOT statement enables you to tell the computer a
particular point position you desire. Again, think of
your screen as a graph. The first number after PLOT
tells the computer the column desired: the second number
indicates the desired row. The screen positions are
numbered from the upper-left corner of the screen
starting with the number zero (0). Numbers in PLOT
statement are separated by a comma.

columns

o 1 2 345 6 789
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

e lxI' I I Ixl I I I I I I I I I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

1 I I , I I I I I I I I I I I I I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

2 I I lx l I I I I I I I I I I I I
r +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
o 3 I I I I I I I I I I I I I I
w +-+-+-+-+-+-+-+-+-+-+-+-+-
S 4 I I I I I I I I I I I I I

+-+-+-+-+-+-+-+-+-+-+-+-
5 Ixl I I I I I I I I I I

+-+-+-+-+-+-+-+-+-+-+-
I I I I I I I I I I

The points shown in the above examples would be entered
into the computer as follows:

GRAPHICS 7
COLOR 1
PLOT 0,0
PLOT 5,0
PLOT 2,2
PLOT 0,5

Another statement used in most graphic modes is the
DRAWTO. The DRAWTO statement tells the computer the
position at which to END a line. That means, the PLOT
statement tells the computer to start a line at the
position given, and the DRAWTO statement tells the
computer to end the line at the position given. Just
like the PLOT statement, the DRAWTO statement also uses
two numbers and a comma.

--71--

PLOT 9,9
DRAWTO 15,25

Here are some examples for you to try.

Instruction:

You type:

{SYSTEM RESET]
GRAPHICS 7
COLOR 1
PLOT 5,5
DRAWTO 96,64
PLOT 159,9
DRAWTO 96, 64

What did you see? You should see a large, somewhat
misshapen "V" drawn in orange.

{SYSTEM RESET}
GRAPHICS 7
COLOR 1
PLOT 19, 19
DRAWTO 159, 19
COLOR 2
PLOT 19, 39
COLOR 3
PLOT 19, 59
DRAWTO 159, 59
COLOR 9
PLOT 19, 79
DRAWTO 159, 79

Did you notice that nothing appeared to happen after you
performed the last set of instructions? That is oue to
the fact that the fourth color, COLOR 9, is black. Now
add this:

PLOT 89, 9
DRAWTO 89, 95

Now you can see COLOR 9 as it cuts through the other
colors.

While working in the various graphics modes, you may
encounter an ERROR 141. This simply means you have
PLOTted or drawn to a point beyond the range of the mode
in which you are working. In GRAPHICS 7, do noe go (
beyond 159 in the column position, nor should you go
beyond 95 in the row position. Otherwise you will end
up with an ERROR 141.

--72--

(

CAUTION: row positions 80 through 95 are NOT displayed
in GRAPHICS 7, but use of these positions does NOT
generate an error.

Let's try to write a program using graphic mode 7. What
we want to do is to create a bar graph that will
indicate a person's physical, mental and emotional
well-being. We will need to use GRAPHICS 7, COLOR,
PRINT, INPUT, and other statements and commands
discussed earlier in this book.

First, since we know we want to make
will need to get into graphics
pressing {SYSTEM RESET}.

Instruction:

You type:

NEW
100 GRAPHICS 7

a bar
mode 7.

graph, we
Begin by

Next, we want to formulate a PRINT statement that will
indicate the intent of our program. You might choose
something like this:

You type:

110 PRINT "ON A SCALE OF 1 TO 10"', RATE YOUR"
12'" PRINT "PHYSICAL, MENTAL, AND EMOTIONAL STATES"
13'" PRINT "FOR TODAY."

SPECIAL NOTE: The reason we have chosen to write our
PRINT statement on three separate lines is for a better
format. All of our information would fit on three
display lines, our legal limit for a program line.
However, when the computer executed our program, some of
the words would be divided. These divisions would not
necessarily follow the syntax rules of English. To
avoid user confusion, we divided our PRINT statement so
that no words would be divided in a confusing manner.

Now we are going to put ~n a pair of statements that
will allow some special features to be added to the
program later.

Instruction:

You type:

2"'0 LET DAYSTART 10
210 LET DAY = 1

--73--

And then some statements which allow the program to
interact with the user.

388 PRINT "PHYSICAL RATING, DAY": DAY:
310 INPUT PHYSICAL
320 PRINT "EMOTIONAL RATING, DAY": DAY:
338 INPUT EMOTIONAL
348 PRINT "MENTAL RATING, DAY : DAY:
350 INPUT MENTAL

In statements 300 through 350, we have told the computer
to PRINT messages and to wait for responses. Statements
400 through 480 will indicate COLOR, PLOTs, and DRAWTOs.
These will allow us to form our bar graph.

Instruction:

You type:

408 COLOR 1
410 PLOT 0, DAYSTART
428 DRAWTO PHYSICAL, DAYSTART

These statements will draw an orange horizontal line (or
"bar", hence "bar graph) on the screen. Since DAYSTART
contains 10, the line will be drawn 10 units down from
the top and will start at the left hand edge (PLOT 0,
DAYSTART) and go right to the position specified by
PHYSICAL (DRAWTO PHYSICAL, DAYSTART).

Now we will repeat similar statements for the EMOTIONAL
and MENTAL portion of the graph.

Instruction:

You type:

430 COLOR 2
440 PLOT 0, DAYSTART + 2

This + 2 is to allow for separation between the lines of
the graph.

Instruction:

You type:

458 DRAWTO EMOTIONAL, DAYSTART + 2
460 COLOR 3
478 PLOT 8, DAYSTART +4
480 DRAWTO MENTAL, DAYSTART +4
RUN

--74--

(

(
Answer the questions as they appear on the screen.
this program several times varying your answers.

Try

(

If you wanted to chart a person's physical, emotional
and mental states for the entire week, what lines would
you need to add? There are many attributes which make
up a good programmer. One of those necessary qualities
is insight. The above program is relatively straight
forward. However, in order to expand the program,
insight is necessary. You will recall that in the
beginning of the program (lines 2ee and 2le), we
indicated that these lines would allow features to be
added. Now that we want to include the entire week on
our bar graph, DAY and DAYSTART are very necessary.

Instruction:

You type:

599 LET DAYSTART = DAYSTART + Ie
519 LET DAY = DAY +1
529 IF DAY <= 7 THEN GOTO 399

In line 598 we have added a nonalgebraic expression
which will increase the spaces on the graph. This is
necessary so that the line of the graph will be
distinct. Line 519 is another nonalgebraic equation
which permits the number of days to increase by one each
time line 5le is excuted. Again, this permits a
separation of groups of lines so that each day's rating
will be distinguishable from the other days. Finally,
the conditional statement in line 52e forces the
repetition of lines 399 to 519 until 7 days have been
completed. When DAY is equal to 7, the program will
stop.

Exercises:

1) Write a program which will draw random lines on the
screen, changing colors randomly.

2) Write a program which will draw random rectangles on
the screen, changing colors randomly.

3) Write a program which Will draw concentric boxes on
the screen, changing colors randomly.

--75--

CHAPTER XV

EDITING FEATURES:
THE SCREENING PROCESS

Glossary:

(DELETE) This key will "erase" any letter
by accident: it moves the cursor
to the left each time you hit
removing the letter, symbol, or
replaces.

you type
one space
the key,
number it

(BREAK) A key which when pressed stops whatever the
computer was doing.

(CTRL) This is the control key and when it is used
in conjunction with various other keys it
allows the user to edit program lines.

(~-) A key which when used in conjuction with
the control key will move the cursor one
character to the left without erasing the
characters over which it passes.

A key which when used in conjunction
the control key will move the cursor
character to the right without erasing
characters over which it passes.

with
one
the

{INSERT) A key which when used in conjunction with
the control key will add a space to any
part of a display line and at the same time
will move the rest of the line one space to
the right.

(t) A key which when used in conjunction with
the control key will move the cursor up one
display line without erasing characters
over which it passes.

with
down

the

{ + A key which when used in conjuction
the control key will move the cursor
one display line without erasing
characters over which it passes.

(TAB) Moves the cursor one tabular position to
the right. The number of spaces between
tabular positions is usually eight.

(SPACE BAR) Moves the cursor one space to the right and
replaces the character over which it passes
with a blank space.

--76--

{CTRL} {l}

{CTRL} {2}

Allows the user to freeze a listing of a
program.

Produces a bell sound.

{ESC} Allows screen controls to take place when a
program is running.

{CAPS/LOWR} A key which allows the user to use lower as
----------- well as upper case letters.

Please note: (CTRL} and any
other key means to hold down
the (CTRL} key and at the same
time press the other key. For
example, in the glossary above
{CTRL} {I} means press {CRTL}
and at the same time press
{l} key.

Throughout this book we have discussed many of the
special features of your Atari Home Computer. As you
have learned to program BASIC, you have made mistakes.
Mistakes are part of the learning process: and as your
computer programming expertise continues to grow, your
frustration at simple errors will also increase. This
chapter is intended to explain all of the editing
features of your Atari Home Computer and, in doing so,
lessen those frustrations caused by simple typographical
errors.

This chapter is divided into three sections. The first
section discusses changes that can be made before the
{RETURN} has been pressed. The second section explains
the changes that can be made after the {RETURN} has been
pressed. The final part of this chapter describes
ancillary features.

Some keys which make it possible to correct errors have
already been discussed. For the sake of completeness,
we will review them here.

--77--

BEFORE (RETURN) IS PRESSED

The {BACK SPACE} key will "erase" any character you
type. It moves the cursor one space to the left each
time you hit the key. If you hold down this key or any
of the other keys, the Atari Home Computer will
automatically repeat the key function until you release
the key. If you notice a mistake in a line, simply
press the (BACK SPACE). Back up to the mistake, ~nd

then correctly retype the line.

Instruction:

You type:

1" PINT "HELLO"

You know that the computer will not accept PINT. Press
the (BACK SPACE) 11 times. Change PINT to PRINT and
correctly retype the rest of the line. If that is too
much work, you can simply press the (BREAK) key and the
entire line will be eliminated.

Another way to change the line is by using the (CTRL)
and «--) keys. Located below the (CLEAR) key and the
(DELETE BACK SPACE) key are four keys which have
black arrows in white squares. These keys when pressed
along with the (CONTROL) key will move the cursor one
space in the direction that the arrow is pointing. As
the cursor moves it does not erase the characters over
which it passes.

Type the incorrect line again. Press (CTRL) and «--)
11 times. The cursor should be on the letter I. Then
press (CTRL) and (INSERT) once. When used in
conjunction with the (CTRL) key, the (INSERT) key will
add a space to any part of a display line and at the
same time will move the rest of the line one space to
the right. Type in R.

The changes you have made are on the display line only.
If you want the changes also to be made in the
computer's memory you must press the (RETURN) key. Be
sure the line is typed correctly. Press (RETURN) and
then type RUN.

Instruction:

You type:

1" PRINT "SAMM IS SXTY AND STLL SEXY"

--78--

To change this line, first press the {CTRL} and the
{<--} key twenty-two times. Each time these keys are
pressed, tbe cursor simply moves one space to the left
and passes over, without erasing, each character.

the second M. By pressing
the same time, all the

of the cursor are moved one

The cursor should be on
{CTRL} and the (DELETE} at
characters on the right side
space to the left.

Using the {CTRL} and the {-->} keys, move
spaces to tbe right. The cursor is now on
add one space before the X, press {CTRL}
once, and simply type in the missing I.

the cursor 5
the X. To
and {INSERT}

Press (CTRL) and {-->} B times, placing the cursor on
the first L. Once again press {CTRL} and {INSERT} and
add the missing I. Remember to press {RETURN} once the
corrections are made to your satisfaction. Although the
changes are present on the display screen, they are not
recorded in the computer's memory until the {RETURN} key
is pressed.

Sometimes a computer line will exceed a display line.
Editing changes may be made before the {RETURN} key is
pressed.

Instruction:

You type:

10 "SAM IS SIXTY AND STILL SEXY. HIS TNNIS SERVE TINKS.
SAMM DON'T CARE. HE STILL LUVES THE GAME."

In the above example,
inappropriate places.
syntactical errors and
features.

the words may break in
Please just ignore the English
concentrate on the editing

There is no correct order in which to make changes. If
you decide to complete the changes in another way, that
is fine. There are several different options. The
following is but one of the possible methods. Begin by
pressing {CTRL} and {<--} 15 times. The cursor should
be on the U in the word LOVES. To change the U to an 0,
simply type O. The 0 will replace the U.

Using {CTRL} and {A} move the cursor up one display
line. Like the other arrow keys, the {A} when used in
conjuction with the {CTRL} key will move the cursor up
one display line without erasing the characters over
which it passes.

--79--

Next move the cursor one space to the right by using the
{CTRL} and {-->}. The cursor should now be on the
letter T in the word TINKS. Press {CTRL} and {INSERT}
once and add the S before TINKS. Move the cursor 12
spaces to the left by using the {CTRL} and {<--I. The
cursor should be on the first N in TNNIS. Then press
{CTRL} and {INSERT} once and add the E.

Next, move the cursor 23 spaces to the right by using
the {CTRL} and {-->} keys. The cursor should be on the
second M in SAMM.

Another method you might try here is to use the {TAB}
key. The {TAB} key moves the cursor one tabular
position to the right. The number of spaces between
tabular positions is usually eight. Press the {TAB} key
3 times. You may have to adjust the cursor from there.

The cursor should now be located on the N in DON'T.
Press {CTRL} and {INSERT} twice and type in E and S.

Have all the corrections been made? If so, press
{RETURN}. Notice where the cursor is now located. It
is at the beginning of the next computer line; not the
next display line. Remember, pressing {RETURN} stores
our PRINT statement into the computer's memory. Even
though we have used almost three full display lines, we
have used only one computer line. The cursor indicates
that the computer is waiting for our next program line
or command. Type RUN. The corrections have been
recorded.

Notice that in
syntactically
Now let's make
properly.

our PRINT statement all the words are
correct, but not when we RUN the program.
the changes so our program will RUN

AFTER YOU HAVE PRESSED RETURN

When making changes after the {RETURN} key has been
pressed, it is necessary to go back to the program
line -- not the area of the monitor where the computer
displayed our program.

Press the (CTRL) and {A} 8 times. Press the
{-->} 3 times. The cursor. should be on the
between HIS and TENNIS. Press {CTRL} and
times. This will add 4 spaces between HIS
This should take care of the irregular break
TENNIS.

--8"'--

{CTRL} and
blank space
{INSERT! 4
and TENNIS.
in the word (

(

Now using the {CTRL} and (v}, move the cursor down one
line. The {CTRL} and {v} function in the same manner as
the other arrow keys. The cursor moves down one display
line without erasing any characters each time {CTRL} and
{v} are pressed simultaneously. The cursor should be
located on the blank space before HE.

Press {CTRL} and {-->} 7 times, and press (CTRL) and
{INSERT} once. Now press {RETURN} again. Remember for
changes to take place in the computer's memory as well
as on the display screen, you must press (RETURN].
Since there is so much information on the screen, press
{SHIFT} and (CLEAR). This will remove all material from
the display screen without erasing the computer's
memory.

Instruction:

You type:

LIST
RUN

Notice anything strange? Yes. There is a period at the
beginning of the line. Not exa~tly where it should be.
Again, go back to the PRINT statement. Change the line
by adding four spaces before the word CARE. You may do
this using the {CTRL} key and the various arrow keys to
move the cursor. Then as we have done in previous
examples, you may use the {CTRL} and {INSERT} keys to
add the necessary spaces.

Again press (SHIFT) and {CLEAR} to remove all the
material that is currently on the screen. Type:

LIST
RUN

What happened this time when you ran the program? Look
at the word "GAME". Why is there only a G and not the
whole word GAME? While we were adding spaces to correct
the syntactical errors, we added more spaces to our
computer line. Blank spaces are counted by the computer
in the same manner that it counts any character
letter, number, puncuation mark or special symbol. When
we added extra spaces we exceeded our legal line limit
of 114 characters. The computer automatically cuts off
any characters after the legal limit.

--81--

ADDITIONAL FEATURES

As you probably have noticed, the (CONTROL) key used in
conjunction with other keys gives the Atari Home
Computer many additional editing features. Some ~ave

already been mentioned, And although several others do
exist, we will only discuss two more (CONTROL) features
here. If you have written a very long program and want
to check various parts of the listing, you can stop the
listing by pressing the (BREAK) key. Although
effective, this method is somewhat hit and miss. By
pressing (CTRL) key and (I) you can freeze the listing
of a program. When you type (CTRL) and (I) again, the
listing will continue. (CTRL) and (I) allows you to
review a program listing at your own pace.

Another (CTRL) feature is used in conjunction with (2).
This produces a bell sound. Used within a PRINT
statement, (CTRL) and (2) can act as an alarm to let you
know when the computer is PRINTing something in
particular. It is also an easier way to produce a sound
than going through the sound registers.

In order to use the (CTRL) (2) within a program, you
must also use the (ESC) key. (ESC) stands for escape.
This term dates back to the time when teletypes were
commonly used as computer terminals. Although that is
not the case today, the name has stuck just like the
term PRINT has stuck. It is located in the top row to
the left of the (I) key. The escape key, unlike the
(CTRL) and (SHIFT) keys, is pressed and released before
another key is pressed.

Essentially, the (ESC) key works in a similiar manner to
program line numbers. The line numbers defer the
operation of statements until the program is RUN.The
(ESC) key defers the operation of the editing keys until
a program is RUN. There is one exception: {ESC} {CTRLJ
(I) cannot be edited into a program.

Instruction:

You type:

HI LET I = 1
20 IF LET = I + 1
30 IF I < 100 THEN GOTO 20
40 PRINT -rESC) {CTRL} {2} I' M FINI SHED COUNTING"

Remember I {CTRL} (2) means hold down {CTRL} while
typing (2).

--82--

(

(

RUN

Be sure to watch the screen, and listen. When did the
bell ring?

Try another program using the (ESC} key.

Instruction:

You typel

1" PRINT "(ESC} (CLEAR}"2" PRINT "AHAI THE SCREEN IS CLEAREDI"
3" PRINT "GREAT (ESC} «--} (ESC} «--} (ESC} «--}

(ESC} {<--I (ESC} «--} {ESC} (DOWN ARROW}

In the beginning of this book, we told you that your
Atari Home Computer normally displays UPPER-CASE
letters. The computer will accept instructions written
in lower-case letters: and there may be times when, for
appearance sake or for clarity, you would like to use
lower-case letters.

Find the (CAPS/LOWR} key located directly below the
{RETURN} key. If you press this key once, you will be
able to type lower-case letters, numbers, some
punctuation marks and the arithmetic operation symbols.
If you now press either {SHIFT} key and at the same time
another key, you will be able to produce upper-case
letters (capital letters) of any of the characters shown
on the upper half of the keytop on the keyboard. If you
want to return to upper-case letters, press the {SHIFT}
and {CAPS/LOWR} keys at the same time.

A special feature of your Atari Home Computer keyboard
is a special set of graphic characters that appear only
when the {CTRL} key is pressed at the same time as
another key. Using these graphic keys, you can create
interesting picture graphics or designs.

This mode will work either with your BASIC cartridge or
without it. If you want to stay in this graphic drawing
mode, press the {CTRL} key and the {CAPS/LOWR} key at
the same time. This procedure will lock the keyboard
into the "graphic drawing mode". In order to return the
keyboard back to normal, press one of the {SHIFT} keys
at the same time as you press the {CAPS/LOWR} key.

You may have noticed on your computer keyboard one key
which has the Atari logo on it. This key switches the
video mode from the normal display--blue background with
white lettering--to inverse video. In inverse video the
characters are blue with a white background.

--83--

As you become familiar with these various editing
features, you will find them very useful. As with other
facets of the computer, you will probably make some
mistakes, erasing or deleting lines which you wanted to
save. Like anything else, practice will increase your
skill and lower your frustration level.

--84--

(

CHAPTER XVI

IF REVISITED:
THEN WE CAN DO ANYTHING

Glossary

IF ••• THEN

END

A conditional statement which causes the
computer to make a decision.

A statement which tells the computer to
suspend execution of the program.

A punctuation mark used in BASIC XL which
allows the programmer to use multiple
statements on a single program lines.

(

When we discussed IF ••• THEN in Chapter VII we may have
given you the impression that an IF ••• THEN statement was
always followed by a GOTO statement or a PRINT
statement. Not so. Any statement may follow an IF •..
THEN statement.

Examples:

HI IF A - 100 THEN PRINT "TERRIFIC"
10 IF TREES OAK THEN GOTO 100
10 IF BONUS 1500 THEN LET SALARY = 25000
10 IF A > B THEN INPUT D

In each of the program lines above, the IF part begins a
conditional statement. The computer must decide whether
the statement is true or not. Assuming the statement is
true, the computer does whatever is specified in the
rest of the program line.

It may PRINT or GOTO. It may also initialize a variable
or change the value of a variable. Or, the computer may
wait for data to be entered from the keyboard. BASIC XL
also permits the programmer to use an IF ••• THEN
statement followed by just a line number.

Instruction:

You type:

10 PRINT "WHAT WAS YOUR MOST RECENT GRADE POINT AVERAGE"
20 INPUT AVERAGE
30 IF AVERAGE < 3 THEN 60
48 PRINT "I'M PROUD OF YOU"
58 END
60 PRINT "YOU BETTER STUDY"

--85--

In the above program our first PRINT statement indicates
the data desired and our INPUT statement allows the user
to enter that data into the computer. We use an
IF .•. THEN statement in line 30 in conjunction with only
a line number. It is as though the GOTO is implied.
The computer executes THEN GOTO and THEN line number in
the same manner.

For the first time in the above program we have used an
END statement. END tells the computer to discontinue
the execution of a program and to return to direct mode.
Often an END statement is the last statement in a
program. BASIC XL does not require an END statement.
However, an END statement is necessary to our above
program.

What would happen without the END statement in line 50?
If the user's grade point average was greater than 3,
the computer would PRINT lines 40 and 60 which you may
or may not desire. With our END statement, a user with
a grade point average equal or greater than 3 would
receive the message "I'M PROUD OF YOU". While the user
with a grade point average of less than 3 would receive
the message "YOU BETTER STUDY". The END statement will
be used again in our next chapter. Just remember END
discontinues the execution of a program and places the
computer in direct mode.

Sometimes you may want to join two or more statements
into one program line. By using a colon, you as a
programmer may connect multiple statements on the same
program line.

Examples:

40 IF X <> A THEN PRINT "TRY AGAIN": GOTO 11"
10 IF G <= R AND B <> K THEN LET X=50: PRINT

"THAT IS INCORRECT"
39 PRINT: PRINT: PRINT "LOTS OF PRINTS ON ONE LINE":PRINT:

PRINT

Remember, it is perfectly legal and syntactically
correct to add a colon in order to put more than one
instruction on a program ~ine. However, in joining
statements you may not exceed the single program line
limit of 114 characters. Using a colon may enable you
to better organize your programs and to save time.and
space.

Throughout this bOOK whenever we have named a variable,
we have used a LET statement. We did this to remind you
that we were dealing with a variable and not a
mathematical expression. Although it is good form and

--86--

(

(
acts as a reminder, the LET is usually not necessary.
In BASIC XL the LET is implied whenever a variable is
named.

Of course, there is an exception. Should you want to
use a statement word as the name of your variable, you
must use the LET. For example:

10 LET LET- 15
20 LET PRINT- 235
30 PRINT PRINT, LET

Also, if your variable name BEGINS with a statement
word, you MUST use LET.

30 LET COLOR0 - 3
40 COLOR '" COLOR0
50 LET LETTER - 26

Exercises:

1) Reggie Smith's salary is based on sales. He is paid
$1000 unless his sales are over $20,00"', in which case
he is paid $2"'''''''. Write a program which will PRINT his
salary.

2) Modify the above program to include deductions for
for federal taxes and Social Security. Use a colon to
join computer statements on one line. (Use arbitrary
values for the taxes, if you like.)

--87--

Chapter XVII

SUBROUTINES I
CALLING FOR HELP

Glossaryl

As your ability to
programs will also
cumbersome. They
may be to hard for
a long program,
functional parts.
program. Perhaps a
in several places.

Subroutine

GOSUB

RETURN

A statement or a group of statements
within a computer program, yet
distinguishable from the rest of the
program, which performs a separate and
complete function.

A statement that tells the computer to
execute a subroutine. This statement is
always fOllowed by a line number and is
always paired with a RETURN command.

A statement which ends a subroutine and
tells the computer to go back to the next
command in the main body of the program.

program increases, the length or your
increase. Long programs can become
are difficult to read and their logic
a beginner to decipher. In analyzing
it is helpful to break it into

You may find some repetition in the
group of commands have been repeated

Instructionl

You typel

UI LET SCORE .. "
2" PRINT "ONE CUP EQUALS 1) 8 OZS. 2) 16 OZS. 3) 32 "ZS."
3" LET CORRECTANSR = 1
4" INPUT ANSWER
5" IF ANSWER <> CORRECTANSR THEN PRINT "THE CORRECT

ANSWER IS" t CORRECTANSR
6" IF ANSWER = CORRECTANSR THEN PRINT "THAT'S RIGHT"I

LET SCORE .. SCORE + 1 •
7" PRINT "ONE QUART EQUALS 1) 18 OZS. 2) 24 OZS. 3)32 OZS"
8" LET CORRECTANSR .. 3
9" INPUT ANSWER
1"" IF ANSWER <> CORRECT ANSWER THEN PRINT "THE CORRECT

ANSWER IS"r CORRECTANSR
11" IF ANSWER .. CORRECTANSR THEN PRINT "THATS RIGHT"I LET

SCORE .. SCORE + 1 (
12" PRINT "ONE GALLON EQUALS 1) 64 OZS. 2)128 OZS. 3)2""

OZS"
13" LET CORRECTANSR .. 2

--88--

14~ INPUT ANSWER
15~ IF ANSWER <> CORRECTANSR THEN PRINT "THE CORRECT ANSWER

IS": CORRECTANSR
16~ IF ANSWER - CORRECTANSR THEN PRINT "THAT'S RIGHT": LET

SCORE = SCORE + I
29~ PRINT "THE TEST IS OVER. YOUR SCORE IS": SCORE

By now, it would be nice if you
could read a program such as the
above and understand most of what
it does. If you can't do this
yet, do not worry about it. Type
the program in and RUN it. But
keep trying to "read" programs,
since being able to do so will
make it easier to work with both
this book and computer magazines I

In the program above, first notice how many program
lines we used. Did you find any repetitions? Yes,
lines 4~, 5~, and 6~ are the same as lines 90, l0~ and
ll~ and the same as lines 140, 150, and 16~. Wherever
you find the repetition of program lines, you have the
basis for a subroutine.

A subroutine consists of a group of lines which usually
perform a particular function and are terminated by a
RETURN statement. Most often, a subroutine is used to
execute a specified task by allowing the task to. be
referenced from more than one location in the main
program.

A subroutine is a statement or group of statements
within a computer program which performs a separate and
complete function. Subroutines are distinguishable from
the rest of the program. Usually, but not always, a
subroutine is placed at the very end of the program.

A GOSUB statement is closely related to a GOTO
statement. Both are followed by line numbers. The one
major difference is that a GOSUB makes the computer
remember where it "left oft" before it goes to its
target line, which should be a subroutine. Also, a
RETURN is always the last executed statement of a
subroutine. The RETURN stauement causes the computer to
go back to the main body of the program and execute the
statement following the GOSUB statement.

Although a program may contain numerous GOSUB statements
(including, usually, several GOSUBS to the same
SUbroutine), the computer always remembers at which line

--89--

it left the main program. When the computer encounters
the RETURN, it knows exactly where it left off. It goes
back to its place and continues to execute the next
statement following the GOSUB.

Let's return to our example. We used 17 computer lines
to give our quiz and to keep the user's score. The
discussion which follows is organized by line numbers to
make it easy for you to refer to the program.

line 11' The score a person receives when taking a
test is important. Thus, we will have the
computer keep track of the score for us.
In this line, we will initialize our
variable score at e. We do this because at
the beginning of a test, there is no grade.
Once a question has been answered correctly
or incorrectly there is a positive or
negative score.

NOTE: In BASIC, it is actually
often not necessary to initialize
a variable to e. The RUN conunand
automatically initia1-izes all
variables to e. All that is nec­
essary is to name the variable.

firstourindicatesPRINT statement
question.

the value of our variable CORRECTANSR is
set at 1. We did this because the answer
to the question is 1.

line 31'

line 21'

line 41' the INPUT statement allows the user to
enter data.

line 51' forces the computer into making a decision.
If the answer is incorrect, PRINT the
correct answer.

line 61' forces the computer into making a decision.
If the answer is correct, PRINT a remark
which praises the user and increases the
~ser's score by 1.

line 71' PRINT statement
question.

indicates our second

line 81' the value of our variable CORRECTANSR is
set at 3. Again, we did this because the
answer to the question is 3.

--91'--

line 9l!l

line ll!ll!l -

the INPUT statement allows the user to
enter data.

forces the computer into making a decision.
If the answer is incorrect: PRINT the
correct answer.

line Ul!l - forces
If the
which
user's

the computer into making a decision.
answer is correct, PRINT a remark
praises the user and increases the
score by 1.

line l2l!l - PRINT statement
question.

indicates our third

line l3l!l -

line l4l!l -

the value of our variable CORRECTANSR is
set at 2. We did this because the answer
to the third question is 2.

the INPUT statement allows the user to
enter data.

determine if the
so, PRINT a remark

and increases the

line lSl!l -

line l6l!l -

forces the computer into another
If the answer is incorrect,
correct answer.

forces the computer to
answer is correct. If
which praises the user
user's score by 1.

decision.
PRINT the

line 29l!l - PRINT statement indicates the end of our
program and displays the user's score.

Notice that lines 2l!l and 3l!l resemble lines 7l!l and 80 and
lines l2l!l and l3l!l. Although these statements are
similar, they are not exactly the same.

Only lines which are exactly the same can be used for a
subroutine.

But look at lines 98, ll!ll!l, lll!l. Aren't they exactly the
same as lines 4l!l, Sl!l, 6l!l, and 149, 1Sl!l, 168? Yes, they
are. These could be the basis for our subroutine. The
last line of our program is self explanatory.

Let's rewrite our quiz program using a subroutine.
Lines ll!l, 29, 3l!l need not be re-entered. They are
correct as is.

--91--

Instruction:

You type:

4f1l GOSUB 4f1lf1l
se {RETURN}
6f1l {RETURN}
9f1l GOSUB 4f1lfll
1f1lfll (RETURN)
11 fIl {RETURN}
14f1l GOSUB 4f1lfll
lSfIl (RETURN)
16f1l (RETURN)
3f1lfll END

4f1lfll INPUT ANSWER
41f1l IF ANSWER <> CORRECTANSR THEN PRINT "THE CORRECT

ANSWER IS" r CORRECTANSR
42f1l IF ANSWER,. CORRECTANSR THEN PRINT "THAT'S RIGHT"

LET SCORE ,. SCORE + 1
43f1l RETURN

LIST

The listed program should look like this:

1f1l LET SCORE • fIl
2f1l PRINT "ONE CUP EQUALS 1) 8 OZS. 2) 16 fIlZS. 3) 32

OZS."
3f1l LET CORRECTANSR - 1
4f1l GOSUB 4f1lf1l
7f1l PRINT "ONE QUART EQUALS 1) 18 OZS. 2) 24 OZS. 3) 32

OZS."
8f1l LET CORRECTANSR • 3
9f1l GOSUB 4f1lf1l
12f1l PRINT "ONE GALLON EQUALS 1) 64 ozs. 2) 128 ozs. 3)

2f1lfll OZS."
13f1l LET CORRECTANSR 2
14f1l GOSUB 4f1l"
29f1l PRINT "THE TEST IS OVER. YOUR SCORE IS" r SCORE
3f1lfll END
4f1lfll INPUT ANSWER
41f1l IF ANSWER <> CORRECTANSR THEN PRINT "THE CORRECT

ANSWER IS" r CORRECTANSR'
420 IF ANSWER ,. CORRECTANSR THEN PRINT "THAT'S RIGHT"

LET SCORE ,. SCORE + 1
43f1l RETURN

Again, let's analyze each liner but this time let's do
so in the order in which BASIC actually executes the ('
program:

line If1l sets the value of the variable score at f1l.

--92--

(

line 29

line 39

line 49

line 499 -

line 419 -

line 429 -

line 439 -

line 79

line 89-

line 99 -

line 129 -

line 139 -

the PRINT statement indicates our first
question.

sets the value of the variable CORRECTANSR
at 1.

sends the computer to our subroutine.

allows the user to enter data.

forces the computer into making a decision.
If the answer is incorrect~ PRINT the
correct answer.

forces the computer into making a decision.
If the answer is correct, PRINT a remark
which praises the user and increases the
user's score by 1.

causes the computer to go back to the main
body of the program and to execute the next
statement after the GOSUB 499. The first
time through the subroutine, the computer
will go back to line 49.

the PRINT statement indicates our second
question.

sets the value of the variable CORRECTANSR
at 3.

sends the computer to our subroutine.
Lines 499 through 439 are repeated, exactly
as after line 49.

the PRINT statement indicates our third
question.

sets the value of the variable CORRECTANSR
at 2.

(

line 149 - sends the computer to our subroutine.
Lines 499 through 439 are repeated, exactly
as after line 49 •.

line 299 - the PRINT statement that indicates the test
is over and the user's score.

line 399 - tells the computer not to go any further.

The numbers may be a bit confusing, but notice how much
easier it is to read and to understand the organization
of our new program. In addition to the subroutine, we
also added an END statement. This was necessary so that

--93--

when the computer reached the last program line, it did
not try to execute our subroutine. Remember without the
END statement, the computer would execute each line in
numerical order. Eventually, the computer would reach
line 488 and would wait for the user to INPUT an answer.
Can you see all the problems this would cause? Even if
the user types in an answer, what is the correct answer?
The computer would eventually PRINT ERROR.

A diagram of how the program would RUN might look like
this:

128 138 148113 2" 38 48

4"8 418 42" 438

78 88 98

48" 418 428 438 488 418 428 438

Subroutines may be as long or as short as you desire.
They provide an efficient means of organizing a program
that repeats a specified task, and in general,
subroutines make programs easier to understand.

Exercise:

1) Add two more questions to the above program.

--94--

Chapter XVIII

BETTER LOOPS:
WHAT'S THE NEXT STEP

Glossary:

roR

NEXT

STEP

Negative
Number

A statement which indicates a sequence
that the computer is to complete a number
of times. FOR is always used in
conjuction with NEXT.

A statement which when used with FOR forms
a loop. This loop provides an automatic
method for making the computer count.

Is the same as an increment. STEP is used
with a FOR statement when you want the
computer to count by an increment other
than positive one.

A number whose value is less than zero. A
negative number is associated with a minus
sign.

In reading this book, you have probably noticed that
there is often more than one method for obtaining a
desired output. At first, we used two variables as a
counter. Later, we introduced a nona1gebraic equation
(LET X X+1) as a counter. In previous examples we
used LET, IF ••• THEN and GOTO statements to produce a
counter within our program. Two additional statements
which are often used together as a counter are
FOR••• NEXT.

The statements FOR••• NEXT form a loop. FOR ••. NEXT must
always be used in conjuction with each other. If you
use the NEXT without the FOR, the computer will produce
ERROR 13-NEXT WITH NO MATCHING FOR. If you use FOR
without a NEXT, the computer will be unable to find the
end of the loop. The FOR..• NEXT loop acts as an
automatic counter. The FOR statement is followed by a
numeric variable.

Instruction:

You type:

18 FOR Y • 1 TO 18
28 PRINT Y, uWATCH ME COUNT u
38 NEXT Y

--95--

In line IS above, the FOR is followed by our numeric
variable Y. The one (1) indicates the lower limit of
the variable, or the value of Y when the loop begins.
In other words, the numeric value following the equal
sign initializes the variable.

The number following TO indicates the upper limit of the
value of the variable. When the variable reaches its
upper limit, in this case IS, the loop is completed.

FOR Y 1 TO IS
I I I

NUMERIC INITIALIZES THE UPPER LIMIT:
VARIABLE THE VARIABLE THE VALUE OF Y

WHEN THE LOOP IS
COMPLETED.

Between the FOR and the NEXT is a statement. Actually,
any number of lines and statements could be placed
between the FOR and the NEXT. These statements in~icate

what the computer is to do. In our example, we want the
computer to PRINT the value of Y and the string "WATCH
ME COUNT". The number of times that the statement or
statements is/are executed depends on the number of
times the FOR statement indicates that the loop is to be
completed. The variable in the NEXT statement must be
the same as the variable in the FOR statement. The NEXT
statement is always the last statement in the loop.

Instruction:

(

You type: Computer Responds

19 FOR A-I TO 3
2S PRINT A, A+A, A*A
3S NEXT A
RUN 1

2
3

2
4
6

1
4
9

In the above program, we have initialized our variable 'A
and set its upper limit at 3. Our PRINT statement
indicates what we want to see on the screen is the value
of A, the s~ A+A, and finally the product A*A. Our
NEXT statement completes the loop and sends the computer
back to line IS until it completes the loop the
prescribed number of times.

In the above examples each time the
the variable increased its value by
process until the maximum value
statement.

--96--

loop was completed,
one. It repeats the

allowed by the FOR
(

What do you do if you want to increase the value of the
FOR variable by more than one? What do you do if you
want to decrease the value of the FOR variable?

The way to make the computer count by increments other
than one is to use the keyword STEP. STEP, followed by
a number, tells the computer to count in a specific
increment.

Instruction:

You type:

10 FOR H - 3 TO 15 STEP 3
20 PRINT M
30 NEXT H
RUN

Computer Responds

3
6
9

12
15

The STEP will force the computer to count by 3's. If
you are counting by anything other than positive one,
STEP becomes part of a FOR statement. (In fact, STEP
may only be used in a FOR statement.)

Examples:

10 FOR X • 10 TO 100 STEP 5 (counts from 10 to 100 by
five's)

10 FOR S • 2 to 40 STEP 2 (counts to 40 by two's)

COMMENTARY:

In our discussions to this point, we have used only
positive numbers. We have counted from zero or one in a
positive manner, ascending the number line.

However, for every positive number there is also a
negative number. Look at the number line below.

<-----------------------0----------------------->-5 -4 -3 -2 -1. 1 2 3 4 5

A negative number is named by a numeral and a minus (or
"negative") sign. Whenever the direction of movement on
a number line is to the right of the point of origin, we
say the movement is in a positive or ascending
direction. Whenever the direction of movement on a

--97--

number line is to the left of the point of origin, we
say the movement is in a negative or descending
direction. Remember, the point of origin on the number
scale and the direction of the movement determines
positive and negative values.

Example:

<------------------+------------------>
11 12 13 14 15 16 17

In the above example 15 is in a positive direction from
our point of origin: 13 is in a negative direction.

We often discuss negative numbers in terms of cities and
their altitudes. Sea level is our point of origin. The
altitude of a particular city is determined by its
relationship to sea level. The city has a positive
altitude if it is above sea level. Denver, Colorado, is
often called the mile high city because it is
approxiately 528e feet above sea level. On the other
hand, Death Valley, California, has a negative value.
It is approximately 28e feet below sea level.

When using a FOR ••• NEXT loop, it is possible to move in
a negative direction as well as a positive one. Again,
in order to count in an increment other than positive
one, STEP is added to the FOR statement. By using a
negative number, you indicate that the counting is to
take place in a negative manner.

Examples:

le FOR C-le TO 1 STEP -1 (counts backwards from le to 1)

le FOR D - lee to e STEP -2 (counts backwards from le9
by two's)

Notice in our FOR statements that the upper limit of our
variable is stated first and then the lower limit. When
using STEP to decrease the value of the FOR variable,
the larger value must be stated first, then the smaller
value.

Exercises:

1) Write a program to PRINT-your name le times.

2) Write a program which will count backwards from leo
Instead of zero have the computer print "BLAST OFF". ('

--98--

(

(

3) Write a program which will count from " to 1"" by
five••

4) Write a program which will PRINT all number. and
their .quare., .tarting at 1 and continuing until it
reaches a maximum number, which should be specified by a
u.er INPUT.

--99--

Chapter XIX

FOR LOOPS REVISITED:
ANOTHER STEP UP

Glossary:

FOR

NEXT

Nest

Nest

A statement which indicates a sequence that
the computer is to complete a number of
times. FOR is always used in conjunction
with NEXT.

A statement which when used with FOR forms
a loop. This loop provides an automatic
method for making the computer count.

To fit together or within one another, as
boxes, mixing bowls or small tables (verb).

An assemblage of things lying or set close
together or within one another as a nest of
tables (noun).

A FOR NEXT loop is a useful programming tool.
However, it can become more powerful when used in
conjunction with other FOR ••• NEXT loops.

The process of placing FOR •.• NEXT loops within one
another is called" nesting". Nesting is a desirable
and beautifully structured programming capability.
Remember, though, that the innermost level of a nest
must be completed before the next level outward can be
executed.

To illustrate the concept of nellting, we will start with
a non-computer example. Imagine that it is your job to
inspect strawberries for quality. There are twenty
strawberries in each basket and 8 baskets in each of
four crates. You must first open a crate, then remove a
basket, and finally, remove each strawberry and examine
it. After you have inspected each strawberry, you would
have to replace them in the basket. After you have
inspected each strawberry in each basket, you would
replace the baskets into the crate. Then, you would
follow the same procedure with the next crate.

If we were to write the above example in outline form,
it would look like this:

--188--

(

(
I. For each of four crates and

A. For each of 8 baskets in each crate ano
1. For each of 28 strawberries in

each basket,
i. You must inspect a single

strawberry and
ii. Put it back in its

basket. Then,
2. When all 28 strawberries are

checked and replaced, replace
the basket in the crate. Then,

B. When all 8 baskets are checkeo and
replaced, put the finisheo crate
aside. Then,

II. When all four crates are checked, you are
done.

Now we will "diagram" the same proceoure in a paraphrase
of BASIC.

FOR CRATE - 1 TO 4
FOR BASKET - 1 TO 24

FOR STRAWBERRY - 1 TO 28
INSPECT A SINGLE STRAWBERRY
REPLACE IT IN ITS BASKET

NEXT STRAWBERRY
REPLACE THE BASKET IN THE CRATE
NEXT BASKET

SET THE CRATE ASIDE
NEXT CRATE

Notice in our example above, our FOR and NEXT loops are
paired from the inside out. First, our STRAWBERRY loop
is completed, then the BASKET, and finally the CRATE.

Was this example a legitimate BASIC program? No,
because BASIC doesn't understand "REPLACE..... ,
..INSPECT , or "SET THE. • • .. • The FOR••• NEXT
statements, though, were completely legitimate.

Suppose we modify the task a little. Instead of
inspecting strawberries, let's show a star on the screen
for each strawberry. And let's PRINT the words "BASKET"
and "CRATE" as we complete each task. Our program might
look like this I

Again, this is perfectly legal as long as you nest
FOR••• NEXT loops from the inside out.

--181--

Instruction:

You type:

NEW
l~ FOR CRATE=l TO 4
2~ FOR BASKET = 1 TO 8
3~ FOR STRAWBERRY =1 TO 2~

4~ PRINT ".":
5~ NEXT STRAWBERRY
6~ PRINT "BASKET"
7~ NEXT BASKET
8111 PRINT: PRINT "CRATE": PRINT
9~ NEXT CRATE
RUN

What does this program produce? How many times does the
computer execute the FOR CRATE and NEXT CRATE loop?
Which loop is executed more often, the FOR CRATE and
NEXT CRATE or the FOR BASKET and NEXT BASKET or FOR
STRAWBERRY AND NEXT STRAWBERRY loop?

Let's analyze this program:

line l~ - FOR is followed by our numeric variable CRATE,
and the range of CRATE is set. The starting value 'of
CRATE will be 1. It's final value will be 4.

line
our
line
the
28.

28 - We begin another FOR••• NEXT loop. BASKET is
second numeric variable. It's range is 1 to 24.
38 - Is the same as line 28 except STRAWBERRY is
name of the numeric variable and its value is 1 to

line 48 - Is a PRINT
executes line 48,
semicolon. Remember
of a new line.

statement. Each time the computer
it will produce a·. Notice the
the semicolon suppresses the start

line 58 - Properly completes our FOR STRAWBERRY loop
with NEXT STRAWBERRY. FOR••• NEXT loops are automatic
counters. The NEXT STRAWBERRY command forces the
computer to go back to line 39. The return to line 39
continues until the value of STRAWBERRY is >28.

line 6111 - Tells the compute~ to PRINT the word BASKET
and move the cursor to the next line. Because of the
semicolon in line 48, the word BASKET is PRINTed next to
twenty stars.

line 70 - Properly completes our FOR BASKET loop with
NEXT BASKET. This time the computer is forced to return

--102--

(

to line 29. Notice that this forces the computer to
re-execute our FOR STRAWBERRY and NEXT STRAWBERRY loop
each time the value of BASKET changes. When BASKET is
greater than 8, the computer will drop down to line 89.

line 80 - Tells the computer to PRINT a blank line. By
using the colon, we are able to put more th~n one
command on this line. As you will recall, a PRINT
statement by itself will force the computer to PRINT a
blank line. After the computer PRINTs a blank line, it
will PRINT the word CRATE. And since we used another
colon and another PRINT statement, the computer PRINTS
an additional blank line.

line 99 Properly completes our FOR CRATE
NEXT CRATE. The NEXT CRATE command forces the
to go bacK to line 19. The return to line 19
until the value of CRATE is >4. When CRATE is
program will end.

Instruction:

You type:

NEW
190 FOR ROW - 1 TO 19
119 FOR STAR - 1 TO ROW
129 PRINT ".":
139 NEXT STAR
149 PRINT
159 NEXT ROW
RUN

loop with
computer

continues
> 4, the

The above program is essentially a variation of the
previous program. Once again, in line 100 we begin our
FOR ROW NEXT ROW loop. The value of the variable
ROW will have a range of 1 to 19. That is, the initial
value will be 1, and it's final value will be 19.

In line 120, we name our other numeric variable STAR.
Notice that the intial value of STAR is 1 and subsequent
values are determined by the value of the variable ROW.

Lines 139 to 159 are a repetition of lines 39 to 69 in
our previous program.

If you were to play computer, the following would be the
sequence of steps you would follow:

--193--

(line number)

1. (188) initialize the variable ROW at 1

2. (118) initialize the variable STAR at 1

3. (128) PRINT * without moving to the next line

4. (138) add 1 to STAR and go to line 110

5. (lIe) determine that STAR> ROW 7 go to line
148 (the statement following NEXT STAR)

6. (148) PRINT a blank
(just moves to
next line)

line adjacent to the *
the beginning of the

7. (158) add 1 to ROWand go to line 188

8. (188) the value of ROW is less than 18 so
continue with the next statement (line
118)

9. (118) set the value of STAR to 1

18. (128) PRINT * without moving to the next line

11. (138) add 1 to STAR and go to line 110

12. (118) the value of STAR (now 2) is still <­
ROW (currently 2) so continue with line
128

13. (128) PRINT * on the same line as previous *
14. (138) add 1 to STAR and go to line 118

15. (118) the value of STAR (now 3) is > ROW so
go to line 148

16. (148) PRINT a blank line next to the second *
(just moves to the start of the next
line)

17. (158) add 1 to ROW and go to line 188

This program will finish executing when the value of ROW
is equal to 18. Each time the computer executes the ('
outer loop (FOR ROW ••• NEXT ROW) once, it executes the
inner loop (FOR STAR•.• NEXT STAR) 'ROW' number of times.

--184--

(
Exercise:

1) Write a program using several FOR and NEXT loops to
create a multiplition table.

--105--

Chapter XX

STRING VARIABLES PART I:
REMEMBERING WORDS

Glossary:

String
Variable

Is a variable that is capable of
containing a value consisting of words,
letters, or characters (in contrast to a
numeric variable, Chapter III, which can
hold only numbers).

DIM Is the statement used to tell the computer
how much memory might be needed to hold
the string value of a variable.

$ Is the symbol which must be used as the
last character in the name of ~ string
variable. The $ symbols tells the
computer that a particular variable is a
string, not a numeric.

A comparison operator that can be used
wi th strings.

<> A comparison operator that can be used
wi th strings.

As you have seen, computer programming
constants (such as: 3,7, etc.' was
When we added numeric variables to
programming statements, we were able
useful programs.

with just numeric
rather limiting.
our ~epertoire of
to produce more

Just as there were numeric constants, BASIC also uses
string constants. Our use of strings up to this point
has been rather limited. You will recall that a string
is any group of characters inside quotation marks. In
previous chapters we have used string constants only in
our PRINT statements. Formerly used examples include:

PRINT "HELLO"
PRINT "HI, MOM"
PRINT "YOUR NAME"

(
BASIC to use string variables.
variable, the variable takes the

characters, just as a numeric
in place of a number. String

distinguished from numeric names by

It is also possible in
When using a string
place of a string of
variable is used
variables' names are

--1"6--

(always being followed by a dollar sign {$}. The dollar
sign {$} indicates to the computer that the variable is
NOT a numeric variable. To the computer X and X$ are
very different. When the computer encounters X, it
expects X to have a numerical value. However, when the
computer reads X$, it expects the value of X$ to be a
string of characters.

Since strings come in any size (while numbers are all
the same size as far as the computer is concerne~), we
may tell the computer the largest possible number of
characters a given string variable might be allowed to
contain.

Thus string variables differ from numerics is in the
optional use of a DIMension statement. Before we can
use a string variable to hold a string value, we must
first indicate to the computer how long we want it to
allow the string value to become. If we don't tell the
computer how long a string value a particular variable
must hold, BASIC XL assumes that it will hold 48
characters (enough for any string that can fit on a
single screen line).

Just as a numeric variable can remember a single numeric
value, so can a string variable remember a single
string. (Remember the definition of a string is zero or
more characters. Generally, when we see a string in a
program it is enclosed in quotation marKS, as in chapter
I).

Instruction:

You type:

UY DIM B$(5)

In the above DIMension statement, we told the computer
that a string variable called B$ might have as many as
five characters.

You type:

28 LET B$ • "JULIE"

This LET statement tells the computer that the value of
the string variable B$ is JULIE. Note that the quote
marKS are NOT part of the string. Just as in English,
they are simply punctuations which show where the string
begins and ends.

--187--

One note of caution: When you DIMension your string
variable, be sure to allow enough room for all possible,
reasonable answers. If, in the above example, you
wanted B$="WILLIAM", the computer would accept only the
first five characters, and B$ would contain "WILLI"
again, without the quote marKS. On the other hand, B$
could - "SUE" or "JOE" or "MIKE" because they are less
than the maximum number of characters specified in our
DIMension statement.

In Chapter III we defined a numeric variable. Here is a
summary of the differences between a numeric variahle
and a string variable. First, a numeric variable
represents a number, a string variable represents a
string--that is a group of characters or words. Second,
you must DIMension a string variable, telling the
computer how much memory to reserve for the string
variable. Third, when using a string variable, you must
distinguish the variable by following the letter or l~st

letter in the variable name with a dollar sign fS}.
Finally, just like other strings const~nts used
previously in this book, you must enclose the value to
be assigned to a string variable (i.e., in a LET
statement) .

All of this is particularly important in progr~ms which
use INPUT statements. As stated in Chapter VIII nothing
will happen, after the execution of an INPUT statement,
until the computer receives an acceptable answer. If
you try to INPUT a string value where the computer is
expecting a numeric, the computer will produce a
message--usually an ERROR S - INPUT/READ. The INPUT
statement did not receive the type of data it expected.

The reverse is NOT true. If you use numhers where the
computer is expecting INPUT of a string value, the
computer will accept the numbers, since a numeric
character is no less a character than is a letter.
However, no arithmetic operations can take pl~ce with
those numbers. The computer treats them as ~ string.

Instruction:

You type:

HI PRINT "WHAT IS YOUR NAME",
2e INPUT N$
3e PRINT "HELLO," , N$
4e PRINT "HOW OLD ARE YOU",
se INPUT AGE
6e IF AGE <- 2e THEN PRINT "MY, HOW YOUNG YOU ARE," , N$
7e IF AGE > 20 THEN PRINT "WHAT A NICE AGE TO BE," N$ (
se PRINT "HAVE A NICE DAY," , N$
RUN

--les--

(

Now try to answer the questions using various names and
ages. Also, try to reverse you answers putting your age
where your name belongs and vice versa. What happens?
The computer will not accept letters where it is
expecting numbers. However, it will accept numbers
where you might expect it to accept only letters. Why?
Because a string is made up of characters. Characters
can be either letters or numbers, or for that matter any
displayable character available from the ATARI keyboard.

String Comparisons

Just as we have compared two numbers using operators
such as <, >, >=, etc., so may we compare strings. In
this book, we will delve into the meaning of the equal
(".") and not-equal ("<)") operators as applied to
strings.

+--+I In fact, though, ALL the operators which are I
I available to numbers are also available for I
I use with strings. We would heartily I
I recommend that you experiment with the other I
I operators. Is "CAT")"cat"? Is "12")"2"? I
I The answers may surprise you. ,
+--+

Generally speaking, the string comparison operators
produce a result by examining each of the two strings
being compared a character at a time. That is, the
first characters of each string are compared. If they
are equal, then the second characters are compared. If
they are equal, then the third characters are compared.
And so on.

The character-by-character comparison continues until
the end of one or both strings is reached. Two strings
are equal if and only if they are exactly the same
length and if each pair of characters match identicrlll.y.
They are always unequal if their lengths differ.

+--+
I For other comparisons, the first pair of I
I characters which differ determine the truth I
I of the comparison. If one string is shorter I
I than the other but otherwise matches I
I exactly, it is considered to he "less" than I
I the longer string. I
+--+

The implication of this is that "CAT" is equal to "CAT"
and only to "CAT". Of course, you can also use string
variables in comparisons, so in this statement

--lI'I9--

IF X$="CAT" THEN PRINT "THEY MATCH"
the message will be printed if and only if X$ has a
LENgth of 3 and contains the characters "CAT".

Since human responses to computer
unpredictable, a program such
often NOT work:

questions are often
as the following will

Ie PRINT "Who is buried in Grant' s tomb":
2" INPUT NAME$
3" IF NAME$="GRANT" THEN PRINT "YOU BET YOUR LIFEI"

What happens if the person answers "grant" or "Grant" or
"U.S.Grant" or any of several equally valid responses?
Your program counts them as wrong, where a human would
count such variations as correct.

A better choice in such situations is usually the
multiple choice. And here BASIC XL provides a mechanism
to ensure "correct" responses. Recall that we said
above that BASIC XL will only assign as many characters
to a string as the string is dimensioned for. So what
happens if you dimension a string to contain only one
character? Try the following program fragment:

1" DIM CHOICE$(l)
2" PRINT "WHO IS BURIED IN GRANT'S TOMB?"
3" PRINT "A. GRANT"
4" PRINT "B. GROUCHO"
5" PRINT "C. LINCOLN"
69 PRINT "YOUR CHOICE (A, B, OR C) n:
7" INPUT CHOICE$
8" IF CHOICE$="A" THEN PRINT "okl" : END
9" IF CHOICE$="B" THEN PRINT "Wow" : END
l"e IF CHOICE$="C" THEN PRINT "Try again":GOTO 6"
11" PRINT "you must choose A, B, or C":GOTO 6"

Do you see the difference? Even if the user answers
"AARDVARKS ARE BEAUTIFUL" in response to your INPUT
prompt, BASIC XL will only store the first letter ("}\")
in the variable CHOICE$, since it was dimensioned to
hold only one character. Sometimes, restricting the
size of a string in this way can make writing string
comparisons much easier.

Exercises:

1) Write a program to produce a form invitation in which
a name is requested and placed in a string variable.
When the invitation is printed out, including at least
two usages of the name contained in the string variable.

2) Ask the user a question which should be answered with
YES or NO. Have your program accept any answer which
begins with "Y" or "N". Respond with some appropriate
message(s). --11"--

(

(
CHAPTER XXI

STRING VARIABLES, PART III
EVEN WORDIER

Glossaryl

Destination
String

Source
String

Substring

Subscripts

LEN(

Is a string to which a value is being
assigned.

Is a string whose value was previously
stored in the computer's memory.

Is a piece or part of a string's value.

Are numerical expressions which specify
the beginning and (if 2 subscripts are
given) ending character positions within a
string variable, thus defining a
sUbstring.

Is a special BASIC function that indicates
the number of characters (including blank
spaces and graphic characters in a strfng.

In the previous chapter we discussed string variables
and their use with LET and INPUT statements. There are
many other advanced programming techniques for handling
string variables. In this chapter we will discuss
destination strings, source strings, substrings,
sUbscripts, and the LEN function. Mastering these terms
and their usage should provide you, as a beginning
programmer, with enough latitude to create interesting
programs without overwhelming you with other complicated
functions.

The examples of LET and INPUT used in our previous
discussion of string variables really discussed
destination strings. A deseination string is one to
which a value is assigned. By DIMensioning a string and
then assigning a value to it, we use it as a destination
string.

With an INPUT statement, the keyboard provides the
assignment of the value of the destination string. A
destination string is one which is being changed in some
manner.

--111--

Conversely, a source string is one whose value has been
previously stored in the computer's memory. Thus, a
source string is actually a string which was previously
used as a destination string (i.e., it was DIMensioned
and assigned to earlier in the program).

More information concerning source strings will follow
throughout this chapter. Try to keep in the mind the
differences between destination and source strings.

SUBSTRINGS

With the string variables previously employed, the
entire string was accessed. We had no method for
accessing and using part of the string. A substring is
a division or a part of a string. In order to examine
and/or manipulate a substring, you must define the
substring by using a subscript.

A subscript consists
directly follow the
number(s) refer(s)
variable. Examples
C$(l,15), GUESS$(50),

Single Subscripts:

of one or two numbers, and it must
string variable's name. The

to the characters in a string
of subscripts include B$(20),
and STATE$(5,20).

If only one number is present in the subscript, the
computer will access the substring beginning with the
character in the specified, numbered position. It will
continue to access characters until it reaches the end
of the string.

Instruction:

You type:

10 DIM STATE$(100)
20 LET STATE$·"NEW YORK, NEW JERSEY,

NEW HAMPSHIRE, NEW MEXICO"
30 PRINT STATE$(5)
RUN

Computer Responds

YORK, NEW JERSEY,
NEW HAMPSHIRE,
NEW MEXICO

In the example above, the first statement at line 30
caused the computer to find the fifth character.
Beginning from that point, it printed the rest of the
string. Now change line 30.

--112--

(

You type:

3S PRINT STATE$(l5)
RUN

Computer Responds

JERSEY, NEW
HAMPSHIRE, NEW
MEXICO

Again, the computer searches for the fifteenth character
and executes the command. It PRINTS beginning with the
fifteenth character and ends with the last character in
the string.

Now change line 30 again.

You type:

3S PRINT STATE$(25)
RUN

Computer Responds

W HAMPSHIRE, NEW
MEXICO

Notice that each character--1etter, punctuation mark,
blank space, etc.-- is assigned a position. If a blank
space is in the position that the computer i.s searching
for, the computer will PRINT a blank space. It will
then use (or continue to use) the rest of the string.
Change line 3e again.

You type:

35 PRINT STATE$(37)
LIST
RUN

Computer Responds

NEW MEXICO

Notice that NEW MEXICO appears to be indented one space.
What really happened was we' asked the computer to PRINT
the 37th character. In this example, a blank space is
in position 37. Therefore, the computer PRINTed a blank
space.

Remember, when only one number is present in the
subscript, the computer will begin at that number and
will continue to access characters until it reaches the
end of the string.

--113--

Double Subscripts:

If two numbers are present in the subscript, the
substring will contain all characters within the stated
numerical bounds, inclusively.

DIET$(1,39) means the computer will begin to access the
substring at the first character and end with the
thirtieth inclusively.

ROAD$(15,35) means the computer will begin to access the
sUbstring at the fifteenth character and continue until
it reaches the thiry-fifth character inclusively.

Let's go back to our example program.

Instruction:

You type: Computer Responds:

LIST
39 PRINT STATE$(l,B)
49 PRINT STATE$(11,29)
59 PRINT STATE$(23,35)
69 PRINT STATE$(3B)
RUN

NEW YORK
NEW JERSEY
NEW HAMPSHIRE
NEW MEXICO

READY

In the first three PRINT statements above, the subscript
included two numbers. The computer goes to the
particular position designated by the first number in
the subscript. It uses that character as a beginning
point for the specified operation (in this case, a PRINT
operation). It continues to access characters and to
perform the operation un~il it reaches the character
numbered the same as the second number in the sUbscript.
It also accesses that last character. (Remember, the
subscripted characters are accessed inclusively.)

--114--

(

(
STRING CONCATENATION

Instruction:

You type:

1" A$."HELLO"
2" PRINT "WHAT IS YOUR NAME":
3" INPUT N$
4" A$-A$, N$
5" PRINT A$

RUN this program and answer the INPUT prompt. Were you
surprised with the results?

The only new thing here is line 4". The operation
performed by the comma in this line is called
"concatenation". This means that the string following
the comma is appended to the string to the left of the
comma. Both these strings are right of the equal sign
and hence are source strings. What is interesting abnut
line 4" is that A$ is both a source and a destination
string.

There is no real limit to the number of strtngs which
may be concatenated. to illustrate, replace line 49
above with this:

4" A$-A$,A$,N$,"AND HI,ALSO."

and RUN the resultant program.

Sometimes, you do NOT know the LENgth of a string
variable. For example, in a program which contains an
INPUT statement, the DIMension value is usually large
enough to allow for all possibilities. How can you
determine the actual LENgth of a string variable? LEN(
) is a BASIC XL function which will tell you the number
of characters including blanks in a string variable.
The space in the parentheses is for the name of the
string variable.

Instruction:

You type:

1" DIM NAME$(3l)
2" PRINT ·WHAT IS YOUR NAME (3" CHARACTERS"
25 PRINT MAXIMUM): MAXIMUM)":
3" INPUT NAME$

--115--

4~ IF LEN(NAME$) = 0 THEN GOTO 100
50 IF LEN(NAME$) >30 THEN GOTO 200
60 PRINT "THANK,": NAME$:STOP
U'0 PRINT "DON'T YOU LIKE ME?"
110 PRINT "PLEASE GIVE ME YOUR NAME."
120 PRINT "PRETTY PLEASE?"
130 GOTO 30
200 PRINT "YOUR NAME IS TOO LONG FOR ME"
210 PRINT "TRY TO USE INITIALS OR A NICKNAME"
140 GOTO 20

Do you understand this program? Why did we DIM NAME$ to
equal 31 when we asked for a maximum of 30 characters?
The reason for DIMensioning NAME$ to equal ~l characters
is rather simple. If we used exactly 30, the computer
would reserve only 30 character's worth of space. The
computer would chop off anything beyong 30. There would
be no way to determine if the string variable NAME$
contained exactly 30 characters. By allowing for one
extra, the computer can make the distinction between
exactly 30 and more than 30.

In lines 20 and 25, our PRINT statements indicate the
information we want. Notice that the semicolon at the
end of the line forces the question mark produced by our
INPUT statement to be PRINTed on the same line as the
PRINT statement. If the semicolon is not present, the
program itself is not affected. The semicolon allows
for a neater appearance.

By using an IF ••• THEN GOTO statement in lines 40 and 50,
we have forced the computer to make a decision. First,
it must determine the number of character positions in
our string variable, NAME$. The LEN function enables
the computer to determine the number of positions. The
computer must decide if LEN(NAME$) is equal to 0. If
it is, then the computer will drop to line 100 and

execute that line and the ones that follow until it
reaches the next GOTO statement.

If LEN(NAME$) is greater than 30, the computer will
GOTO 200 and PRINT lines 200 and 210 before it loops
back to line 20.

On the other hand, if LEN(NAME$) is equal to 30 or less
characters, the computer P~NTS line 60 and then STOPS.

We believe that learning to manipulate strings variables
is very important. That is why we have devoted so much
space to this chapter. Before we have you create a
program which examines string variables, we have one
more example.

--116--

(

Instruction:

You Type:

19 DIM NAME$(199)
29 PRINT "TYPE YOUR FIRST NAME AND LAST NAME"
25 PRINT "LEAVING ONE SPACE BETWEEN THEM"
39 INPUT NAMES$
49 FOR PTR • 1 TO LEN(NAME$)
59 IF NAMES$(PTR,PTR) -" "THEN GOTO 99
69 NEXT PTR
79 PRINT "ONLY ONE NAME?"
89 GOTO 29
99 PRINT NAMES$(PTR + 1)
95 PRINTNAMES$(l,PTR-l)
199 GOTO 29

line 19--0ur program begins by DIMensioning our string
variable NAMES$. Notice, we have told the computer that
NAMES$ might be as large as 199 characters.

lines 29 & 25-- Next, our PRINT statements indicate the
information we desire.

line 39-- The
for the user to
information.

INPUT statement provides an opportunity
type into the computer the desired

line 49-- We set up a new variable called PTR (pointer).
You will recall in Chapter XVIII we used our FOR••• NEXT
loop as an automatic counter. We are using it here
again in that same manner. In line 49 we initialize~

the vari~ble at one to continue for the LENgth of our
string variable NAMES$. Because the user might enter
any name with any number of characters to a maximum of
199, we have no way to determine the exact ending
character position in NAMES$ unless we use the LEN
(NAME$) function.

Remember a string variable with a SUbscript identifies a
character position in the string. Since we have
initialized our variable in line 49 to 1, the first time
through NAMES$(l,l) or the ~irst character position. If
that position does not contain a blank space, the
computer drops to line 69.

line 59--Each time the computer reaches line 59 it tests
to see if NAME$(PRT,PRT) is equal to a blank space. The
computer continues in the FOR••• NEXT loop until it finds
the blank space.

--117--

line 69-- Contains the NEXT statement. The value of the
variable PTR increases by 1. In essence, this means
PTR=PTR+l GOTO 49. The computer then determines if the
new value of PTR is still within the range of 1 to
LEN(NAME$).

line 79--This PRINT statement was included in case.the
user entered only one name.

line 89--0ur GOTO statement sends the computer back to
line 29 to get the user's first and last name separated
by a blank space.

line 99-- The computer executes this line when it finds
the blank space. Line 99 means PRINT our string
variable NAME$ from the character position which is
equal to the blank space plus 1. For example, if the
user's name was WOLFGANG MOZART, the FOR••• NEXT loop
would begin with the W. It would determine that W is
not a blank space and thus it would move to the next PTR
character position, O. The procedure would continue
until the blank space is found.

Count the character positions in WOLFGANG MOZART. In
what character position is the blank space? The blank
is in the ninth position. Therefore, in line 99 PTR + 1
is equal to 19. The letter in the tenth position is M.
When a variable has only one subscript number, the
computer will access all characters beginning with that
number (19 in our example) and PRINT until it comes to
the last character in the string. Because subscripts
are inclusive, the last character is also PRINTed. Up
to this point the computer would PRINT MOZART.

line 95--Adjacent to the blank space, we· tell the
computer to PRINT NAMES$(l,PTR-l). This means PRINT our
variable NAMES$ beginning with the first position and
continuing until the position of PTR-l is reached. In
our WOLFGANG MOZART example, PTR was position nine so
PTR-l is equal to position 8. When a string variable is
followed by a subscript containing two numbers, the
computer uses the first number as a beginning point and
the second as an ending. Our program produces MOZART
WOLFGANG, or any name which~as properply entered. Each
time a name is entered the results will be last name and
first name on separate lines.

If you have trouble understanding this program,
computer. Using paper and pencil, go through each
just the way the computer would do it. That should
the explanation easier for you to understand.

--118--

play
step
make (

(
Also please note: The above program is not perfect. We
are aware of the flaws. By placing a space before the
first name, a user could cause problems with this
program. However, we are using it to explain string
variables. If you noticed the flaws, that's great.

XL
the
Try

with

SPECIAL
gives an
space in
replacing
this:

NOTE: Actually BASIC
easier way to find

NAME$ if it exists.
lines 49 through 69

49 PTR=FIND (NAME$," ",9)
59 IF PTR THEN GOTO 99
(DELETE LINE 69)

For more information on FIND, see
your BASIC XL Reference Manual.

Exercise:

1) Write a program to permit INPUT of a name and then
PRINT the name backwards.

--119--

Chapter XXII

SOUND:
YOU CALL THAT MUSIC

Glossary:

SOUND A BASIC statement which tells the computer
to generate a tone or noise

Sound
Channels

Are numbered from 0
channel represents
noise.

through 3
a separate

and each
tone or

Pitch

Sound
Quality

Volume

Is the depth of a tone or of a sound. The
range of pitch is numbered from 121 through
255.

Can be selected values between 121 and 15
and allows the ATARI to produce pure or
distorted notes or silence.

The degree of loudness or audibility,
represented by a number from 121 to 15.

The ATARI'S capacity to produce sound provides another
dimension for your programming creativity. With
elementary programming skills, you can force the
computer to execute commands and produce sounds which
would require advanced skills on some other home
computers.

In order to maKe a sound, you must first indicate to the
computer that you want a sound. The SOUND statement
tells the computer to generate a tone. A SOUND
statement is followed by four numbers. Each number is
separated from the others by commas.

Example:

1121 SOUND 1, 15, 10, 5

The first number following SOUND indicates the sound
channel. Your ATARI gives you a choice of four channels
numbered from 0 through 3 •. Each channel is independent
of the others. Because of this, it is possible to blend
the sound channels together. This blending of sound
would be similar to voices in a chorus or musical
instruments in an orchestra. Each sound channel is
controlled by a separate SOUND statement.

--120--

(

Following the sound channel in a SOUND statement is the
pitch. The ATARI is capable of producing 256 different
pitches, numbered 9 to 255, but not all pitches produce
sounds on all modes of "quality".

The third number in a SOUND statement regulates the sound
quality. With a value between 9 and 15, the sound
quality is capable of producing pure tones or of
producing tones mixed with different amounts of noise.
Pure tones are generated by the values 19 and 14. These
tones are similar to those produced by a flute. Value 12
is also useful when programming music. It simulates a
reed sound similar to a clarinet.

Other even numbered values introduce various amounts of
noise into the pure tone. These values are useful for
creating sounds like car crashes, explosions, and video
games. Odd-numbered distortion values(1,3,5,7,9,11,and
13) produce silence.

SPECIAL NOTE: When the sound quality is l~ or 14, the
pitches generated increase their frequency regularly
with 255 producing the lowest pitch. With a range of
one octave below and two octaves above middle C, the
ATARI can produce all notes: sharps, flats, and
naturals. In addition there are other tones available
that do not correspond to notes on the musical scale.
Although they are of no value in programming music, they
can be used as alarms or sound effects to accompany
other programs.

Instruction:

You type:

19 FOR FREQ • 19 TO 299 STEP 19
29 FOR VOLa15 TO 9 STEP -1
39 SOUND 9,FREQ,19, VOL
49 NEXT VOL
59 NEXT FREQ

What did you hear? Did you notice the variations in
sound?

In line 19 of the above program, we used the variable
FREQ for determining the pitch. The range of values for
FREQ were selected to be between 19 and 299. In
addition, we selected STEP 19 to increase the pitch. By
using STEP 19, we made the variations in pitch more
apparent than it would have been had we selected STEP 2
or STEP 4, etc.

--121--

We also chose to decrease the volume. In line 2A we set
the range of values for the volume to decrease 15 to 0,
STEP-I. Remember, variables may decrease as well as
increase.

Lines 40 and 50
This allows the
changes in pitch

simply close our FOR and NEXT loops.
computer to automatically make the

and volume.

Working with the sound element of your Atari requires
practice. If you are musically inclined, the differences
in pitch and sound quality will be more apparent to you
than to someone with a less sensitive ear.

Even if you cannot distinguish
sounds, you can still create
accompany your programs.

small differences
interesting tones

in
to

Actually, the Atari permits such a wide range of sounds
that your imagination and creativity should be your only
limitation.

The following program simulates a space ship taking off.

Instruction:

You type:

10 FOR P=150 TO 100 STEP -1
20 FOR N-P TO P-100 STEP-5
30 SOUND 0,N,10,5
40 NEXT N
50 NEXT P
60 GOTO 10

In order to create the whirling sound of the space ship
ascending, it was necessary to form two FOR.•• NEXT
loops. In line 10 we establish the first loop. Our
variable P has a range of 150 to 100, and it will
decrease one number each time the loop is executed.

Line 20 starts our second FOR••• NEXT
variable N is initialized tohave the same
Each time through the loop, the value of N
by 5 until it reaches the value of P-100.

loop. A new
value as P.
will decrease

In order to produce noise, you must use a SOUND
statement, like the one shown in line 30. The first
number indicates the sound channel, in this case 0. The
next number is our variable N, which indicates the pitch.
The third number is sound quality: in this case we used
10 which produces a pure tone. Finally, the last number
indicates volume.

--122--

(

(~ ,

In this example, the FOR.•• NEXT loops are nested. That
is the FOR N loop is inside the FOR P loop. Remember,
the last FOR's variable name gets the first NEXT's
variable name. In lines 49 and 59 we complete the loops
we began in lines 19 and 29. Notice that the value of N
will change more often than the value of P. The
innermost FOR••• NEXT loop must be completed before the
value of P is changed.

Let's play computer to see how this program would
actually work. The first time through the program the
value of P would equal 159 and the value of N would equal
159. When the computer reaches the SOUND statement in
line 39, it replaces N with the value of 159. When the
computer reaches line 49, it goes back to line 29 and
changes the value of N to decrease by 5. N then has the
value 145. The value of N will continue to decrease by 5
until it reaches a value of P-199 or 59. Once the value
of N equals 59, the computer will drop down to line 59.
Line 59 will cause the computer to return to line 19.
The value of P will now decrease by 1, and the value of P
will equal 149. When the computer drops down to line 29,
the value of N is now equal to 149. Again, the computer
will repeat the FOR N loop until the value of N is equal
to P-199. The value of N would now equal 49.

By using the GOTO statement in line 69, we create an
endless loop which will cause the computer to continue to
return to line 19. Because line 19 contains the FOR P
loop, the value of P is reinitialized each time the
computer executes line 69.

Exercises:

1) Write a program which creates random sounds.

2) Write a program which creates random pure tones.

--123--

Chapter XXI II

GRAPICS PART II:
I CAN WRITE BIGGER THAN YOU

Glossary:

Graphics
Window

Text
Window

PRINT t 6:

POSITION

The large area of the monitor or
television screen in which graphics words,
designs, or pictures can be displayed.

An area at the bottom of the monitor or
television screen which contains enough
area for four lines of text.

A command used in GRAPHICS modes 1 and 2
that causes the characters to appear in
the graphics window.

A statement which moves the cursor to any
specified location on the screen. The
location is designated by the column
number and the row number.

As stated earlier, the ATARI Home Computer is equipped
with a large range of graphic features. Chapter XIV
was intended to introduce you to the most common of
those aspects. This chapter and the ones that follow
will further explain the ATARI'S graphic capabilities
and the concepts necessary to create your own advanced
designs.

Like GRAPHICS 9, GRAPHICS 1 and GRAPHICS 2 are referred
to as the "text modes". They are used to display words
and characters. The difference is in the size of the
text. Think of GRAPHICS 9 as small, GRAPHICS 1 as
medium, and GRAPHICS 2 as large.

Enter the new modes by typing GRAPHICS 1 or GRAPHICS 2.
Press (RETURN). Notice that the display screen is now
split into two segments. The first segment occupies
about five/sixths of the sc~een and is referred to as
the graphics window. The second section has enough area
to hold four lines of text and is called the text
window.

Instruction:

You Type:

GRAPHICS 1
PRINT "VARIETY IS THE SPICE OF LIFE"
PRESS {RETURN}

--124--

(

Your window text screen should look like this:

VARIETY IS THE SPICE OF LIFE
READY

These instructions allowed you to PRINT a line of normal
size text along the top of the text window. In order to
increase the size of the characters and to have ~~em

displayed in the larger segment of the screen or the
graphics window, you must use a PRINT '67 statement.

Now type:

PRINT '67 ·VARIETY IS THE SPICE OF LIFE"

graphics
change to

Notice the size
window. To see
GRAPHICS 2.

You Type:

of the characters in the
even larger characters,

GRAPHICS 2
PRINT '67 ·VARIETY IS THE SPICE OF LIFE"

Again, you will see the characters are now even larger
than they were in GRAPHICS 1.

In both of our examples, the characters
upper left hand corner of the screen.
purposes this placement may not suit
order to change the location of the
POSITION statement is used.

appeared in 'the
For creative

your needs. In
characters, a

As you will recall in our discussion of GRAPHICS 0 we
compared the display screen to a piece of graph paper.
In GRAPHICS 1, the larger characters limit the screen
size to 20 columns by 20 rows. (Remember rows run
horizontally while columns run vertically.) Because of
the even larger sized characters in GRAPHICS 2, there is
room for 29 columns and only 10 rows.

Now you have the amount of area in which you can
POSITION the characters. A POSITION statement is used
in conjunction with column and row numbers. The
POSITION statement does not visibly move the cursor
location when it is executed. It does move, however,
when a subsequent statement such as PRINT accesses the
display screen.

--125--

You Type:

GRAPHICS 1
POSITION 7,11
PRINT 16, "MIDDLE"

These instructions should place the word "middle" in the
center of the graphics window.

There are other variations you can use with GRAPHICS 1
and 2. In the text window, lower-case and/or inverse
video characters as well as upper-case may be used.
When these same characters are used in the graphics
window, however, they translate into color variations.
In the exercise below, first type A, the lower case A,
control A, inverse upper case A, inverse lower case A.
(Remember the ATARI key produces an inverse image.)

Instructions:

You type:

GRAPHICS 1
PRINT 161 "AaMa"

What did you see? Notice all the variations of color
available in GRAPHIC 1 and 2.

GRAPHICS modes 1 and 2 give your creative urges an
additional outlet. Although all our examples in this
chapter have been in direct mode, it is also possible to
use programming mode.

10 GRAPHICS 2
20 PRINT 161 "WHAT a difference this MAKES"
30 PRINT 161 "IT'S ALL RIGHT TO HAVE A SPLIT PERSONALITY"

In our program above, some information is displayed in
the graphics window and some appears in the text window.

Exercises:

1) Write a program which will PRINT in the graphics
window a person's name and "YOU ARE A STAR"

2) Write a program using the multiplication sign that
will look like a marquee. PRINT your name in the middle
of the marquee and center the marquee on the screen.

--126--

Chapter XXIV

GRAPHICS PART III:
MY PICTURE IS IMPROVING

Glossary:

Graphic
Mode

Graphics
Window

Text
Window

Pixels

A state in which the computer responds to
instructions for the purposes of drawing
pictures, designs, graphs, or variations
of the standard characters.

The large area of the monitor or
television screen in which graphic words,
designs, or pictures can be displayed.

An area at the bottom of the monitor or
television screen which contains enough
area for four lines of text.

The shaded blocks of color used in graphic
modes number 3 and above to create
pictures, designs, and graphs.

COLOR A statement which selects one of
available color registers to be used
sUbsequent PLOTs and DRAWTOs.

the
with

PLOT A statement which illuminates a single
point on the screen.

DRAWTO A statement which causes a line
drawn from a point (the last
point) to a specified location.

to be
plotted

LOCATE A statement which allows a program to find
out what color is already plotted at any
given point on the screen.

This chapter discusses the GRAPHICS statement in two
parts. First, we discuss graphic modes 3, 5, and 7.
Although GRAPHICS 7 was previously described in Chapter
XIV, it is worth repeating pere for comparison to modes
3 and 5 and for the sake of completeness. Second,
graphics modes 4 and 6 are introduced a little later
because of differences between them and the other modes.

Pixels in Modes 3, 5, and 7

The big difference between modes 3, 5, and 7 when
compared to modes 0, 1 and 2 is that we are now dealing
with pixels instead of characters. Recall that pixels

--127--

are shaded blocks of color. Earlier we described the
screen in graphics mode as being similar to a piece of
graph paper. We noted that a pixel is equivalent to one
block being filled with color.

In addition, graphics modes 3, 5, and 7 differ from each
other in the number of pixels available. In general,
the higher the number in graphics mode, the more pixels
or shaded squares are available. In terms of picture
quality GRAPHICS 7 provides finer lines than GRAPHICS 3.
GRAPHICS 7 has better resolution, but GRAPHICS 3 makes
it easier to produce bar graphs. Each graphic mode has
its own special abilities. As you become more familar
with the various modes, you will have an easier time
choosing which mode best suits your needs.

The chart below summarizes the pixel size
characteristics of each of the five modes discussed in
this chapter (modes 4 and 6 are included here for
convenience, even though they are not discussed until
later).

Graphics Number of Number of Total t
Mode Rows Columns of Pixels

-------- --------- --------- ---------
3 28 48 S88
4 48 S8 3288
5 48 S8 3288
6 S8 168 12S89
7 S8 168 l2S99

Pictures in Modes 3, 5, and 7

The choices of colors available in graphics modes 3 , 5,
and 7 are the same. These colors are as follows:

COLOR 8
COLOR 1
COLOR 2
COLOR 3

black
orange
aqua
blue

The color black is used for background.

When using GRAPHICS modes 3·through 7, PLOT and DRAWTO
statements are usually used. As stated in Chapter XIV,
the PLOT statement enables the user to select a
particular point position. The first number after PLOT
tells the computer the column desired: the second number
indicates the desired row. Numbers in a PLOT statewent
are separated by a comma.

--12S--

(

(

When PLOT and DRAWTO are used in pairs, the PLOT
statement indicates the starting point of a line while
the DRAWTO statement indicates the ending point. As
with PLOT, when you use DRAWTO you must specify two
numbers (separated by a comma) to indicate the desired
end position as a column and row position.

When a DRAWTO follows a previous DRAWTO without an
intervening PLOT, the ending position specified by 'the
first DRAWTO becomes the starting position for the
second one.

(If you need more information concerning PLOT and
DRAWTO, refer to Chapter XIII and/or your BASIC XL
Reference Manual.)

Instruction:

You type:

NEW
10 GRAPHICS 3
20 COLOR 1
30 PLOT 0,111
40 DRAWTO 39, III
50 COLOR 2
60 DRAWTO 39, 19
70 COLOR 3
80 DRAWTO Ill, 19
90 COLOR III
100 DRAWTO a, 0
RUN

The program above gives directions for drawing a
rectangle. Was the image on your screen a three-sided
or a four-sided object? Actually, all four sides were
drawn. Why did the fourth side appear to be missing?
In GRAPHICS 3, 5, and 7 there are three available
foreground colors. The fourth color (COLOR Ill) is ~lways

the background color and so is indistinguishable from
the background when it is plotted or drawn.

Notice also how much screen area is covered by our
program. Try to keep that image in your mind.

Instruction:

You Type:

18 GRAPHICS 5 {RETURN}
We are going to change graphics modes.

--129--

In order to do that, we need only change line 19.
Remember, the computer disregards our previous line 19
and keeps the rest of the program intact.

Instructionr

You Typer

RUN

How does our object change? It becomes smaller. Why?
In GRAPHICS 3, the individual pixels covered a large
area, in GRAPHICS 5 there are more pixels available, but
each individual pixel is smaller.

Instructionr

You Typer

19 GRAPHICS 7 {RETURN}
RUN

Again our object became smaller. The lines of color
created in GRAPHICS 7 are finer than those in GRAPHICS
3. However, in GRAPHICS 7 more lines would have to be
drawn to occupy the area of one line in GRAPHICS 3.
GRAPHICS 3 is similiar to drawing with a magic marker
while GRAPHICS 7 represents a fine point pen. GRAPHICS
5 fits in the middle like a felt tip pen.

Graphics Modes 4 and 6

Graphics modes 4 and 6 have the same screen size as
graphics modes 5 and 7, respectively (see our chart
above). The big difference between these modes is in
the number of available colors. GRAPHICS 4 and 6 have
only two available colors. One color is used for
foreground and one is used fpr background.

Instructionr

You Typer

19 GRAPHICS 4
RUN

What happened to the object? How many sides can you

--139--

(
see? Although our original program specifies four
colors, only two are available in GRAPHICS 4. Each time
the computer encounters an even numbered color, it uses
the available foreground color: odd numbered colors
become black.

Instruction:

You Type:

10 GRAPHICS 6
RUN

You will notice a smaller sized object in one color.
Because of the limited number of colors, GRAPHICS 4 and
GRAPHICS 6 are rarely used.

The LOCATE Statement

When we have a picture in mind which we want to draw on
the screen, we usually use COLOR, PLOT, and DRAWTO to
accomplish our ends. But suppose there is a picture
already on the screen and we want to "describe" it to
the computer. Of course, one way would be to get a
magnifying glass and start typing in pixel locations and
colors in response to INPUT statements, but this is
obviously ridiculously slow, tedious, and error-prone.

Fortunately, BASIC XL provides a method--the LOCATE
statement--by which the computer can directly "read" the
screen itself. The form of this statement is:

LOCATE column, row, color

and examples of use might include:

LOCATE X,Y,C
LOCATE HORIZONTAL/2+l0,VERTICAL/2+S,LOCCOLOR

While the column and row may b~ specified by arithrretic
expressions (just as with PLOT and DRAWTOl, the "color"
MUST be an arithmetic variable. When a LOCATE statement
is executed, BASIC XL causes the computer to "read" the
pixel located at the specified column and row. It
places the value it reads into the variable which you
supply. And, not surprisingly, the data read is
actually the color of the screen at that point. Note
that this color value is the same value used in the
COLOR statement which is then subsequently placed on the
screen by PLOT or DRAWTO.

--131--

Instruction:

You type:

HI GRAPH I CS 3
20 FOR COUNT=l TO 400
30 COLOR RANDOM(1,3)
40 PLOT RANDOM(40),RANDOM(20)
50 NEXT COUNT
60 PRINT "NOW CONVERTING"
70 FOR COLUMN=0 TO 39
80 FOR ROW=3 TO 19
90 LOCATE COLUMN,ROW,SCREENCOLOR
100 COLOR 2
110 IF SCREENCOLOR=O THEN PLOT COLUMN,ROW
120 NEXT ROW
130 NEXT COLUMN
140 PRINT "FINISHED"

Let's analyze this program by line number.

10--We select the largest pixels available, to make our
program more visible.

20 to 50--We simply plot a lot of points on the screen
using randomly chosen colors and locations.

60--Just a message (which will be displayed in the text
window) to tell us when the program gets to this point.

70 and 130--A loop, whereby we check all the columns on
the screen.

80 and 120--Another loop, but here we check all the rows
within each of the columns.

90--We check a particular location to find out what
color is on the screen.

100 and 110--If the location we checked had not
previously been plotted, we change it to COLOR 2 via the
PLOT statement.

140. We're done.

The effect of this program is to sprinkle various colors
on the screen. Then we go back and change all the
"background" pixels to another color. A relatively
useless program, but it illustrates the principles of
PLOT, COLOR, and LOCATE well.

--132--

(

(

Exercises:

1) Modify the exercise
that the programs RUN
GRAPHICS 5.

at the end of Chapter XIV
in GRAPHICS 3 and then

so
in

2) Modify lines lBB and lIB of the last example above to
change the color of EVERY pixel on the screen. The new
colors should depend on the old colors as follows:

old color new color
B 3
1 2
2 1
3 B

Hint: Don't use an IF statement to determine the new
color. Work out an arithmetic expression instead.

--133--

Chapter XXV

GRAPHICS PART IV:
ALL THE COLORS OF THE RAINBOW

Glossary:

Color
Registers

COLOR

SETCOLOR

The memory locations which set the colors used
for foreground, background, and border colors.

A statement which selects one of the available
color registers and with that color draws.

A statement which allows the user to change
colors on the screen at any time.

Luminance The brightness or the radiation or reflection
--------- of light.

Hue The color or the particular shade or tint of a
color.

For many people, this chapter will prove difficult and
confusing. Try to stick with us through the charts,
explanations, and examples. We believe that it will
become clear in the end.

In our previous chapters on graphics we have discussed
the COLOR statement. In review, we said a COLOR
statement is one which selects an available color
number and that sUbsequent PLOTs and DRAWTOs use that
color number to place pixels on the screen. For
example, in modes 3, 5, and 7, it was possible to select
three foreground colors and one background color for
PLOT and DRAWTO statements.

But the Atari Computer and BASIC XL are capable of much
more complex operations. To try to find a real word
analogy, let's think of a COLOR number as selecting a
particular spot on an artist's palette, regardless of
what shade of paint is on tQe spot. Well, just as an
artist might not place the same color on the same spot
on his palette each time he paints, so does BASIC XL
(or, more properly, the Atari Computer's hardware)
change which shade a particular COLOR number refers to.

To continue our analogy, we might say that the computer
simply changes which jar of paint it dumps onto each
spot. The situation gets more complex: you, as the
programmer, can change the color of the paint in the jar

--134--

(

(by using the SETCOLOR statement). And, just as the
COLOR statement is not really aware of what shade is
actually "painting", so is the computer not really aware
of What shade is in the jar.

The net result of all this is that you really do have
control of what color goes where on the screen. The
only problem is that you have to follow the rules about
what COLOR number refers to what palette spot (which can
vary depending on the GRAPHICS mode chosen) and what
SETCOLOR refers the "jar" which is used for that palette
spot. All of the options for graphics modes 3 through 8
are presented in table form below (Figure 2). But
before we discuss the table, we will investigate the
workings of SETCOLOR, the statement which lets us change
the colors in the jars.

The SETCOLOR Statement

Following SETCOLOR are numeric expressions.
by commas,' these numbers determine which color
to change, to which hue to change it, and what
brightness the hue will be.

Separated
register

degree of

The first number following SETCOLOR indicates which
register to set. The registers are numbered from 0 to 4
and relate to the jars of paint in our analogy. To find
out which palette spot they refer to you must consult
Figure 2, below.

The second number after SETCOLOR determines the hue.
The sixteen hues are numbered 0 to 15 and are usually
visiblek as follows, though there can be variation from
one television screen or monitor to another.

o
1
2
3
4
5
6
7

Grey
Gold
Orange
Red
Pink
Violet
Blue-Purple
Blue

Figure 1: Available

8
9

10
11
12
13
14
15

Hues

Light Blue
Blue-Green
Aqua
Green-Blue
Green
Yellow-Green
Orange-Green
Orange

(

The last number following SETCOLOR represents the
brightness or luminance. Although numbered from 0 to
15, the even-numbered values are the only settings which
are meaningful. The 0 represents the darkest value and
14 represents the brightest value. (Odd numbers are
treated the same as the next lower even number.)

--135--

Instruction:

You Type:

U'fIJ GRAPHICS 3
llfIJ COLOR 1
l2fIJ PLOT fIJ,1I1'
l3fIJ DRAWTO 39, 1fIJ
l4fIJ FOR HUE-fIJ TO 15
l5fIJ FOR LUM=fIJ to 14 STEP 2
l6fIJ PRINT HUE, LUM
l7fIJ SETCOLOR fIJ, HUE, LUM
l8fIJ FOR WAIT=l TO 50fIJ
19fIJ NEXT WAIT
2fIJfIJ NEXT LUM
2lfIJ NEXT HUE
22fIJ END
RUN

If you have a color monitor or television screen for
your ATARI home computer, the above program will produce
each of the sixteen colors available and in addition
will produce eight different degrees of luminance or
brightness.

Let's analyze the structure of this program. To begin
with we must choose a graphics mode. Graphics 3 was
selected for two reasons: 1) because it's degree of
resolution allows for excellent bars to be drawn: and 2)
because it contains many color choices.

Next, we must PLOT a point and also use the DRAWTO
statement. These two statements, used in conjunction
with COLOR, select a point and create a bar of color.
We could have used only one or two points. However, it
would almost be impossible to see the changes in the
color and luminance.

In line l4fIJ we have begun a FOR••• NEXT loop. Our
variable is HUE and represents the various color
selections available. We could have named the variable
almost anything, but HUE is more meaningful than just a
letter or another word. Also, note the value of our
variable HUE is equal tQ the sixteen available color
choices.

Again, in line 150, we have begun a FOR••• NEXT loop.
This time our variable is named LUM and represents
luminance or the various degrees of brightness
available. Earlier we said that only the even values of
luminance were meaningful. In our program, the value of
our variable LUM is equal to the degrees of brightness
available. We have added STEP 2 to our FOR statement so
that the value of LUM will increase in even increments.

--136--

(
In order to see which color and which degree of
brightness is currently on the screen, we have included
the PRINT statement in line 169. Finally, in line 179
we get to the point of all of this. Here is our
SETCOLOR statement. As the values of our variables HUE
and LUM change, so will the colors of the bar on the
screen. This is possible because of our SETCOLOR
statement. Notice, though, that the SETCOLOR uses color
register 9 while our PLOT statement used COLOR 1. How
come? Again, it all has to do with palette "spots",
paint jars, etc. Be sure and see Figure 2, below, for a
clarification of these confusing numbers.

In line 189 we begin yet another FOR loop. We called
our variable WAIT and made its value equal to from one
to 599. Although the program will display a bar of
color and the various changes in HUE and LUM, without
this FOR••• NEXT loop, these changes would occur very
rapidly. By adding a FOR ••• NEXT loop whose only
function is to keep the image on the screen, we allow
the user an opportunity to view the bar of color and its
changes for a reasonable amount of time. We could
change the value of our variable WAIT depending on our
desire to lengthen or shorten the amount of time the
various colors are shown.

Whenever you use more than one FOR••• NEXT, you must nest
them. That is, you put one inside of another, like a
nest of tables or a set of mixing bowls. Although you
may use as many FOR ••• NEXT loops as you desire, they
must be built from the inside out. The last FOR gets the
first NEXT.

FOR HUE
FOR LUM

FOR WAIT
NEXT WAIT

NEXT LUM
NEXT HUE

In lines 199, 299, and 219, we complete all of our
FOR••• NEXT loops. Our automatic counters are complete
and the values on our variables automatically change.
Thus, we have the changes in color and brightness.

--137--

The Relationship of COLOR to SETCOLOR

Finally, we present the long-awaited Figure 2, which
shows in tabular form the relationship between COLOR
number and SETCOLOR register. We will present the
figure first and then explain it.

Graphics Color Setcolor Default Default
Mode Number Register Hue,Lum Color

-------- -------- ------- -------
3, 5, 7 " 4 "," Black

1 " 2,8 Orange
2 1 12,1" Green
3 2 4,6 Dark Blue

4, 6

8, "

"1
"1

4

"
2
1*

","2,8

4,6
4,1"*

Black
Orange

Dark Blue
Light Blue

(* In mode 8, the hue of SETCOLOR
register 1 is NOT selectable-­
it will always be the same as
the hue or register 2.)

Figure 2: COLOR/SETCOLOR Table

To use this chart, follow these steps.

1. Determine the GRAPHICS mode you are going to use.
Use only the portion of the table which applies to that
mode.

2. If the colors given in the rightmost column are
adequate to your needs, simply use the digit from the
Color Number column in your program (in conjunction with
COLOR, of course).

3. If you like some of the colors, reserve their Color
Numbers for use in your program.

4. Use SETCOLOR to choose a new color(s) by varying the
hue and luminance to your choice(s) using any of the
Setcolor Registers which are available in your chosen (
graphics mode. Then use the Color Number which relates
to that register in your program.

--138--

GRAPHICS 3. As
of the graphics

determine which

Instruction:

You Type:

U!l GRAPHICS 3
15 LET LCOLOR-l
29 FOR HORIZ~9 TO 39
39 COLOR-LCOLOR
49 PLOT HORIZ,9
59 DRAWTO HORIZ,23
69 LET LCOLOR=LCOLOR+l
79 IF LCOLOR>3 THEN LCOLOR-l
se NEXT HORIZ .
leliJ LET BARl..4
llliJ LET BAR2-S
129 LET BAR3=12
2e9 SETCOLOR 9,S, BARI
219 SETCOLOR 1,S, BAR2
221iJ SETCOLOR 2,8, BAR3
239 LET TEMP-BARI
249 LET BARl=BAR2
259 LET BAR2-BAR3
269 LET BAR3=TEMP
399 FOR WAIT~l TO se
319 NEXT WAIT
4ee GOTO 21iJ9

RUN

What results do you get from this program? How was the
movement created? As with marquee lights, the bars are
not moving although they appear to be. The movement is
created by changing the colors of the vertical bars.

Because we are using bars, we again use
you become more familiar with each
modes, it will become easier for you to
mode will best suit your needs.

In line 15 we initialize our variable LCOLOR at 1.
Because we are in GRAPHICS 3, we have a choice of three
foreground colors. In order to create the movement we
will want the colors to change. Therefore, we use a
variable.

Next, we begin a FOR••• NEXT- loop. Since the screen size
in GRAPHICS 3 is 39 columns, our automatic counting
variable HORIZ is set for 9 to 39. This accounts for
all the columns on the screen.

--139--

Line 30 represents our COLOR statement. The value of
COLOR will be set to the value of our variable LCOLOR.
Each time the value of LCOLOR increased, our COLOR
statement will change.

In order to create an image, in lines 40 and 50, we PLOT
and DRAWTO. Notice that the point that we PLOT is
dependent upon the value of our variable HORIZ. Also,
you can see by using 0 as the row value, the points
PLOTed will be across the top of the screen. By using
the value of the variable HORIZ in the DRAWTO statement,
we cause a line to be drawn from each value of HORIZ.
In other words, we cause a line to be drawn from the top
of each column to the bottom of each row.

We use our non-algebraic expression
LET LCOLOR m LCOLOR + 1

to change the value of the variable LCOLOR.
the computer executes line 60, it increases
~OWRby 1.

Each time
the value of

Why did we include line 70? As you may remember, in
GRAPHICS 3, there is a choice of three foreground colors
and one background color. If we did not include line
70, sometimes (every fourth time), we would get black
bars. To avoid using black, we use an IF ••• THEN
statement along with our relational operator) (greater
than). When the value of LCOLOR is greater than 3, the
computer resets its value to equal 1.

In line B0, we complete our FOR••• NEXT loop which was
started in line 20. The value of our variable HORIZ
changes from 0 to 39 in increments of one.

If you add the line, 90 STOP, you will be able to see
the bars of color across the screen. Remember to erase
line 90 typing:

90 [RETURN}

In lines 100, 110, and 120 we are initializing three new
variables called BAR 1, BAR 2, BAR 3 respectively.
Notice the values chosen for these new variables.
Remember in a SETCOLOR qtatement the last number
represrnts brightness or luminance, and only even values
between 0 and 14 are meaningful. The values for the
variables BAR 1, BAR 2, and BAR 3 were chosen on that
basis. To change colors within the program we use our
SETCOLOR statement. The first number represents the
color register. The second delineates the color
desired: in this case, color B, light blue. The last
number determines brightness which depends on the value
of our variables BAR 1, BAR 2, and BAR 3.

--140--

(

r In order to get the movement, we are going to change the
brightness value. To do this lines 230, 240, 250 and
260 are set up to rotate the luminance value. Each time
these lines are executed, their values will change.
However, the values will always be either 4, 8, or 12.

Finally, in line 300 and 310 we set up another FOR/NEXT
loop. The purpose of this loop is to allow the image to
stay on the screen so that the viewer can enjoy the
color changes.

In line 400, the GOTO statement continues the process.
The bars of color remain the same with the SETCOLOR
statements continuously reexecuted (executed again and
again).

Exercises:

1) Write a program to randomly change the background
color for text mode (GRAPHICS 0) continuously.

2) Write the same program for a display in GRAPHICS 3.

--141--

CHAPTER XXVI

GRAPHICS PART V:
A REVOLUTION IN RESOLUTION

Glossary

GRAPHICS 8'

Luminance

A special
high level

Brightness
of light.

two color graphics mode with a
of resolution.

or the radiation or reflection

Hue Color or the particular shade or tint of
a color.

GRAPHICS B is discussed as a separate unit because it is
significantly different from the other graphic modes
previously cover~d.

As you might imagine, GRAPHICS B provides the highest
level of resolution. In split-screen mode-- that is the
graphics window with text window--the screen size is 329
rows by 169 columns. (Remember, rows run horizontially
and columns run vertically.) GRAPHICS 8 is most useful
for detailed drawings and pictures. This mode may also
be used for games which require a large area to be used
as a playfield. Thus, GRAPHICS a is most useful where
detailed drawings are important.

The reason for the high level of resolution is due to
the size of each pixel. In graphics mode a, each pixel
is smaller than it was in the previously discussed
modes. The pixels in this mode look more like points
than squares (even though they really are still square).
This difference allows for more detailed drawings.

Instruction:

You type:

NEW
19 FOR MODE 3 TO a
29 GRAPHICS MODE
39 PRINT "MODE: ": MODE
49 SETCOLOR 2,8,9
59 COLOR 1
69 DRAWTO 9,19
79 DRAWTO 19,39
a9 DRAWTO 9, 9
99 FOR 1-1 TO 1ge9: NEXT I
1ge NEXT MODE
RUN

--142--

foreground and
By foreground we
see the text in

design, picture,

(

(

The above program displays the same triangle in six
different modes. Notice that in mode 3 almost the
entire screen is filled. As the number of the mode
increases, the resolution also increases. The size of
the triangle becomes smaller, and the lines are finer
and more distinct.

When the program reached GRAPHICS 8, what diff~rences

did you notice? First, the lines were very finp, and
the triangle as the object was clearer and more
distinct. What happened to the split screen mode? Did
it seem to disappear? GRAPHICS 8 has special
characteristics. Because of these special traits, it
seems as though the screen is no longer split.

Unlike other graphics modes, the
background colors are NOT independent.
mean the area in which you would
GRAPHICS 0 or where you would see the
or drawing in modes 3 through 7.

In Graphics mode 8, the foreground and background colors
are always the same hue. Obviously, this means that if
the luminance of the two is the same or similar, it is
hard to distinguish one from the other. However, by
using luminances which are as different as possible, the
result can be quite "distinct".

Note: Actually, the colors and
luminances that can be selected in
GRAPHICS 8 are identical with the colors
and luminances available in mode 0, the
primary text mode of the Atari computer.
You might try some of the various
SETCOLORs we did here in mode ~ as well.

Instruction:

You type:

GRAPHICS 8
PLOT 1~,19

DRAWTO 1~9,199

What appeared on your monitor or screen? It should have
been a diagonial line. If you have a hard time seeing
it, it's not your eyes. The line really does not show
up very well.

--143--

Instruction:

You type:

SETCOLOR 2,8,9

Can you see the line more clearly now?
SETCOLOR statement change the line?

How did the

The SETCOLOR statement in GRAPHICS 8 is very important.
As you will recall from Chapter XXV, the first number in
a SETCOLOR statement fills the color register. In
graphics mode 8, the user has a choice of three SETCOLOR
registers: 1,2 or 4.

Instruction:

You type:

GRAPHICS 8
PLOT 19,19
DRAWTO H'9, 199
SETCOLOR 1,8,15

Can you still see the line? With the above SETCOLOR
statement, you can see the line, but it is not as
dramatically clear as it was in the previous SETCOLOR
statement. Why? SETCOLOR 1 affects the foreground
luminance only. In this case, the hue is ignored. That
means the brightness of the foreground can be altered,
but nothing else can be changed.

A SETCOLOR 2 statement affects the background hue and
luminance. That means, the background can be made
darker or lighter. In our statement, SETCOLOR 2,8,9, we
made the background as dark as possible. The line lOOks
brighter and more distinct because the background is
darker.

A SETCOLOR 4 affects only the border hue and luminance.
Note this is exactly the sa~e manner in which hue and
luminance work on characters in graphics mode 9.

Exercise:

1) Write a program to draw a border around the edge of
the mode 8 screen.

--144--

(

CHAPTER XXVII

PROGRAMMING AIDS:
COSMETIC SURGERY

Glossary:

REM

NUM

Is a statement which provides information
concerning the program in a LISTing.

Is a statement which provides automatic program
line numbering.

RENUM

(

Is a statement which automatically renumbers
the program lines of an existing program.

The people who write languages like BASIC XL (systems
programmers) understand the may problems beginning
programmers may encounter. To help alleviate some of
those troublesome areas, they include special features
in their languages. BASIC XL has many built-in
features. In this chapter we will discuss a few which
are particularly useful to the beginning BASIC XL
programmer.

Have you ever found a note written to yourself? You
look at it and for the life of you, you just cannot
imagine what you meant by it? The same thing can happen
with programs you write.

You may not have any trouble remembering what a program
of less than 19 lines does. For example, do you
remember this program from Chapter 19?

19 LET I • 1
2g PRINT RANDOM (l,lgg)
3g LET I • 1+1
4g IF I < 7 THEN GOTO 2g

In case you do not, this program will produce 6 random
numbers. A much easier way to remember would be to
write the program like this:.
5 REM THIS PROGRAM PICKS 6 RANDOM NUMBERS
19 LET I • 1
2g PRINT RANDOM (l,lgg)
3g LET I • I + 1
4g IF I < 7 THEN GOTO 2g .
As you continue to write more and more programs and the
length of those programs grows, it will become more and
more difficult for you to remember the details of each
program.

--145--

When the length of your programs are 100 statements or
more, it is likely that you will forget exactly what
each program does.

A REM or REMARK statement is one in which the programmer
makes a note concerning the nature of a program or a
certain section of the program. The only time a REM
statement is seen is when a LISTing of the program is
produced.

When the computer encounters a REM statement, it ignores
everything on the line following REM and immediately
skips to to the next computer line.

Examples of REM statements include:

10 REM THIS IS A COMMENT
15 REM A COUNTING PROGRAM
100 REM THIS SECTION BEGINS AN ENDLESS LOOP

The length of a REMark or REM statement may be as short
as you wish or as long as three lines. If your comment
is longer than three lines, you must begin another
program line with REM. As long as you begin a program
line with REM, the information entered will not affect
the program's operation.

Often, beginning programmers will forget to include line
numbers. They are so intent on writing the program that
they forget the number. The line is executed instead of
being added to the program, sometimes with disastrous
results. Boy, does this cause some frustrationl

This
were
You
line

may have happened to you already. Perhaps, you
typing in one of our examples and made a mistake.
corrected the mistake, but forgot to include the
number.

To help avoid this problem and to make programming
easier, BASIC XL comes with a statement called NUM.
This statement will automatically number each program
line. To use NUM, simply type NUM and push (RETURN).
First, you will notice the ~EADY prompt, and where you
would normally expect to find the cursor, will be a line
number. Next, on the same line, you will see a blank
space and the cursor. You ~ay now type in a program
statement.

NOM may be used in four different ways. First, NUM may
be used alone. This will will produce program lines
beginning with 10 and will continue in increments of 10.

NUM

--146--

,/

Or you may use NUM followed by a single number. When
the computer finds NUM and a single number, it will
begin the first program line with the specified number.
For example:

NUM 3

the computer begins numbering with 3 and adds lines in
increments of 19. The first line would be 3 followed by
13, 23, 33,etc.

If NUM is followed by two numbers separated by a comma,
the computer will begin numbering line with the first
specified number and increase in increments specified
by the second number.

NUM 1999,2

begins numbering with line 1999 and increases in
increments of 2. The first line would be 1909 followed
by 1992, 1994, 1996, etc.

Finally, NUM may be followed by a comma and a single
number. In this case, the computer would start
numbering program lines with 19 and would increase in
increments specified by the number following the comma.

NUM, 4

would begin numbering with 19 and increase in increments
of 4. The first line would be 19 followed by
14, 18, 22, 26, etc.

What happens if a program is in the computer's memory
and you want to use NUM?

Instruction:

You type:

19 GOTO 29: REM LINE19
29 GOSUB 30 :REM LINE 29

NUM

What happens to the program lines? By using the command
NUM, you force the computer'to NUMber your program lines
for you. The computer begins with line 19 and increases
in increments of 19. The number 39 and the cursor
should now indicate where to begin the next program
line.

--147--

Instruction:

You type:

3e IF TRUE THEN GOTO 1e :REM LINE 3e
NUM 15,5
15 []
REM THIS IS THE ORIGINAL LINE 15

(Please keep this program in the computer's memory until
you complete the section on RENUM.)

When you type in NUM 15,5, the computer displays the
number 15 followed by a blank space and the cursor. You
then add the REM statement shown above. When you press
{RETURN}, what happens? The ready prompt appears and
the computer does not continue to number lines. This is
due to the fact that a line 2~ already exists in the
program.

NUM will stop to avoid a collision with any program line
already in the computer's memory. You will recall from
previous discussions that each line number must be
distinct. If a line number is repeated the computer
will only store the line most recently entered.

RENUM is closely related to NUM.

Instruction:

You type:

RENUM
LIST

Computer Responds

l~ GOTO 3~

2~ REM THIS IS
THE ORIGINAL
LINE 15

3~ GOSUB 4e
4~ IF TRUE THEN

GOTO Ie

READY
[]

Notice what happens to the line numbers. The original
line 10 is still there. However, the GOTO 2e statement
has been changed to GOTO 30. Why? Because original.ly,
the GOTO specified line 20, but it (line 20) has been
RENUMbered to line 30. Also, what was line 15 has
become line 20.

--148--

RENUM automatically changes the numbers of all GOTO and
GOSUB statements.

When used alone, RENUM begins with line number 19 and
increases in increments of 19•.

When RENUM is followed by one number, the computer
begins with the specified number and continues to number
program lines in increments of 19.

RENUM 1

line 1 and increases in increments of 19.
example, the first line would be

begins with
In the above
1,11,21,3l,etc.

RENUM, when followed by a comma and a number begins
numbering line with 19 and continues to number lines in
increments of the specified number.

RENUM ,8

begins with 19 and increases in increments of 8. The
first line would be 19 followed by 18, 26, 34, etc.

Finally, RENUM followed by two numbers separated by a
comma will begin numbering lines with the first
specified number and will continue to number lines in
increments of the specified second number.

RENUM 1999, 4

begins with the number 1999 and lncreases in increments
of 4. The first line would be 1999 followed by 1994,
1998, 1912, etc.

Exercises I

1) Use NUM to enter a program. The program doesn't need
to make sense, but be sure to include some GOTO or GOSUB
statements.

2) Use RENUM on your program. Try various comhinations
of starting line number an~ increment. Be sure to LIST
your program each time to see the effects of RENUM.

--149--

CHAPTER XXVII I

THE JOYSTICK:
MANUAL OR AUTOMATIC

Glossary:

HS'l'ICK

VSTICK

STRIG

A function which reads the positions of the
joystick in terms of horizontal positions.

A function which reads the positions of the
joystick in terms of vertical positions.

A function which determines if the red
button or trigger on the joystick is being
depressed.

Throughout this book we have attempted to increase your
program skills. In our introduction we indicated that a
video game would be the final chapter of this book. But
as you probably know, a video game often uses a
joystick. A joystick is a device which may be attached
to your Atari Home Computer. Actually, your home
computer is capable of handling four joysticks. The
joysticks are attached in the front part of the computer
just below the keyboard. Each has its own number
starting with ~, 1, 2, and 3. The joystick is often used
to play games on your home computer and was first
popularized with the Atari 26~~.

In our explanations of the various programs throughout
this book, we have stressed the need to consider all
possibilities. We have asked you to RUN your programs
with diverse responses. This was done to insure that
you had allowed for all possible answers.

By using the joystick, you remove the keyboard as the
means of interaction between the user and the computer.
This limits the number of possible extraneous choices.
Each potential choice requires that the programmer check­
for an inappropriate answer. If this is not done, your
program will have "bugs" in it. In case you have not
heard this term before, a b~g is a programming problem.
Good programs do not have "bugs".

There's also Card's Corollary: A
program without a bug is
insignificant.

But remember 'Richard's
Every significant program
bug in it.

Rule:
has a

(

--15~--

VSTICK and HSTICK are functions which allow the
programmer to use the joystick. These functions read
the joystick positions. The joystick permits movement
that is up and down or right and left. In addition, the
computer interprets the movement of the joystick as a
series of numbers between 5 and 15. This limits the
number of user choices.

VSTICK indicates the vertical position of the joystick,
while HSTICK indicates the horizontal position.
HSTICK(8) reads joystick number zero (which, strangely,
is marked joystick 1 on the computer). If the stick is
pushed left, the function "reads" a minus one for use by
your program. If it is pushed right, your program reads
a plus one. If it is in the middle, you get a zero.
Try this with a joystick plugged into the first joystick
socket I

18 PRINT HSTICK(8)
28 GOTO 18
R~

Push the stick left and right and see what the program
PRINTs. (Hit (BREAK) to quit.) Of course, HSTICK(l)
reads the second joystick, HSTICK(2) reads the third and
HSTICK(3) reads the fourth (if your machine has a third
and a fourth socket).

VSTICK is
zero, or
centered,
thi.,

.inilar in its workings. It reads
minus one if the joystick is

or pushed down, respectively.

plUs one,
pushed up,

Again, try

18 PRINT VSTICK(8)
28 GOTO 18
RUN

Another function used in conjunction with the joystick
is STRIG. The STRIG function is used to indicate
whether the red button or trigger of the joystick is
depressed.

For reasons having
the STRIG function
is pushed and a
experiment.

18 PRINT STRIG(8)
28 GOTO 18
RUN

to do wi~h the hardware of the Atari,
returns a zero when the stick trigger
one when it is not. Try this little

Push the button on your joystick and see what happens.

--151--

Using these functions, it is relatively easy to write
programs using the joystick.

Instruction:

You type:

N~

5 REM THIS PROGRAM DRAWS USING THE JOYSTICK
Ie GRAPHICS 7
2e COLOR 1
3e LET x=e : LET Y-0
4e PLOT X,Y
5e LET X= X+HSTICK(0)
60 LET Y=Y-VSTICK(e)
70 IF X < 0 THEN X=0
8e IF x) 159 THEN X=159
ge IF Y < 0 THEN y=e
100 IF Y) 79 THEN Y=79
110 IF STRIG(0)-0 THEN GOTO 10
120 GOTO 40

Let's examine this program:

line 5- is our REM statement to remind us what this
program produces.

line 10- is our GRAPHICS statement and permits us to use
mode 7.

line 20- is our COLOR statement and permits us to PLOT
with light green.

line 30- initializes our variables X and Y at 0.

line 40- is our PLOT statement.

line 50- changes the value of X to be the same as the
value of X plus the horizontal reading of the joystick.

line 6e- changes the value of Y to be the same as the
value of Y plus the vertical reading of the joystick.

line 70- limits the value of X to numbers that are not
less than 0.

line 80- limits the value of X to numbers that are not
greater than 159. (

line 90- limits the value of Y to numbers that are not
less than 0.

--152--

color is plotted only
(Remove line 110, which
is pushed, since the

(

line 188- limits the value of Y to numbers that are not
greater than 79.

lines 78-100 are there to prevent ERROR 141. If the
value of X and/or Y go beyond the limits of graphics
mode 7 an error will result. The error will prevent
the program from continuing.

line 110- if the trigger is pushed, clears the screen
and starts the program again.

line 120- forces the computer to return to line 40 and
allows for the continuous execution of this program.

Exercises:

1) Modify the above exampl~ so
when the triqger -is pushed.
clears the screen if the trigger
two uses are incompatible.~

2) Change the program to simply show where the joystick
has "moved" to by "flashing" the spot which would have
been plotted (in the original program).

3) This is tricky: add to exercise 2 to allow the user
to change colors by pushing the joystick button.

--153--

CHAPTER XXIX

A Real Live Video Computer Game:
SNAILS' TRAILS

Well, the hard work is all done. If you have read and
understood all the previous chapters, you are ready for
a break. And, rather than present you with more
statements, functions, keywords, etc., we thought that a
game would be both instructive and fun. So here, in its
entirety, is the BASIC XL version of a perennially
popular video game.

Games similar to "SNAILS' TRAILS" have been around for a
long time. A version called "SURROUND" was one of the
first games available for the Atari 2688 game machine.
But, in the tradition of the video game industry, we
should present a storyline:

You are a giant, mutant snail. Wherever you travel, you
leave a trail of radioactive slime behind. So poisonous
and impenetrable is this slime that should any being
(including you, yourself) touch it, it dies instantly.
(Yes, yes. If it's that poisonous, how could you lay
the trail in the first place? How should we know ••• YOU
are the mutant.)

Further, the scientists of far off H'tra-E have
discovered your kind and have imprisoned you and another
of your race in a large rectangular arena.
Unfortunately, both of you are neither male or female.
Instead, you are each a St'i, specially bred to do
battle until death! You do not know the meaning of the
word plot's ("stop")!

So, as the scientists release you from stasis (you can
hear the three bells as the stasis field is lifted), you
begin by charging straight toward your opponent. But
wait! A bit of intelligence enters your crazed brain.
If your slime trail is so deadly, perhaps you can entice
your enemy to run into your trail, thus killing st'i
without damage to yourself. Great strategy!

What's this, though? Your opponent has developed the
same strategy. Now you and st'i must race around the
arena, with the strategic 90al of forcing each other to
touch a poisonous trail or to run into the electrified
outer fence. (Well, we had to keep you in the arena
somehow, didn't we?) But tactics can be important here
as well. Look, you are running straight across the
arena. At the last second, you veer in front of your
enemy! He can't avoid your trail in timel He's going
to ••• Oops. You forgot about the wall. Too bad. R.I.P.

--154--

(

To make a long atory into a ahort game, you and another
human opponent muet each uae an Atari joyetick (plugged
into joyetlck porte 1 and 21 to control your enai1., The
firet enail to run into a e1ime trail or a wall 10ees,
and the other enai1 scoree a point. The firet enai1 to
acore 18 pointe wins the game. Good luck.

18 REM ---SNAILS' TRAILS--­
28 REM
38 REM (FROM THE MOVIE OF THE SAME NAME
48 REM
58 REM THIS GAME REQUIRES 2 JOYSTICKS PLUGGED INTO CONNECTORS
68 REM NUMBER 1 AND 2 (STICKS " AND II
78 REM
88 REM
9" FAST
188 REM ROUND INITIALIZATION
118 GRAPHICS 5
128 REM (00 SETCOLORS HERE IF DESIRED
138 COLOR l,PLOT 8,8'DRAWTO 8,39:DRAWTO 79,39
148 DRAWTO 79,8,DRAWTO 8."
158 H8-28,V8-20,Hl-28:Vl-28
168 HMV8-1IVMV0-8:HMV1--1:VMVl-8
178 COLOR 2:PLOT H8,V8,COLOR 3,PLOT H1.V1
188 PRINT , - SCORE-,PRINT -PLAYER 1-" -PLAYER 2­
198 PRINT SCORE8"SCORE1
288 REM START A ROUND
218 FOR FREQ - 58 TO 158 STEP 50
228 FOR VOLUME-IS TO 8 STEP -8.1
238 SOUND 8,FREQ.18,VOLUME
240 NEXT VOLUME
258 NEXT FREQ
388 REM MAIN MOVE LOOP
318 FOR MOVE-l TO 255 STEP 3
328 REM SENSE AND MOVE PLAYER 8
338 IF HSTICK(01 THEN HMV8-HSTICK(8):VMV8-8
348 IF VSTICK(0) THEN VMV8-VSTICK("):HMV8-8
358 H8-H8+HMV8,V"-V"-VMV8
368 LOCATE H8,V8,BANG8.IF BANG8 THEN 488
378 COLOR 2:PLOT H8,V8
488 REM SARSE AND MOVE PLAYER 1
418 IF HSTICK(l) THEN HMV1-HSTICK(1):VMVl-8
428 IF VSTICK(l) THEN'VMV1~STICK(1):HMVl-8

438 H1-H1+HMV1:V1-V1-VMV1
448 LOCATE H1,V1,BANG1:IF BANG1 THEN 588
458 COLOR 3:PLOT H1,V1 •
588 IF BANG0 OR BANG1 THEN 688
518 FOR VOLUME-14 TO 8 STEP -2
528 SOUND 8,MOVE,18,VOLUME
538 NEXT VOLUME
598 NEXT MOVE:GOTO 388
688 REM SOMEBODY GOT BANGED
618 IF BANG8 AND BANG1 THEN 1"8

--155--

62e IF BANGe THEN SCORE1=SCORE1+1
63e IF BANG1 THEN SCOREe=SCORE0+1
640 FOR VOLUME=15 TO 0 STEP -0.25
650 IF BANG0 THEN SETCOLOR 1,4,VOLUME
660 IF BANG1 THEN SETCOLOR 2,4,VOLUME
67e SOUND e,23,0,VOLUME .
68e NEXT VOLUME
700 REM CHECK FOR END OF GAME
710 IF SCORE0<10 AND SCORE1<10 THEN 10e
720 GRAPHICS 2
73e IF SCOREe>SCOREl THEN 770
740 PRINT '6:"PLAYER 2 WINS:"
750 PRINT '6,SCOREl:" TO ":SCORE0
760 GOTO 800
77e PRINT '6:"PLAYER 1 WINS:"
780 PRINT '6, SCOREe:" TO ":SCOREI
80e REM END OF A GAME
810 PRINT "PUSH JOYSTICK BUTTON TO PLAY AGAIN"
820 REM WAIT FOR A BUTTON TO BE PUSHED
830 IF STRIG(0) AND STRIG(l) THEN 820
840 RUN

How SNAILS' TRAILS Works

You don't have to understand how the program works to
enjoy SNAILS' TRAILS. Just type in the listing and RUN
it. But, if you believe you are ready to understand the
programming techniques involved, read on. We will
explain the program a line (or short group of lines) at
a time. The numbers in front of each paragraph below
indicate the lines which are being explained.

le-80. Just some REMarks, to remind us what the name of
the program is and to give some instructions for running
the game. These lines are unnecessary, but it is good
practice to always have some such similar comments.

90. Actually, we cheated. This is a new statement, not
introduced previously. FAST has the unique ability to
speed up your program considerably. May we suggest that
you leave out this line until the program is working
properly. Then simply add this line and RUN the game
again. Look at how much faster it plays. We would
STRONGLY recommend that you ,do NOT use FAST in your own
programs until after you have read the description of
how it works in the BASIC XL REFERENCE MANUAL.

lee. This REMark denotes the beginning of the real work
of each round (or turn) in the game. (Remember, the
first to win 10 rounds wins the game.)

lIe. We chose an intermediate pixel size for our
display. This program will work in GRAPHICS 7 instead,
but you will have to adjust the values in lines 130
through 150.

--156--

(

(
l2~. The colors chosen by default when the GRAPHICS
statement is executed seemed adequate to us. If you
would like, though, you could place one or more SETCOLOR
statements on this line.

13~-14~. We draw a line around the outside of the screen
to define the "arena".

l5~. The H'tra-E scientists decided to start the snails
at the same positions each time: halfway down the arena
and about a quarter of the way in from each side. H~ and
V~ design~te the starting Horizontal and Vertical
position of the first player while HI and VI refer to the
second player. (We use ~ and 1 to correspond to
joysticks ~ and 1, even though we call the players
"first" and "second". The English language doesn't like
"zeroeth" and "oneth" very well.)

l6~. Since the fighting instinct is strong when the
snails are first released, they start moving directly
toward each other. The left hand snail (player) moves to
the right, as indicated by HMV~ (Horizontal MoVement of
player ~) being set to plus one. The other player moves
left (HMVI • -1). Neither snail moves vertically, so the
two vertical movements are set to zero.

NOTE: Lines l~~ through 16~ have, for all intents
and purposes, defined the limits and scope of our
game. From here on out, the game simply follows
the rules we have defined.

Often, the hardest part about writing a program is
designing the initialation code. Consider, as an
example, the task of writing a version of the
classic PONG game.

The movement, per se, is easy: two paddles move up
and down the left and right edges of the screen and
a ball bounces between them. But consider how much
the decisions made at set up time affect the game:
How big is the ball? How big are the paddles?
Where does the ball start from? Where do the
paddles start? Are,there boundary walls? If so,
where?

When you design and write your own programs, try to
pay special attention" to the "start up" code. Any
extra time spent on this phase will pay you
dividends in the form of better looking and more
readable programs. And, who knows, your program
may even work the first time!

--157--

178. We place the snails on their starting spots and
draw the first pixel of their slime trails. See how easy
this was, once the initialization code had set up
everything? Note that player 1 will use color 2 while
player 2 uses color 3. Any reason? Not really. Change
the colors if you like.

lS8-l98. We display the scores in the text window at the
bottom of the screen. The commas and spaces used in
these lines are not necessary, but they make the display
look better.

Note that we depend upon SCORE8 and SCORE1 being zero
when the program is RUN. This is a legitimate use of our
knowledge of how BASIC XL works.

288-258. Just before the stasis field is lifted, three
bells ring. Remember?

218 and 250. This outer loop generates three
FREOuencies. Do you see why they are 58, 180, and 158?
Do you remember that higher numbers imply lower
frequencies when pure tones (sound quality 10) are
used?

220-240. This inner loop simply makes a tone using sound
register zero. Notice how the STEP of -0.1 implies that
the volume will take on values of 15.0, 14.9, l4.S, etc.,
in succession, until it reaches zero. When a pure tone
is sounded like this, a rapidly decreasing volume
produces a ringing, bell-like note.

380-310. The players are moved once each time we go
through this loop. For an explanation of why MOVE is
STEPped by 3, see the discussion of line 528. Also, see
the discussion of line 598 for more information about
this loop.

320-370. This section of the code controls the movement
of the first player's snail.

330. If
right, we
snail to
movement,
have been

the first joystick (number 0) is pushed left or
change the horizoAtal movement (HMVO) of the
correspond. Since we don't allow diagonal

we cancel any vertical movement there might
(we set VMVO to z~ro).

340. Similarly, if the joystick is pushed up or down, we
change the vertical movement (VMV8) and cancel the
horizontal movement (set HMVO to zero). Notice that this
implies that a stick pushed diagonally will produce only
vertical motion. If you would rather let horizontal
movement have priority over vertical, simply swap the
order of lines 338 and 340.

--15S--

(

359. The most important line of the player movement
code. The new player position (H9 and V9) 1S found by
adding the old postion (also H9 and V9) to the requested
movements (HMV9 and VMV9).

NOTE the minus sign used in determining the
vertical position. It is there because ~~TICK

returns a plus one when the stick is pushed up,
while the Atari graphics system insists that larger
numbers are further "down" the screen. This simple
little trick keeps everything running smoothly and
as the player(s) would expect.

369. Remember that the pixel at H9 and V9 is where this
player's snail expects to move to next. What if
something is already at that spot, such as a wall or a
slime trail? Then the player must "die".

The LOCATE statement puts the color of the pixel at H9
and V9 into the variable BANG9. If nothing already
exists at the location, the color will be 9 (the
background color), and the program will fall through to
line 379. If something exists, though, we are done
moving this player, so we go directly to line 499.

379. If we get here, there was no conflicting object in
our pixel, so we lay down another piece of our slime
trail.

499-459. This is the same code as lines 329 through 379
except that all the references are now to the second
player (HI, VI, etc.). We will not explain the code line
by line since it is virtually identical.

599. If either player hit something, this must be the
end of a round. We exit the main code by simply GOing TO
line 699.

519-539. If we get here, both players are still alive.
We make a little bell tone to indicate that we have
moved. Eliminating these lines will speed the game up
significantly. But it won't sound as good •.
529. The use of MOVE here needs a special comment. In
line 319, we began a FOR•.• NEXT loop involving MOVE:

FOR MOVE - 1 to 255 STEP 3
But that only allows 85' moves! Surely we expect that
some games will last longer than that, don't we? Sure,
but we wanted to use the MOVE variable to determine the
frequency of the short bell tone, and SOUND only allows
frequency values from 9 through 255. By using the loop
shown, we are guaranteed legal sound values.

--159--

big characters. Notice
the first line to the left
in 750 places the scores
is an acceptable score

590. And this, then, is the end of the MOVE loop. But
what happens if both players are still alive at the end
of 85 turns? Simple answer: GO back TO line 300 and
start the FOR.•• NEXT loop over again. Actually, if we
didn't need sounds, this line could consist of just the
GOTO and we could eliminate the FOR••• NEXT entirely.

600-680. When one or both of the players runs into
something, we execute this code.

610. If both players hit at the same time, don't do
anything. Just go remove the stasis field again.

620-630. Add a point to the score of the player that did
NOT hit anything.

640-680. Another decreasing volume loop. This time, the
sound quality (line 670) is set to zero so we get noise.
The effect is something like an explosion. 650-660.
Depending on which player hit something, we flash one or
the other of the slime trails red. Why do we use
"VOLUME" for what is normally luminance? Simply because
it happened to be changing and in the range required for
luminance. The result: a bright flash which quickly
fades out. Nice.

700-710. If neither player has yet scored 10 points, we
start another round at line 100.

720. If somebody lost, we might as well broadcast the
fact in great big letters. Remember GRAPHICS 2 produces
large characters in the graphics window and retains the
text window.

730. What message is displayed depends on who won.

740-750. The message, in nice
the semicolon in 740 forces
edge of the screen. The comma
in the middle. The result
display.

760. We bypass the othe~ message by GOing TO the
end-of-game code.

770-780.
who won.

The same code as lines 740 and 750, changing

800-810. Just in case, we allow the H'tra-Ethlings to
start with more fresh snails. Note that the message in (/
line 810 is printed at the bottom of the screen, in the
text window.

--160--

(
829-839. This is actually a very small program loop
which will last forever. Unless, of course, one or the
other player pushes his/her joystick button.

849. Yes, you really can use RUN as a program statement.
In situations such as this, it has the advantage of
forcing a clear of all variables, etc.

Of course, if we had wanted to do something like keep
track of high scores (inapplicable in this particular
game), we would have to use GOTO 10 here. The further
implication is that we could not assume any variables to
be zero when a game started. (See the comments about
line 190.)

Some Last Comments

Are you really still with us? If you got lost
explanation, perhaps the best thing to do would
type in the game and try it. May we strongly
that you SAVE or CSAVE the program before RUNning
you typed it in exactly as shown, no problems
occur. But •.•

in that
be to

suggest
it. If
should

This kind of game is what programming is all about. Not
that everyone should write games. Rather that everyone
who is serious about programming should seek a well
defined programming goal, design the means to accomplish
it, and start coding. And whether a program plays a game
or calculates the residual value of fully depreciated
Edsels, if it does what it was designed to do, it is a
success.

Remember this, then, when you tackle exercise number 3,
below.

EXERCISES

1. Change line 120 so that the program will draw a red
border around the arena.

2. As this game is written, a player may wipe
himself/herself out too easily by backtracking on his/her
own slime trail. Obviously, nobody intends to do this,
but sometimes when you tprn fast you will end up going
diagonally and the program's logic will force you back
into yourself.

(/ Try t.o "fix" the program so that a player cannot
backtrack so easily. Fair warning: the answer which we
provide for this exercise still makes it possible--though
much harder--to backtrack. If you do it better, greatl

--161--

If you
try some
Games:

3. Think of a problem which a computer can solve. Write
a program which will solve the problem.

The "problem" might be a game you would like to see. Or
it might be a loan amortization calculation. Or perhaps
a checkbook balancer. Don't limit your horizons.

really can't think of a problem you want solved,
of our suggestions:

TIC-TAC-TOE
PONG
CRAPS

(A very easy game to write without
graphics. So why not put in some really
good pictures?)

Business: LOAN AMORTIZATION
RATE OF RETURN ON INVESTMENT
INVOICE PRINTING

(Filing invoices is MUCH more difficult.
This book has NOT given you sufficient
background to write such a program.)

Home use: CHECKBOOK BALANCER
RECIPE MULTIPLIER

(What is 6 times 1/3 cup--in quarts?)
Education: ADDITION DRILL AND PRACTICE

(Also very easy without graphics.
But how about showing 3 red apples
plus 4 orange oranges?)

--162--

(

(
CHAPTER XXX

Congratulations I You've made it to the final chapter of
our book. Good for youl It took patience, and an open
mind and hard work to get this far. Now what? What
have you learned? What good does it do you?

In the process of working through this book, you have
learned to operate your ATARI HOME COMPUTER. That and a
dollar will buy you a cup of coffee. Right? Actually,
there is more to it than that.

By learning to operate your ATARI HOME COMPUTER, you
need never fear computers again. You now know that a
computer will not byte, and in fact, the computer is
always READY for your next command.

You have also opened the door to many other
possibilities. Your familiarity with the computer and
simple BASIC statements will allow you to use
commercially produced software with a minimal amount of
effort. With each new day more software programs come
on the market. You can increase your use of your home
computer and at the same time learn a new foreign
language like French or Italian. Or you can choose from
word processing, home management, home phone lists, and
address label programs. Actually, the possibilities are
almost endless.

At social qatherings, you can be· part of the group
discussing programming. Or, you can show your
brilliance by word dropping. For example: you could
tell your friends about favorite variables: or how
IF ••• THEN and GOSUB ••• RETURN statements have changed
your life. Why, you'll be the center of attention.

Maybe What you have learned is that you aren't meant to
be a proqrammer at all. Knowing that isn't a waste of
time. Now that you know, you again can rely on
commercially produced software for all your needs.
Believe it or not, not everyone was intended ~o be a
programmer. However, everyone should know enough to be
computer literate.· Assum~ng you have read and
understood most of this book, you are now computer
literate.

Finally, if all this programming stuff really got to
you, if night after night you spent hours with our book
and your ATARI, you may have a future in programming.
There is more BASIC to learn and other computer
languages.

--163--

One final note: if you want to pursue a career in
programming or if you want to become a better
programmer, there are two things you should do.

First, start reading. Begin by reading your BASIC XL
Reference Manual. This will give you information about
computer functions and commands not covered in this
book. There are many other books on the market that
will provide additional information on BASIC. If you
don't have an excellent mathematics background,
carefully check the books you use. Be sure each book
deals with functions and commands and not just higher
levels of math. Don't buy a book sight unseen.

Second, start programming. Don't worry about what you
programs you write or whether they are useful or not.
Any programming experience will be valuable. Also,
there are many magazines and user groups that pUblish
programs for you to try. The better publications also
include explanations of their programs. Programming is
like tennis or golf or music or any other learned skill,
the more you do it, the better you'll get at it.

--164--

(

(

ANSWERS

Answers: Chapter I

1. PRINT "JEFFREY R. SMITH"

2. PRINT "GIVE ME LIBERTY OR GIVE ME DEATH"

Please note: the above answers are correct. However,
your screen will look like this:

PRINT "JEFFREY R. SMITH"
JEFFREY R. SMITH

READY
PRINT "GIVE ME LIBERTY OR GIVE ME DEATH"
GIVE ME LIBERTY OR GIVE ME DEATH

Answers: Chapter II

1. PRINT "JOHN Q. PUBLIC"
PRINT "924 MAIN STREET, ANYWHERE, USA"
PRINT "8/1lB-555-1212"

2. PRINT 15+25
PRINT 38-14
PRINT 68B*12
PRINT 25/5

3. PRINT "9BB-11-2222"

Answers: Chapter III

1) a) Assigns the value of 15 to x.
b) Assigns the value of 144 to B.

c) Assigns the value o.f 338 to F2.

d) Assigns the value of 323 to z.
(which is 338-15)

2) LET TOTAL. 7 + 5
PRINT TOTAL + 1

(N.B.: You could have coded PRINT 7 + 5 + 1, but the
answer shown keeps better to the spirit of this
chapter.)

--165--

3) 198

Answers I Chapter IV

1) UI LET X
29 LET Y
39 PRINT X
49 PRINT X

2
4
+ Y
• Y

Good. If
is a good
programs.
they work

When you typed RUN, did your program work?
not compare your answer to the one given. It
idea to get in the habit of testing your
Really, that is the only way to know if
properly.

Since variable names, the value of a variable and line
numbers chosen in a program are arbitrary, your program
is probably correct if it is similar to the one above,
and if it RUNs properly.

2) Assuming the same program is used as was used in the
answer to exercise 11

II' LET X • 2
39 PRINT X+Y
49 PRINT X·Y

OR

1" LET X • 2
29 PRINT X+Y
39 PRINT X·Y

Did you correctly note that the computer assumes Y has a
value of zero? In Basic XL, all variables have a value
of zero until something else is assigned to them.

3) You should have typed in a single line, such as:
2" LET Y • 4 OR 15 LET Y • 4

The important point here is.that you used a line number
somewhere between the line numbers for the first and
third lines. When you RUN the program, you should get
the same results as you did.in exercise 1.

--166--

(

(
Answers: Chapter V

You Type: Computer Responds

1) NEW
19 LET X 12
29 LET Y = 8
39 PRINT X Y
RUN

128
2) 39 PRINT X,Y

RUN
12 8

3) 39 PRINT X+Y,X-y,x*y
RUN

29 4 96

(

PLEASE NOTE: Since variables names,
variable and line numbers chosen in
arbitrary, your programs are probably
look similar to the answers shown. Be
that your programs RUN properly.

ANSWERS: Chapter VI

1) 19 PRINT "N," "N-SQUARED," "N-DOUBLED"
29 LETN=l
39 PRINT N, N*N, N+N
49 LETN=N+1
59 LETN-X
60 GOTO 39

2) 10 LET X = 1
20 PRINT X
39 LET X = X + 1
49 GOTO 20

3) 10 LETX=l
20 PRINT "YOUR NAME",X

or
29 PRINT "YOUR NAME",X
30 LETX-X+ 1
40 GOTO 29

4) 10 LET X .. 1
20 PRINT "YOUR NAME",X
30 LETX-X+ 2
40 GOTO 20

--167--

the value of a
a program are
correct if they
sure to check

5) 18 LET X • 5
28 PRIN't' -YOUR NAME-, X
38 LET X • X + 2
48 GOTO 21

RUN each ot your proqraJIIa.

It your proqraJIIa look aimilar ee ~he onea above and it
~bey RUN properly, ~bey are probably correc~.

Anawera. Chap~er VII

1) 18 LET C • 5
28 PRIN't' C
38 LET C • C + 5
48 IF C c. 18e THEN GOTO 28

2) 18 LET T - 1
28 PRIN't' -A COUN't'ING COMPUTER IS EASY­
38 LET T • T + 1
48 IF T c. 18 THEN GOTO 28

3) 18 LET X • 937
28 LET M • 486
38 IF X • M THEN PRIN't' -THEY ARE EQUAL­
48 IP M~X THEN PRIN't' M,- IS LARGER-
58 IP X~M THEY PRIN't' X,- IS LARGER-

If your proqrama look aimi1ar ~o ~be onea above and if
~bey RUN properly, ~bey are probably correc~.

Ana_ra. Chap~er VIII

1) 18 PRIN't' -WHAT IS THE BASE­
28 INPUT BASE
38 PRIN't' -WHA'l' IS THE HEIGHT­
48 INPUT HEIGHT
58 PRIN't' -AREA. -,BASE·HEIGHT/2

2) 18 PRIN't' -OUR ONE TEST SCOU­
28 INPUT TEST1
38 PRIN't' -ENTER ANOTHER TEST SCOU-
48 INPU'l' TEST2 •
58 PRINT -EH'l'ER ANOTHER TEST SCOU-
68 INPU'l' TEST3 (
78 LET TOTAL • TEST1+TEST2+TEST3
88 LET AVERAGE-TOTAL/3
91 'RIft -THE AVERAGE OP THE THUE TEST SCOUS IS - r AVERAGE

--168--

(
3) 111/ PRINT "WHAT IS THE MAXIMUM NUMBER"

20 INPUT MAX
30 LET NUM - 1
40 PRINT NUM, NUM*NUM
50 LET NUM - NUM + 1
60 IF NUM <- MAX THEN GOTO 40

Answers: Chapter IX

1) 10 PRINT "ENTER YOUR BOWLING SCORES"
20 INPUT YOUl, YOU2
30 PRINT "ENTER YOUR OPPONENT'S BOWLING SCORES"
40 INPUT OPPl, OPP2
59 IF YOUl>OPPI AND YOU2>OPP2 THEN PRINT "YOU WON

BOTH GAMES"
60 IF YOUl<OPPI AND YOU2<OPP2 THEN PRINT "YOU LOST

BOTH GAMES"

2) 10 PRINT "PICK A NUMBER"
20 INPUT X
30 IF X>10 AND X<20 THEN PRINT "YOUR NUMBER IS

BETWEEN 10 AND 20"

3) 10 PRINT "GIVE
20 INPUT NUMI
30 INPUT NUM2
40 INPUT NUM3
50 IF NUMI <
NUMl, NUM2~ NUM3

ME 3 NUMBERS, IN ORDER"

NUM2 AND NUM2 < NUM3 THEN PRINT

-,

Answers: Chapter X

1) 10 LET D = 1
20 PRINT RANDOM(I,50)
30 LET D = D + 1
40 IF D <- 10 GOTO 20

2) 10 LET D = 1
20 PRINT RANDOM(1000)
30 LET D - D + r
40 IF D <= 10 GOTO 20

3) 10 LET NUMBER = RANDOM(1,50)
20 PRINT "PICK A NUMBER BETWEEN 1 AND 50":
30 INPUT GUESS
40 PRINT GUESS, NUMBER

--169--

4) HI LET NUMBER = RANDOM(l,Se)
2e PRINT "PICK A NUMBER BETWEEN 1 AND Se"1
3e INPUT GUESS
4e IF GUESS<NUMBER THEN PRINT "TOO LOW"
Sill IF GUESS>NUMBER THEN PRINT "TOO HIGH"
6 III IF GUESS<>NUMBER THEN GOTO 2e
7e PRINT "YOU GOT IT"

Note: If you solved exercise 4
correctly, congratulations are in
order. This is the classic "computer
number guessing game" and is often the
target or end of indroductory
programming classes.

Answer: Chapter XI

1) If you are able to copy a program and to retrieve it,
you probably understand the use of the program recorder.

Answers: Chapter XII

1) If not, try again.

2) ERROR -NOT SAVED FILE

3) ERROR (unpredictable, but often 137)

Answers: Chapter XIII

1) Obviously, the contents of your letter will differ,
but here's an example of proper form. Note how we used
commas successfully but did NOT use any at the ends of
lines.

llll LPRINT "DEAR JOHN,"
2rIJ LPRINT "HOW ARE YOU?"
3rIJ LPRINT "I'M SORRY I HP.VE WRITTEN SOONER."
4rIJ LPRINT "RECENTLY, I HAVE BEEN SPENDING MY SPARE

TIME LEARNING TO PROGRAM MY ATARI."
5rIJ LPRINT "I WILL WRITE YOU A LONG LETTER SOON."
6rIJ LPRINT" "YOUR FRIEND,"
7rIJ LPRINT,," JIM"

2) By using LIST"P:", the program you typed in should
appear on the printer.

--17r1J--

(

(

(

Answers: Chapter XIV

1) Ie GRAPHICS 7
2e PLOT RANDOM (e,159), RANDOM (e, 79)
3e FOR I = 1 TO 25
4e COLOR RANDOM (1,3)
5e DRAWTO RANDOM (e, 159), RANDOM (e, 79)
6e NEXT I
7e GOTO Ie

2) Ie GRAPHICS 7
2e FOR I - 1 TO 15
3e COLOR RANDOM (1,3)
40 COLl- RANDOM (16e): COL2 = RANDOM (168)
5e ROWI = RANDOM (8e): ROW 2 .. RANDOM (8"')
6e PLOT COLI, ROwl : DRAWTO COLI, ROW2
70 DRAWTO COL2, ROW2: DRAWTO COL2, ROWI
8e DRAWTO COLI, ROWI
ge NEXT I
le0 GOTO 10

3) Ie GRAPHICS 7 : PLOT e,e
2e FOR X = e TO 39 STEP 2
3e COLOR RANDOM (1,3)
4e DRAWTO 159-X,X
5e DRAWTO l59-X,79-X
6e DRAWTO X, 79-X: DRAWTO X,X+2
70 NEXT X
8e GOTO Ie

NOTE: By now, we are presenting
exercises so complex that many,
many different "answers" are pos­
sible. We would suggest that you
type in our programs only if you
cannot solve the exercises yourself
or if you simply want to see what
kind of result we expected. The
rule here is simple: If your pro­
gram works, it is probably right.

--------------------.-----------------

Answers: Chapter XVI

1) 10 PRINT "ENTER TOTAL WEEKLY SALES"
20 INPUT SALES
30 IF SALES >=2ee0e THEN LET PAY=2e00
40 IF SALES <2"''''0''' THEN LET PAY"10"''''
50 PRINT PAY

--171--

2) Add the following 1ine81
38 IP SALES>-20000 THEN LET PAY-2000
58 LET PEDTAX-105 I 0.067*PAY
68 LET NETPAY-PAY-PEDTAX-SOCSECRTY
78 PRINT NETPAY

ANSWER. Chapter XVII

1) 158 PRINT "ONE PINT EQUALS 1) 8 0ZS. 2) 16 0ZS. 3) 24 OZS"
160 LET CORRECTANSR - 2
178 GOSUB 400
188 PRINT "ONE GALLON - 1) 4 QUARTS 2) 4 CUPS 3) 4 PINTS"
198 LET CORRECTANSR - 1
280 GOSUB 488

If your answers are similar in format" to thr. ones above
and if your program runs properly then your program is
probably correct.

Answers. Chapter XVIII

1) 18 FOR I-I TO 10
28 PRINT "JOHN SMITH"
38 NEXT I

2) 18 POR X- 10 TO 1 STEP - 1
28 PRINT X
38 NEXT X
48 PRINT "BLAST OPF"

3) 18 POR G - 8 TO 188 STEP 5
28 PRINT G
38 NEXT G

4) 18 PRINT "HOW PAR SHOULD I GO",
28 INPUT MAX
38 POR N-1 TO MAX
48 PRINT N, N*N
58 NEXT N

Answers. Chapter XIX

1) 18 FOR 1-1 TO 9
20 POR J-1 TO 9
38 PRINT I*J,
48 PRINT"·,
58 NEXT J
68 PRINT
78 PRINT
88 NEXT I

--172--

(
Answers: Chapter XX

1) 18 INPUT INVITEE$
28 PRINT "DEAR "7 INVITEE
38 PRINT "ON JUNE 15TH I WILL BE 39 ONE t.tORE TIME",
48 PRINT "PLEASE " 7
58 PRINT INVITEE$7
68 PRINT "HELP ME CELEBRATE THIS OCCASION",
78 PRINT "MY PARTY WILL BE HELD AT THE GREEN OAKS

COUNTRY CLUB",
88 PRINT "BE PROMPT" 7
98 PRINT INVITEE$7
188 PRINT "THE PARTY STARTS AT 8:80"
118 PRINT "I 'LL NEED HELP BLOWING OUT THE CANDLES",
128 PRINT
138 PRINT "SINCERELY,"
148 PRINT "JACK BENNY"
158 PRINT
168 GOTO 28

2) 18 DIM ANSWER$(l)
28 PRINT "DO YOU LIKE ME"7
38 INPUT ANSWER$
48 IF ANSWER$="Y" THEN PRINT "I LIKE YOU, TOO"
58 IF ANSWER$="N" THEN PRINT "BRRRRAPI"

Answer: Chapter XXI

1) 18 DIM NAME$(35)
28 PRINT "ENTER YOUR NAME"
38 INPUT NAME$
40 LET 11.= LEN(NAME$)
58 FOR 1=11. TO 1 STEP -1
68 PRINT NAME$(I,I)7
78 NEXT I

ANSWERS I Chapter XXII

1) 10 SOUND RANDOM(4), RANDOM(256),
RANDOM(16)
28 FOR 1=1 TO 288: NEXT. I
38 GOTO 18

2) 10 P=RANDOM (256)
28 SOUND 8,P,10,8
38 FOR 1=1 TO 18 : NEXT I
48 GOTO 18

--173--

RANDOM(16),

Answers: Chapter XXIII

1) 10 GRAPHICS 1
20 PRINT '6 "STEVEN LEWIS"
30 PRINT '6 "YOU ARE A STAR"

2) 10 GRAPHICS 2
20 PRINT '67 " THE PALACE
30 POSITION 0,2
40 PRINT .67"···················"
50 PRINT '67"· jonathon ."6121 PRINT 16;"* michaels ."90 PRINT '67 ". ."100 PRINT .67 II. ."11" PRINT #67"· 5 performances ."12" PRINT #67 ". a day ."13" PRINT .67"· LIVE ."14" PRINT .67"···················"

Answers: Chapter XXIV

1) 10 GRAPHICS 3

1" GRAPHICS 5

The above program line should replace the first line in
each of the three exercises listed at the end of Chapter
XIV. First, RUN the program in mode 7 and then change
to mode 3 and then to mode 5.

2) 1"0 COLOR 3-SCREENCOLOR
110 PLOT COLUMN, ROW

Answers: Chapter XXV

1) 10 SETCOLOR 1, RANDOM(16), RANDOM(16)
20 FOR WAIT=l TO 1""0: NEXT WAIT
30 GOTO 10

2) 1" GRAPHICS 3
2" SETCOLOR 4, RANDOM(16), RANDOM(16)
30 FOR WAIT-I TO 10"": NEXT WAIT
4" GOTO 2121

Line 2" in answer 1 and line 30 in answer 2 are
arbitrary delays and do not affect the correctness
of the answer. Without some such delay, though, the
display color will flicker too fast to be discernable.

--174--

(

Answer: Chapter XXVI

1) 19 GRAPHICS 8
29 COLOR 1
39 PLOT 9,9
49 DRAWTO 159,9
59 DRAWTO 159,79
69 DRAWTO 9,79
79 DRAWTO 9,9

Answers: Chapter XXVIII

1) 49 IF STRIG(9)=9 THEN PLOT X,Y
119 {RETURN} (deletes line 119)

2) 49 COLOR 1: PLOT X,Y
46 FOR I-I TO 299: NEXT I

(The above line is just a delay loop and is
not strictly necessary.)

48 COLOR 9: PLOT X,Y

3) 29 C=l
49 IF STRIG(9)=9 THEN C=C+l
42 IF C>3 THEN C-"
44 COLOR C: PLOT X,Y

ANSWERS: Chapter XXIX

1) Change line 129 to read:
120 SETCOLOR 9,4,4

The hue and luminance numbers ("4,4") might n~ed to be
changed slightly for different television sets or
monitors.

Did you remember that SETCOLOR 9 applied to COLOR 1,
which is used to draw the border?

2) Change the following lipes as shown:
330 IF HSTICK(9)<>9 AND HMV9=9 THEN

HMV9=HSTICK(0) : VMV9=9
343 IF VSTICK(9)<>9 AND VMV9=9 THEN

VMV9=VSTICK'(9) : HMV9=9
413 IF HSTICK(1)<>9 AND HMVl=9 THEN

HMVI-HSTICK(l) : VMVl=9
423 IF VSTICK(1)<>9 AND VMVl-9 THEN

VMVl=VSTICK(l) : HMVl=9

--175--

Do you see Why those changes work? Basically, we can (
read line 33" to say .. if the first user is pushing the
stick left or right AND if he was NOT moving left or
right before now, then change his movement to be left or
right (according to how the stick is pushed) and cancel
his vertical movement." The other lines may be read in
a similar fashion.

How does this deceptively simple change work? Well, if
the user's snail was going right (for example), then
pushing the joystick left OR right has no effect.
Reasons: if he is already going right, why do anything:
if he is going left, we don't want him to run into
himself (tbe conditions of this exercise), so we
disallow the movement.

The flaw in this logic is complex. If the snail is
moving up and the user pushes the joystick diagonally
down and to the left (for example), our program will see
and allow the left movement first (HMV9 will be set to
-1 and VMV" will be set to 9 in line 339). But then
when the program reaches the next line, it will also see
and allow the down movement (incidentally cancelling the
left movement), and our snail will seem to double back
on himself. Note, however, that as this program is
written the flaw does not exist for horizontal movement.

Can the flaw be fixed? Yes, at the expense of more
complex logic, reSUlting in a program which runs slower.
Is it worth fixing? Probably not, since the game is
very playable as is.

A final comment. There were several possible answers to
this exercise, so if your version worked it is probably
correct. We present here several possible choices for
line 339 (the other lines would be similar).

339 IF HMVg=g AND HSTICK(9)<>g THEN
HMV""HSTICK(9) I VMV9·9

339 IF HSTICK(9) AND NOT HMVg THEN
HMV9=HSTICK(9) I VMV9=9

339 IF HSTICK(9) THEN IF NOT HMVg THEN
HMV~=HSTICK(9) : VMV9·9

339 IF NOT HMV9 THEN IF HSTICK(9) THEN
HMV9·HSTICK(9) : VMV9·9

Incidentally, the last two examples will probably run a
little faster than the others, since the second function
will not even be checked unless the first expression is (
true, thanks to the extra THEN we used.

--176--

