

Last Edit: 31 January 2022

Preface

As tribute to OSS this fully edited version is provided
to keep one of the best and fastest BASIC versions on
ATARI 8-bit computers accessible to all being
interested in this great piece of software.

BASIC XL was released by OSS in 1983.
OSS merged into a division of ICD, Inc. in 1988.
ICD sold their ATARI 8-bit product line to FTe in 1993.
FTe disappeared supposedly in 1996.
The author Bill Wilkinson passed away in November 2015.
The current status of BASIC XL is that the Wilkinson
Family gave allowance to atariwiki.org to use OSS
material.

Many of those famous A8 hardware and software products
from OSS and ICD are still available thanks to a
worldwide active A8 community. So is this manual.

My BASIC XL reference manual went through scanner and
OCR process as the one about Action!.

The new BASIC XL manual in chapters 1 to 8 keeps the
original layout for reference to the original paperback
and of course for historical reasons. Nearly all
entries from the original's table of contents are found
on the same page.

The BASIC XL Toolkit including The BASIC XL Runtime
Package was added to this manual as chapter 9 and is
adapted to the layout as deemed necessary.

Therefore the appendices needed amendment and changes
as well.

Typos and errors found were corrected and information
concerning the XL/XE computers were added to the new
BASIC XL manual.

BASIC XL and other OSS programming languages work best
together with SpartaDOS X V. 4.47 or newer provided by
DLT.

Enjoy BASIC XL ... and may your A8 always be with you!

GoodByteXL, January 2022

P.S.: Special thanks for help to Roland.

TABLE OF CONTENTS

Chapter 1: Introduction
 1.1 Features of BASIC XL 1
 1.2 Special Notations used in this Manual 2
 1.3 Glossary and terminology 3
 1.4 Operating Modes 7

Chapter 2: VARIABLES, OPERATORS, EXPRESSIONS
 2.1 Variables (var) 9
 2.1.1 Arithmetic variables (avar) 10
 2.1.2 Array / Matrix Variables (mvar) 10
 2.1.3 String Variables (svar) 12
 2.1.4 String Array Variables (svar) 12
 2.1.5 DIM ... 13
 2.2 Operators 14
 2.2.1 Arithmetic Operators (aop) 14
 2.2.2 Logical Operators (lop) 15
 2.2.3 Operator Precedence 16
 2.3 Expressions (exp) 17
 2.3.1 Numbers 17
 2.3.2 Arithmetic Expressions (aexp) 18
 2.3.3 String Expressions (sexp) 19

Chapter 3: PROGRAM DEVELOPMENT COMMANDS
 3.1 BYE (B.) .. 21
 3.2 CLR ... 21
 3.3 CONT (CON.) 22
 3.4 DEL ... 22
 3.5 DOS ... 23
 3.6 FAST .. 23
 3.7 LIST (L.) 24
 3.8 LOMEM ... 24
 3.9 LVAR (LV.) 25
 3.10 NEW .. 25
 3.11 NUM .. 25
 3.12 REM (R.) 26
 3.13 RENUM .. 27
 3.14 RUN .. 27
 3.15 SET .. 28
 3.16 STOP ... 31
 3.17 TRACE and TRACEOFF 31

Chapter 4: PROGRAM CONTROL STATEMENTS
 4.1 Assignment Statement 33
 4.2 END ... 34
 4.3 FOR(F.)...TO...STEP / NEXT(N.) 35
 4.4 GOSUB (GOS.) / RETURN (RET.) 36
 4.5 GOTO (G.) 37
 4.6 IF/THEN ... 39
 4.7 IF...ELSE...ENDIF 40
 4.8 LET ... 41
 4.9 MOVE .. 42
 4.10 ON... .. 43
 4.11 POP .. 44
 4.12 RESTORE (RES.) 45

TABLE OF CONTENTS

 4.13 TRAP (T.) 45
 4.14 WHILE...ENDWHILE 46

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES
 5.1 Comments and Notations 47
 5.2 BGET .. 49
 5.3 BPUT .. 50
 5.4 CLOAD ... 50
 5.5 CLOSE (CL.) 50
 5.6 CSAVE (CS.) 51
 5.7 DATA (D.) 51
 5.8 DIR ... 52
 5.9 ENTER (E.) 52
 5.10 ERASE .. 53
 5.11 GET .. 53
 5.12 INPUT (I.) 53
 5.12.1 Advanced use of INPUT 54
 5.13 LOAD (LO.) 55
 5.14 LPRINT (LP.) 55
 5.15 NOTE (NO.) 55
 5.16 OPEN (O.) 56
 5.17 POINT (P.) 57
 5.18 PRINT (PR or ?) 57
 5.19 PRINT USING 58
 5.20 PROTECT .. 63
 5.21 PUT (PU.) 63
 5.22 READ ... 63
 5.23 RENAME ... 64
 5.24 RGET ... 64
 5.25 RPUT ... 65
 5.26 SAVE (S.) 66
 5.27 STATUS (ST.) 66
 5.28 TAB .. 66
 5.29 UNPROTECT (UNP.) 67
 5.30 XIO (X.) 67
 5.31 An Example Program 68

Chapter 6: FUNCTION LIBRARY
 6.1 Arithmetic Functions 69
 6.1.1 ABS ... 69
 6.1.2 CLOG .. 69
 6.1.3 EXP ... 70
 6.1.4 INT ... 70
 6.1.5 LOG ... 70
 6.1.6 RANDOM .. 70
 6.1.7 RND ... 71
 6.1.8 SGN ... 71
 6.1.9 SQR ... 71
 6.1.10 An Example Program 71
 6.2 Trigonometric Functions 72
 6.2.1 ATN ... 72
 6.2.2 COS ... 72
 6.2.3 DEG and RAD 72
 6.2.4 SIN ... 72

TABLE OF CONTENTS

 6.2.5 An Example Program 73
 6.3 String Functions 73
 6.3.1 ASC ... 73
 6.3.2 CHR$.. 73
 6.3.3 FIND .. 74
 6.3.4 LEFT$... 75
 6.3.5 LEN ... 75
 6.3.6 MID$.. 75
 6.3.7 RIGHT$.. 76
 6.3.8 STR$.. 76
 6.3.9 VAL ... 76
 6.3.10 An Example Program 77
 6.4 Game Controller Functions 78
 6.4.1 HSTICK .. 78
 6.4.2 PADDLE .. 78
 6.4.3 PEN ... 78
 6.4.4 PTRIG ... 78
 6.4.5 STICK ... 79
 6.4.6 STRIG ... 79
 6.4.7 VSTICK .. 79
 6.4.8 An Example Program 80
 6.5 Player/Missile Functions 80
 6.5.1 BUMP .. 80
 6.5.2 PMADR ... 81
 6.6 Special Purpose Functions 81
 6.6.1 ADR ... 81
 6.6.2 DPEEK ... 81
 6.6.3 DPOKE ... 82
 6.6.4 ERR ... 82
 6.6.5 FRE ... 82
 6.6.6 HEX$.. 83
 6.6.7 PEEK .. 83
 6.6.8 POKE .. 83
 6.6.9 SYS ... 84
 6.6.10 TAB .. 84
 6.6.11 USR .. 84
 6.6.12 An Example Program 86

Chapter 7: SCREEN GRAPHICS AND SOUND
 7.1 GRAPHICS (GR.) 87
 7.1.1 GRAPHICS Mode 0 88
 7.1.2 GRAPHICS Modes 1 and 2 88
 7.1.3 GRAPHICS Modes 3, 5 and 7 89
 7.1.4 GRAPHICS modes 4,6 89
 7.1.5 GRAPHICS mode 8 90
 7.1.6 GRAPHICS modes 9, 10, and 11 90
 7.1.7 GRAPHIC modes 12 and 13 91
 7.1.8 GRAPHIC modes 14 and 15 91
 7.2 COLOR (C.) 92
 7.3 DRAWTO (DR.) 93
 7.4 LOCATE (LOC.) 93
 7.5 PLOT (PL.) 94
 7.6 POSITION (POS.) 94
 7.7 PUT and GET (as applied to graphics) 94

TABLE OF CONTENTS

 7.8 SETCOLOR (SE.) 95
 7.9 XIO (X.) Special Fill Application 97
 7.10 SOUND (SO.) 98

Chapter 8: PLAYER / MISSILE GRAPHICS
 8.1 An Overview of P/M Graphics 101
 8.2 P/M Graphics Conventions 103
 8.3 BGET and BPUT with P/M's 103
 8.4 PMCLR .. 104
 8.5 PMCOLOR (PMCO.) 104
 8.6 PMGRAPHICS (PMG.) 104
 8.7 PMMOVE ... 106
 8.8 PMWIDTH (PMW.) 107
 8.9 POKE and PEEK with P/M's 107
 8.10 MISSILE (MIS.) 107
 8.11 MOVE with P/M's 108
 8.12 USR with P/M's 108
 8.13 Example PMG Programs 109

Chapter 9: THE BASIC XL TOOLKIT
 9.1 THE BASIC XL RUNTIME PACKAGE 114
 9.1.1 How Does the RUNTIME Package Work? 114
 9.1.2 How Do You Use the RUNTIME Package? 114
 9.1.3 Statements that can NOT be used with RUNTIME .. 115
 9.1.4 Error Handling In RUNTIME BASIC XL 116
 9.1.5 RunTime Restart 116
 9.1.6 Incompatibilities 116
 9.2 BASIC XL Example Programs 116
 9.2.1 MENU.BXL 119
 9.2.2 SNAILS 123
 9.2.3 PICOADV 127
 9.2.4 LEM .. 135
 9.2.5 GTIATEST 140
 9.2.6 CIRCLES 142
 9.2.7 DISKIO 143
 9.2.7.1 SIO and the Device Control Block 144
 9.2.7.2 The Sector Access Routine 145
 9.2.7.3 Technical Sidelight 146
 9.2.8 CONFIG 147
 9.2.8.1 The Percom Standard 148
 9.2.8.2 Reading and Writing the Config Block 149
 9.2.9 PHONE .. 153
 9.2.9.1 Sequential and Other Files 153
 9.2.9.2 How to Use NOTE and POINT to Advantage 154
 9.2.9.3 The Concept Behind PHONE.BXL.
 alias BlackBook ... 156
 9.2.9.4 BlackBook Data Files 156
 9.2.9.5 BlackBook Index Files 157
 9.2.9.6 The Index String 158
 9.2.9.7 Program Description: PHONE.BXL, BlackBook ... 159
 9.2.10 MAKEAUTO 167
 9.3 BASIC XL Extended Statements 168
 9.3.1 How to Install the Extended Statements 168
 9.3.2 Abbreviations Used In Formal

TABLE OF CONTENTS

 Statement Definitions ... 170
 9.3.3 Procedure Blocks and Related Statements 171
 9.3.3.1 PROCEDURE (PROC.) 174
 9.3.3.1.1 Secondary Considerations 177
 9.3.3.2 CALL 180
 9.3.3.2.1 Secondary Considerations 181
 9.3.3.3 LOCAL 182
 9.3.3.3.1 Secondary Considerations 183
 9.3.3.4 EXIT 184
 9.3.3.4.1 Secondary Considerations 185
 9.3.4 Sorting String Arrays 187
 9.3.4.1 SORTUP 191
 9.3.4.2 SORTDOWN 192
 9.4 Example BASIC XL Programs with
 Extended Statements ... 194
 9.4.1 FACTOR.BXE 194
 9.4.2 SORTDIR.BXE 196
 9.4.3 SORTNUM.BXE 197
 9.4.4 GTIATEST.BXE 200
 9.4.5 DISKIO.BXE 200
 9.4.6 PHONE.BXE 201

Appendices
 Appendix A: ERROR DESCRIPTIONS 203
 Appendix B: SYSTEM MEMORY LOCATIONS 209
 Appendix C: BASIC XL MEMORY MAP 211
 Appendix D: ATASCII CHARACTER SET 213
 Appendix E: SYNTAX SUMMARY AND KEYWORD INDEX 217
 Appendix F: COMPATIBILITY WITH ATARI BASIC 221
 Appendix G: BENCHMARKS 227

Chapter 1: Introduction

1.1 Features of BASIC XL

Compatibility with Atari BASIC

Because BASIC XL uses the same tokens as Atari BASIC,
programs written in Atari BASIC which have been SAVEd
can be LOADed and RUN using BASIC XL.

FAST Program Execution

BASIC XL allows you to RUN your programs faster than
ever with the new FAST command, thus making games
written in BASIC almost as fast as arcade games.

Easy Program Formatting

Unlike other BASICs, BASIC XL does not care whether you
use upper or lower case letters when you enter your
programs. This alone makes programs more readable.
However, BASIC XL does even more. It will
automatically prompt you with line numbers or renumber
an entire program at your request. Also, the LIST
command has a program formatter built in, so your
programs are easier to follow, no matter how complex or
involved they are.

Built-in Functions

BASIC XL contains over 40 built-in functions covering a
wide range of applications. The chapter titled
FUNCTION LIBRARY explains these functions and their
usages.

Graphics

BASIC XL offers the same bit-map graphics manipulation
available in Atari BASIC, and allows amazing
flexibility in color choice and pattern variety.
Chapter 7 explains each command and gives examples of
the many ways to use each.

Player / Missile Graphics

BASIC XL allows you easy access to the player / missile
graphics available on the Atari through the use of
built-in functions and commands. With BASIC XL, p/m
graphics are as easy to control as common bit-map
graphics.

1

The BASIC XL Programming Environment

Game Controllers

Not only does BASIC XL support the game controller
functions as Atari BASIC, but it also adds some other
game controller functions which make interpreting and
using the joysticks much easier.

Sound

The Atari Personal Computer is capable of emitting a
large variety of sounds including simulated explosions,
electronic music, and "raspberries", and BASIC XL
allows you to have control over these sounds available.

Wraparound and Keyboard Repeat

If you enter a program line which is longer than the
length of the screen, the line "wraps around" to the
next line so that you can view it. Also, if you hold
down any key for over 1/2 second, it will start
repeating.

Error Messages

If a data entry error is made, the screen display shows
an error message and the line on which the error
occurred (with the character at which the error
occurred highlighted). Most errors will also display a
short, descriptive message along with the error number.
Appendix A contains a list of all the error messages
and their explanations.

1.2 Special Notations used in this Manual

Line Format

The format of a line in a BASIC program includes a line
number (abbreviated to lineno) at the beginning of the
line, followed by a statement keyword, followed by the
body of the statement and ending with a line terminator
command (<RETURN> key). In an actual program, the four
elements might look like this:

 Statement Statement
 lineno Keyword Body Terminator
 ------ ------- ---- ----------
 100 PRINT A/X*(Z+4.567) <RETURN>

Several statements can be typed on the same line
provided they are separated by a colon (:).

2

Chapter 1: Introduction

Capital Letters

In this book, all keywords and functions are printed in
uppercase to differentiate them from the other parts of
a statement.

Lower Case Letters

In this manual, lower case letter are used to denote
the various classes of items which may be used in a
program, such as variables (var), expressions (exp),
and the like.

Items in Brackets

Brackets ([]) contain optional items which may be used,
but are not required, in the format of a statement. If
the item enclosed in brackets is followed by three dots
(e.g. [exp,...]), more than one of that item may be
entered, but none are required.

Items Stacked Vertically in Bars

Items stacked vertically in bars indicate that anyone
of the stacked items may be used, but that only one at
a time is permissible. In the example below, type
either the GOTO or the GOSUB.

 100 | GOTO | 2000
 | GOSUB |

Command abbreviations in headings

If a command or statement has an abbreviation
associated with it, the abbreviation is placed in
parentheses following the full name of the command in
the heading (e.g., LIST (L.)).

1.3 Glossary and terminology

adata (ATASCII Data) Any ATASCII character, ex-
cluding commas .and carriage returns. (See
Appendix C.)

aexp (Arithmetic Expression) Generally composed
of a variable,' function, constant, or two
arithmetic expressions separated by an
arithmetic operator. See section 2.3.2.

alphanumeric
The letters A through Z (either lower or
upper case) and the digits 0 through 9.

3

The BASIC XL Programming Environment

aop (Arithmetic operator). See section 2.2.1.

Arrays and Array Variables
An array is a list of places where data can
be filed for future use. Each of these
places is called an element, and the whole
array or any element is called an array
variable. See section 2.1.2.

avar (Arithmetic Variable) A location where a
numeric value is stored. Variable names may
be from 1 to 120 alphanumeric characters,
but must start with an alphabetic character.
All characters are normalized to upper case
normal (i.e., not inverse) video.

BASIC Beginner's All-purpose Symbolic Instruction
Code.

Constant A constant is a value expressed as a number
rather than represented by variable name.
For example, in the statement X = 100, X is
a variable and 100 is a constant.

Command String
Multiple commands (or program statements)
placed on the same numbered line separated
by colons.

exp Any expression, whether sexp or aexp. See
section 2.3.

Expression An expression is any legal combination of
variables, constants, operators, and
functions used together to compute a value.
Expressions can be either arithmetic,
or string (See aexp and sexp).

filespec File Specification: A string expression that
refers to a device such as the keyboard or
to a disk file. It contains information on
the type of I/O device, its number, a colon,
an optional file name, and an optional
filename extender. See section 5.1.

NOTE: BASIC XL allows you to omit the double
quotes normally required in a literal string
when the literal string is used as a
filespec for any of the following commands:

DIR LOAD PROTECT LVAR RUN
ENTER SAVE RENAME OPEN XIO

CAUTION: when filespec is used this way, it
must be the last thing on the program or

4

Chapter 1: Introduction

command line. Also, DIR, LVAR, and RUN must
always be the last command on the line.

Function A function is a subroutine built into the
computer so that it can be called by the
user's program. A function is NOT a
statement. COS (Cosine), FRE (unused memory
space), and INT (integer) are examples of
functions. In many cases the value is simply
assigned to a variable (stored in a
variable) for later use. In other cases it
may be printed out on the screen
immediately. See chapter 6 for more on
functions.

Keyword Any reserved word "legal" in the BASIC
language. May be used in a statement, as a
command, or for any other purpose. (See
Appendix A for a list of all "reserved
words" or keywords in BASIC XL.)

lineno (Line Number) A constant that identifies a
particular program line in a deferred mode
BASIC program. Must be an integer from 0
through 32767. Line numbering determines the
order of program execution.

Logical Line
A logical line consists of one to three
physical lines, and is terminated either by
a <RETURN> or when the maximum logical line
limit is reached. Each numbered line in a
BASIC program consists of one logical line
when displayed on the screen.

lop (Logical Operator) See section 2.2.2.

mvar (Matrix Variable) Also called a Subscripted
Variable. An element of an array or matrix.
The variable name for the array or matrix as
a whole may be any legal variable name. See
section 2.1.2.

Operator Operators are used in expressions to tell
the computer how it should evaluate the
variables, constants, and functions in the
expression. There are two types of
operators arithmetic and logical. For more
information, see section 2.2.

Physical Line
One line of characters as displayed on a TV
or monitor screen.

5

The BASIC XL Programming Environment

sexp (String Expression) Can consist of a string
variable, string literal (constant), or a
function that returns a string value. See
section 2.3.3.

String A string is a group of characters enclosed
in quotation marks. "ABRACADABRA" is a
string. So are "OSS IS THE BEST" and
"123456789". A string is much like a numeric
constant (e.g., 12.4), as it may be
stored in a variable. A string variable is
different in that its name must end in the
character $. See section 2.1.3.

svar (String Variable) A location where a string
of characters may be stored. See 2.1.3 and
2.1.4.

var (Variable) Any variable. May be mvar, avar,
or svar. See section 2.1.

Variable A variable is the name for a numerical or
other quantity which may (or may not)
change. Variable names may be up to 120
characters long. However, a variable name
must start with" an alphabetic letter, and
may contain only letters and digits. See
section 2.1.

6

Chapter 1: Introduction

1.4 Operating Modes

Direct Mode

Uses no line numbers and executes instruction
immediately after <RETURN> key is pressed.

Deferred Mode

Uses line numbers and delays execution of
instruction(s) until the RUN command is entered.

Execute Mode

Sometimes called RUN mode. After the RUN command is
entered, each program line is processed and executed.

Memo Pad Mode

A non-programmable mode that allows the user to
experiment with the keyboard or to leave messages on
the screen. Nothing written while in Memo Pad mode
affects the RAM-resident program.

NOTE: this mode is only available on the Atari 400 and
800.

7

The BASIC XL Programming Environment

8

Chapter 2: VARIABLES, OPERATORS, EXPRESSIONS

2.1 Variables (var)

There are two basic types of variables in BASIC XL --
arithmetic variables and string variables. Also, there
are are three extensions to these –- arrays, matrices,
and string arrays.

Arithmetic, array, and matrix variables all store
numbers, and can only be used where a number is
required.

String and string array variables both store character
strings and can only be used where a character string
is required.

There are limits to the number of variables you may
use, and to the size and format of a variable name, as
follows:

1) BASIC XL limits the user to 128 variable
names. To bypass this problem, use
individual elements of any array instead of
having separate variable names. To clear
the variable name table (possibly after an
error 4), you can save your program using
LIST, then type NEW, and then ENTER your
program back in.

2) All variable names must start with an
alphabetic letter, followed by either
letters or digits. The name must be less
than 128 characters long. All string or
string array variable names must end in the
'$' (dollar sign) character.

9

The BASIC XL Programming Environment

2.1.1 Arithmetic variables (avar)

Arithmetic variables are those which store a single
number, and are the most common variables used. The
following are examples of arithmetic variables:

 X
 THISISANARITHMETICVARIABLE
 TEMP
 CHARGE

Here are some examples of arithmetic variables in use:

 100 LET X=76 :REM here's one use
 200 FOR 1=1 TO 100 :REM here's a second
 300 PRINT X-2 :REM and a third
 400 NEXT I
 500 END

2.1.2 Array / Matrix Variables (mvar)

An array variable is a group of memory locations
(called elements or subscripts of the array). In each
one of these locations is a number: so, in essence, an
array is simply a group of arithmetic variables which
share a common name.

The manner in which you access a given element of an
array is simple -- you merely give the array name
followed by the element number in parentheses, as in
the following examples:

 A(3) ARRAY(l4) NUMLIST(40)

The elements are numbered starting at 0, and continue
through to the DIMensioned size of the array. "How do
I dimension the size?" It's easy. You use the DIM
statement as follows:

 DIM A(40) REM dimension 'A' as a 40 element
 REM array.

 DIM NUMLIST(60) REM dimension 'NUMLIST' as a 60
 REM array.

For more information on the use of DIM, see section
2.1.5.

A matrix is similar to an array, except that it is two
dimensional. This means that there are two numbers
required to specify a given element: a row number, and

10

Chapter 2: VARIABLES, OPERATORS, EXPRESSIONS

a column number. You can think of a matrix as a grid,
with each box being one element. The following is a
representation of a 5 by 5 matrix, where each of the
boxes contains the subscripts used to access that box
(element):

 C O L U M N
 +-----+-----+-----+-----+-----+
Notice that the row | 0,0 | 0,1 | 0,2 | 0,3 | 0,4 |
number is given +-----+-----+-----+-----+-----+
first, followed by R | 1,0 | 1,1 | 1,2 | 1,3 | 1,4 |
a comma and then +-----+-----+-----+-----+-----+
the column number. O | 2,0 | 2,1 | 2,2 | 2,3 | 2,4 |
This is the same +-----+-----+-----+-----+-----+
order you would use W | 3,0 | 3,1 | 3,2 | 3,3 | 3,4 |
to access that ele- +-----+-----+-----+-----+-----+
ment. | 4,0 | 4,1 | 4,2 | 4,3 | 4,4 |
 +-----+-----+-----+-----+-----+

Dimensioning the size of a matrix is very similar to
dimensioning an array, but both the row dimension and
column dimension are required, e.g.:

 DIM AMATRIX(4,4) REM a 5 by 5 matrix; remember
 REM that (0,0), not (1,1) is
 REM the first element.

NOTE: for more information on DIM, see section 2.1.5.

When you use an element of an array or matrix, you are
actually using a single number (which is what an
arithmetic variable is). This means that an array or
matrix element may be used wherever 'avar' can be used.

Examples:
X=47.4
ARRAY(7)=47.4
MATRIX(4,3)=47.4

IF ABS(X)<100 THEN...
IF ABS(ARRAY(7))<100 THEN...
IF ABS(MATRIX(4,3))<100 THEN...

11

The BASIC XL Programming Environment

2.1.3 String Variables (svar)

String variables are used to store literal strings of
characters. A literal string of characters is simply a
group of characters enclosed in double quotes:

"this is a literal string"
"numbers in quotes are strings: 34344.2"

String variable names are just like arithmetic variable
names, except that they must end with a '$', as in the
following examples:

STRING$
A$

To dimension the size of a string variable (i.e.,
define how many characters it may hold), you use the
DIM statement (also see 2.1.5):

DIM STRING$(66)
DIM A$(10)

NOTE: BASIC XL will auto-dimension a string variable if
you don't manually DIMension it. See 3.15 for more info
on this feature.

With arrays and matrices the first element is the
zeroth, but with strings the first element is the
first, e.g.:

DIM A$(10)
A$="A String"

A$(l)="A", and A$(0) generates an error because the
first element of a string is (1), not (0) (as in arrays
and matrices).

2.1.4 String Array Variables (savar)

A string array is very similar to a normal arithmetic
array (section 2.1.2), except that each element is a
string, not a number.

As with string variables, a string array variable must
have its name end with a '$', and it is dimensioned
using DIM. However, there are two quantities which need
to be dimensioned -- the number of elements and the
size of each element. The following examples show

12

Chapter 2: VARIABLES, OPERATORS, EXPRESSIONS

how to do this (also see section 2.1.5):

 DIM Strarray$(4,40)
 DIM A$(10,100)

The first example dimensions a string array called
"Strarray$" with 4 elements. Each element is a string
40 characters long. The second example dimensions the
string array "A$" to 10 elements, with each element
being 100 characters in length.

To access one of the elements of a string array you
specify the element number (the first element is number
1, not 0 as in arithmetic arrays) followed by a semi-
colon (:). An example follows:

 100 DIM A$(3,6)
 200 A$(l:)-"TEST"
 300 A$(2:)="STRING"
 400 A$(3:)="ARRAY"

2.1.5 DIM

 Format: DIM svar(aexp[,aexp]) [,svar(aexp[,aexp])...]
 DIM mvar(aexp[,aexp]) r,mvar(aexp[,aexp])...]

 Example: DIM A(100)
 DIM M(6,3)
 DIM B$(20)
 DIM A$(20,40)

A DIM statement is used to reserve a certain number of
locations in memory for an array, matrix, string, or
string array.

The first example reserves l~l locations (each of which
can contain any legal numeric quantity) for an array
designated A.

The second example reserves 7 rows by 4 columns for a
two-dimensional array (matrix) designated M.

The third example reserves 20 bytes for the string
'B$'.

NOTE: BASIC XL contains an auto DIMension capability
for simple string variables only which you can control.
For more info, see SET, section 3.15.

The fourth example reserves a string array of 20
elements, with each string element being 40 characters
long.

13

The BASIC XL Programming Environment

2.2 Operators

BASIC XL has two types of operators:

 1) Arithmetic Operators
 2) Logical (relational) Operators

As you will see in the expressions sections, either of
these two types of operators may be used in arithmetic
expressions, while neither may be used in a string exp-
ression.

2.2.1 Arithmetic Operators (aop)

BASIC XL uses 8 arithmetic operators:

+ addition (also unary plus: e.g., +5)
- subtraction (also unary minus: e.g., -5)
* multiplication
/..division
^ exponentiation
& bitwise "AND" of two positive integers (both <= 65535)
! bitwise "OR" of two positive integers (both <= 65535)
% bitwise "EOR" of two positive integers (both <= 65535)

The first four are straightforward enough, but the last
four require some explanation.

The operator "^" is used to raise a number to a
specified power. The following examples should clarify
this:

 Exponent Expanded Result
 -------- -------- ------
 4^2 4*4 16
 5^3 5*5*5 125

 Bit-wise And
& tests two bytes bit by bit, Bit A Bit B Result
 returning a value based 1 1 1
 on this table: 0 1 0
 0 0 0
 1 0 0

 Example: 5 & 39 -- 00000101 (equals 5 decimal)
 00100111 (equals 39 decimal)
 & ----------
 00000101 (result of & is 5)

14

Chapter 2: VARIABLES, OPERATORS, EXPRESSIONS

 Bit-wise Or
% returns a value depen- Bit A Bit B Result
 dent on this table: 1 1 1
 0 1 1
 0 0 0
 1 0 1

 Example: 5 % 39 -– 00000101 (5)
 00100111 (39)
 % ----------
 00100111 (result of % is 39)

 Bit-wise XOR
! returns a value depen- Bit A Bit B Result
 dent on this table: 1 1 0
 1 0 1
 0 0 0
 0 1 1

 Example: 5 ! 39 -- 00000101 (5)
 00100111 (39)
 ! ----------
 00100010 (result of ! is 34)

2.2.2 Logical Operators (lop)

The logical operators consist of three types: rela-
tional, unary, and binary.

The rest of the binary operators are relational.

< The first expression is less
 than the second expression.
> The first expression is greater than the second.
= The expressions are equal to each other.
<= The first expression is less
 than or equal to the second.
>= The first expression is greater
 than or equal to the second.
<> The two expressions are not equal to each other.

Examples:

 X >= 7
 X <> INT(Y)

These operators are most frequently used in IF/THEN
statements (i.e., in relational tests), but may also be
used in arithmetic expressions. When used in this way,
a 1 results the logical test proved true, and a 0
results if the test proved false.

15

The BASIC XL Programming Environment

The unary operator is NOT, and the binary operators
are:

 AND -- Logical AND
 OR -- Logical OR

Examples:

10 IF A=12 AND T=0 THEN PRINT "GOOD" Both expressions
must be true before GOOD
is printed (that is, A
must equal 12 and T must
equal 0).

10 A=(C>1) AND (N<1) If both expressions true,
A = +1; otherwise A = 0.

10 A = (C+1) OR (N-1) If either expression true,
A = +1; otherwise A = 0.

10 A = NOT(C+1) If expression is false,
A = +1; otherwise A = 0.

2.2.3 Operator Precedence

Operators require some kind of precedence, a defined
order of evaluation, or we wouldn't know how to
evaluate expressions like:

4+5*3

Is this equal to (4+5)*3 or 4+(5*3)? Without operator
precedence it's impossible to tell. BASIC XL's normal
precedence is very precise, as shown in the following
table. The operators are listed in order of highest to
lowest precedence. Operators on the same line are
evaluated left to right in an expression.

() Parentheses
< > = <= >= <> Relational Operators when

used to evaluate strings
in arithmetic expressions

NOT + - NOT, Unary Plus and Minus
^ Exponentiation
% ! & bitwise EOR, OR, AND
* / Multiplicative Operations
+ - Additive Operations
< > = <= >= <> Relational Operators
AND Logical 'and'
OR Logical 'or'

Examples showing the above precedence in use can be
found in section 2.3.2.

16

Chapter 2: VARIABLES, OPERATORS, EXPRESSIONS

2.3 Expressions (exp)

Expressions are constructions which obtain values from
variables. constants, and functions using a specific
set of operators. In BASIC XL there are two types of
expressions -- arithmetic and string. Each of these is
dealt with separately. but before going into the
expressions themselves something needs to be said about
the constant numbers used in arithmetic expressions.

2.3.1 Numbers

All numbers in BASIC XL are BCD floating point, but
there are two ways to enter them in decimal or
hexadecimal.

Decimal numbers may either be whole integers.
fractions, or scientific notation. The following are
examples of each:

Integers: Fractions: Sci. Notation:
--------- ---------- --------------
 4027 -67.254 4.33E2
 -2 325.04 23.4E-14

The 'E' in the scientific notation examples stands for
"exponent". The number following it is the power of
ten (e.g., 4.33E2 means "4.33 multiplied by 10
squared").

Hexadecimal numbers can only be integers. and the
digits must be preceded by a '$', as in the following
examples:

 $4A30 -$0A $6FF
 -$E -$A000 $FFFF

The maximum hexadecimal value allowed is $FFFF.

Internal Format of Numbers

Numbers are represented internally in 6 bytes. There is
a 5 byte mantissa containing 10 BCD digits and a one
byte exponent.

The most significant bit of the exponent byte gives the
sign of the mantissa (0 for positive, 1 for negative).
The least significant 7 bits of the exponent byte gives
the exponent in excess 64 notation. Internally, the
exponent represents powers of 100 (not powers of 10).

17

The BASIC XL Programming Environment

Example:
 0.02 = 2 * 10^-2 = 2 * 100^-1

exponent = -1 + 40 = 3F

 0.02 = 3F 02 00 00 00 00

The implied decimal point is always to the right of the
first byte. An exponent less than hex 40 indicates a
number less than 1. An exponent greater than or equal
to hex 40 represents a number greater than or equal to
1.

Zero is represented by a zero mantissa and a zero
exponent.

In general, numbers have a 9 digit precision. For
example, only the first 9 digits are significant when
INPUTing a number. Internally the user can usually get
10 significant digits in the special case where there
are an even number of digits to the right of the
decimal point (0,2,4,...).

2.3.2 Arithmetic Expressions (aexp)

Arithmetic expressions are those which evaluate to a
number. Following is a list of expression elements
which are considered to be numbers:

 1) a constant number

 2) an avar (including subscripted mvars)

 3) a function which returns a number

 4) two sexps compared using a relational operator

The first three are straightforward, but the fourth
requires an example:

 100 S$="ABC"
 200 PRINT S$< "DEF"
 300 END

prints out:
 1

because the logical comparison of the two strings is
true.

An arithmetic expression can simply be one of the
above, or two or more of the above separated by

18

Chapter 2: VARIABLES, OPERATORS, EXPRESSIONS

operators (either arithmetic or logical). The
following are examples of arithmetic expressions,
including the order of the operators' evaluation (in
any) and the result:

Expression evaluation Order Result
---------- ---------------- ------
3*(4+(21/7)*2) /,*,+,* 30

"ABC">"DEF"+7*(ASC("A")) >,ASC,*,+ 455

X=100 : Y=2
INT(X*Y/3) *,/,INT 66

2.3.3 String Expressions (sexp)

String expressions are much simpler than arithmetic
expressions since there are fewer things they can be.
The following list shows all the valid string
expression possibilities:

 1) a string constant

 2) an svar (including subscripted string arrays)

 3) a function which returns a string

 4) a substring of an svar or string array

This is the first time we've seen the word "substring"
used, so we need to define and to explain it.

 Definition when Definition when
String Destination String Source String
------ ------------------ ---------------

S$ the entire string from 1st thru LEN
 1 thru DIM value character

S$(n) from nth thru from nth thru
 DIMth character LENgth character

S$(n,m) from the nth thru from the nth thru
 the mth character the mth character

SA$(e;) same as S$, except same as S$, except
 string is eth string is eth
 element of SA$ element of SA$

SA$(e;n) same as S$(n), same as S$(n),
 except string is except string is
 eth element of SA$ eth element of SA$

19

The BASIC XL Programming Environment

 Definition when Definition when
String Destination String Source String
------ ------------------ ---------------

SA$(e;n,m) same as S$(n,m) same as S$(n,m)
 except string is except string is
 eth element of SA$ eth element of SA$

A destination string is one to which something is being
assigned. Any other string is a source string. In

 X$=Y$ READ X$ INPUT X$
 RPUT Y$ PRINT Y$ etc.

X$ is the destination string, Y$ is the source string.

An error occurs if either the first or last specified
character (n and m, above), or the element number (in
the case of string arrays) is outside the DIMensioned
size. Also, an error occurs if the last character
position given (explicitly or implicitly) is less than
the first character position.

Source Example: (Assume A$ = "VWXYZ")

 1) PRINT A$(2) prints: WXYZ

 2) PRINT A$(3,4) prints: XY

 3) PRINT A$(5,5) prints: Z

 4) PRINT A$(7)
 is an error because A$ has a length of 5.

Destination Example: (Assume DATA "VWXYZ")

 1) READ D$
 PRINT D$ prints: VWXYZ

20

Chapter 3: PROGRAM DEVELOPMENT COMMANDS

Some of the commands available in BASIC XL are designed
specifically to aid in quick and effective program
development. The operations these commands execute are
too diverse to describe in detail here, so we'll simply
give their names and refer you to the section in which
the particular command is discussed:

 BYE LIST RENUM
 CLR LOMEM RUN
 CONT LVAR SET
 DEL NEW STOP
 DOS NUM TRACE
 FAST REM TRACEOFF

3.1 BYE (B.)

 Format: BYE

 Example: BYE

The function of the BYE command is to exit BASIC XL and
put the computer in Memo Pad mode. This allows you to
experiment with the keyboard or to leave messages on
the screen without disturbing any BASIC XL program in
memory. To return to BASIC XL, press <SYSTEM RESET>.

3.2 CLR

 Format: CLR

 Example: 200 CLR

This command clears the memory of all previously
dimensioned strings, arrays, and matrices so the memory
and variable names can be used for other purposes. It
also clears the values stored in undimensioned
variables. If a matrix, string, or array is needed
after a CLR command, it must be redimensioned with a
DIM command.

21

The BASIC XL Programming Environment

3.3 CONT (CON.)

 Format: CONT

 Example: CONT
 100 CONT

In direct mode, this command resumes program execution
after a STOP statement, a <BREAK> key abort, or any
stop caused by an error.

CAUTION: Execution resumes on the line following the
halt, so any statements following the halt (and on the
same line as the halt) will not be executed.

In deferred mode, CONT may be used for error trap
handling.

Example:
 10 TRAP 100
 20 OPEN #1,12,0,"D:X"
 30
 ..
 ..
 100 IF ERR(0)=170 THEN
 OPEN #l,8,0,"D:X":CONT

In line 20 we attempt to open a file for updating. If
the file does not exist, a trap to line 100 occurs. If
the "FILE NOT FOUND" error occurred, the file is opened
for output (and thus created) and execution continues
at line 30 via "CONT".

3.4 DEL

 Format: DEL line[,line]

 Example: DEL 1000,1999

DEL deletes program lines currently in memory. If two
line numbers are given (as in the example), all lines
between the two numbers (inclusive) are deleted. A
single line number deletes a single line.

Example:
 100 DEL 1000,1999
 110 SET 9,1:TRAP 1000
 120 ENTER "D:OVERLAY1"
 1000 REM These lines are deleted by line 100.
 1010 REM Presumably they will be overlaid by
 1998 REM the program ENTERed in line 120.
 1999 REM See 'ENTER' and 'SET' for more info.

22

Chapter 3: PROGRAM DEVELOPMENT COMMANDS

3.5 DOS

 Format: DOS

 Example: DOS

The DOS command is used to go from BASIC XL to the Disk
Operating System (DOS). If the Disk Operating System
has not been booted into memory, the computer will go
into Memo Pad mode and the user must press <SYSTEM
RESET> to return to Direct mode. If the Disk Operating
System has been booted, control is given to DOS. To
return to BASIC XL, press 'CAR' <RETURN> for OS/A+ or
DOS XL, or press 'B' <RETURN> for Atari DOS.

NOTE: The command CP is exactly equivalent to DOS.

DOS is usually used in Direct mode; however, it may be
used in a program. For more details on this, see your
DOS manual.

3.6 FAST

 Format: [lineno] FAST

 Example: FAST
 l00 FAST

During normal program execution BASIC XL must search
(from the beginning) for a specified line number
whenever it encounters a GOTO, GOSUB, FOR, or WHILE
(this is how most of the other BASICs do it too).
However, you can change this by using the FAST command.

When BASIC XL sees 'FAST', it does a precompile of the
program currently in memory. During the precompile
BASIC XL changes every line number to the address of
that line in memory. Now, when a GOTO, GOSUB, FOR, or
WHILE is executed, no line number search is needed,
since BASIC XL can simply jump right to the specified
line's address.

NOTE: if the lineno used in the GOTO or GOSUB is not a
constant (i.e., is a variable or an expression), then
that lineno will not be affected by FAST, and so will
RUN at normal speed.

23

The BASIC XL Programming Environment

3.7 LIST (L.)

 Format: LIST [lineno[,lineno]]
 LIST ["filespec"[,lineno[,lineno]]]

 Examples:

 LIST
 LIST 10
 LIST 10,100
 LIST 10,
 LIST "P:"
 LIST "D:DEMO.LST"
 LIST "P:",20,100

LIST causes the program currently in memory to be
displayed. You can display a single line by giving the
line number after the 'LIST', or display a group of
lines by giving the starting line number and ending
line number (separated by a comma) after the 'LIST'.

If you give the starting line number, a comma, and no
end address, the ending line number is assumed to be
the last line in the program.

If no line number(s) is given, the entire program is
displayed.

You can also redirect the display to a file by entering
the filespec enclosed in double quotes immediately
after the 'LIST'. You can then add any of the line
number specifications described above to list only what
you want to that file.

LIST can be used in Deferred mode as part of an error
trapping routine (See TRAP in Section 4).

NOTE: the quotes around the filespec are required for
LIST, unless of course a string variable is used.

3.8 LOMEM

 Format: LOMEM addr

 Example: LOMEM DPEEK(128)+1024

This command is used to reserve space below the normal
program space. You could then use this space for
screen display information or assembly language
routines. The usefulness of this may be limited,
though, since there are other more usable reserved
areas available.

24

Chapter 3: PROGRAM DEVELOPMENT COMMANDS

CAUTION: LOMEM wipes out any user program currently in
memory.

3.9 LVAR (LV.)

 Format: LVAR [filespec]

 Example: LVAR P:

This statement will list (to any file) all variables
currently in use. Each variable is followed by a list
of the lines on which that variable is used. The
example above will list the variables to the printer.
If no filespec is used then LVAR lists to the screen.

NOTE: strings are denoted by a trailing '$', arrays by
a trailing '('.

WARNING: LVAR must be the last (or only) command on a
line.

3.10 NEW

 Format: NEW

 Example: NEW

This command erases the program stored in RAM.
Therefore, before typing NEW, either SAVE or CSAVE any
programs to be recovered and used later. NEW clears
BASIC's internal symbol table so that no arrays (See
Section 8) or strings (See Section 7) are defined. NEW
is normally used in Direct mode but is sometimes useful
in deferred mode as an alternative to END.

3.11 NUM

 Format: NUM [start][,increment]

 Example: NUM
 NUM 50
 NUM ,1
 NUM 50,1

The NUM command enables BASIC XL's automatic line
numbering facility. This facility can increase your
program entry speed because it puts in the program line
numbers for you.

If no start or increment is given (first example), NUM
will start numbering from the last line number
currently in the program in increments of 10. If there

25

The BASIC XL Programming Environment

is no current program, NUM will start with line number
10.

If the starting line number alone is given (second
example), NUM will start numbering from that line
number in increments of 10.

If the increment alone is given (third example), NUM
will start numbering from the last line currently in
the program, incrementing by the number you gave it as
an increment.

If both the starting line number and the increment are
given (last example), NUM will start numbering from the
given line number and increment by the given increment
value.

Three things cause the automatic line numbering to
stop:

1) If you press <RETURN> immediately following
the line number.

2) If a syntax or similar error is encountered on
a program line you type in.

3) If the next automatic line number is the same
as a line number already in the program. This
keeps you from overwriting previously written
parts of your program.

NOTE: If the starting line number you give already
exists, then the automatic line numbering will not
begin.

3.12 REM (R.)

 Format: REM text

 Examples: 10 REM ROUTINE TO CALCULATE X
 20 GOSUB 300 : REM Find Totals

REM stands for "remark" and,is used to put comments
into a program. This command and the text following it
on the same line are ignored by the computer. However,
it is included in a LIST along with the other numbered
lines. Since all characters following a REM are
treated as part of the REMark, no statements following
it (on the same logical line) will be executed.

26

Chapter 3: PROGRAM DEVELOPMENT COMMANDS

3.13 RENUM

 Format: RENUM [start][,increment]

 Examples: RENUM
 RENUM 100
 RENUM ,30
 RENUM 1000,5

RENUM renumbers the entire program as it currently
resides in memory. The first line in memory is given
the line number specified by 'start', and each
subsequent line number is one 'increment' greater than
the last.

All line number references (e.g., in GOTO, GOSUB, etc.)
are also renumbered IF the line numbers are absolute
numbers. Line number expressions (e.g., GOTO
1000+l0*INDEX) will NOT be renumbered.

If no 'start' line number is given, RENUM assumes a
starting line number of 10. If no 'increment' is given,
RENUM will renumber lines in increments of 10. (That
is, just typing 'RENUM' is equivalent to typing 'RENUM
10,10'.)

As noted in the examples above, both start and
increment are separately optional.

WARNING: If you use LIST in deferred mode (i.e., in a
program) the lineno values you want to list will not be
RENUMbered.

WARNING: RENUM will not renumber absolute linenos after
a lineno expressed as an expression. Example:

 ON X GOSUB 100,3*Y,200

In this example 100 will be RENUMbered, but 200 will
not, since it follows a lineno expressed as an
expression (3*Y).

3.14 RUN

 Format: RUN [filespec]

 Examples: RUN
 RUN D:MENU

This command causes the computer to begin executing a
program. If no filespec is specified, the current RAM-
resident program is executed. If a filespec is
included, the computer retrieves the tokenized program

27

The BASIC XL Programming Environment

from the specified file, executes a FAST command (see
section 3.6), and then executes the program.

Before execution begins all variables (including
arrays, strings, and matrices) are set to zero, all
open files (channels) are closed, and all sounds are
turned off.

Unless the TRAP command is used, an error will cause
the execution to halt and an error message will' be
displayed.

RUN can also be used in Deferred mode.

Examples: 10 PRINT "OVER AND OVER AGAIN."
 20 RUN

Type RUN and press <RETURN>. To end, press <BREAK>.

To begin program execution at a point other than the
first line number, type GOTO followed by the specific
line number, then press <RETURN>. CAUTION: arithmetic
variables, arrays, and strings are neither cleared or
initialized by GOTO.

NOTE: RUN must be the last (or only) command on a line.

3.15 SET

 Format: SET aexp1,aexp2

 Example: 100 SET 1,5

SET is a statement which allows you to exercise control
over a variety of BASIC XL system level functions. The
table below summarizes the various SET table parameters
(default values are given in parentheses).

aexp1 aexp2 Meaning
----- ----- -------
 0 (0) 0 - BREAK key functions normally
 1 - User hitting BREAK cause an error
 to occur (TRAPable)
 128 - BREAKs'are ignored

 1 (l0) 1 - Tab stop setting for the comma in
 thru PRINT statements.
 128

 2 (63) 0 - Prompt character for INPUT (default
 thru is "?").
 255

28

Chapter 3: PROGRAM DEVELOPMENT COMMANDS

aexp1 aexp2 Meaning
----- ----- -------
 3 (0) 0 - FOR...NEXT loops always execute at
 least once (ala ATARI BASIC).
 1 - FOR loops may execute zero times
 (ANSI standard)

 4 (0) 0 - On a multiple variable INPUT, if the
 user enters too few items, he is
 reprompted (e.g., with "??")
 1 - Instead of reprompting, a TRAPable
 error occurs.

 5 (1) 0 - Lower case and inverse video
 characters remain unchanged without
 causing syntax errors (BASIC XL
 allows mixed case program entry).
 1 - For program entry ONLY, lower case
 letters are converted to upper case
 and inverse video characters are
 uninverted. EXCEPTION: characters
 between quotes remain unchanged.

CAUTION: this conversion applies to
REMarks and DATA statements also.
For total compatibility with Atari
BASIC, it might be best to use SET
5,0.

 6 (0) 0 - Print error messages along with
 error numbers (for most errors)
 1 - Print only error numbers.

 7 (0) 0 - Missiles (in Player / Missile
 Graphics), which move vertically to
 the edge of the screen, roll off
 the edge and are lost.

 1 - Missiles wraparound from top to
 bottom and visa versa.

 8 (0) 0 - Don't push (PHA) the number of
 parameters to a USR call on the
 stack [advantage: some assembly
 language· subroutines not expecting
 parameters may be called by a
 simple USR(addr)].
 1 - DO push. the count of parameters
 (ATARI BASIC standard).

aexp1 aexp2 Meaning

29

The BASIC XL Programming Environment

----- ----- -------
 9 (0) 0 - ENTER statements return to the
 READY prompt level on completion.
 1 - If a TRAP is properly set, ENTER
 will execute a GOTO the TRAP line
 on end-of-entered-file.

 10 (0) 0 - The four missiles act separately;
 that is, as four missiles.
 1 - The four missiles are grouped into
 a fifth player. To move this
 player, you need only do a PMMOVE
 of one of the missiles since they
 are all grouped together.

 11 (40) 1 - BASIC XL will DIM a string to this
 thru size if you do not use a DIM
 255 statement to otherwise dimension
 it.

 0 - BASIC XL works like Atari BASIC

 12 (1) 0 - The program LIST formatter does not
 indent when you use structured
 statements (FOR, WHILE, etc.).
 1 - The LIST formatter does indent when
 you use structured statements.

NOTE: The SET parameters are reset to the system
defaults on execution of a NEW statement.

Examples:
 1) SET 1,4 : PRINT 1,2,3,4

 The number will be printed every
 four columns.

 2) SET 2, ASC(">")

 Changes the INPUT prompt from "?" to ">".

 3) 100 SET 9,1 : TRAP 120
 110 ENTER "D:OVERLAY.LIS"
 l20 REM execution continues here after
 l30 REM entry of the overlay

 4) 100 SET 0,l : TRAP 200
 110 PRINT "HIT BREAK TO CONTINUE"
 120 GOTO 110
 200 REM come here via BREAK KEY
 5) 100 SET 3,1

30

Chapter 3: PROGRAM DEVELOPMENT COMMANDS

 110 FOR I = 1 TO 0
 120 PRINT THIS LINE WON'T BE EXECUTED"
 130 NEXT I

3.16 STOP

 Format: STOP

 Example: 100 STOP

When the STOP command is executed in a program, BASIC
XL displays the message STOPPED AT LINE 1ineno,
terminates program execution, and returns to Direct
mode. The STOP command does not close files or turn
off sounds (as does END), so the program can be resumed
by typing CONT <RETURN> (see section 3.3 for more info
on CONT).

3.17 TRACE and TRACEOFF

 Formats: TRACE
 TRACEOFF

 Examples: 100 TRACE
 TRACEOFF

These statements are used to enable or disable the line
number trace facility of BASIC XL. When in TRACE mode,
the line number of a line about to be executed is
displayed on the screen surrounded by square brackets.

Exceptions: The first line of a program does not have
its number traced. The object line of a
GOTO or GOSUB and the looping line of FOR
or WHILE may not be traced.

NOTE: A direct statement (e.g., RUN) is TRACED as
having line number 32768.

31

The BASIC XL Programming Environment

32

Chapter 4: PROGRAM CONTROL STATEMENTS

This chapter explains the commands associated with
loops, conditional and unconditional branches, error
traps, and subroutines. It also explains the means of
accessing data and the optional command used for
defining variables.

The following commands are described in this chapter:

 Assignment Statement LET
 END MOVE
 FOR...TO...STEP/NEXT ON...GOTO/GOSUB
 GOSUB...RETURN POP
 GOTO RESTORE
 IF...THEN TRAP
 IF...ELSE...ENDIF WHILE...ENDWHILE

4.1 Assignment Statement

 Format: avar=aexp
 mvar(aexp)=aexp
 svar(aexp;)=sexp[,sexp...]
 svar=sexp[,sexp...]

 Example: X=9
 I=X+7*9
 ARRAY(7)=23.75
 A$(4;)="A STRING ARRAY ELEMENT"
 S$="THIS IS A STRING"
 M$="CONCATENATED"
 C$=S$," WHICH IS ",M$

The assignment statement is used to assign a value to a
variable, and can be used with arithmetic, matrix
(array), or string variables (including string arrays).

The first and second examples given simply equate an
avar to an aexp. If you insert a 'PRINT I' statement
after the second example, 72 (the value of I) will be
printed. The third equates one element of a mvar to an
aexp.

The fourth example is somewhat more complicated; it
equates one element of a string array to a sexp (in
this case a string constant).

The fifth and sixth examples equate svars to sexps.

33

The BASIC XL Programming Environment

String concatenation may be accomplished via the form
shown in the last example above. Note that

 A$=B$,C$

is exactly equivalent to

 A$=B$
 A$(LEN(A$)+l)=C$

From this you can see that C$ in the last example is
equal to "THIS IS A STRING WHICH IS CONCATENATED".

Here is another example:

 l00 DIM A$(100),B$(100)
 200 A$="123"
 300 B$="ABC"
 400 A$=A$,B$,A$
 500 REM At this point A$ = "123ABC123ABC"
 600 A$(4,9)="X",STR$(3*7),"X"
 700 REM At this point, A$="123X21X23ABC"
 800 A$(7)=A$(1,3)
 900 REM Finally, A$="123X2ll23"

NOTE: for more information on variables and
expressions, see chapter 2.

4.2 END

 Format: END

 Example: 1000 END

This command is used to terminate the execution of a
program. In addition to this, it also closes all files
and turns off any sounds. It does not change the
GRAPHICS mode, however. END is not required in most
programs because BASIC XL automatically closes all
files and turns off any sounds after the last program
line has executed.

If you have any subroutines following the main program
you should put an END at the end of the main program;
otherwise the subroutines will be executed as part of
the main program.

END may also be used in Direct mode to close files and
turn off sounds.

34

Chapter 4: PROGRAM CONTROL STATEMENTS

4.3 FOR(F.)...TO...STEP / NEXT(N.)

 Format: FOR avar = aexp1 TO aexp2 [STEP aexp3]
 NEXT avar

 Examples: FOR X = 1 TO 10
 NEXT X

 FOR Y = 10 TO 20 STEP 2
 NEXT Y

 FOR INDEX = Z TO 100 * Z
 NEXT INDEX

The FOR statement is used to repeat a group of
statements a specified number of times. It does this by
initializing the loop variable (avar) to the value of
aexp1. Each time the NEXT avar statement is
encountered, the loop variable is incremented by the
amount specified by aexp3 in the 'STEP' option. aexp3
can be either positive or negative, either a fraction
or a whole number. If the 'STEP' option is not used,
the loop increments by one. When the loop completes the
limit as defined by aexp2, it stops and the program
proceeds to the statement immediately following the
NEXT statement.

FOR loops can be nested, one within another. In this
case, the innermost loop is completed before returning
to the outer loop. The following example illustrates a
nested loop program.

 10 FOR X=1 TO 3 : REM START OF OUTER LOOP
 20 PRINT "OUTER LOOP"
 30 Z=0
 40 Z=Z+2
 50 FOR Y=1 TO 5 STEP Z : REM START OF INNER LOOP
 60 PRINT" INNER LOOP"
 70 NEXT Y : REM END OF INNER LOOP
 80 NEXT X : REM END OF OUTER LOOP
 90 END

The outer loop will complete three passes (X = 1 to 3).
However, before this first loop reaches its NEXT X
statement, the program gives control to the inner loop.
Note that the NEXT statement for the inner loop must
precede the NEXT statement for the outer loop. Tn the
example, the inner loop's number of passes is
determined by the STEP statement (STEP Z). In this
case, Z has been defined as 0, then redefined as Z+2.
Using this data, the computer must complete three
passes through the inner loop before returning to the

35

The BASIC XL Programming Environment

outer loop. The following is the output of the program
when it is RUN:

 OUTER LOOP
 INNER LOOP
 INNER LOOP
 INNER LOOP
 OUTER LOOP
 INNER LOOP
 INNER LOOP
 INNER LOOP
 OUTER LOOP
 INNER LOOP
 INNER LOOP
 INNER LOOP

The return addresses for the loops are placed in a
special group of memory addresses referred to as a
stack. The information is "pushed" on the stack and
when used, the information is "popped" off the stack
(see POP).

4.4 GOSUB (GOS.) / RETURN (RET.)

 Format: GOSUB lineno1
 lineno1
 :
 :
 lineno2 RETURN

 Example: 100 GOSUB 2000
 2000 PRINT "SUBROUTINE"
 2010 FOR X=1 TO 10
 2020 PRINT X,X*X
 2030 NEXT X
 2040 RETURN

A subroutine is a program or routine used to compute a
certain value,etc. It is generally used when an
operation must be executed several times within a
program sequence using the same or different values.
This command allows the user to "call" the subroutine,
if necessary. The last line of the subroutine must
contain a RETURN statement: The RETURN statement goes
back to the physical line following the GOSUB
statement.

Generally, a subroutine can do anything that can be
done in a program. It is used to save memory and
program-entering time, and to make programs easier to
read and debug.

36

Chapter 4: PROGRAM CONTROL STATEMENTS

Like the preceding FOR/NEXT command, the GOSUB/RETURN
command uses a stack for its return address. If the
subroutine is not allowed to complete normally; e.g., a
GOTO lineno before a RETURN, the GOSUB address must be
"popped" off the stack (see POP) or it could cause
future errors.

To prevent accidental triggering of a subroutine (which
normally follows the main program), place an END
statement preceding the subroutine. The following
program demonstrates the use of subroutines.

 10 PRINT CHR$(125) :REM this clears the screen
 20 REM EXAMPLE USE OF GOSUB/RETURN
 30 X=100
 40 GOSUB 1000
 50 X=120
 60 GOSUB l000
 70 X=50
 80 GOSUB l000
 90 END
 1000 Y=3*X
 1010 x=x+y
 1020 PRINT X,Y
 1030 RETURN

In the above program, the subroutine, beginning at line
1000, is called three times to compute and print out
different values of X and Y. Below are the results of
executing this program.

 400 300
 400 360
 200 150

4.5 GOTO (G.)

 Format: [lineno) GOTO aexp

 Examples: 100 GOTO 50
 500 GOTO (X+y)

The GOTO command is an unconditional branch statement
just like the GOSUB command. They both immediately
transfer program control to a target line number or
arbitrary expression. However, You cannot RETURN from
a GOTO, as you can with a GOSUB. If the target line
number is non-existent, an error results. Any GOTO
statement that branches to a preceding line may result
in an "endless" loop. Statements following a GOTO
statement will not be executed. Note that a
conditional branching statement (see IF/THEN) can be

37

The BASIC XL Programming Environment

used to break out of a GOTO loop. The following program
illustrates uses the GOTO statement twice.

 10 FINISH=70
 20 PRINT :PRINT "ONE"
 30 PRINT "TWO"
 40 PRINT "THREE"
 50 PRINT "FOUR"
 60 PRINT "FIVE"
 65 GOTO 100
 70 PRINT "$$$$$$$$$$$$$$$$$"
 80 PRINT "/././././././././././././././././."
 90 PRINT "????????????????"
 95 END
 100 PRINT "SIX"
 110 PRINT "SEVEN"
 120 PRINT "EIGHT"
 130 PRINT "NINE"
 140 PRINT "TEN"
 150 GOTO FINISH

Upon execution, the numbers in the above listing will
be listed first followed by the three rows of symbols.
The symbols listed on lines 70, 80, and 90 are ignored
temporarily while the program executes the GOTO 100
command. It proceeds with the printing of the numbers
"SIX" through "TEN", then executes the second GOTO
statement which transfers program control back to line
70. (This is just an example. This program could be
rewritten so that no GOTO statements were used.) The
program, when executed, looks like the following:

 ONE
 TWO
 THREE
 FOUR
 FIVE
 SIX
 SEVEN
 EIGHT
 NINE
 TEN
 $$$$$$$$$$$$$$$$$
 /././././././././././././././././.
 ?????????????????

NOTE: using anything other than a constant will make
renumbering the lineno in the GOTO (using RENUM)
difficult. However, readability may be markedly
improved.

38

Chapter 4: PROGRAM CONTROL STATEMENTS

4.6 IF/THEN

 Format: IF aexp THEN lineno
 IF aexp THEN statement [:statement...]

 Examples: IF X = 100 THEN 150
 IF A$ = "ATARI" THEN 200
 IF AA = 145 and BB = 1 THEN PRINT
 AA,BB
 IF X = 100 THEN X = 0

See also IF...ELSE...ENDIF discussion in the following
section.

The IF/THEN statement is a conditional branch
statement. This type of branch occurs only if certain
conditions are met. These conditions may be either
arithmetical or logical. If the aexp following the IF
statement is true and/or non-zero, the program executes
the THEN part of the statement. If, however, the aexp
is false and/or zero, the rest of the statement is
ignored and program control passes to the next numbered
line.

In the format, IF aexp THEN lineno

lineno must be a constant (not an expression)
specifying the line number to go to if the expression
is true. If several statements occur after the THEN,
separated by colons, then they will be executed if and
only if the expression is true. Several IF statements
may be nested on the same line. For example:

 100 IF X=5 THEN IF Y=3 THEN R=9: GOTO 200

The statements R=9 : GOTO 200 will be executed only if
X=5 and Y=3. The statement Y=3 will be executed if X=5.
The following program demonstrates the IF/THEN
statement:

 100 GRAPHICS 0 : PRINT
 110 PRINT ,,"IF DEMO"
 120 PRINT : PRINT "ENTER A"; : INPUT A
 130 IF A=1 THEN 150 : REM Multiple Statements
 here will never be executed!!!
 140 PRINT : PRINT "A IS NOT 1, "EXECUTION
 CONTINUES HERE WHEN EXPRESSION IS FALSE."
 150 IF A=1 THEN PRINT : PRINT "A=1?" : PRINT
 "YES, IT IS REALLY 1." : REM Multiple statements
 here will be executed only if A=1!!!
 160 PRINT : PRINT "EXECUTION CONTINUES HERE IF
 A <> 1 OR AFTER 'YES, IT IS REALLY 1' IS DISPLAYED."
 170 GOTO 100

39

The BASIC XL Programming Environment

Output of the above program is:

 IF DEMO

 ENTER A ? (entered 2)
 A IS NOT 1. EXECUTION CONTINUES HERE WHEN
 THE EXPRESSION IS FALSE.
 EXECUTION CONTINUES HERE IF A<>l OR AFTER
 'YES', IT IS REALLY 1' IS DISPLAYED.

 ENTER A ? (entered 1)

 A=l
 YES, IT IS REALLY 1.
 EXECUTION CONTINUES HERE IF A <> 1 OR AFTER
 'YES, IT IS REALLY 1' IS DISPLAYED.

4.7 IF...ELSE...ENDIF

 Format: IF aexp; statement [:statements...]
 [ELSE: [statements...]]
 ENDIF

 Examples: 200 IF A>100:PRINT "TOO BIG"
 210 A=100
 220 ELSE:PRINT "A-OK"
 230 ENDIF

 1000 IF A>C : B=A : ELSE : B=C : ENDIF

BASIC XL makes available an exceptionally powerful
conditional capability via IF...ELSE...ENDIF.

In the format given, if the expression is TRUE
(evaluates as non-zero) then all statements between the
following colon and the corresponding ELSE (if it
exists) or ENDIF (if no ELSE exists) are executed; if
ELSE exists, the statements between it and ENDIF are
skipped.

If the expression is FALSE (evaluates to zero), then
the statements (if any) between the colon and ELSE are
skipped and those between ELSE and ENDIF are executed.
If no ELSE exists, all statements through the ENDIF are
skipped.

CAUTION: The colon following the aexp IS REQUIRED and
MUST be followed by a statement. The word THEN is NOT
ALLOWED in this format.

There may be any number (including zero) of statements
and lines between the colon and the ELSE and between
the ELSE and the ENDIF.

40

Chapter 4: PROGRAM CONTROL STATEMENTS

The second example above sets B to the larger of the
values of A and C.

This IF structure may also be nested, as follows:

 100 IF A>B : REM SO FAR A IS BIGGER
 110 IF A>C : PRINT "A BIGGEST"
 120 ELSE: PRINT "C BIGGEST"
 130 ENDIF
 140 ELSE
 150 IF B>C : PRINT "B BIGGEST"
 160 ELSE: PRINT "C BIGGEST"
 170 ENDIF
 180 ENDIF

4.8 LET

 Format: [LET] <assignment statement>

 Example: LET GOTO=3.5
 LET LETTER$="a"
 LET AND$="*",AS,A$,A$,A$,A$

LET is an optional keyword which allows you to assign a
value to a variable name which starts with or is
identical to a reserved name. For example:

 10 LET GOSUBBER = 5
 20 LET PRINT = 7
 30 LET LET = PRINT + GOSUBBER
 40 PRINT PRINT,LET,GOSUBBER

will print out:
 7 12 5

There are a few keywords which CANNOT be used as
variable names through the use of LET, including any
function name and the NOT unary operator.

Here is is an example of what will happen if you try to
use one of the above as a variable name:

 10 CSHARP = 37
 20 LET NOTE = CSHARP
 30 PRINT NOTE

will print out: 1

If you LIST the program out you will see why. It lists
"30 PRINT NOTE" as
 30 PRINT NOT E

because the interpreter does not allow NOT to start a
variable name.

41

The BASIC XL Programming Environment

4.9 MOVE

 Format: MOVE aexp1,aexp2,aexp3

 Example: MOVE $0999, $8999, $499

CAUTION: be careful with this command!!

MOVE is a general purpose byte move utility which will
move any number of bytes from any address to any
address at assembly language speed. NO ADDRESS CHECKS
ARE MADE!!

aexp1 is the starting address of the block you want to
move, aexp2 is the starting address of the place where
you want the block moved to, and aexp3 is the length of
the block.

The sign of the third aexp (the length) determines the
order in which the bytes are moved, as follows:

 If the length is positive:
 (from) -> (to)
 (from+1) -> (to+1)

 (from+len-1) -> (to +len-1)

When the length is positive, the destination block can
overwrite lower part of the source block.

 If the length is negative:
 (from+len-1) -> (to+len-1)
 (from+len-2) -> (to+len-2)

 (from+1) -> (to +1)
 (from) -> (to)

When the length is negative, the destination block can
overwrite the upper part of the source block.

42

Chapter 4: PROGRAM CONTROL STATEMENTS

4.10 ON...

 Format: ON aexp |GOTO | lineno [,lineno...]
 |GOSUB|

 EXAMPLES: 100 ON X GOTO 200,300,400
 100 ON A GOSUB 1000,2000
 100 ON SQR(X) GOTO 30,10,100

NOTE: GOSUB and GOTO may not be abbreviated when used
in conjunction with ON.

These two statements are also conditional branch
statements like the IF/THEN statement. However, these
two are more powerful. The aexp must evaluate to a
positive number which is then rounded to the nearest
positive integer (whole number) value up to 255. If the
resulting number is 1, then program control passes to
the first lineno in the list following the GOSUB or
GOTO. If the resulting number is 2, program control
passes to the second lineno in the list, and so on.

If the resulting number is 0 or is greater than the
number of linenos in the list, the conditions are not
met and program control passes to the next statement
which may or may not be located on the same line. With
ON/GOSUB, the selected subroutine is executed and then
program control passes to the statement following the
ON/GOSUB.

The following routine demonstrates the ON/GOTO
statement:

 10 X-X+1
 20 ON X GOTO 100,200,300,400,500
 30 IF X>5 THEN PRINT "COMPLETE.":END
 40 GOTO 10
 50 END
 100 PRINT "NOW WORKING AT LINE 100":GOTO 10
 200 PRINT "NOW WORKING AT LINE 200":GOTO 10
 300 PRINT "NOW WORKING AT LINE 300":GOTO 10
 400 PRINT "NOW WORKING AT LINE 400":GOTO 10
 500 PRINT "NOW WORKING AT LINE 500":GOTO 10

When the program is executed, it looks like the
following:

 NOW WORKING AT LINE 100
 NOW WORKING AT LINE 200
 NOW WORKING AT LINE 300
 NOW WORKING AT LINE 400
 NOW WORKING AT LINE 500
 COMPLETE

43

The BASIC XL Programming Environment

4.11 POP

 Format: POP

 Example: 1000 POP

In the description of the FOR/NEXT statement, the stack
was defined as a group of memory addresses reserved for
return addresses. The top entry in the stack controls
the number of loops to be executed and the RETURN
target line for a GOSUB. If a subroutine is not
terminated by a RETURN statement, the top memory
location of the stack is still loaded with some
numbers. If another GOSUB is executed, that top
location needs to be cleared. To prepare the stack for
a new GOSUB, use a POP to clear the data from the top
location in the stack.

The POP command could be used in the following ways:

1) In a FOR or WHILE statement, when you wish jump
out of the loop before it has executed its
specified number of times (e.g., if you are
searching through a lot of data for a specific
item, you can leave the loop early by POPping
the stack, and then using GOTO to continue
execution after the NEXT). Example:

10 FLAG = 1
20 WHILE FLAG
30 INPUT FLAG
40 IF FLAG < 0 THEN POP : GOTO 70
50 PRINT "IN THE WHILE LOOP"
60 ENDWHILE
70 END

2) After a subroutine (GOSUB) which does not give
control back to the main program through the use
of a RETURN. The following example illustrates
this instance:

100 REM POP Demo
110 N = 1 : GOSUB 800
120 N = 2 : GOSUB 800
130 END
800 PRINT "At Line 800"
810 GOSUB 900
820 PRINT "At Line 820"
830 RETURN
900 PRINT "At Line 900"
910 IF N = 2 THEN POP
920 RETURN

44

Chapter 4: PROGRAM CONTROL STATEMENTS

4.12 RESTORE (RES.)

 Format: RESTORE [aexp]

 Example: 100 RESTORE
 220 RESTORE X+2

BASIC XL contains an internal "pointer" that keeps
track of the DATA statement item to be read next. When
used without the optional aexp, the RESTORE statement
resets that pointer to the first DATA item in the
program. When used with the optional aexp, the RESTORE
statement sets the pointer to the first DATA item on
the line specified by the value of the aexp.

This statement permits repetitive use of the same data,
as shown in the following example:

 10 FOR N=2 TO 1 STEP -1
 20 RESTORE 80+N
 30 READ A,B
 40 M=A+B
 50 PRINT "TOTAL EQUALS ";M
 60 NEXT N
 70 END
 81 DATA 30,15
 82 DATA 10,20

On the first pass through the loop, A will be 10 and B
will be 20 so the total in line 50 will print: TOTAL
EQUALS 30, but on the second pass, A will equal 30 and
B will equal 15, so the PRINT statement in line 58 will
display: TOTAL EQUALS 45.

4.13 TRAP (T.)

 Format: TRAP aexp

 Example: 100 TRAP 120

The TRAP statement is used to direct the program to a
specified line number if an error is detected. Without
a TRAP statement, the program stops executing when an
error is encountered and displays an error message on
the screen.

TRAP works for any error that may occur after it (the
TRAP statement) has been executed, but once an error
has been detected and trapped, it is necessary to reset
the error trapping with another TRAP statement. This
TRAP statement should be placed at the beginning of the
section of code that handles input from the keyboard so
that the TRAP is reset after each error.

45

The BASIC XL Programming Environment

You can find out the error number using the ERR
function with an argument of 0, and find out the lineno
on which the error occurred by using the ERR function
with an argument of 1 (see section 6.6.4 for a more
detailed discussion of ERR).

Alternatively, PEEK(195) will give you the error
number, and DPEEK(186) will give you the number of the
line where the error occurred.

A TRAP may be disabled by executing a TRAP statement
with an aexp whose value is zero (0), or between 32768
and 65535 (e.g., TRAP 40000).

4.14 WHILE...ENDWHILE

 Format: WHILE aexp : <statements> ENDWHILE

 Example: 100 A=3
 110 WHILE A : PRINT A
 l20 A=A-1 : ENDWHILE

With WHILE, the BASIC XL user has yet another powerful
control structure available. So long as the aexp of
WHILE remains non-zero, all statements between WHILE
and ENDWHILE are executed.

 Examples: WHILE 1 : ...
 The loop executes forever

 WHILE 0 : ...
 The loop will never execute

CAUTION: Do not GOTO out of a WHILE loop or a nesting
error will likely result (unless you use POP first).

NOTE: The aexp is only tested at the top of each
passage through the loop.

46

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES

This chapter describes the input/output devices and how
data is moved between them. The commands explained in
this chapter are those that allow access to the
input/output devices. The input commands are those
associated with putting data into RAM and the devices
geared for accepting input. The output commands are
those associated with retrieving data from RAM and the
devices geared for generating output.

The commands described in this chapter are:

BGET
BPUT
CLOAD
CLOSE
CSAVE
DATA

DIR
ENTER
ERASE
GET
INPUT
LOAD

LPRINT
NOTE
OPEN
POINT
PRINT
PRINT
USING

PROTECT
PUT
READ
RENAME
RGET
RPUT

SAVE
STATUS
TAB
UNPROTECT
XIO

5.1 Comments and Notations

The Atari Personal Computer considers everything except
the guts of the computer (i.e. the RAM, ROM, and
processing chips) to be external devices. Some of these
devices come with the computer, for example the
Keyboard and the Screen Editor. Some of the other
devices are Disk Drive, Program Recorder (cassette),
and Printer. The following is a list of the devices,
ordered according to the name used as 'filespec' in the
BASIC XL commands:

C: The Program Recorder -- handles both Input
and Output. You can use the recorder as
either an input or output device. but never
as both simultaneously.

D1: - D8: Disk Drive(s) -- handles both Input and
Output. Unlike C:, disk drives can be used
for input and output simultaneously. Floppy
disks are organized into a group of files, so
you are required to specify a file name along
with the device name (see your DOS manual for
more information).

NOTE: if you use D: without a drive number,
D1: is assumed.
NOTE by GBXL: If the DOS used can handle
current drives like e.g. SpartaDOS, it will
refer to the current drive instead.

47

The BASIC XL Programming Environment

E: Screen Editor -- handles both Input and
Output. The screen editor simulates a text
editor/word processor using the keyboard as
input and the display (TV or Monitor) as
output. This is the editor you use when
typing in a BASIC XL program. When you
specify no channel while doing I/O, E: is
used because the channel defaults to 0, which
is the channel BASIC XL opens for E:.

K: Keyboard -- handles Input only. This allows
you access to the keyboard without using E:.

P: Parallel Port on the 850 Module -- handles
Output only. Usually P: is used for a
parallel printer, so it has come to mean
'Printer' as well as 'Parallel Port'.

NOTE by GBXL: P: also refers to SIO direct connect
printers. Atari printers can use P1 to P4; see manual.

R1: - R4: The four RS-232 Serial Ports on the Atari 850
Interface -- handle both Input and Output.
These devices enable the Atari system to
interface to RS-232 compatible serial devices
like terminals, plotters, and modems.

NOTE: if you use R: without a device number,
R1: is assumed.

S: The Screen Display (either TV or Monitor) --
handles both Input and Output. This device
allows you to do I/O of either characters or
graphics points with the screen display. The
cursor is used to address a screen position.

Each of these devices is used for I/O of some type,
although only a few of them can do both Input and
Output (you wouldn't want to input data from a
Printer). Because the way in which they work is
different, each device has to tell the computer how it
operates. This is done through the use of a device
handler. A device handler for a given device gives
information on how the computer should input and output
data for that device.

One of the sub-systems in the computer in the Central
Input Output processor (CIO). It's CIO's job to find
out if the device you specify exists, and then look up
I/O information in that device's handler. This makes it
easy for you, since you don't need to know anything
about given handler.

To let CIO know that a device exists (i.e., is
available for I/O) you need to OPEN (section 5.16) the
device on one of the CIO's eight channels (numbered

48

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES

0-7). When you then want to do I/O involving the OPENed
device, you use the channel number instead of the
device name.

When you see 'filespec' in the following sections, it
refers simply to the device (and file name in the case
of D:) in a character string. The string may either be
a literal string (i.e., enclosed in quotes), a string
of characters (not in quotes), or a string variable.

If IOCB #7 is in use, it will prevent LPRINT or some of
the other BASIC I/O statements from being performed.

+---+
| In the examples in the following sections, you will |
| often see the wildcard characters * and ? in the |
| filespec. For information on the use of these, see |
| your DOS manual. |
+---+

5.2 BGET

 Format: BGET 'channel, aexp1, aexp2

 Example: (see below)

BGET gets "aexp2" bytes from the device or file
specified by "channel" and stores them at address
"aexp1".

NOTE: The address may be a memory address. For example,
a screen full of data could be displayed in this
manner. Or the address may be the address of a string.
In this case BGET does not change the length of the
string, this is the user's responsibility.

 Example: 10 DIM A$(1025)
 20 BGET #5,ADR(A$),1024
 30 A$(1025) = CHR$(0)

This program segment will get 1024 bytes from the file
or device associated with file number 5 and store it in
A$. Statement 30 sets the. length of A$ to 1025.

NOTE: No error checking is done on the address or
length so care must be taken when using this statement.

For another example using BGET, see section 5.31.

49

The BASIC XL Programming Environment

5.3 BPUT

 Format: BPUT #channel, aexp1, aexp2

 Example: BPUT #5, ADR(A$), LEN(A$)

BPUT outputs a block of data to the device or file
specified by "channel". The block of data starts at
address "aexp1" for a length of "aexp2".

NOTE: The address may be a memory address. For example,
the whole screen might be saved. Or the address may be
the address of a string obtained using the ADR
function.

The example above writes the block of data contained in
the string A$ to the file or device associated with
channel number 5.

NOTE: Nothing is written to the file which indicates
the length of the data written. You are advised to
write fixed-length data to make the rereading process
simpler.

5.4 CLOAD

 Format: CLOAD

 Examples: CLOAD
 100 CLOAD

This command can be used in either Direct or Deferred
mode to load a program from cassette tape into RAM for
execution. On entering CLOAD, one bell rings to
indicate that the PLAY button needs to be pressed
followed by <RETURN>. However, do not press PLAY until
the tape has been positioned. Specific instructions for
CLOADing a program are contained in the ATARI Program
Recorder Manual.

5.5 CLOSE (CL.)

 Format: CLOSE #channel

 Example: CLOSE #4
 100 CLOSE #1

The CLOSE command is used to close a CIO channel which
has been previously OPENed to allow I/O with some
device. After you CLOSE a channel, you can then reOPEN
it to some other device, and thus associate that
channel number with a different device.

50

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES

NOTE: You should CLOSE all channels you have OPENed
when you are finished using them.

NOTE: END will also close all channels (i.e., files).

5.6 CSAVE (CS.)

 Format: CSAVE

 Example: CSAVE
 100 CSAVE
 100 CS.

This command is usually used in Direct mode to save a
RAM-resident program onto cassette tape. CSAVE saves
the tokenized version of the program. On entering CSAVE
two bells ring to indicate that the PLAY and RECORD
buttons must be pressed followed by <RETURN>. Do not,
however, press these buttons until the tape has been
positioned. It is faster to save a program using this
command rather than a SAVE "C:" (See SAVE) because
short inter-record gaps are used.

NOTE: Tapes saved using the two commands SAVE and CSAVE
are not compatible.

NOTE: Due to a flaw in the Atari OS ROMs, it may be
necessary on some machines to enter a LPRINT (See
LPRINT) before using CSAVE. Otherwise, CSAVE may not
work properly.

For specific instructions on how to connect and operate
the hardware, cue the tape, etc., see the ATARI Program
Recorder Manual.

5.7 DATA (D.)

 Format: DATA adata [,adata]

 Example: 100 DATA 12,13,14,15,16
 200 DATA GEORGE, EVELYN,MIKE,BECKY
 300 DATA "DATA with a comma, in quotes"

The DATA command is used in conjunction with the READ
command (see section 5.22) to access elements in a data
list. A DATA command may be anywhere in a program, but
it must contain as many pieces of data as there are
defined in the READ command; otherwise an "out of data"
error is displayed on the screen.

NOTE: All characters except comma and <RETURN> are
allowed. However, if you put the data in quotes, then
all characters except double quote and <RETURN> are
legal.

51

The BASIC XL Programming Environment

5.8 DIR

 Format: DIR [filespec]

 Example: DIR D:*.COM
 DIR FILE$
 DIR "D2:TEST*.B*"

The DIR command is used to list the contents of a disk
directory to the screen. It is very similar to the
OS/A+ and DOS XL 'DIR' command. If no filespec is
given, all files on D1: are displayed.

The first example will display all files on D1: which
end with .COM.

The second example shows a string variable being used
as a filespec. This is legal, but the string variable
must contain a valid filespec, otherwise an error will
occur.

The third example will display all files on disk drive
2 which match TEST*.B*.

NOTE: DIR must be used as the last (or only) command on
a line.

5.9 ENTER (E.)

 Format: ENTER filespec

 Examples: ENTER "C:"
 ENTER D2:DEMOPR.INS
 ENTER FILE$

The ENTER command allows you to read in a program you
have saved using the LIST command, and will not work
with programs which have been SAVEd or CSAVEd. To use
this command, you simply need to give the filespec of
the program.

NOTE: whereas both LOAD and CLOAD clear the old program
from memory before reading in the new one, ENTER does
not, and so is useful when trying to merge programs
together.

ENTER can be modified using the SET command. For an
example of this, see section 3.15, example 3.

52

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES

5.10 ERASE

 Format: ERASE filespec

 Example: ERASE "D:*.BAK"
 ERASE D2:TEST?.SAV

ERASE will erase any unprotected files which match the
given filespec. The first example above would erase
all .BAK (back-up) files on disk drive 1. The second
example would erase all files matching TEST?.SAV on
disk drive 2. This command is similar to the OS/A+ and
DOS XL ERAse, but there are no default file specifiers.

5.11 GET

 Format: GET #channel,avar

 Example: 100 GET #0,X

The GET command is used to input one byte of data from
an open channel. This byte of information is stored in
'avar'.

For a program example using GET, see section 5.31.

5.12 INPUT (I.)

 Format: INPUT [#chan,] |avar [,(avar)...]|
 | svar |

 Examples: 100 INPUT X
 100 INPUT N$
 100 INPUT X,Y,Z(4)
 100 INPUT ARRSTR$(5;)
 100 PRINT "ENTER THE VALUE OF X"
 110 INPUT X

INPUT is used to read in various data. With it you can
input either one or more numbers, or a string. If you
are inputting a group of numbers, the first number will
go into the first avar specified, the second number
into the second avar, and so on.

NOTE: In BASIC XL the avar may be an array element, and
the svar may be a string array element.

If a channel number is specified (followed by a comma),
then no "?" prompt is given. This allows you to
create your own prompts, as shown in the following
example:
 100 PRINT "command>> ";
 110 INPUT #0, COMMAND$

53

The BASIC XL Programming Environment

The statement 'INPUT #0, COMMAND$' inputs a string from
channel 0 (E:), without printing out a '?' first.

NOTE: If the user's sole response to an INPUT prompt is
<CTRL>C <RETURN>, a special error (number 27) will be
issued by INPUT. This can be useful in data entry
manipulations.

If an INPUT request is made for more than one numeric
variable, the user may respond with several values
separated by commas or may type in single number on
each line, followed by <RETURN>.

In the latter case, BASIC XL will prompt with a double
question mark to indicate that more input is needed.
When a string is requested, it must be typed on a line
by itself (or, if combined with numeric input, as the
last item on the line).

OSS strongly recommends that:

1) no more than one variable be used on each
INPUT line.

2) INPUT and PRINT should not be used for disk
data file access (RGET and RPUT are
suggested instead).

5.12.1 Advanced use of INPUT

 Format: INPUT "string", var [,var...]

 Example: 100 INPUT "3 VALUES>> ",V(1),V(2),V(3)

BASIC XL allows you to include a prompt with the INPUT
command to produce easier to use programs, without
having to use the ";" option mentioned in the previous
section. The string given in the above format ALWAYS
replaces the default "?" prompt.

NOTE: No channel number may be used when the literal
prompt is present.

NOTE: In the example above, if the user typed in only a
single value followed by a <RETURN>, he would be
reprompted by BASIC XL with a "??", but see chapter 3
for variations available via SET.

54

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES

5.13 LOAD (LO.)

 Format: LOAD filespec

 Example: LOAD D1:GAME1.BXL
 100 LOAD "C:"

LOAD allows you to load the SAVEd version of a program
into memory from any device. It will not work properly
with programs saved using LIST or CSAVE, as they have
their own loading commands (see ENTER and CLOAD).

5.14 LPRINT (LP.)

 Format: LPRINT [exp][|;| exp...]
 |,|

 Example: LPRINT "PROGRAM TO CALCULATE X"

This statement causes the computer to print data on the
line printer rather than on the screen. It can be used
in either Direct or Deferred mode, and requires no
device specifier, no OPEN, or no CLOSE statement.

NOTE: The semi-colon and comma options are discussed in
section 5.18, PRINT.

CAUTION: With most printers, LPRINT cannot successfully
be used with a trailing comma or semi-colon. If
advanced printing capabilities are required, we
recommend using PRINT # on a channel previously OPENed
to the printer (P:).

5.15 NOTE (NO.)

 Format: NOTE #chan,avar,avar

 Example: 100 NOTE #1,X,Y

This command is used to store the current disk sector
number in the first avar and the current byte number
within the sector in the second avar. This is the
current read or write position in the specified file
where the next byte to be read or written is located.

55

The BASIC XL Programming Environment

5.16 OPEN (O.)

 Format: OPEN #chan,aexp1,aeaxp2,filespec

 Example: 100 OPEN #2,8,0,"C:"
 100 A$ = "D1:TEST.DAT"
 110 OPEN #2,8,0,A$

As mentioned in section 5.1, a device must be OPENed on
a specific channel before it can be accessed. This
"opening" process links a specific channel to the
appropriate device handler, initializes any CIO-related
control variables, and passes any device-specific
options to the device handler.

The parameters for the OPEN command are defined as
follows:

chan This is the number of the channel which you
want to associate with the the device
'filespec'. Also, this is the number you use
when you later want to do I/O involving the
specified device (using INPUT, PRINT, etc.).

aexp1 This is the I/O mode you want to associate
with the above channel. The number codes are
described in the following table:

aexp1 Meaning
----- -------
 4 Input only
 6 Read disk directory only
 8 Output only
 9 Output Append. This mode allows
 you to append to already exis-
 ting disk files.
 12 Input and Output

aexp2 Device-dependent auxiliary code. See your
device manual to see if it uses this number.
If not, use a zero.

filespec The device (and file name, if required) you
want to be associated with the specified
channel.

56

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES

5.17 POINT (P.)

 Format: POINT #chan,avar,avar

 Example: 100 POINT #2,A,B

This command is used when reading a file into RAM. The
first avar specifies the sector number and the second
avar specifies the byte within that sector where the
next byte will be read or written. Essentially, it
moves a software-controlled pointer to the specified
location in the file. This gives the user "random"
access to the data stored on a disk file. The POINT
and NOTE commands are discussed in more detail in your
DOS Manual.

5.18 PRINT (PR or ?)

 Format: PRINT [#chan] [|,| exp...] |,|
 |,| |,|

 Examples: PRINT
 PRINT X,Y,Z,A$
 100 PRINT "THE VALUE OF X IS ";X
 100 PRINT "COMMAS","CAUSE","COLUMNS"
 100 PRINT #3,A$
 100 PRINT ,0:"$";HEX(X);" IS ";X

The PRINT command is used in either Direct or Deferred
mode to output data. In Direct mode, this command
prints whatever information is contained between the
quotation marks exactly as it appears. In the second
example, PRINT X,Y,Z,A$, the screen will display the
current values of X,Y,Z, and A$ as they appear in the
RAM-resident program. In the fifth example, A$ is
PRINTed out to the device associated with channel 3.

The comma option causes tabbing to the next tab
location. Several commas in a row cause several tab
jumps. A semi-colon causes the next aexp or sexp to be
placed immediately after the preceding expression with
no spacing. Therefore, in the third example a space is
placed before the ending quotation mark so the value of
X will not be placed immediately after the word "IS".

If no comma or semi-colon is used at the end of a PRINT
statement, then a <RETURN> is output and the next PRINT
will start on the following line.

57

The BASIC XL Programming Environment

5.19 PRINT USING

 Format: PRINT [#ch;)USING sexp,exp [,exp...]

 Example: (see below

PRINT USING allows the user to specify a format for the
output to the device or file associated with "ch" (or
to the screen). The format string "sexp" contains one
or more format fields. Each format field tells how an
expression from the expression list is to be printed.
Valid format field characters are:

 # & * + - $, . % ! /

Non-format characters terminate a format field and are
printed as they appear.

 Example 1) 100 PRINT USING "## ###X#",12,315,7

 2) 100 DIM A$(10) : A$="## ###X#"
 200 PRINT USING A$,12,315,7

 Both 1) and 2) will print

 12 315X7

Where a blank separates the first two numbers and an X
separates the last two.

Numeric Formats

The format characters for numeric format fields are:

 # & * + - $, .

DIGITS (# & *)

Digits are represented by:

 # & *

- Indicates fill with leading blanks
& - Indicates fill with leading zeroes
* - Indicates fill with leading asterisks

If the number of digits in the expression is less than
the number of digits specified in the format then the
digits are right justified in the field and preceded
with the proper fill character.

58

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES

NOTE: In all the following examples b is used to
represent a blank.

Examples:

Value
 1
 12
 123
 1234
 12
 12

Format Field
 ###
 ###
 ###
 ###
 &&&

Print Out
 bb1
 b12
 123
 234
 012
 *12

DECIMAL POINT (.)

A decimal point in the format field indicates that a
decimal point be printed at that location in the
number. All digit positions that follow the decimal
point are filled with digits. If the expression
contains fewer fractional digits than are indicated in
the format, then zeroes are printed in the extra
positions. If the expression contains more fractional
digits than indicated in the format, then the
expression is rounded so that the number of fractional
digits is equal to the number of format positions
specified.

A second decimal point is treated as a non-format
character.

Examples:

Value
123.45
6
4.7
12.35

Format Field
 ###.##
 ###.##
 ##.##.

Print Out
 123.46
 bb4.70
 12.35.

COMMA (,)

A comma in the format field indicates that a comma be
printed at that location in the number. If the format
specifies a comma be printed at a position that is
preceded only by fill characters (0 b *) then the
appropriate fill character will be printed instead of
the comma.

The comma is a valid format character only to the left
of the decimal point. When a comma appears to the right
of a decimal point, it becomes a non-format character.
It terminates the format field and is printed like a
non-format character.

59

The BASIC XL Programming Environment

Examples:
Value
5216
 3
4175
 3
42.71

Format Field
 ##,###
 ##,###
 ,*
 &&,&&&
 ##.##,

Print Out
 b5,216
 bbbbb3
 *4,175
 000003
 42.71,

SIGNS (+ -)

A plus sign in a format field indicates that the sign
of the number is to be printed. A minus sign indicates
that a minus sign is to be printed if the number is
negative and a blank if the number is positive.

Signs may be either fixed, floating or trailing.

A fixed sign must appear as the first character of a
format field.

Examples:
Value
 43.7
-43.7
 23.58
-23.58

Format Field
 +###.#
 +***.*
 -&&&.&&
 -&&&.&&

Print Out
 +b43.7
 -b43.7
 b023.58
 -023.58

Floating signs must start in the first format position
and occupy all positions up to the decimal point. This
causes the sign to be printed immediately before the
first digit rather than in a fixed location. Each sign
after the first also represents one digit.

Examples:
Value
 3.75
 3.75
-3.75

Format Field
 ++++.##
 ----.##
 ----.##

Print Out
 bb+3.75
 bbb3.75
 bb-3.75

A trailing sign can appear only after a decimal point.
It terminates the format and prints the appropriate
sign (or blank).

Examples:
Value
 43.71
 43.71
-43.71

Format Field
 ***.**+
 &&&.&&-
 ###.##+

Print Out
 *43.17+
 043.17b
 b43.17-

DOLLAR SIGN ($)

A dollar sign can be either fixed or floating, and
indicates that a $ is to be printed.

60

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES

A fixed dollar sign must be either the first or second
character in the format field. If it is the second
character then + or - must be the first.

Examples:
Value
 34.2
 34.2
-34.2

Format Field
 $##.##
 +$##.##
+$###.##

Print Out
 $34.20
 +$34.20
 -$b34.20

Floating dollar signs must start as either the first or
second character in the format field and continue to
the decimal point. If the floating dollar signs start
as the second character then + or - must be the first.
Each dollar sign after the first also represents one
digit.

Examples:
Value
 34.2
 34.2

1572563.41

Format Field
 $$$$$.##
 +$$$$$.##

$$,$$$,$$$.##+

Print Out
 bb$34.20
 +bb$34.20
$1,572,563.41+

NOTE: There can only be one floating character per
format field.

NOTE: +, - or $ in other than proper positions will
give strange results.

String Formats

The format characters for string format fields are:

 % - Indicates the string is to be right justified.
 ! - indicates the string is to be left justified.

If there are more characters in the string than in the
format field, than the string is truncated.

Examples:
Value
 ABC
 ABC
 ABC
 ABC

Format Field
 %%%%
 !!!!
 %%
 !!

Print Out
 bABC
 ABCb
 AB
 AB

ESCAPE CHARACTER (/)

The escape character (/) does not terminate the format
field but will cause the next character to be printed,
thus allowing the user to insert a character in the
middle of the printing of a number.

61

The BASIC XL Programming Environment

Example: PRINT USING "###/-####",2551472
prints 255-1472

Example: 100 AREA = 400
200 NUM = 2551472
300 PHONE = (AREA*1E+7)+NUM
400 DIM F$(20)
500 F$ = "(###/)###/-####"
600 PRINT USING F$,PHONE
700 END

 the result: (498)255-1472

NOTE: Improperly specified format fields can give some
very strange results.

NOTE: The function of "," and ";" in PRINT are
overridden in the expression list of PRINT USING, but
when file number "ch" is given then the following ","
or ";" have the same meaning as in PRINT. So to avoid
an initial tabbing, use a semi-colon (;).

Example: PRINT #5; USING A$,B

will print B in the format specified by A$ to the file
or device associated with file number 5.

Example: PRINT USING "## /* #=###,12,5,5*12

12 * 5=60

Example: PRINT USING "TOTAL=##.#+",72.68

TOTAL-72.7+

Example: 100 DIM A$(10) : A$="TOTAL="
200 DIM F$(10) : F$="!!!!!!##.#+"
300 PRINT USING F$,A$,72.68

TOTAL=72.7+

NOTE: If there are more expressions in the expression
list than there are format fields, the format fields
will be reused.

Example: PRINT USING "XX##",25,19,7

 will print XX25XX19XXb7

WARNING: A format string must contain at least one
format field. If the format string contains only non-
format characters, those characters will be printed
repeatedly in the search for a format field.

62

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES

5.20 PROTECT

 Format: PROTECT filespec

 Examples: PROTECT D:*.COM
 100 PROTECT "D2:JUNK.BXL"

The PROTECT allows you to protect your programs stored
on disk from being erased or overwritten. This command
is very similar to the OS/A+ and DOS XL PROtect command,
except that there are no default file specifications.

5.21 PUT (PU.)

 Format: PUT #chan,aexp

 Examples: 100 PUT #6,ASC("A")
 200 PUT #0,4*13

PUT is the opposite of GET in that it outputs a single
byte of information whereas GET inputs a single byte of
information. The data output is aexp, and it is put to
the device specified by chan.

NOTE: for a program example using PUT, see section 5.31

5.22 READ

 Format: READ var [,var...]

 Examples: 100 READ A,B,C,D,E
 110 DATA 12,13,14,15,16

 100 READ A$,B$,C$,D$,E$
 110 DATA EMBEE, EVELYN, CARLA

The READ command is always used in conjunction with the
DATA command. Its function is simply to read the next
piece of data out of the DATA list and put it into one
of the variables specified. If a group of variables are
used, then the first piece of available data (see
RESTORE, 4.12) i. put into the first variable given,
the second piece of data into the second variable
given, and so on.

The type of the variable in the READ statement (svar or
avar) must correspond to the type of the data which in
being read.

If the second example above was executed as a program
with no additional lines, an error would result since
there are fewer data items than variables to be READ.

63

The BASIC XL Programming Environment

The following program totals a list of numbers in a
DATA statement:

 10 FOR N=1 TO 5
 20 READ D
 30 M=M+D
 40 NEXT N
 50 PRINT "SUM TOTAL EQUALS ";M
 60 END
 70 DATA 30,15,106,87,17

The program, When executed, will print the statement:

 SUM TOTAL EQUALS 255.

NOTE: A Direct mode READ will only read data if a DATA
statement exists in the program or on the line
following the READ.

5.23 RENAME

 Format: RENAME "filespec,filename"

 Example: RENAME "D2:NEW.DAT,OLD.BAK"

RENAME allows you to rename file(s) from BASIC XL. Note
that the comma shown MUST be imbedded in the string
used as the file parameter.

CAUTION: It is strongly suggested that wild cards (*
and ?) NOT be used when RENAMEing. Also, the second
filename may NOT include the disk specifier (Dn:).

5.24 RGET

 Format: RGET #ch, | svar [,svar...] |
 | avar [,avar...] |
 Example: (see below)

RGET allows the user to retrieve fixed length records
from the device or file associated with file number
"ch" and assign the values to string or numeric
variables.

NOTE: The type of the element in the file must match
the type of the variable' (i.e., they must both be
strings or both be numeric).

 Example: 1) 100 RPUT #3,C

 2) 200 RGET #1,A$

64

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES

If 1) is a statement in a program used to generate a
file and 2) is a statement in another program used to
read the same file, an error will result, since 'C' is
a numeric variable and 'A$' is a string variable.

NOTE: When the type of element is string, then the
DIMensioned length of the element in the file must be
equal to the DIMensioned length of the string variable.

 Example: 1) 100 DIM A$(100)
 :
 800 RPUT #3,A$

 2) 100 DIM X$(200)
 :
 800 RGET #2,X$

If 1) is a section of a program used to write a file
and 2) is a section of another program used to read the
same file, then an error will occur as a result of the
difference in DIM values.

NOTE: RGET sets the correct length for a string
variable (the length of a string variable becomes the
actual length of the string that was RPUT not
necessarily the DIM length).

 Example: 1) 100 DIM A$(10)
 200 A$ = "ABCDE"
 :
 800 RPUT #4,A$

 2) 100 DIM X$(10)
 200 X$ = "HI"
 :
 800 RGET #6,X$
 900 PRINT LEN(X$),X$

If 1) is a section of a program used to create a file
and 2) is a section of another program used to read the
file then it will print:

 5 ABCDE

5.25 RPUT

 Format: RPUT #ch, exp [,exp...]

 Example: (see below)

RPUT allows the user to output fixed length records to
the device or file associated with "ch". Each "exp"
creates an element in the record.

65

The BASIC XL Programming Environment

NOTE: A numeric element consists of one byte which
indicates a numeric type element and 6 bytes of numeric
data in floating point format.

A string element consists of one byte which indicates a
string type element 2 bytes of string length, 2 bytes
of DIMensioned length, and then X bytes where X is the
DIMensioned length of the string.

 Example: 100 DIM A$(6)
 200 A$ = "XY"
 300 RPUT #3,B,A$,10

puts 3 elements to the device or file associated with
file number 3. The first element is numeric (the value
of B). The second element is a string (A$) and the
third is a numeric (10). The record will be 25 bytes
long, (7 bytes for each numeric, 5 bytes for the string
header and 6 bytes (the DIM length) of string data).

5.26 SAVE (S.)

 Format: SAVE filespec

 Examples: SAVE D1:YVONNE.PAT
 100 SAVE "C:"

The SAVE command allows you to save the tokenized form
of a BASIC XL program to any device. A file saved
using this command may then be read back into program
memory using the LOAD command or loaded and
automatically executed using the RUN command.

5.27 STATUS (ST.)

 Format: STATUS #chan,avar

 Example: 350 STATUS #1,Z

The STATUS command calls the STATUS routine for the
specified device (chan). The status of the STATUS
command (see ERROR MESSAGES, Appendix B) is stored in
the specified variable (avar). This may be useful for
devices such as the RS-232 interface.

5.28 TAB

 Format: TAB [#ch,] aexp

 Example: TAB #2,20

TAB outputs spaces to the device or file specified by
ch (or the screen) up to column number "aexp". The
first column is column 0.

66

Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES

NOTE: The column count is kept for each device and is
reset to zero each time a carriage return is output to
that device. The count is kept in AUX2 of the IOCB.
(See OS documentation).

NOTE: If "aexp" is less than the current column count,
a carriage return is output and then spaces are put out
up to column "aexp".

5.29 UNPROTECT (UNP.)

 Format: UNPROTECT filespec

 Examples: 100 UNPROTECT "D2:JUNK.BAS
 UNP. D:JUNK

The UNPROTECT command allows you to unprotect disk
files which have been protected using the PROTECT
command. This command is very similar to the OS/A+ and
DOS XL command UNProtect, but there are no default file
specifications in the BASIC XL version.

5.30 XIO (X.)

 Format: XIO cmdno, #chan,aexp1,aexp2,filespec

 Example: XIO 18,#6,0,0,"S:"

The XIO command is a general input/output statement
used for special operations. The parameters for this
command are defined as follows:

cmdno Command Number stands for the particular command
to be performed.

 cmdno operation example
 ----- --------- -------
 3 OPEN Same as BASIC OPEN
 5 GET RECORD | These 4 commands are
 7 GET CHARACTERS | similar to BASIC INPUT,
 9 PUT RECORD | GET, PRINT, and PUT,
 11 PUT CHARACTERS | respectively.
 12 CLOSE Same as BASIC CLOSE
 13 STATUS REQUEST Same as BASIC STATUS
 17 DRAW LINE Same as BASIC DRAWTO
 18 FILL See Section 9
 32 RENAME XIO 32,#1,0,0,"D:TEMP,CAROL"
 33 DELETE XIO 33,#1,0,0,"D:TEMP.BAS"
 35 LOCK FILE XIO 35,#1,0,0,"D:TEMP.BAS"
 36 UNLOCK FILE XIO 36,#1,0,0,"D:TEMP.BAS"
 37 POINT Same as BASIC POINT
 38 NOTE Same as BASIC NOTE
 254 FORMAT XIO 254,#1,0,0,"D2:"

67

The BASIC XL Programming Environment

chan Device number (same as in OPEN). Most of the
time it is ignored, but must be preceded by
#.

aexp1 Two auxiliary control bytes. Their usage
aexp2 depends on the particular device and

command. In most cases, they are unused and
are set to 0.

filespec string expression that specifies the device.
Must be enclosed in quotation marks. Although
some commands do not look at the filespec, it
must still be included in the statement.

NOTE: It is highly recommended that the BASIC XL user
avoid XIO cmdno's 3,5,7,9,11,12,17,37 and 38. BASIC XL
users should find all these, as well as cmdno's 32 thru
36, totally unnecessary.

5.31 An Example Program

The following subroutine reads in a binary file using
OPEN, GET, BGET, CLOSE, and PRINT.

NOTE: lines 1020 through 1030 test the file to see if
it is segmented, so you can load in multi-segment files
with this subroutine.

1000 TRAP 1090
1010 OPEN #1,4,0,"D:FILE.OBJ"
1020 GET #1,L:GET #1,H
1030 IF L=$FF AND H=$FF THEN GET #1,L:GET #1,H
1040 START=H*256+L
1050 GET #1,L:GET #1,H
1060 FINISH=H*256+L
1070 BGET #1,START,FINISH-START+1
l080 GOTO 1020
1090 IF ERR(0)=136 THEN CLOSE:RETURN
1100 PRINT "UNEXPECTED ERROR #":ERR(0);" AT LINE "; ERR(1)
1110 STOP

68

Chapter 6: FUNCTION LIBRARY

A function performs a computation and returns the
result (usually a number) for either a print-out or
additional computational use. Each function described
in this chapter may be used in either Direct or
Deferred mode.

This chapter describes the following functions:

 Arithmetic Functions Trigonometric Functions
 -------------------- -----------------------
 ABS INT RND ATN RAD
 CLOG LOG SGN COS SIN
 EXP RANDOM SQR DEG

 String Functions Game Controller Functions
 ------------------ -------------------------
 ASC LEFT$ RIGHT$ HSTICK PTRIG VSTICK
 CHR$ LEN STR$ PADDLE STICK
 FIND MID$ VAL PEN STRIG

Player/Missile Functions Special Purpose Functions
------------------------ -------------------------
 BUMP PMADR ADR ERR PEEK TAB
 DPEEK FRE POKE USR
 DPOKE HEX$ SYS

6.1 Arithmetic Functions

6.1.1 ABS

 Format: ABS(aexp)

 Example: 100 AB =ABS(-190)

Returns the absolute value of a number without regard
to whether it is positive or negative. The returned
value is always positive.

6.1.2 CLOG

 Format: CLOG (aexp)

 Example: 100 C = CLOG(83)

Returns the logarithm to the base 10 of the variable or
expression in parentheses. CLOG(0) gives an error, and
CLOG(l) is a 0.

69

The BASIC XL Programming Environment

6.1.3 EXP

 Format: EXP(aexp)

 Example: 100 PRINT EXP(3)

Returns the value of e (approximately 2.71828283),
raised to the power specified by the expression in
parentheses. In the example given above, the number
returned is 20.0855365.

6.1.4 INT

 Format: INT(aexp)

 Examples: 100 I = INT(3.445) : REM I now = 3
 100 X = INT(-14.66778) : REM X now = -15

Returns the greatest integer less than or equal to the
value of the expression. This is true whether the
expression evaluates to a positive or negative number.
Thus, in our first example above, I is used to store
the number 3. In the second example, X is used to
store the number -15 (the first whole number that is
less than or equal to -14.66778). This INT function
should not be confused with the function used on
calculators that simply truncates all decimal places.

6.1.5 LOG

 Format: LOG(aexp)

 Example: 100 L = LOG(67.89/2.57)

Returns the natural logarithm of the number or
expression in parentheses. LOG(0) gives an error, and
LOG(1) is 0.

6.1.6 RANDOM

 Format: RANDOM(aexp1[,aexp2])

 Examples: 10 X = RANDOM(99)
 10 Y = RANDOM(20,30)

The RANDOM function allows you access to a random
number generator which does more than return a number
between 0 and 1, as RND does. When used with one aexp
(as in the first example), the value returned will be
between 0 and the aexp value, inclusive. When used with
two aexps (as in the second example), the value
returned will be between the value of the first aexp
and the value of the second aexp, inclusive.

70

Chapter 6: FUNCTION LIBRARY

6.1.7 RND

 Format: RND(aexp)

 Example: 10 A = RND(0)

Returns a hardware-generated random number between 0
and 1, but never returns 1. The variable or expression
in parentheses following RND is a dummy and has no
effect on the numbers returned. However, the dummy
expression must be included.

6.1.8 SGN

 Format: SGN(aexp)

 Example: 100 X = SGN(-199) : REM -1 is returned

Returns a -1 if aexp evaluates to a negative number; a
0 if aexp evaluates to 0, or a 1 is aexp evaluates to a
positive number.

6.1.9 SQR

 Format: SQR(aexp)

 Example: 100 PRINT SQR(100) : REM 10 is printed

Returns the square root of the aexp which must be
positive.

6.1.10 An Example Program

The following program prints out some information on an
INPUTted number, using the arithmetic functions ABS,
INT, SQR, CLOG, LOG, and EXP.

100 GRAPHICS 1 : REM set up screen
110 PRINT "Number to Manipulate> ";
120 INPUT #0, X : REM get the number
130 PRINT #6; ASC$(125) : REM clear screen
140 PRINT #6; "ABS.: ";ABS(X) : REM absolute value
150 PRINT #6
160 PRINT #6; "INT.: ";INT(X) : REM integer value
170 PRINT #6
180 PRINT #6; "SQRT: ";SQR(ABS(X)) : REM square root
190 PRINT #6
200 PRINT #6; "CLOG: ";CLOG(ABS(X)) : REM common log
210 PRINT #6
220 PRINT #6; "NLOG: ";LOG(ABS(X)): REM natural log (ln)
230 PRINT #6
240 PRINT #6; "EXP.: ";EXP(X) : REM exponential (e^X)
250 GOTO 110

71

The BASIC XL Programming Environment

6.2 Trigonometric Functions

6.2.1 ATN

 Format: ATN(aexp)

 Example: 100 X = ATN(1.0)

Returns the arctangent of the variable or expression in
parentheses. If in DEG mode (see section 6.2.3), the
returned value is given is degrees, otherwise it is
given in radians.

6.2.2 COS

 Format: COS(aexp)
 Example: 100 C = COS(X+Y+Z)

Returns the trigonometric cosine of the expression in
parentheses. The expression is evaluated as an angle
in radian terms unless the DEG command has been used.

6.2.3 DEG and RAD

 Format: DEG
 RAD

 Examples: 100 DEG
 100 RAD

These two statements allow the programmer in specify
degrees or radians for trigonometric· function
computations. The computer defaults to radians unless
DEG is specified. Once the DEG statement has been
executed, RAD must be used to return to radians.

See Appendix E for the additional trigonometric
functions that can be derived.

6.2.4 SIN

 Format: SIN(aexp)

 Example: 100 X = SIN(Y)

This function returns the trigonometric sine of aexp.
The expression is evaluated as an angle in radian terms
unless the DEG command has been used.

72

Chapter 6: FUNCTION LIBRARY

6.2.5 An Example Program

The following program demonstrates the use of DEG, COS,
and SIN by plotting three concentric circles on the
screen.

10 GRAPHICS 7 : REM set up screen
20 DEG : REM degree mode for trig functions
30 FOR J=1 TO 3 : REM 3 circles
40 COLOR J : REM each circle a different color
50 FOR I=1 TO 360 : REM plot each point in a full
 circle
60 PLOT 80+INT(J*l0*COS(I)), 40+INT(J*10*SIN(I))
70 NEXT I
80 NEXT J

6.3 String Functions

6.3.1 ASC

 Format: ASC(sexp)

 Example: 100 A = ASC(A$)

This function returns the ATASCII code number for the
first character of the string expression (sexp). This
function can be used in either Direct or Deferred mode.

If A$="ABC", then

 ASC(A$) produces 65
 ASC(A$(2)) produces 66

6.3.2 CHR$

 Format: CHR$(aexp)

 Examples: 100 PRINT CHR$(65)
 100 A$ = CHR$(65)

This character string function returns the character,
in string format, represented by the ATASCII code
number in parentheses. Only one character is returned.
In the above examples, the letter A is returned. Using
the ASC and CHR$ functions, the following program
prints the upper case and lower case letters of the
alphabet:

10 FOR I=0 TO 25
20 PRINT CHR$(ASC("A")+I);CHR$(ASC("a")+I)
30 NEXT I

NOTE: There can be only one STR$ and only one CHR$ in a

73

The BASIC XL Programming Environment

logical comparison. (This is because BASIC XL uses a
buffer in a fixed location to create the temporary
string which both of these functions produce, and there
is only one such buffer.)

6.3.3 FIND

 Format: FIND(sexp1,sexp2,aexp)

 Example: PRINT FIND ("ABCDXXXXABC","BC",N)

FIND is an efficient, speedy way of determining whether
any given substring is contained in any given master
string.

FIND will search sexp1, starting at position aexp, for
sexp2. If sexp2 is found, the function returns the
position where it was found, relative to the beginning
of sexp1. If sexp2 is not found, a 0 is returned.

In the example above, the following values would be
PRINTed:

 2 if N=0 or N=1
 9 if N>2 and N<10
 0 if N>=10

More Examples:

 1) 10 DIM A$(l)
 20 PRINT "INPUT A SINGLE LETTER:
 30 PRINT "Change/Erase/List"
 40 INPUT "CHOICE ?",A$
 50 ON FIND("CEL",A$,0) GOTO 100,200,300

An easy way to have a vector from a menu choice:

 2) 100 DIM A$(10): A$="ABCDEFGHIJ"
 110 PRINT FIND (A$,"E",3)
 120 PRINT FIND (A$(3),"E",0)

Line 110 will print "5" while 120 will print "3".
Remember, the position returned is relative to the
start of the specified string.

 3) 100 INPUT "20 CHARACTERS, PLEASE:",A$
 110 ST=0
 120 F=FIND(A$,"A",ST):IF F=0 THEN STOP
 130 IF A$(F+l,F+l)<>"B" AND A$(F+l,F+l)<>"C"
 THEN ST=F+l:GOTO 120
 140 PRINT "FOUND 'AB' OR 'AC'"

This illustrates the importance of the aexp's use as a
starting position.

74

Chapter 6: FUNCTION LIBRARY

6.3.4 LEFT$

 Format: LEFT$ (svar,aexp)

 Examples: 100 A$=LEFT$("ABCDE",3)

 100 PRINT LEFT$("ABCD",5)

The LEFT$ function returns the leftmost 'aexp'
characters of the string 'svar'. If aexp is greater
than the number of characters in svar, no error occurs
and the entire string svar is returned.

In the first example, A$ is equated to "ABC"x, and in
the second example, the entire string "ABCD" is
printed.

6.3.5 LEN

 Format: LEN(sexp)

 Example: 100 PRINT LEN(A$)

This function returns the length in bytes of the
designated string. This information may then be
printed or used later in a program. The length of a
string variable is simply the index for the character
which is currently at the end of the string. Strings
have a length of 0 until characters have been stored in
them. It is possible to store into the middle of the
string by using subscripting. However, the beginning
of the string will contain garbage.

The following routines illustrate the use of the LEN
function:

10 A$="ATARI" 10 DIM AR$(3,0
20 PRINT LEN(A$) 20 AR$(2;)="ATARI"
 30 PRINT LEN(AR$(2;))

The result of running either of the above programs
would be 5.

6.3.6 MID$

 Format: MID$(svar,aexp1,aexp2)

 Example: A$=MID$("ABCDEFG",2,4)

MID$ allows you to get a substring from the middle of
another string. The substring starts at the 'aexp1'th
character of svar, and is 'aexp2' characters long.

75

The BASIC XL Programming Environment

If aexp1 equals 0 an error occurs (since there is no
zeroeth character of a string), but if aexp1 is greater
than the length of svar no error occurs (and no
characters are returned).

aexp2 is allowed any positive number (including 0), but
if its value makes the substring go beyond the length
of svar, then the substring returned ends at the end of
svar.

In the above example, A$ is equated to "BCDE".

6.3.7 RIGHT$

 Format: RIGHT$(svar,aexp)

 Example: A$=RIGHT$("123456",4)

This function is used to return the rightmost 'aexp'
characters of 'svar'. If aexp is greater than the
number of characters in svar, then the entire string
'svar' is returned.

In the above example, A$ is equated to "3456".

6.3.8 STR$

 Format: STR(aexp)

 Example: A$=STR$(65)

This function returns the string form of the number in
parentheses. The above example would return the actual
number 65, but it would be recognized by the computer
as a string.

NOTE: There can only be one STR$ and only one CHR$ in a
logical comparison. For example, A=STR$(1>STR$(2) is
not valid and will not work correctly.

6.3.9 VAL

 Format: VAL(sexp)

 Example: 100 A=VAL(A$)

This function is the opposite of the STR$ function, in
that it returns the number represented by a string,
providing that the string is indeed a string
representation of a number. Using this function, the

76

Chapter 6: FUNCTION LIBRARY

computer can perform arithmetic operations on strings
as shown in the following example program.

10 DIM B$(5)
20 B$="10000"
30 B=SQR(VAL(B$))
40 PRINT "THE SQUARE ROOT OF ",B$," IS ",B

Upon execution, the screen displays:

 THE SQUARE ROOT OF 10000 IS 100.

It is not possible to use the VAL function with a
string that does not start with a number, or that
cannot be interpreted by the computer as a number. It
can, however, interpret floating point numbers (e.g.,
VAL("1E9") would return the number 1000000000).

6.3.10 An Example Program

The following program inputs a three word string, cuts
it up into the separate words through the use of LEFT$,
MID$, and RIGHT$, and then prints out the ATASCII value
of each letter in each word using ASC. Note that this
program also uses the LEN and FIND functions.

100 PRINT "Give me a three word string with each"
110 INPUT "word separated by a space> ",S$
120 POS1=FIND(S$," ",0) : REM find end of 1st word
130 L$=LEFT$(S$,POS1-1) : REM fill 1st word string
140 POS2=FIND(S$," ",POS1) : REM find 2nd word
150 M$=MID$(S$,POS1+l,POS2-POS1-1) : REM fill 2nd word string
160 R$=RIGHT$(S$,LEN(S$)-POS2) : REM fill 3rd word string
170 PRINT "*** ",L$: REM print 1st word
180 FOR I=1 TO LEN(L$) : REM print ASC value of each letter
190 PRINT ,L$(I,I); ": "; ASC(L$(I))
200 NEXT I
210 PRINT "*** ",M$: REM print 2nd word
220 FOR I=1 TO LEN(M$) : REM print ASC value of each letter
230 PRINT ,M$(I,I); ": "; ASC(M$(I))
240 NEXT I
250 PRINT "*** ",R$: REM print 3rd word
260 FOR I=1 TO LEN(R$) : REM print ASC value of each letter
270 PRINT ,R$(I,I); ": "; ASC(R$(I))
280 NEXT I
298 GOTO 100

NOTE: Lines 130, 150, and 160 could have been coded as
follows:

 130 L$=S$(1,POS1-1)
 156 M$=S$(POS1+1,POS2-1)
 160 R$=S$(POS2+1)

77

The BASIC XL Programming Environment

6.4 Game Controller Functions

6.4.1 HSTICK

 Format: HSTICK(aexp)

 Example: 100 IF HSTICK(0)>0 THEN PRINT "MOVE RIGHT"

The HSTICK function returns an easily usable code for
horizontal movement of a given joystick. aexp is
simply the number of the joystick port (0-3), and the
values returned (and their meanings) are as follows:

 +1 if the joystick is pushed right
 -1 if the joystick is pushed left
 0 if the joystick is horizontally centered

6.4.2 PADDLE

 Format: PADDLE (aexp)

 Example: PRINT PADDLE(3)

This function returns the current value of a particular
paddle. a.xp is the number of the paddle port (0-7).
The value returned will be between 1 and 228, with the
number increasing as the knob is turned
counterclockwise.

6.4.3 PEN

 Format: PEN(aexp)

 Example: PRINT "light pen at X=";PEN(0)

The PEN function simply ready the ATARI light pen
registers and returns their contents to the user. The
number specified by aexp is interpreted as follows:

 PEN(0) reads the horizontal position register
 PEN(l) reads the vertical position register

6.4.4 PTRIG

 Format: PTRIG(aexp)

 Example: 100 IF PTRIG(1)=08 THEN PRINT "MISSILES FIRED!"

The PTRIG function returns a status of 0 if the trigger
button of the designated paddle is pressed. Otherwise,
it returns a value of 1. The aexp must be a number
between 0 and 7 as it designates the paddle.

78

Chapter 6: FUNCTION LIBRARY

6.4.5 STICK

 Format: STICK(aexp)

 Example: 100 PRINT STICK(3)

This function works exactly the same way as the PADDLE
command, but is used with the joystick controllers.
aexp is the number of the joystick port (0-3). The
following diagram shows the value. returned by this
function.

COMMENT: This function was the only means given to
access the joystick with original Atari BASIC. For most
purposes, HSTICK and VSTICK are much easier to use and
to work with.

6.4.6 STRIG

 Format: STRIG(aexp)

 Example: 100 IF STRIG(1)=0 THEN PRINT "FIRE TORPEDO"

The STRIG function works the same way as the PTRIG
function, except that it is used with the joysticks
instead of the paddles.

6.4.7 VSTICK

 Format: VSTICK(aexp)

 Example: IF VSTICK(0)<0 THEN PRINT "MOVE DOWN"

The VSTICK function returns an easily usable code for
vertical movement of a given joystick. aexp is simply
the number of the joystick port (0-3), and the values
returned (and their meanings) are as follows:

 +1 if the joystick is pushed up
 -1 if the joystick is pushed down
 0 if the joystick is vertically centered

79

14

13

15 711

610

59

The BASIC XL Programming Environment

6.4.8 An Example Program

The following program creates a simple GRAPHICS mode 5
sketchpad using the game controller functions HSTICK,
VSTICK, and STRIG to move and draw.

100 GRAPHICS 5 : REM set up screen
110 COL=40 : RBM middle of screen
120 ROW=20
130 COLOR 2 : REM drawing a cursor color
140 PLOT COL, ROW : REM plot cursor
150 FOR I=1 TO 15 : NEXT I : REM delay loop
160 IF STRIG(0)=1 THEN COLOR 0:PLOT COL,ROW:REM don't draw point
170 COL=COL+HSTICK(0) : REM check for movement
180 ROW=ROW-VSTICK(0)
190 IF COL<0 THEN COL=0 : REM screen bounds checking
200 IF COL>79 THEN COL=79
210 IF ROW<0 THEN ROW=0
220 IF ROW>39 THEN ROW=39
230 FOR I=1 TO 25 : NEXT I : REM delay loop
240 GOTO 130 : REM repeat

6.5 Player/Missile Functions

For examples showing the use of the P/M functions, see
section 8.13.

6.5.1 BUMP

 Format: BUMP (pmnum,aexp)

 Example: IF BUMP(4,1) THEN B=BUMP(0,0)

BUMP accesses the collision registers of the Atari and
returns a 1 (collision occurred) or 0 (no collision
occurred) as appropriate for the pair of objects
specified. Note that the second parameter (the aexp)
may be either a player number or playfield number (see
section 8.2 for the appropriate number).

Valid BUMPs: PLAYER to PLAYER (0-3 to 0-3)
 MISSILE to PLAYER (4-7 to 0-3)
 PLAYER to PLAYFIELD (0-3 to 8-11)
 MISSILE to PLAYFIELD (4-7 to 8-11)

NOTE: BUMP (p,p), where the p's are 0 through 3 and
identical, always returns 0.

NOTE: It is advisable to reset the collision registers
if you have not checked them in a long time or after
you are through checking them at any given point in a

80

Chapter 6: FUNCTION LIBRARY

program. You can do this by using the following
statement:

 POKE 53278,0

6.5.2 PMADR

 Format: PMADR(aexp)

 Example: P0=PMADR(0)

This function may be used in any arithmetic expression
and is used to obtain the memory address of any player
or missile. It is useful when you wish to MOVE, POKE,
BGET, etc. data to (or from) a player area. (See
section 8.13 for examples of its use, and section 8.2
for a description of the aexp values.)

NOTE: PMADR(m) -- where m is a missile number (4
through 7) returns the same address for all missiles.

6.6 Special Purpose Functions

6.6.1 ADR

 Format: ADR(svar)

 Examples: ADR(A$)
 ADR(B$(5;))

Returns the decimal memory address of the string
specified by the expression in parentheses. Knowing the
address enables the programmer to pass the information
to USR routines, etc. (See USR and Appendix D).

6.6.2 DPEEK

 Format: DPEEK(aexp)

 Example: PRINT "variable table is at ";:DPEEK(130)

The DPEEK functions is very similar to the PEEK
function, except that it allows you to look two
consecutive bytes of information. This is especially
useful when looking at two byte locations containing
address information, as in the above example. If you
did this example using PEEKs, it would look like:

 PRINT "variable name table is at ";
 PRINT PEEK(130)+(PEEK(131)*256)

It is easy to see that using DPEEK is much easier.

81

The BASIC XL Programming Environment

6.6.3 DPOKE

 Format: DPOKE aexp1,aexp2

 Example: DPOKE 88,32768

DPOKE is similar to POKE, except that it allows you to
put two bytes of data into memory instead of one. aexp1
is the address where you want the data to go, and aexp2
is the data itself. In the above example, the address
of the upper left-hand corner of the screen (this
address is stored at locations 88 and 89) is changed to
32768. To do this using POKEs, you would need to do an
amazing amount of math to get the right number into
each of the two bytes.

6.6.4 ERR

 Format: ERR(aexp)

 Example:
 PRINT "ERROR ":ERR(0);" OCCURRED AT LINE ":ERR(1)

This function in conjunction with TRAP, CONT, and GOTO
allows the BASIC XL programmer to effectively diagnose
and dispatch virtually any run-time error.

 ERR(0) returns the last run-time error number
 ERR(1) returns the line number where the error
 occurred

Example:
 100 TRAP 200
 110 INPUT "A NUMBER, PLEASE >>",NUM
 120 PRINT "A VALID NUMBER" : END
 200 IF ERR(0)=8 THEN GOTO ERR(1)
 210 PRINT "UNEXPECTED ERROR #";ERR(0)

6.6.5 FRE

 Format: FRE(aexp)

 Examples: PRINT FRE(0)
 100 IF FRE(0)<1000 THEN PRINT "MEMORY
 CRITICAL"

This function returns the number of bytes of user RAM
left. Its primary use is in Direct mode with a dummy
variable (0) to inform the programmer how much memory
space remains for completion of a program. Of course
FRE can also be used within a BASIC program in Deferred
mode.

82

Chapter 6: FUNCTION LIBRARY

6.6.6 HEX$

 Format: HEX$(aexp)

 Examples: 100 PRINT HEX$(X+7)
 200 A$=HEX$(83)
 210 PRINT "$";A$(3,4)

This function will convert aexp to a four digit
hexadecimal number.

The second example shows how you can obtain a two digit
hex number for printing or other manipulation.

NOTE: no "$" is placed in front of the number.

6.6.7 PEEK

 Format: PEEK(aexp)

 Examples: 100 IF PEEK (4000) = 255 THEN PRINT "255"
 100 PRINT "LEFT MARGIN IS";PEEK(82)

Returns the contents of a specified memory address
location (aexp). The address specified must be an
integer or an arithmetic expression that evaluates to
an integer between e and 65535 and represents the
memory address in decimal notation (not hexadecimal).
The number returned will also be a decimal integer with
a range from e to 255. This function allows the user
to examine either RAM or ROM locations. In the first
example above, the PEEK is used to determine whether
location 4~el!l (decimal) contains the number 255. In
the second example, the PEEK function is used to
examine the left margin.

6.6.8 POKE

 Format: POKE aexp1,aexp2

 Examples: POKE 82,10

 100 POKE 82,20

Although this is not a function, it is included in this
section because it is closely associated with the PEEK
function. This POKE command inserts data into the
memory location or modifies data already stored there.
In the above format, aexp1 is the decimal address of
the location to be poked and aexp2 is the data to be
poked. Note that this number is a decimal number
between 0 and 255. POKE cannot be used to alter ROM
locations. In gaining familiarity with this command it
is advisable to look at the memory location with a PEEK

83

The BASIC XL Programming Environment

and write down the contents of the location. Then, if
the POKE doesn't work as anticipated, the original
contents can be poked back into the location.

The above Direct mode example changes the left screen
margin from its default position of 2 to a new position
of 10. In other words, the new margin will be 8 spaces
to the right. To restore the margin to its normal
default position, press <SYSTEM RESET>.

6.6.9 SYS

 Format: SYS(aexp)

 Example: 100 IF SYS(0)=0 THEN SET 0,128

The SYS function is used to find out the status of a
given BASIC XL system function. These system functions
can be changed using the SET command, and SYS allows
you to find out what any current value is. aexp is the
number of the system function as defined in the SET
section (3.15).

6.6.10 TAB

 Format: TAB(aexp)

 Example: PRINT #3;"columns:";TAB(20);20;TAB(30);30

The TAB function's effect is identical with that of the
TAB statement (section 5.28). The difference is that,
for PRINT USING statements, an imbedded TAB function
simplifies the programmers task greatly.

TAB will output ATASCII space characters to the current
PRINT file or device (#3 in our example). Sufficient
spaces will be output so that the next item will print
in the column specified (only if TAB is followed by a
semi-colon, though). If the column specified is less
than the current column, a RETURN will be output first.

CAUTION: The TAB function will output spaces on some
device whenever it is used; therefore, it should be
used ONLY in PRINT statements.

6.6.11 USR

 Format: USR(aexp1 [,aexp2][aexp3...])

 Example: 100 RESULT = USR(ADD1,A*2)

This function returns the results of a machine-language
subroutine. The first expression, aexp1, must be an
integer or arithmetic expression that evaluates to an

84

Chapter 6: FUNCTION LIBRARY

integer that represents the decimal memory address of
the machine language routine to be performed. The
input arguments aexp2,aexp3,etc., are optional. These
should be arithmetic expressions within a decimal range
of 0 through 65535. A non-integer value may be used;
however, it will be rounded to the nearest integer.

These values will be converted from BASIC's Binary
Coded Decimal (BCD) floating point number format to a
two-byte binary number, then pushed onto the hardware
stack.

The arguments are pushed in the reverse of the order
given, so the assembly language program may then pull
them in proper forward order. Additionally, the
one-byte count of parameters is pushed onto the stack
and MUST be popped by the USeR routine (except see
section 3.15, the SET command).

Also, if all arguments are properly pulled from the
stack, then the USeR routine may return to BASIC XL by
simply executing an RTS instruction. And, finally, the
routine may return a single 16-bit value to BASIC XL
(as the "value" of the USeR function) by placing a
result in FR0 and FR0+l ($D4 and $D5) before returning.

Example: The following example uses a USR call to XOR
two numbers (the arguments to the USR routine)
and then return that value to BASIC XL.

BASIC XL statement:

 PRINT HEX$(USR($680,$3FFA,$2972))

USR routine at $680:

 FR0 = $D4
 *= $680
 PLA ; get number of arguments
 CMP #2 ; see if it's 2
 BNE * ; loop forever if wrong num. of args.
 PLA ; get high byte of arg #1
 STA FR0+1 ; store high byte
 PLA ; get low byte of arg #1
 STA FR0 ; store low byte
 PLA ; get high byte of arg #2
 EOR FR0+1 ; XOR it with high byte of arg #1
 STA FR0+1 ; store result of XOR
 PLA ; get low byte of arg #2
 EOR FR0 ; XOR it with low byte of arg #1
 STA FR0 ; store result of XOR
 RTS ; end of USR routine

85

The BASIC XL Programming Environment

6.6.12 An Example Program

The following program uses the system timer located at
$12, $13, and $14 to create a countdown clock. This is
done by poking 0 into the low byte of the timer and
waiting until it is greater than or equal to 60.

Note: On PAL systems remember to use 50; see line 200.

100 GRAPHICS 2
110 PRINT #6; CHR$(125) : REM Clear Mode 2 area
120 PRINT : PRINT : PRINT
130 PRINT "COUNTDOWN TIME? ";
140 INPUT #0,X
150 POKE $14,0 : REM set clock = 0
160 PRINT #6; "TIME -";
170 WHILE X>0 : REM start the countdown
180 POSITION 7,1 : REM get ready to print the new time
190 PRINT #6; USING "##",X; : REM print time left
200 WHILE PEEK($14)<=60 : REM wait until a second has passed
210 ENDWHILE
220 POKE $14,0 : REM reset the clock for the next second
230 X=X-1 : REM decrement number of seconds left
240 ENDWHILE : REM end of countdown loop
250 PRINT CHR$(253) : REM ring the bell
260 GOTO 110 : REM do the whole thing over again

86

Chapter 7: SCREEN GRAPHICS AND SOUND

This chapter describes the BASIC XL commands used to
manipulate the wide variety of screen graphics
available on the Atari personal computers. It also
describes the BASIC XL command used to manipulate the
sound generating mechanism of the Atari computers.

7.1 GRAPHICS (GR.)

 Format: GRAPHICS aexp

 Example: GRAPHICS 2

This command is used to select one of the graphics
modes. The table below summarizes the modes and the
characteristics of each.

The GRAPHICS command automatically opens the graphics
area of the screen (S:) on channel #6. As a result of
this, it is not necessary to specify a channel number
when you want to PRINT to the text window, since it is
still open on channel #0.

NOTE: aexp must be positive.

Graphics modes 8, 9, 10, and 11 are full-screen display
while modes 1 through 8 and 12 to 15 are split screen
displays. To override the split-screen, add 16 to the
mode number (aexp) in the GRAPHICS command. Adding 32
prevents the graphics command from clearing the screen.

To return to graphics mode 0 in Direct mode, press
<SYSTEM RESET> or type GR.0 and press <RETURN>.

 Gr. Mode (split) (full) Num of
Mode Type Cols Rows Rows Colors
---- ---- ---- ---- ---- ------
 0 TEXT 40 N/A 24 2
 1 TEXT 20 20 24 5
 2 TEXT 20 10 12 5
 3 GRAPHICS 40 20 24 4
 4 GRAPHICS 80 40 48 2
 5 GRAPHICS 80 40 48 4
 6 GRAPHICS 160 80 96 2
 7 GRAPHICS 160 80 96 4
 8 GRAPHICS 320 160 192 1 ½
 9 GRAPHICS 80 N/A 192 16
 10 GRAPHICS 80 N/A 192 9
 11 GRAPHICS 80 N/A 192 16
 12 TEXT 40 20 24 5 (XL/XE)
 13 TEXT 40 10 12 5 (only)
 14 GRAPHICS 160 160 192 2 (- " -)
 15 GRAPHICS 160 160 192 4 (- " -)

87

The BASIC XL Programming Environment

7.1.1 GRAPHICS Mode 0

This mode is the 1-color, 2-luminance (brightness)
default mode for the ATARI Personal Computer. It
contains a 24 line by 40 character screen matrix. The
default margin settings at 2 and 39 allow 38 characters
per line. Margins may be changed by poking LMARGN and
RMARGN (82 and 83).

Some systems have different margin default settings.
The color of the characters is determined by the
background color. Only the luminance of the characters
can be different. This full-screen display has a blue
display area bordered in black (unless the border is
specified to be another color). To display characters
at a specified location, use the following method:

 POSITION aexp1,aexp2 : REM Puts cursor at location
 PRINT sexp : REM specified by aexp1 and aexp2.

GRAPHICS 0 is also used as a clear screen command
either in Direct mode or Deferred mode. It terminates
any previously selected graphics mode and returns the
screen to the default mode (GRAPHIC 0).

7.1.2 GRAPHICS Modes 1 and 2

These two 5-color modes are text modes. However, they
are both split-screen modes.

Characters printed in Graphics mode 1 are twice the
width of those printed in Graphics 0, but are the same
height.

Characters printed in Graphics mode 2 are twice the
width and height of those in Graphics mode 0.

In the split-screen mode, a PRINT command is used to
display characters in either the text window or the
graphic window. To print characters in the graphic
window, specify channel #6 after the PRINT command.

 Example: 100 GR. 1
 110 PRINT #6;"A MODE 1 TEST"

88

Chapter 7: SCREEN GRAPHICS AND SOUND

The default colors depend on the type of character
input, as defined in the following table:

Character Type Color Register Default Color
-------------- -------------- -------------
Upper case alphabetic 0 Orange
Lower case alphabetic 1 Light Green
Inverse upper case alphabetic 2 Dark Blue
Inverse lower case alphabetic 3 Red
Numbers 0 Orange
Inverse numbers 2 Dark Blue

NOTE: See SETCOLOR to change character colors.

Unless otherwise specified, all characters are
displayed in upper case non-inverse form. To print
lower case letters and graphics characters, use a POKE
756,226. To return to upper case, use POKE 756,224.

In graphics modes 1 and 2, there is no inverse video,
but it is possible to get all the rest of the
characters in four different colors (see end of
SETCOLOR section).

7.1.3 GRAPHICS Modes 3, 5 and 7

These three 4-color graphics modes are also
split screen displays in their default state, but may
be changed to full screen by adding 16 to the mode
number. Modes 3, 5, and 7 are alike except that modes
5 and 7 use more points (pixels) in plotting, drawing,
and positioning the cursor; the points are smaller,
thereby giving a much higher resolution.

7.1.4 GRAPHICS modes 4,6

These two 2-color graphics modes are split-screen
displays and can display in only two colors while the
other modes can display 4 and 5 colors. The advantage
of a two-color mode is that it requires less RAM space.
Therefore, it is used when only two colors are needed
and RAM is getting crowded. These two modes also have
a higher resolution which means smaller points than
Graphics mode 3.

89

The BASIC XL Programming Environment

7.1.5 GRAPHICS mode 8

This graphics mode gives the highest resolution of all
the other modes. As it takes a lot of RAM to obtain
this kind of resolution, it can only accommodate a
maximum of one color and two different luminances, as
mode 0.

7.1.6 GRAPHICS modes 9, 10, and 11

GRAPHICS modes 9, 10, and 11 are the GTIA modes, and
are somewhat different from all the other modes. Note
that these modes do not allow a text window.

Mode 9 is a one color, 16 luminance mode. The main
color is set by the background color, and the luminance
values are determined by the information in the screen
memory itself. Each pixel is four bits wide, allowing
for 16 different values. These values are interpreted
as the luminance of the base color for that pixel.

Mode 11 is similar to mode 9 in that the color
information is in the screen memory itself, but the
information for each pixel is interpreted as a color
instead of a luminance. Thus there are 16 colors, all
of the same luminance. The luminance is set by the
luminance of the background color (default = 6).

Mode 10 is somewhat of a crossbreed of the other two
GTIA modes and the normal modes in that it offers lots
of colors (like the GTIA modes) and uses the color
registers (like the normal modes). However, since mode
10 allows 9 colors, it must use the player color
registers as well as the other color registers. Below
is a table showing how the pixel values relate to the
color registers and what BASIC XL command may be used.

 VALUE REGISTER REG. ADDRESS COMMAND
 ----- -------- ------------ -------
 0 PCOLR0 704 PMCOLOR 0
 1 PCOLR1 705 PMCOLOR 1
 2 PCOLR2 706 PMCOLOR 2
 3 PCOLR3 707 PMCOLOR 3
 4 COLOR0 708 SETCOLOR 0
 5 COLOR1 709 SETCOLOR 1
 6 COLOR2 710 SETCOLOR 2
 7 COLOR3 711 SETCOLOR 3
 8 COLOR4 712 SETCOLOR 4

90

Chapter 7: SCREEN GRAPHICS AND SOUND

7.1.7 GRAPHIC modes 12 and 13

These are 5-color split-screen text modes.

The characters in mode 12 have the same height as in
mode 0, but only four pixels get displayed instead of
eight.

In mode 13 the characters are double the size of mode 0
characters, while only four pixels are displayed.

Since both modes display only four bits in each line of
the character definition, the color of the activated
pixel depends on the bit pair in the byte being
addressed:

 Bit Pair Color RAM Location
 00 BAK 712
 01 PF0 708
 10 PFl 709
 11 This depends on bit 7 of the byte.

 If bit 7 = 0, then use PF2 (at 710),
 else use PF3 (at 711).

Each line in a character set definition (eight lines,
one byte wide, form one character) can have different
color combinations. Since bit pairs (one color clock)
are displayed, the normal character set becomes
unrecognizable. In order to use these modes, you should
build a character set in which each character is half a
letter and can be combined for display. Or build a 7x7
character set with a blank row and column between each
character.

The characters displayed are only one half of the
ATASCII set, depending on the value in location 756:
224 for uppercase, 226 for lowercase. The lower seven
bits (0-6) are used for character data (range from 0 to
127), while the high bit is the color modifier (see
table above).

7.1.8 GRAPHIC modes 14 and 15

GRAPHICS 14 is a two-color mode with half the
horizontal resolution of GRAPHICS 8. Each screen line
is one scan line high.

GRAPHICS 15 is a four-color mode with screen lines
being one scan line high. Only the first two bits of a
screen byte identify the byte color.

NOTE: Graphic modes 12-15 are not available from BASIC
XL on 400/800 machines.

91

The BASIC XL Programming Environment

7.2 COLOR (C.)

 Format: COLOR aexp

 Examples: 110 COLOR ASC("A")
 110 COLOR 3

The value of the expression in the COLOR statement
determines the data to be stored in the display memory
for all subsequent PLOT and DRAWTO commands until the
next COLOR statement is executed. The value must be
positive and is usually an integer from 0 through 255.
Non-integers are rounded to the nearest integer. The
graphics display hardware interprets this data in
different ways in the different graphics modes.

In text modes 0 through 2, the number can be from 0
through 255 (8 bits) and determines the character to be
displayed and its color. (The two most significant
bits determine the color. This is why only 64 different
characters are available in these modes instead of the
full 256-character set.)

Graphics modes 3 through 8 are not text modes, so the
data stored in the display RAM simply determines the
color of each pixel. Two-color or two-luminance modes
require either 0 or 1 (1-bit) and four-color modes
require 0, 1, 2, or 3. (The expression in the COLOR
statement may have a value greater than 3, but only one
or two bits will be used.)

The actual color which is displayed depends on the
value in the color register which corresponds to the
data of 0, 1, 2, or 3 in the particular graphics mode
being used. This may be determined by looking in the
table at the end of the SETCOLOR section. This table
gives COLOR and SETCOLOR relationships for all the
GRAPHICS modes.

Note that when BASIC XL is first powered up, the color
data is 0. and when a GRAPHICS command (without +32) is
executed, all of the pixels are set to 0. Therefore,
nothing seems to happen to PLOT and DRAWTO in GRAPHICS
3 through 7 when no COLOR statement has been executed.
Correct this by doing a COLOR 1 first.

92

Chapter 7: SCREEN GRAPHICS AND SOUND

7.3 DRAWTO (DR.)

 Format: ·DRAWTO aexp1, aexp2

 Example: 100 DRAWTO 10,8

This statement causes a line to be drawn from the last
point displayed by a PLOT (see PLOT) to the location by
aexp1 and aexp2. The first expression represents the X
coordinate (column) and the second represents the
Y-coordinate (row). The color of the line is the same
color as the point displayed by the PLOT.

7.4 LOCATE (LOC.)

 Format: LOCATE aexp1,aexp2,avar

 Example: 150 LOCATE 11,15,X

This command positions the invisible graphics cursor at
the specified location in the graphics window,
retrieves the data at that pixel, and stores it in the
specified arithmetic variable. This gives a number
from 0 to 255 for Graphics modes 0 through 2, a 0 or 1
for the 2-color graphics modes, and a 0, 1, 2, or 3 for
the 4-color modes. The two arithmetic expressions
specify the X and Y coordinates of the point. LOCATE
is equivalent to:

 POSITION aexp1,aexp2:GET#6,avar

Doing a PRINT after a LOCATE or GET from the screen may
cause the data in the pixel which was examined to be
modified. This problem is avoided by repositioning the
cursor and putting the data that was read back into
the pixel before doing the PRINT. The following
program illustrates the use of the LOCATE command:

 10 GRAPHICS 3+16
 20 COLOR 1
 30 SETCOLOR 2,10,8
 40 PLOT 10,15
 50 DRAWTO 15,15
 60 LOCATE 12,15,X
 70 PRINT X

On execution, the program prints the data (1)
determined by the COLOR statement which was stored in
pixel 12,15.

93

The BASIC XL Programming Environment

7.5 PLOT (PL.)

 Format: PLOT aexp1,aexp2

 Example: 100 PLOT 5,5

The PLOT command is used in graphics modes 3 through 8
to display a point in the graphics window. aexp1
specifies the X-coordinate and aexp2 specifies the
Y-coordinate. The color of the plotted point is
determined by the hue and luminance in the color
register from the last COLOR statement executed. To
change this color register, and the color of the
plotted point, use SETCOLOR. Points that can be
plotted on the screen are dependent on the graphics
mode being used. The range of points begins at (0,0),
and extends to one less than the total number of rows
(X-coordinate) or columns (Y-coordinate).

NOTE: PLOT aexp1,aexp2 is equivalent to:

 POSITION aexp1,aexp2 : PUT #6, COLOR

7.6 POSITION (POS.)

 Format: POSITION aexp1,aexp2

 Example: 100 POSITION 8,12

The POSITION statement is used to place the invisible
graphics window cursor at the specified location on the
screen (usually precedes a PRINT or PUT statement).
This statement can be used in all modes. Note that the
cursor does not actually move until an I/O command
which involves the screen is issued.

7.7 PUT and GET (as applied to graphics)
--
 Formats: PUT #6,aexp
 GET #6,avar

 Examples: 100 PUT #6,ASC("A")
 200 GET #6,X

In graphics work, PUT is used to output data to the
screen display. This statement works hand-in-hand with
the POSITION statement. "After a PUT (or GET), the
cursor is moved to the next location on the screen.

Doing a PUT to device #6 causes the one-byte aexp to be
displayed at the cursor position. The byte is either an
ATASCII code byte for a particular character (modes
0-2) or the color data (modes 3-8).

94

Chapter 7: SCREEN GRAPHICS AND SOUND

GET is used to input the code byte of the character
displayed at the cursor position, into the specified
arithmetic variable. The values used in PUT and GET
correspond to the values in the COLOR statement.
(PRINT and INPUT may also be used.)

NOTE: Doing a PRINT after a LOCATE or GET from the
screen may cause the data in the pixel which was
examined to be modified. To avoid this problem,
reposition the cursor and put the data that was read
back into the pixel before doing the PRINT.

7.8 SETCOLOR (SE.)

 Format: SETCOLOR aexp1,aexp2,aexp3

 Example: 100 SETCOLOR 0,1,4

This statement is used to choose the particular hue and
luminance to be stored in the specified color register.
The parameters of the SETCOLOR statement are defined
below:

aexp1 = Color register (0-4 depending on graphics mode)
aexp2 = Color hue number (0-15 --see the table below)
aexp3 = Color luminance (must be an even number between
 0 and 14; the higher the number, the brighter
 the display. 14 is almost pure white.)

 SETCOLOR SETCOLOR
 aexp2 Color aexp2 Color
 -------- ----- -------- -----
 0 Gray 8 Blue
 1 Gold 9 Light Blue
 2 Orange 10 Turquoise
 3 Red-Orange 11 Green-Blue
 4 Pink 12 Green
 5 Purple 13 Yellow-Green
 6 Purple-Blue 14 Orange-Green
 7 Blue 15 Light Orange

NOTE: Colors will vary with type and adjustment of TV
or monitor used.

The ATARI display hardware contains five color
registers, numbered from 0 through 4. The Operating
System (OS) has five RAM locations (COLOR0 through
COLOR4, see Appendix I - Memory Locations) where it
keeps track of the current colors. The SETCOLOR
statement is used to change the values in these RAM
locations. (The OS transfers these values to the
hardware registers every television frame.)

95

The BASIC XL Programming Environment

The SETCOLOR statement requires a value from 0 to 4 to
specify a color register. The COLOR statement uses
different numbers because it specifies data which only
indirectly corresponds to a color register. This can be
confusing, so careful study of the various tables in
this section is advised.

 SETCOLOR Default Default
 Register Color Luminance Color
 -------- ------- --------- -----
 0 2 8 Orange
 1 12 10 Green
 2 9 4 Dark Blue
 3 4 6 Pink or Red
 4 0 0 Black

"DEFAULT" occurs if no SETCOLOR statement is used.

The following table shows the COLOR -- SETCOLOR
relationships for all the GRAPHICS modes, and gives
some information on the registers used in a specific
mode:

+--+
|GRAPHICS | SETCOLOR | COLOR | Description |
| Mode | 'register' | number | and Comments |
|---------+------------+--------+--------------------------|
0	0	COLOR	--
and	1	data	--
all	2	actually	Character luminance
text	3	deter-	Background
windows	4	mines	Border
---------+------------+--------+--------------------------			
	0	the	Character
	1	char-	Character
1,2,	2	acter	Character
12,13	3	to	Character
	4	PLOT	Background, Border
---------+------------+--------+--------------------------			
	0	1	Graphics Point
3,5,7,	1	2	Graphics Point
15	2	3	Graphics Point
	3	--	--
	4	0	Gr.Pt.,Border,Background
---------+------------+--------+--------------------------+			
4,6,	0	1	Graphics Point
14	4	0	Gr.Pt.,Border,Background
---------+------------+--------+--------------------------			
	1	1	Graphics Point,Luminance
8	2	0	Graphics Point,Background
	4	--	Border
+--+

96

Chapter 7: SCREEN GRAPHICS AND SOUND

7.9 XIO (X.) Special Fill Application

 Format: XIO 18,#aexp,aexp1,aexp2,filespec

 Example: 100 XIO 18,#6,0,0,"S:"

This special application of the XIO statement fills an
area on the screen between plotted points and lines
with a non-zero color value. Dummy variables (0) are
used for aexp1 and aexp2.

The following steps illustrate the fill process:

1. PLOT bottom right corner (point 1).
2. DRAWTO upper right corner (point 2). This outlines

the right edge Of the area to be filled
3. DRAWTO upper left corner (point 3).
4. POSITION cursor at lower left corner (point 4).
5. POKE address 765 with the fill color data (1,2,or 3).

This method is used to fill each horizontal line from
top to bottom of the specified area. The fill starts at
the left and proceeds across the line to the right
until it reaches a pixel which contains non-zero data
(will wraparound if necessary). This means that fill
cannot be used to change an area which has been filled
in with a non-zero value, as the fill will stop.

WARNING: The fill command will go into an infinite loop
if you attempt to put zero (0) data on a line which has
no non-zero pixels. <BREAK> or <SYSTEM RESET> can be
used to stop the fill if this happens.

The following program creates a shape and fills it with
a data (color) of 3. Note that the XIO command draws
in the lines of the left and bottom of the figure.

10 GRAPHICS 5+16
20 COLOR 3
30 PLOT 70,45
40 DRAWTO 50,10
50 DRAWTO 30,10
60 POSITION 10,45
70 POKE 765,3
80 XIO 18,#6,0,0,"S:"
90 GOTO 90

97

The BASIC XL Programming Environment

7.10 SOUND (SO.)

 Format: SOUND aexp1,aexp2,aexp3,aexp4

 Example: 100 SOUND 2,203,10,12

The SOUND statement causes the specified note to begin
playing as soon as the statement is executed. The note
will continue playing until the program encounters
another SOUND statement with the same aexp1 or an END
statement. The SOUND parameters are described as
follows:

aexp1 is one of the four voices available on the
Atari (number 0 - 3).

aexp2 is the frequency (pitch) of the sound, and
ranges between 0 and 255. The lower aexp2
is, the higher the frequency.

Aexp3 is a measure of the sound's distortion
(fuzziness). Valid numbers are 0 - 14, even
numbers only. A value of 10 creates pure
tones like a flute, and a 12 produces sounds
similar to a guitar.

Aexp4 is the volume of the sound. Valid values are
1 - 15; the lower the number, the lower the
volume.

Here is a table for various musical notes using a
distortion of 10:

 aexp2 Note(s) aexp2 Note(s)
 ----- ------- ----- -------
HIGH 29 C 91 F
NOTES 31 B 96 E
 33 A# or Bb 102 D# or Eb
 35 A 108 D
 37 G# or Ab 114 C# or Db
 40 G MIDDLE C 121 C
 42 F# or Gb 128 B
 45 F 136 A# or Bb
 47 E 144 A
 50 D# or Eb 153 G# or Ab
 53 D 162 G
 57 C# or Db 173 F# or Gb
 60 C 182 F
 64 B LOW 193 E
 68 A# or Db NOTES 204 D# or Eb
 72 A 217 D
 76 G# or Ab 230 C# or Db
 81 G 243 C
 85 F# or Gb

98

Chapter 7: SCREEN GRAPHICS AND SOUND

The following program plays a C scale using the above
values:

10 READ A
20 IF A=256 THEN END
30 SOUND 0,A,10,10
40 FOR W=1 TO 400:NEXT W
50 PRINT A
60 GOTO 10
70 END
80 DATA 29,31,35,40,45,47,53,60,64,72,81,91,96,108,121
90 DATA 128,144,162,182,193,217,243,256

Note that the DATA statement in line 80 ends with a
256, Which is outside of the designated range. The 256
is used as an end-of-data marker.

99

Chapter 8: PLAYER / MISSILE GRAPHICS

This chapter describes the BASIC XL commands and
functions used to access the Atari's Player-Missile
Graphics. Player Missile Graphics (hereafter usually
referred to as simply "PMG") represent a portion of the
Atari hardware totally ignored by Atari BASIC and Atari
OS. Even the screen handler (the "S:" device) knows
nothing about PMG.

BASIC XL goes a long way toward remedying these
omissions by adding six PMG commands (statements) and
two PMG functions to the already comprehensive Atari
graphics. In addition, four other statements and two
functions have significant uses in PMG and will be
discussed in this chapter.

For information on the PMG functions, see section 6.5.

8.1 An Overview of P/M Graphics

For a complete technical discussion of PMG, and to
learn of even more PMG "tricks" than are included in
BASIC XL, read the Atari document entitled "Atari
400/800 Hardware Manual" (Atari part number C016555,
Rev. 1 or later).

It was stated above that the "S:" device driver knows
nothing of PMG, and in a sense this is proper: the
hardware mechanisms that implement PMG are, for
virtually all purposes, completely separate and
distinct from the "playfield" graphics supported by
"S:". For example, the size, position, and color of
players on the video screen are completely independent
of the GRAPHICS mode currently selected and any COLOR
or SETCOLOR commands currently active. In Atari (and
now BASIC XL) parlance, a "player" is simply a
contiguous group of memory cells displayed as a
vertical stripe on the screen. Sounds dull? Consider:
each player (there are four) may be "painted" in any of
the 128 colors available on the Atari (see SETCOLOR for
specific colors). Within the vertical stripe, each bit
set to 1 paints the player's color in the corresponding
pixel, while each bit set to 0 paints no color at all!
That is, any 0 bit in a player stripe has no effect on
the underlying playfield display.

Why a vertical stripe? Refer to the figure at the end
of this section for a rough idea of the player concept.
If we define a shape within the bounds of this stripe

101

The BASIC XL Programming Environment

(by changing some of the player's bits to 1's), we may
then move the stripe anywhere horizontally by a simple
register POKE (or via the PMMOVE command in BASIC XL).
We may move the player vertically by simply doing a
circular shift on the contiguous memory block
representing the player (again, the PMMOVE command of
BASIC XL simplifies this process). To simplify:

A player is actually seen as a stripe on the screen 8
pixels wide by 128 (or 256, see below) pixels high.
Within this stripe, you can POKE or MOVE bytes to
establish what is essentially a tall, skinny picture
(though much of the picture may consist of 0 bits, in
which case the background "shows through"). Using
PMMOVE, you may then move this player to any horizontal
or vertical location on the screen. To complicate:

For each of the four players there is a corresponding
"missile" available. Missiles are exactly like players
except that:

1) they are only 2 bits wide, and all four
missiles share a single block of memory

2) each 2 bit sub-stripe has an independent
horizontal position

3) a missile always has the same color as
its parent player.

Again, by using the BASIC XL commands (MISSILE and
PMMOVE, for example), you the programmer need not be
too aware of the mechanisms of PMG.

 Vert. 0
 Position
 TV Screen

 Playfield Area

 Hor. Pos.

 Approx. 140
 A Player Shape --
 any on (1) bits will
 show color selected
 by PMCOLOR.
 8*
 * indicates pixels
 (color clocks) of
 width.
 127 255

102

Chapter 8: PLAYER / MISSILE GRAPHICS

8.2 P/M Graphics Conventions

1. Players are numbered from 0 through 3. Each
player has a corresponding missile whose number is
4 greater then that of its parent player, thus
missiles are numbered 4 through 7. In the BUMP
function, the "playfields" are numbered from 8
through 11, corresponding to actual playfields 0
through 3. (NOTE: Playfields are actually COLORs
on the main GRAPHICS screen, and can be PLOTted,
PRINTed, etc.)

2. There is some inconsistency in which way is "UP".
PLOT, DRAWTO, POKE, MOVE, etc. are aware that 0,0
is the top left of the screen and that vertical
position numbering increases as you go down the
screen. PMMOVE and VSTICK, however, do only
relative screen positioning, and define "+" to be
UP and "-" to be DOWN. [If this really bothers
you please let us know!].

3. "pmnum" is an abbreviation for Player-Missile
NUMber and must be a number from 0 to 3 (for
players) or 4 to 7 (for missiles).

8.3 BGET and BPUT with P/M's

As with MOVE (see section 8.11), BGET may be used to
fill a player memory quickly with a player shape. The
difference is that BGET may obtain a player directly
from the disk:

Example: BGET #3,PMADR(0),128

Would get a PMG.2 mode player from the file opened in
slot #3.

Example: BGET #4,PMADR(4),256*5

Would fill all the missiles AND players in PMG.1 mode --
with a single statement!

BPUT would probably be most commonly used during program
development to SAVE a player shape (or shapes) to a file
for later retrieval by BGET.

103

The BASIC XL Programming Environment

8.4 PMCLR

 Format: PMCLR pmnum

 Example: PMCLR 4

This statement "clears" a player or missile area to all
zero bytes, thus "erasing" the player/missile. PMCLR is
aware of what PMG mode is active and clears only the
appropriate amounts of memory. CAUTION: PMCLR 4
through PMCLR 7 all produce the same action -- ALL
missiles are cleared, not just the one specified. To
clear a single missile, try the following:

 SET 7,0 : PMMOVE 4;255

8.5 PMCOLOR (PMCO.)

 Format: PMCOLOR pmnum,aexp,aexp

 Example: PMCOLOR 2,13,8

PMCOLORs are identical in usage to those of the
SETCOLOR statement except that a player/missile set has
its color chosen. Note there is no correspondence in
PMG to the COLOR statement of playfield GRAPHICS: none
is necessary since each player has its own color.

The example above would set player 2 and missile 6 to a
medium (luminace 8) green (hue 13).

NOTE: PMG has NO default colors set on power-up or
SYSTEM RESET.

8.6 PMGRAPHICS (PMG.)

 Format: PMGRAPHICS aexp

 Example: PMG. 2

This statement is used to enable or disable the Player/
Missile Graphics system. The aexp should evaluate to 0,
1, or 2:

 PMG.0 Turn off PMG
 PMG.l Enable PMG, single line resolution
 PMG.2 Enable PMG,'double line resolution

Single and Double line resolution (hereafter referred to
as "PMG Modes") refer to the height which a byte in the
player "stripe" occupies - either one or two television
scan lines. (A scan line height is the pixel height in

104

Chapter 8: PLAYER / MISSILE GRAPHICS

GRAPHICS mode 8. GRAPHICS 7 has pixels 2 scan lines
high, similar to PMG.2)

The secondary implication of single line versus double
line resolution is that single line resolution requires
twice as much memory as double line, 256 bytes per
player versus 128 bytes. The following diagram shows
PMG memory usage in BASIC XL, but the user really need
not be aware of the mechanics if the PMADR function is
used.

 RAMSZ ($6A)
 +---------------------------------------+
 | Current GRAPHICS Mode |
 +---------------------------------------+

Depending on GRAPHICS mode, there may or may not be
unused memory here.

 Double Line Single Line
+l024 +---------------------------------------+ +2048
 | Player 3 | |
 +856 |-------------------| Player 3 |
 | Player 2 | |
 +700 |-------------------|-------------------| +1792
 | Player 1 | |
 +64l |-------------------| Player 2 |
 | Player 0 | |
 +512 |-------------------|-------------------| +1536
 | M0 | M1 | M2 | M3 | |
 +384 |-------------------| Player 1 |
 | | |
 |-------------------|-------------------| +1280
 | | |
 | | Player 0 |
 | | |
PMBASE |-------------------|-------------------| +1024
 | | | | |
 | M0 | M1 | M2 | M3 |
NOTE: MEMTOP ($2E5) points | | | | |
 to the bottom of the |-------------------|
 missiles (PMBASE+384 | |
 in double line, | |
 PMBASE+768 in single | |
 line. | |
 | |
 | |
 | |
 +-------------------+ PMBASE

105

The BASIC XL Programming Environment

8.7 PMMOVE

 Format: PMMOVE pmnum[,aexp][;aexp]

 Examples: PMMOVE 0,120;1
 PMMOVE 1,80
 PMMOVE 4;-3

Once a player or missile has been "defined" (via POKE,
MOVE, GET, or MISSILE), the truly unique features of
PMG under BASIC XL may be utilized. With PMMOVE, the
user may position the player/missile shape anywhere on
the screen almost instantly.

BASIC XL allows the user to position each player and
missile independently. Because of the hardware
implementation, though, there is a difference in how
horizontal and vertical positions are specified.

The parameter following the comma in PMMOVE is taken to
be the ABSOLUTE position of the left edge of the
"stripe" to be displayed. This position ranges from 0
to 255, though the lowest and highest positions in this
range are beyond the edges of the display screen. Note
the specification of the LEFT edge: changing a player's
width (see PMWIDTH) will not change the position of its
left edge, but will expand the player to the right.

The parameter following the semi-colon in PMMOVE is a
RELATIVE vertical movement specifier. Recall that a
"stripe" of player is 128 or 256 bytes of memory.
Vertical movement must be accomplished by actual
movement of the bytes within the stripe -- either
towards higher memory (down the screen) or lower memory
(up the screen). BASIC XL allows the user to specify a
vertical movement from -255 (down 255 pixels) to
+255 (up 255 pixels).

NOTE: The +/- convention on vertical movement conforms
to the value returned by VSTICK.

 Example: PMMOVE N;VSTICK(N)

Will move player N up or down (or not move him) in
accordance with the joystick position.

NOTE: SET may be used to tell PMMOVE whether an object
should "wraparound" (from bottom of screen to top of
screen or vice versa) or should disappear as it scrolls
too far up or down. SET 7,1 specifies wraparound, and
SET 7,0 disables it.

106

Chapter 8: PLAYER / MISSILE GRAPHICS

8.8 PMWIDTH (PMW.)

 Format: PMWIDTH pmnum,aexp

 Example: PMWIDTH 1,2

Just as PMGRAPHICs can select single or double pixel
heights, PMWIDTH allows the user to specify the screen
width of players and missiles. But where PMGRAPHICs
selects resolution mode for all players and missiles,
PMWIDTH allows each player AND missile to be separately
specified. The aexp used for the width should have
values of 1, 2, or 4 -- representing the number of color
clocks (equivalent to a pixel width in GRAPHICS mode 7)
which each bit in a player definition will occupy.

NOTE: PMG.2 and PMWIDTH 1 combine to allow each hit of a
player definition to be equivalent to a GRAPHICS mode 7
pixel -- a not altogether accidental occurrence.

NOTE: Although players may be made wider with PMWIDTH,
the resolution then suffers. Wider "players" may be made
by placing two or more separate players side-by-side.

8.9 POKE and PEEK with P/M's

One of the most common ways to put player data into a
player stripe may well be to use POKE. In conjunction
with PMADR, it is easy to write understandable player
loading routines.

 Example: 100 FOR LOC=48 TO 52
 110 READ N: POKE LOC+PMADR(0),N
 120 NEXT LOC
 ...
 900 DATA 255,129,255,129,255

PEEK might be used to find out what data is in a
particular player location.

8.10 MISSILE (MIS.)

 Format: MISSILE pmnum,aexp,aexp

 Example: MISSILE 4,48,3

The MISSILE statement allows an easy way for a parent
player to "shoot" a missile. The first aexp specifies
the absolute vertical position of the beginning of the
missile (0 is the top of screen), and the second aexp

107

The BASIC XL Programming Environment

specifies the vertical height of the missile.

Example: MISSILE 4,64,3

Would place a missile 3 or 6 scan lines high (depends
on PMG. mode) at pixel 64 from the top.

NOTE: MISSILE does NOT simply turn on the bits corres-
ponding to the position specified. Instead, the bits
specified are exclusive-or'ed with the current missile
memory. This can allow the user to erase existing
missiles while creating others.

Examples: MISSILE 5,40,4
 MISSILE 5,40,8

The first statement creates a 4 pixel missile at
vertical position 20. The second statement erases the
first missile and creates a 4 pixel missile at vertical
position 24.

8.11 MOVE with P/M's

MOVE is an efficient way to load a large player and/or
move a player vertically by a large amount. This
ability to MOVE data either upwards or downwards allows
for interesting possibilities.

Also, it would be easy to have several player shapes
contained in stripes and then MOVEd into place at will.

Examples: MOVE ADR(A$),PMADR(2),128

could move an entire double line resolution
player from A$ to player stripe number 2.

 POKE PMADR(1),255:MOVE PMADR(1),PMADR(1)+1,127

would fill player 1's stripe with all "on"
bits, creating a solid stripe on the screen.

8.12 USR with P/M's

Because, of USR's ability to pass parameters to an
assembly language routine, PMG functions (written in
assembly language) can be easily interfaced to BASIC XL.

Example: A=USR(PMBLINK,PMADR(2),128)

Might call an assembly language program (at address
PMBLINK) to BLINK player 2, whose size is 128 bytes.

108

Chapter 8: PLAYER / MISSILE GRAPHICS

8.13 Example PMG Programs

1. A very simple program with one player and its missile.

100 SETCOLOR 2,0,0 : REM note we leave ourselves in GR.0
110 PMGRAPHICS 2 : REM double line resolution
120 LET width=1 : y=48 : REM just initializing
30 PMCLR 0 : PMCLR 4 : REM clear player 0 and missile 0
135 PMCOLOR 0,13,8 : REM a nice green player
140 p=PMADR(0) : REM gets address of player
150 FOR i=p+y TO p+y+4 : REM a 5 element player to be defined
160 READ val : REM see below for DATA scheme
170 POKE i,val : REM actually setting up player shape
180 NEXT I
200 FOR x=1 TO 128 : REM player movement loop
210 PMMOVE 0,x : REM moves player horizontally
220 SOUND 0,x+x,0,15 : REM just to make some noise
230 NEXT x
240 MISSILE 0,y,1 : REM a one-high missile at top of player
250 MISSILE 0,y+2,1 : REM another, in middle of player
260 MISSILE 0,y+4,1 : REM and again at top of player
300 FOR x=127 TO 255 : REM the missile movement loop
310 PMMOVE 4,x : REM moves missile 0
320 SOUND 0,255-x,10,15
330 IF (x & 7) = 7 : REM every eighth horizontal position
340 MISSILE 0,y,5 : REM you have to see this to believe it
350 ENDIF : REM could have had an ELSE, of course
360 NEXT x
370 PMMOVE 0,0 : REM so width doesn't change on screen
400 width=width*2 : REM we will make the player wider
410 IF width > 4 THEN width = 1 : REM until it gets too wide
420 PMWIDTH 0,width : REM the new width
430 PMCLR 4 : REM no more missile
440 GOTO 200 : REM and do all this again
450 REM
500 REM ********* THE DATA FOR PLAYER SHAPE *********
510 REM
520 DATA 153 : REM $99 * ** *
530 DATA 189 : REM $BD * **** *
540 DATA 255 : REM $FF ********
550 DATA 189 : REM $80 * **** *
560 DATA 153 : REM $99 * ** *

CAUTION: Do NOT put the REMarks on lines 510 thru 550,
since DATA must be the last statement on a line.

NOTE: The REM in line 330 is required. All other REMs
are optional.

Notice how the data for the player shape is built up...
draw a picture on an 8-wide by n-high piece of grid

109

The BASIC XL Programming Environment

paper, filling in whole cells. Call a filled in cell a
'1' bit, empty cells are '0'. Convert the 1's and 0's
to hex notation and thence to decimal.

This program will run noticeably faster if you use
multiple statements per line. It was written as above
for clarity, only.

2. A more complicated program, sparsely commented.

110 GRAPHICS 8 : REM not necessary, just prettier
120 PMGRAPHICS 2 : PMCLR 0 , PMCLR 1
130 SETCOLOR 2,0,0 : PMCOLOR 0,12,8 : PMCOLOR 1,12,8
140 p0 = PMADR(0) : p1 = PMADR(1) : REM addr's for 2 players
150 v0 = 60 : vold = v0 : REM starting vertical position
160 h0 = 110 : REM starting horizontal position
200 FOR loc =v0-8 TO v0+7 : REM a l6-high double player
210 READ X
220 POKE p0+loc,INT(X/$100)
230 POKE pl+loc,X & $FF
240 NEXT loc
300 REM ANIMATE IT
310 LET radius=40 : DEG : REM 'let' required, RAD is keyword
320 WHILE 1 : REM an infinite loop!!
330 c=int(16*rnd(0)) : pmcolor 0,C,8 : pmcolor 1,C,8
340 FOR angle = 0 TO 355 STEP 5 : REM in degrees, remember
350 vnew = int(v0 + radius * SIN(angle))
360 vchange = vnew - vold : REM change in vertical position
370 hnew = h0 + radius * COS(angle)
380 PMMOVE 0,hnew;vchange : PMMOVE 1,hnew+8;vchange
: REM move two players together
390 vold = vnew
400 SOUND 0,hnew,10,12 : SOUND 1,vnew,10,12
410 NEXT angle
420 REM just did a full circle
430 ENDWHILE
440 REM we better NEVER get to here !
500 REM the fancy DATA! 8421842184218421
510 DATA $03C0 | **** |
520 DATA $0C30 | ** ** |
530 DATA $1008 | * * |
540 DATA $2004 | * * |
550 DATA $4002 | * * |
560 DATA $4E72 | * *** *** * |
570 DATA $8A51 |* * * * * *|
580 DATA $8E71 |* *** *** *|
590 DATA $8001 |* *|
600 DATA $9009 |* * * *|
610 DATA $4812 | * * * * |
620 DATA $47E2 | * ****** * |
630 DATA $2004 | * * |
640 DATA $1008 | * * |
650 DATA $0C30 | ** ** |
660 DATA $03C0 | **** |

110

Chapter 8: PLAYER / MISSILE GRAPHICS

Notice how much easier it is to use the hex data.

The factor slowing this program the most is the SIN and
COS being calculated in the movement loop. If these
values were pre-calculated and placed in an array this
program would move!

111

The BASIC XL Programming Environment

112

Chapter 9: THE BASIC XL TOOLKIT

IMPORTANT NOTES

BASIC XL Cartridge Versions

The extended BASIC XL statements described in section
9.3 of this manual and the program demonstrating the
use thereof described in section 9.4 will not work on
BASIC XL cartridges with version numbers other than
1.02 or higher. We are sorry about this, but the
extensions "hook into" so many places within the
cartridge that it is simply not practical to provide
multiple versions of the code.

When you turn on your computer and enter the BASIC XL
cartridge, there is a copyright notice which also
specifies the version number of your cartridge. Check
that version number. If it is not version 1.02 or
later, you have two options:

(1) Try to purchase a version 1.02 or 1.03
cartridge.

(2) Update the ROM in your cartridge to the latest
version 1.03.

Please note that current BASIC XL cartridges with
version numbers 1.02 or later are gold-plated (for
longer and healthier life) and are beveled (for a
better fit).

START PROGRAMMING!

113

The BASIC XL Programming Environment

9.1 THE BASIC XL RUNTIME PACKAGE

On the labeled side of your BASIC XL ToolKit diskette
is a file called 'BASICXL.COM'. This file contains the
BASIC XL RunTime Program. That program allows you to
run BASIC XL programs without the BASIC XL cartridge.

9.1.1 How Does the RUNTIME Package Work?
--

The BASIC XL RunTime Program contains those portions of
the BASIC XL cartridge which are used when programs are
running. The program does not, however, contain any
portions of the cartridge which are used to write new
programs or edit existing programs. Thus, a program
running under the BASIC XL RunTime Package can't
perform such statements as LIST, ENTER, DEL, etc.
Obviously, then, the BASIC XL cartridge is still
required to develop programs.

The RunTime Program itself is just an Atari standard
binary file which may be run under any Atari-compatible
DOS, such as DOS XL or Atari DOS. The program may be
run in any of three ways -- as an AUTORUN.SYS file, as
a .COM file under DOS XL, or as an ordinary binary file
using the 'L' option of Atari DOS. When the RunTime
Program begins, it searches the disk in drive 1 (D1:)
for the file AUTORUN.BXL. If that file is found, it is
loaded into memory and run as if the command RUN
'D:AUTORUN.BXL' had been issued in response to the
READY prompt. If the file AUTORUN.BXL is not present on
the disk, RunTime will continually try to find it. You
should eject your diskette, shut off power, and try
again.

9.1.2 How Do You Use the RUNTIME Package?

The easiest way to use the BASIC XL RunTime Package is
to perform the following steps:

1. Initialize a new disk and write DOS.SYS to it. You
may use virtually any Atari-compatible DOS for this
purpose. Note that DOSXL.XL (after being renamed to
DOSXL.SYS) is compatible with RunTime.

2. Copy the file BASICXL.COM from the BASIC XL Toolkit
disk to a file called AUTORUN.SYS on the newly
initialized disk.

3. Copy the BASIC XL program you want to run to the new
disk and name it AUTORUN.BXL.

114

Chapter 9: THE BASIC XL TOOLKIT

4. Boot the disk thus created. If you have performed
the previous steps correctly, your BASIC XL program
will run automatically.

Whenever the disk you created above is booted, your
program will run. If you have several programs you want
to run with the RunTime Package and you don't want to
dedicate several disks just to that purpose, you can
simply put (or SAVE) some type of menu program onto the
disk as AUTORUN.BXL and use it to select from other
programs when the disk is booted. You are welcome to
use the program MENU.BXL, described in section 9.2.1,
for this purpose.

9.1.3 Statements that can NOT be used with RUNTIME
--

As we noted above, the BASIC XL RunTime Program does
not contain those portions of the code from the BASIC
XL cartridge which relate to program development. Any
BASIC XL program which you want to use with the RunTime
Package cannot use program development statements. If
the BASIC XL RunTime Program encounters such a
statement in your program, execution will stop with the
message "Unimplemented statement in line XX", and you
will be asked to hit the START key for a RunTime
Restart (see below). The following is a list all BASIC
XL statements illegal when using RunTime BASIC XL:

 LIST ENTER
 NEW DEL
 RENUM TRACE
 TRACEOFF LVAR

In addition, the following BASIC XL statements have
slightly different meanings when using the RunTime
Package:

DOS -- After this statement returns control to
whatever DOS was booted, you can not return to
BASIC XL or your BASIC program.

END -- This statement stops the running program
and prompts the user to hit the START Key to do a
RunTime Restart.

STOP -- This statement works exactly like END, but
also prints the line number at which execution was
ended.

115

The BASIC XL Programming Environment

9.1.4 Error Handling In RUNTIME BASIC XL
--

Errors which are TRAPped by the running program are
treated exactly the same way as when using the BASIC XL
cartridge. Errors which are not TRAPped are treated
slightly differently, however. If an error is allowed
to happen when no TRAP is active, an error message is
displayed showing the line number where the error
occurred, and the user is prompted to hit the START Key
to do a RunTime Restart. The user is not allowed to
view or change the program after an error as he could
with the BASIC XL cartridge.

9.1.5 RunTime Restart

At various points above, we noted that under certain
circumstances you may receive a message telling you to
hit START to do a "RunTime Restart" (the message may
indicate that RunTime will "Re-Run" a program). When
this occurs, hitting START will cause RunTime to once
again RUN the program file, AUTORUN.BXL. If your
particular AUTORUN.BXL has chained to another program,
the subsequent program is erased and all work not
already written to file(s) is lost. (Note that RUN
always closes all files, so at least no files are left
dangling open.)

9.1.6 Incompatibilities

The only difference between RunTime BASIC XL and the
BASIC XL cartridge which affects program execution is
memory usage. Since RunTime BASIC XL is not in a
SuperCartridge, it can't "save" memory like cartridge
BASIC XL. For this reason, the BASIC XL RunTime Program
takes up about 11 thousand bytes of code rather than 8
thousand bytes. If your BASIC XL program is extremely
large, it may not run under RunTime BASIC XL.

9.2 BASIC XL Example Programs

Side one of your ToolKit disk contains ten programs
written in standard BASIC XL which will, we hope, give
you a feeling for the capabilities (and limitations) of
the language.

Although the selection of programs is very broad, we
certainly can not guarantee that you will find a
program which answers all your questions about BASIC
XL. In fact, perhaps we should begin by discussing some
of the things which the example programs do not delve
into.

116

Chapter 9: THE BASIC XL TOOLKIT

First, we do not worry about the BREAK and RESET Keys.
These programs are meant as examples for you, as a
programmer or future programmer, to RUN and try. As
such, we think YOU should be allowed and encouraged to
stop a program at any time, see where it is at and what
it is doing, and (our fervent hope) change it so it
works better!

Second, we don't try to TRAP all disk errors, etc. The
programs here all work properly if given properly
formatted disks with the right data/programs (if called
for). Again, our philosophy was to allowed you to
explore the consequences of disk errors and guard
against them in your own way. (And, truthfully,
extensive I/O trapping in some of these programs is
simply not necessary.)
Third, we do not get into any heavy math. For those of
you who are into analytical geometry and its ilk, we
apologize. Unfortunately, you are in a distinct
minority when compared to those who want to use their
machine for simple graphics and/or business
applications.

Fourth, the descriptions of the programs (which follow
immediately after this introduction) vary considerably
in the depth with which they explore the workings of
the code. Again, this is on purpose.

The most complicated of the programs (e.g., PICOADVEN-
TURE and BLACK BOOK) are so large that even documenting
each group of ten lines thoroughly would require a book
several times the size of this manual. In these cases,
we have tried to explain the principles behind blocks
of code. You are encouraged (there's that word again,)
to explore each and every line for its implications.

On the other hand, some of the programs are dissected
in painstaking detail (e.g., MENU and GTIATEST). In
some cases, we have chosen to be thoroughly simple to
give beginners a chance to see the full workings of a
program. In other cases, the thoroughness is dictated
by the complexity of the subject. (Perhaps we are using
a poorly documented feature of either BASIC XL or
Atari's OS or hardware.) Mainly, though, we describe a
program intimately because we want to get YOU in the
right "track", thinking of properly structured
programs, good error trapping, etc.

So much for the things we do not do in this ToolKit.
What do we do? (We thought you'd never ask.)

If you are interested in graphics in general and games
in particular, we turn your attention to SNAILS TRAILS,
GTIATEST, CIRCLES, and (especially) LEM.

117

The BASIC XL Programming Environment

Into adventure games? Try PICOADVENTURE as a start on
writing your own! (You might want to try playing and
solving the game before reading the description.)

Want to learn more about how to talk to your disk
drive? Look at CONFIG and DISKIO.

Interested in application programs? Want to learn how
to construct random-access and/or keyed-access files?
Look at BLACK BOOK.

Finally, MENU and MAKEAUTO are general utility
programs. You will undoubtedly use them, but you may
not need to understand them. But read about them
anyway. The description of MENU, especially, is very
detailed and gives some good hints on programming
style.

A Commentary on Case -- In the descriptions which
follow, we sometimes change a keyword or variable name
to all upper case letters, despite the fact that the
program listings will (as is usual in BASIC XL) show
such names in mixed upper/lower case. This is done on
purpose for emphasis only. You need not use upper case
unless you have chosen Atari BASIC compatibility (via
SET 5,0).

118

Chapter 9: THE BASIC XL TOOLKIT

9.2.1 MENU.BXL

In most ways, this is the simplest program we will
present in this section. MENU.BXL is simply a program
which presents a menu of available BASIC XL programs
and allows you to choose one of them to RUN. If you are
an experienced Atari BASIC user, you have probably seen
versions of this program floating around in magazines,
user-groups, etc., for years. We think, though, that
our version has some advantages which are worth
discussing.

1070-1080 These lines set the tone for not only this
program but, where possible, for all programs in
this ToolKit. We really didn't need to initialize
COUNT to zero, since BASIC XL guarantees that all
variables start at 0.0 when a program is first RUN.
But isn't this better? We both point out that we
are using a variable named COUNT and that we know
what its starting value should be.

Further, we could have coded line 1000 as

 1000 Alpha = 64

but would that have any meaning to you? As clearly
shows that ALPHA has a numeric value ATASCII value
of the letter A.

1100 We chose the dimensions of FILES very carefully.
There are 26 elements in the array because we won't
allow more than 26 filenames in our menu. (That way
we can select any program with a single letter, A
to Z.) And each element has 14 characters because
that is the maximum possible for a filename of the
form "D:filename.ext". If you wish to allow disk
drive numbers in your version of this menu, you
will need to increase the second dimension here to
15.

1130 This POKE is documented in many books, including
Mapping the Atari, from COMPUTE! books. A non-zero
value turns off the cursor. A zero value turns it
back on.

1240 Did you remember that an OPEN in mode 6 is
actually an OPEN of the directory? Good. For all
intents and purposes, this OPEN will cause
subsequent INPUTs to read the same data you see
when you give a DIR command. Try it. Type in

 DIR "D:*.BXL"

119

The BASIC XL Programming Environment

and see what is displayed. (Yes, yes, the quotes
aren't really needed. We Know, thanks.)

1250 Sometimes, in our zeal to avoid GOTO statements,
we have gone to great lengths in these example
programs. This is a good instance of such a great
length. We read the first file name from the
directory here solely because we want the WHILE
loop that follows to look neat. Ah, don't knock it.
It works.

1260 We begin the promised WHILE loop. Note how we
ensure that we won't get more than 26 names. We
check the second character for a space because the
only line of the directory where it is not a space
is the line noting the number of free sectors
(which is not coincidentally, the last line of the
directory).

1270-1310 We develop the name which will be held in the
string array, File$. First, we count this as a
valid name. Then we find out where the first blank
is after the first letter of the filename is.

Example: for the file "MENU.BXL", the directory
listing is

 * MENU BXL 008

or similar, where the '*' means, the file is
PROTECTed and the '008' is arbitrary. Here the FIND
function would tell us that the value of BLANK will
become 7, the blank after the 'U' of 'MENU'. Line
1290 is necessary in case the file has 8 letters in
its name (the blank found will then be the one
between the extension and the number of sectors).

In line 1300, we play a trick that works neat and
sweet in BASIC XL (and also in Atari BASIC, but we
had to brag a little): As long as you are moving
characters "down" in memory (think of that as
moving them left in a printed string), you may
overlap your string assignment without error! This
line, then, strips off the first two characters and
all characters from the blank on. Bingo.

Finally, in line 1310, we actually put the name
into the array. Note the form it takes:
"D:filename.BXL",
"filename" may have from 1 to 8 characters.

1328-1348 This is Just a bit tricky. Since we want our
menu to be able to hold 26 names, we can't simply
list them straight down our 24 line screen. We must
put them two to a line. The expression COUNT&1
(where '&' is BASIC XL's 'bitwise and' operator)

120

Chapter 9: THE BASIC XL TOOLKIT

effectively checks whether COUNT is even or odd. If
the COUNT is odd, we will put the name at
horizontal (X) position 7. If it is even, we will
put it at X-position 22.

The vertical position is also obtained through a
little magic. To see why it works, try various
values for COUNT and observe what Y value results.
We will start you off:

 If COUNT is ... Y will be
 1 ... 3
 2 ... 3
 3 ... 4
 26 ... 15

Okay? Then line 1340 is easy. We simply POSITION
ourselves at the place we have calculated and print
an indicator and the name. But just what is that
indicator? Remember, ALPHA is one less than the
ATASCII value of the letter 'A'. So if COUNT is 1,
PRINTing CHR$(Alpha+Count) will produce the letter
'A' on the screen. Similarly, a COUNT of 2 will
produce a 'B', etc. Now you know why we chose the
value for ALPHA which we did.

1350-1370 Here we simply get the next line from the
directory and go back to the top of the WHILE loop.
If it isn't a name (i.e., if it is the free sectors
line) or if we already have 26 names, the loop will
halt and fall through to the CLOSE of line 1370. We
are then done with the directory.

1410 This is the best way to get a single keystroke on
an Atari computer. OPEN up the keyboard ("K:") and
GET a Key (as in line 1440). Sure, you can do it
with PEEKs and POKEs and whatever, but why bother?
(Exception: if you don't want to wait for the key,
you will have to use at least one PEEK.)

1420 and 1510 This is an "endless" WHILE loop. We could
have achieved the same thing by eliminating line
1420 and changing 1510 to read GOTO 1430. But
that's terribly ugly! As well as being poor
structured programming style.

1430-1470 We ask the user to press a key, get the key
from the keyboard, and strip it of extraneous bits.
Ummmm..." extraneous bits"?

By doing a bitwise and (&) of KEYPRESSED with $5F
(that's 95 decimal or 01011111 binary), we have
removed the uppermost bit (bit 7 -- which would
indicate inverse video) and also bit 5 (which

121

The BASIC XL Programming Environment

distinguishes upper case letters from lower case).
So no matter what kind of letter the user pushes,
we see an upper case, non-inverse video character.

Now, if it truly was a letter, subtracting ALPHA
from it will convert it into the range of 1 to 26.
Funny thing how the elements of our string array
are numbered from 1 to 26. Do you think that's a
coincidence? (If so, we've got some beachfront
property in Nevada we'd like you to invest in.)

So, in line 1460, we validate that the letter
chosen is in the range we have filenames for. (If
it isn't, we skip to line 1500, the ENDIF, and go
through the WHILE loop again.) Then we show the
user what filename he/she chose. Just to keep them
happy while...

1480-1490 Line 1480 illustrates the proper use of a
TRAP in a well structured BASIC XL program. You
should always TRAP to the last line of a loop or
condition. Here, if we get an error in line 1490,
we want to go back and ask for another menu
selection. Voila.(Exception: Sometimes you will
want to have a central routine for handling TRAPped
errors. That's a good idea, but beware of leaving
WHILEs, GOSUBs, etc., sitting on the RunTime
stack.)

And, at last, we get to use this program as it was
intended. We actually RUN the program requested by
the user. Note that since we PRINTed the name in
line 1470 it's hard to make a mistake here. But a
diskette failure (bad sector, etc.) could trigger
the TRAP when the file doesn't load properly. We
emulate the Boy Scouts: Be Prepared.

122

Chapter 9: THE BASIC XL TOOLKIT

9.2.2 SNAILS

If you read '30 Days to Understanding BASIC XL' (or,
better yet, work your way through it), you will
probably remember Chapter XXIX and a arcade game
program called SNAILS' TRAILS. This game can give you a
real feeling of historical perspective!

By today's standards, SNAILS' TRAILS is a simplistic
game with marginal video appeal. A short five or six
years ago, though, a very similar game called SURROUND
was one of the hot sellers in the Atari 2600 VCS
market. And, as recently as the time of the Disney
movie "Tron", the "light cycles" played a variation on
the same game.

Anyway, since this game has been overdone already, why
are we rehashing it on this disk? Truthfully, because
the version in our tutorial was written using only the
statements presented in that book, and we wanted to
show you what just a few added statements could do to a
BASIC XL program. The result is a well structured and
even readable program.

In the description which follows, we will not explore
those parts of the program which are the same as the
version shown in the book. (Note that the line numbers
do not match those in the book. Sorry about that, but
there are enough differences that they couldn't have
been identical, anyway.)

180 In the book, we had two variables (SCORE0 and
SCORE1) to keep track of the players' points. Here,
we use a two element array. We'll show why below.

260 Isn't this easy to understand? You can translate
this into English as follows: "As long as neither
player has scored 10 points, keep playing!"

290 and 340 In the original, the COLORs are different.
We changed them because it makes it easier to flash
one of the slime trails (line 800).

490-500 The main movement loop translates to English
pretty well, also: "While neither player has hit
anything." Then, since we aren't driving this loop
with FOR MOVE... anymore, we have to bump the MOVE
number. The only place MOVE is used, though, is in
line 690, as the frequency value in a SOUND
statement. But SOUND won't let us use a value
greater than 255 for frequency, so after bumping
MOVE we limit it to an 8-bit value.

You say you don't understand how bitwise-and (&)
works after reading the brief description in the

123

The BASIC XL Programming Environment

reference manual (section 2.2.1)? We won't go into
a lot of detail here, but let's show what happens
in line 500 as the value of MOVE increases. (In the
binary notations below, we show only 12 bits
instead of the 16 bits which BASIC XL always works
with. The upper four bits are always zero in this
example, though, so they can be ignored.)

 MOVE = 3 decimal, binary 0000 0000 0011
 bitwise and with 0000 1111 1111

 binary result 0000 0000 0011
 (decimal value of 3)

 MOVE = 243 decimal, binary 0000 0000 0011
 bitwise and with 0000 1111 1111

 binary result 0000 1111 0011
 (decimal value of 243)

 MOVE = 2 decimal, binary 0000 0000 0010
 bitwise and with 0000 1111 1111

 binary result 0000 0000 0010
 (decimal value of 2)

Do you see what happens? When the value of MOVE
becomes greater than 255, the bitwise-and
effectively subtracts 256 from it. In fact, we
could have coded line 500 thus:

500 Let Move=Move+3:If Move>255 Then Let Move=Move-256

But using the bitwise-and is faster yet, once you
understand bitwise operators, just as easy to
understand.

And, as long as this explanation is too long
already, let us note that we could have achieved
the same effect by using these two lines instead:

 500 Let Move=Move+3
 690 Sound 0,Move&255,10,Volume

However, the SOUND statement is inside a tight
loop, and placing the bitwise-and in the loop would
slow it down a bit.

600-650 There's nothing really very different from the
book version here except the order of the
statements. We thought this scheme is more
readable. We hope you agree.

124

Chapter 9: THE BASIC XL TOOLKIT

760 Why didn't we just code this line as follows?

 760 If Bang0 <> Bang1

Because the values of BANG0 and BANG1 could be 1,
2, or 3, depending on who hit what. Using NOT BANG0
and NOT BANG1 converts all values to a boolean
(zero or one) condition, which is more easily
testable.

If you prefer positive logic, you could change 760
and all following references to BANG0 and BANG1 to
this:

 760 Bang0=Sgn(Bang0) : Bang1=Sgn(Bang1)
 761 If Bang0<>Bang1

(Recall that SGN() of any positive number is one,
as we want here.)

770 See line 760, above. This line looks strange, so
let's translate it into English: "Bump the score of
the player who did not get banged by one." Still
confused? Then substitute the following for line
770:

 770 If Bang1=0 : Bang(1)=Bang(1)+1
 771 Else : Bang(0)=Bang(0)+1 : Endif

But, if you're willing to struggle with the logic a
bit, you will conclude that our original line 770
achieves exactly the same result with less code.

800 Same thing again. Remember, NOT BANG0 is a logical
expression, so it can only take on numeric values
of zero and one. Cute?

890 Another case of a logical expression being used to
derive a numeric value. If SCORE(0) really is less
than SCORE(1), then WINNER will receive a value of
one. Otherwise, WINNER will be set to zero.

Technical note: Most languages support the notion
of TRUE and FALSE logical expressions.
Unfortunately (?), many restrict their use to
places where a conditional test is being made.
However, BASIC XL, in common with many, many other
(but not all!) dialects of BASIC, allow you to
treat TRUE and FALSE as numeric values. Be careful,
though, in some Microsoft (and other?) BASICs TRUE
is given a value of minus one (-1) for reasons
which are mired in history. (n.b.: BASIC is not the
only language, which allows logical expressions to
produce numeric values. C and some versions of
Fortran allow similar usages.)

125

The BASIC XL Programming Environment

910 and 930 See how neatly we Can use WINNER now that
we know it has a value of either zero or one?

980 In English you read this line to say: "As long as
neither joystick trigger is pushed, keep looping."

126

Chapter 9: THE BASIC XL TOOLKIT

9.2.3 PICOADV

In addition to being the longest program on the ToolKit
disk, PICO-AOVENTURE is also the oldest. It was one of
the first major programs we wrote for BASIC A+ (back in
1981-82) and is given here with only minimal
modifications, even though it could probably use many
of BASIC XL's new statements to advantage.
Nevertheless, PICO-ADVENTURE (which name was intended
to imply that it is smaller than a Micro-Adventure) is
still a reasonably well-written, well-structured
program which deserves more than a cursory glance.

For all of its size , PICO (as we shall call it from
now on) only uses about half of the memory available
when you use BASIC XL with DOS XL. If you feel so
inclined, you may retain the structure of the program,
replace room descriptions and object actions, and thus
produce your own adventure. Nothing could please us
more. In fact, we would love to see your results.

One last warning before we start looking at PICO a
block at a time: Why don't you RUN and play it before
reading this section. In studying the program, you will
of necessity see the secrets of the game, which will
destroy the pleasure you will get from winning (or
losing) gracefully.

Because this program is so large, the best we can do is
describe blocks of lines. We will delve into detail
only when we feel that reading the program lines within
the block won't give you enough understanding of their
actions.

Finally, we present this program in execution order
(not line number order), because you need an
understanding of some of the subroutines before the
main line code makes a lot of sense.

100-119 We use the question mark (?) abbreviation for
PRINT a lot in this program. It makes the listing
smaller and allows all lines to fit in the bounds
of a 120 column printer. If you are going to list
this program to an 8 inch (nominal 80 column
printer, the ends of some lines will either wrap or
get cut off (depending on how your printer works).
If your printer has elite (12 characters per inch)
or condensed (usually about 16 characters per inch)
print available, we recommend that you set it in
one of those modes before listing the program. All
program lines will list on one printer line in
condensed mode. Almost all will list properly in
elite mode. (Note: an easy way to put your printer
in one of these modes which works with most
printers is to put its control or escape code

127

The BASIC XL Programming Environment

sequence right into a REMark line at the beginning
of the program.)

We also use some imbedded screen control characters
in our quoted strings, something we do not normally
do with programs intended to be listed by YOU, our
customer and reader. Again, we felt justified using
them here (instead of using a CHR$() sequence),
because they save so much room. We apologize in
advance if they do funny things to your printed
listing.

150 We put the initialization code up out of the wax as
a subroutine so that the program looks better.

8000-8100 Primary initialization. Some variables used
as constants, subroutine addresses, or counters are
assigned here. Various strings and arrays are
dimensioned. Some sizes are arbitrary and/or could
be made bigger for a more complex adventure (one
that understands more nouns or verbs). Ones that
are carefully selected include VS$ and NS$, which
are just long enough to hold a prefix character and
a three-letter verb or noun. (See lines 1200 to
1300 and next paragraph.)

8110-8190 We build up the vocabulary lists for the
verbs and nouns. Each entry in a list consists of a
prefix character (CHR$(155), but any value from 128
to 255 would have worked), a three letter name, and
a single byte which holds the verb or noun number
associated with this name. Note that the name's
number corresponds to the last two digits of the
DATA statement from which the name was READ. For
example, the first two entries in NOUNS$, the noun
vocabulary list, would look like this (where a
number in brackets indicates a byte with that
value):

 [155] L I C [1]
 [155] M O S [1]

Also, as we build the noun vocabulary, we are
setting up the WHERE() and SHOW arrays. A noun's
entry in SHOW() tells the "visible items" routine
whether to show it or not. The entry in WHERE()
tells where the item (noun) is located, according
to the following table:

 If WHERE(noun-number) is ... noun is located
 less than 0 ... gone forever
 0 ... with adventurer
 1-99 ... in that room number
 greater than 99 ... still hidden

128

Chapter 9: THE BASIC XL TOOLKIT

8800-8999 The DATA statements which define the verbs
(88xx) and nouns (89xx). In theory, then, you could
have up to 99 verbs and 99 nouns, each with one or
more synonyms. Synonyms are simply listed one after
the other on the same DATA line, the last one
terminated by an asterisk. Tho first synonym is the
one shown by the command line echo, inventory list,
and visible items list, so it is spelled out
completely. As noted above, nouns also have their
initial WHERE and SHOW values listed here. The last
entry in each table is terminated by a pound sign
(#).

160 Getting a key one at a time from the "K:" device is
still the best way. Much easier and more readable
than PEEKs and POKEs.

920 This is kind of a cute trick. Rather than print out
a special starting location message, etc., we
simply tell our movement subroutine (starts at line
7000) that we are in room number 7 and that the
user just asked us to go west. We also note that
room number 3 is West of the current room. Then we
GOSUB to do the movement and (PRESTO!) everything
comes up right for somebody who just walked into
Room 3! (Much of this will become clearer
later...Keep reading.)

1050 Again, we could have coded the subroutine at line
6000 right in-line here (since it is called only
once), but this makes the program so much more
readable. Besides, wait until you see what that
subroutine does.

6000-6199 Special actions processing. In many adventure
games, including this one, certain actions must
take place at certain times and/or after a
particular number of turns have passed since some
other event. For example, in PICO, the effect of
eating the mushroom wears off after 4 turns. This
time period is counted down in the variable CRAZY,
and lines 6010 and 6030 reflect this. Three other
such variables, CHARM, TORCHFIRE, and HUNGRY are
similarly accounted for here. Note that, in lines
6100 to 6103, those counters are never allowed to
become less than zero. One of them, HUNGRY, cycles
from 29 down to zero, over and over.

1110-1190 This is our get-a-command routine. We only
allow a few characters to get through. All others
are ignored. Note that the variable OK is used both
as a flag and as a counter to the current character
within RESPONSE$. If the user hits RETURN (line
1130) we get out of the WHILE loop by simply
setting the OK flag to zero. Cute.

129

The BASIC XL Programming Environment

In line 1140, we only allow back spacing to the
beginning of the command typed in so far. And we
special case inverse video space (KEY=160) for
safety's sake. Finally, when we have masked all
characters to be upper case and non-inverse video,
we make sure that the user typed an alphabetic
character. And, last but not least, we limit the
user's response to 15 letters. That's more than
enough (as we will see).

1200-1290 We parse the user's response into verb and
noun parts. Or at least we try to. Lines 1215 and
1250 strip off leading spaces (line 1210 guaranteed
that RESPONSE$ would contain at least something or
these lines might generate errors). The verb is
presumed to start at the first non-blank character
and continue to the next following blank. (If there
isn't a verb, we go back to line 1000 and get
another response.) The noun is assumed to be
everything after the blank(s) which follow the
verb.

Again, note how the search variables, VS$ and NS$,
were carefully dimensioned to 4 so that they could
hold our separator character and the three
significant letters of a verb or noun. (Do you see
how you could easily increase the number of
significant letters in a PICO vocabulary word?)

Lines 1280 through 1290 allow for the special case
of a single letter response indicating a direction
to take. Can you see how easy it would be to add Up
and Down to our list of valid directions?

In any case, we come out of this block with the
variables NOUN and VERB holding numeric values
which represent the action requested by the user.
(See the explanation of lines 8000-9000 for details
on what the numbers mean.)

1300-1330 Pretty simple. If we didn't find a valid
verb, say so. Ditto for a noun. Do you see why we
tacked " is." onto RESPONSE$ in line 1210? If
the user tells us to EAT GORP, the variable NOUN$
will be set to "GORP is." Maybe a little too
tricky?

1400-1514 One of the neatest things about PICO is that
it tells you what It thinks you said. We've played
adventures where we typed in "GET SNARE" only to
have it tell you "You got it, but it bit you.
You're dead." How were we supposed to know that SNA
meant "snake" to that game? In PICO, if you type in
"NIB MOS", the game will tell you that it is trying
to "EAT LICHEN". A nice touch, we think.

130

Chapter 9: THE BASIC XL TOOLKIT

1520 and 2000-2120 There is a bug in BASIC XL which has
existed since the earliest versions of Atari BASIC.
We're afraid to fix it, because there may be
programs which depend on its action! Anyway, the
bug is simple: if you GOSUB to a non-existent line,
the GOSUB is pushed onto the run-time stack before
the error is discovered. Subsequent RETURNs can
then end up going back to the wrong place(s). We
avoid the problem here by GOSUBbing to a known good
line (2000).

Then, at line 2100, we play a little bit of magic.
Do you see what line number we try to go to? If the
user requested verb number 7 and noun number 2, we
will try to GOTO·line 17020. Suppose, though, that
line 17020 doesn't exist (as it doesn't in PICO).
Then the TRAP 2110 is activated and we GOTO line
17000 instead.

Why? Well, as PICO is written, trying to BURN
MUSHROOM will give us verb 7 and noun 2. Since line
17020 doesn't exist, we end up at line 17000, where
OK is set to NO so that the message, "That didn't
make sense!" will be displayed. Since most items
won't BURN, this provides a convenient method of
processing all such non-productive requests the
same way.

1600-1610 This ELSE clause was started by the IF of
line 1510. The direction abbreviations (N,E,S,W)
produce verb numbers of less than zero (-1 through
-4). Once you understand the routine at line 7000,
this part becomes easy.

7000-7050 The variables NORTH, EAST, SOUTH, and WEST
are already set up by the time we get here (we'll
see how in a moment), so all these lines do is put
the proper value into GO. And what's a "proper"
value? Keep reading...

7100-7190 When we get here, GO can have one of four
meanings:

 If GO is ... we will
 negative ... drown
 zero ... do nothing (direction unavailable)
 1-99 ... go to that room number
 100+ ... do a special action

The "special action" trick is a neat one, uniquely
available in BASIC XL and its brethren, because GO
actually designates the line number of the
subroutine to GOSUB to perform the action!

131

The BASIC XL Programming Environment

7200-7390 And here is where we get the values that end
up in GO! After we have moved to another room
(HERE=GO in line 7160), or even if we haven't, we
RESTORE to the proper room description (line 7200,
also uniquely BASIC XL, etc.). We READ in the lines
of description (an equal sign on the end of a line
indicates more to follow) and then, in line 7300,
READ the four directions, NORTH, EAST, SOUTH, and
WEST.

Isn't this neat? Look at lines 30160 to 30165. Just
by the line numbers, we know that this is the DATA
for room number 16 (30000+16*10). The description
is 3 lines (each in quotes) long. And the
connecting rooms are 15 to the NORTH, 12 to the
WEST. But look at the "connections" for SOUTH and
EAST, both get a value of 30164. That means that,
if the user asks to go SOUTH or EAST from this
location, line 7130 will end up doing a GOSUB
30164. So line 30164 is actual executable code (not
more DATA) and the poor guy gets zapped by a truck.

Examine some of the other DATA statements in this
range. Note how easily we drown adventurers
(connecting "room number" of -1) or bar them from
proceeding (connection values of zero). It's
downright easy to add rooms and conditions to this
game!

1800 Believe it or not, this is the "end" of the
program. Everything after here is a subroutine.
Ain't structured programming neat? Yeah? Then why
didn't we use an endless WHILE loop instead of this
old-fashioned GOTO? Sigh.

With all the main-line code described, we proceed to
some of the subroutines not yet discussed.

7500, 7600, 7700 Three useful little routines, for when
the user asks for something not available (7500),
uses something he doesn't have (7600), or dies
gracefully (7700).

7800 Four entry points provide delays of 1, 2, 3, or 4
seconds, thanks to the clock ticker in location 26.

7900 We display the stuff lying around on the ground.
Remember, even if something is located in this
room, we don't tell the user unless its SHOW() flag
is true. This little nastiness makes PICO harder
than it would otherwise would be. You could expand
this in your own game(s) as you wished.

Finally, we get to the VERB and VERB/NOUN action
routines. Remember, a VERB/NOUN action starts a line
10000+1000*VERB+10*NOUN. With this formula (and with

132

Chapter 9: THE BASIC XL TOOLKIT

line numbers 10000 to 29999 available) you can have 20
different verbs (if they are numbered starting at zero)
and 99 nouns. Changing the multipliers (e.g., make-it
500*VERB+20*NOUN) could change those ratios and/or make
more lines available for particular actions.

Also recall that a VERB (alone) action starts at
10000+1000*VERB, and VERB/NOUN actions specified end up
at those VERB alone lines.

We do not want to (nor do we feel we need to) devote
the space to a complete description of all the possible
actions. Instead, we will single a few out and leave
the rest to you as an exercise.

13000-13173 These are the actions taken when the user
asks to LOOK at something. Let's see what happens
when he/she asks to LOOK JUNKPILE.

First of all, if Golem isn't in the right room
(line 13170), how can we look at it? The rest of
the responses depend on the value of JUNKCNT, which
was initialized to 3.

If JUNKCNT is not zero, then we let the user find
something in the pile. What he/she finds depends on
the value of JUNKCNT (line 13172). The item(s) thus
found (item numbers 9, 3, or 8, in that order) are
made visible by giving them a location in the
WHERE() array (line 13173). Recall that all three
of these items received an initial location of 100
(hidden) in the DATA statements of lines 8900 to
8999. Note that changing WHERE() is all that is
needed to cause the visible items print routine
(lines 7900-7970) to make it show up.

If JUNKCNT is zero (all three items have been
found), then we are sent off to line 13000, just as
if we had typed LOOK BOAT (which would cause the
routine at line 13150 to be executed, if it
existed).

Line 13000 starts with a cute trick: If the user
typed in just LOOK, the program pretends he/she
really wanted LOOK PLACE. 13001 is pretty
straightforward if you know how to read it: "If the
Golem isn't carrying the requested object
WHERE(NOUN) isn't zero) and if the object is not in
this room (WHERE(NOUN) is not the same as HERE),
then we can look at it, so ask the dummy HOW we can
do it."

Finally, line 13002 simply gives a nice bland
message about the object. If the user typed just
LOOK (with no noun), then the message refers to
"this place." Not exciting, but it works.

133

The BASIC XL Programming Environment

16000-16169 Almost every adventure you try will have
some sort of secret word or phrase which you must
SAY to unlock the mysteries. In PICO, we hint at
that ability by providing you with a MAGIC LAMP (in
the Junkpile) and putting a message on the
billboard which has a message in quotes, usually a
dead giveaway that the phrase ("A LAD IN BAGHDAD"
in this case) is the sought after magic word(s).

In fact, if you use the command SAY A LAD IN...
before you get the lamp, we even give you a clue
(line 16160) that you need something else before
the magic works.

But all of this is in vain. We borrowed a page from
Sesame street and put the "fix" in: all you get for
all your trouble in this game is a peanut butter
sandwich. (To add insult to injury, it doesn't even
fill you up! Of course , that's because the "I'm
hungry" message is trying to make you eat the
mushroom, another trick cadged from a children's
story.)

That's about it for PICO. (Isn't it enough?) We hope
you will turn it into your game and share it with us
all.

134

Chapter 9: THE BASIC XL TOOLKIT

9.2.4 LEM

This program is yet another incarnation of the classic
lunar lander game. The principles of this game haven't
changed, since people first started using computers to
have fun, even if they were using time-sharing on
mainframes and mini-computers back in those prehistoric
days. For example, we have a book (fashioned from clay
tablets, we think) dated 1975 (A.D.!!!) and called
'What to Do After You Hit RETURN or P.C.C.'s First Book
of Computer Games' which includes no less than two
different lunar lander programs. They were played on
H.P. minicomputers with teletypes (you know...at a
maximum of 10 characters per second, and no graphics).

So what's different about this program, and why should
we discuss it? Well, it's written entirely in BASIC
(big deal, so were those 1975 gems). And it uses pretty
graphics (that's a little better). And it runs in real
time (whazzat? Impossible!).

To play this game, plug a joystick into socket number 1
(STICK(0) in BASIC) and RUN the program from disk. You
can play on two levels, beginner or advanced, but we
recommend you to try it first as beginner, so simply
push the joystick button. You will be presented with a
moonscape, a bar at the left showing your remaining
fuel, a landing pad (which will blink), and an odd-
shaped ship (complete with antennae, legs, etc.) which
you will (try to) control.

To move the ship left or right, simply push the
joystick left or right. Be careful! The effects of such
pushes are cumulative with time. Gentle taps in the
appropriate direction work best.

To fire your retro-rockets, push the joystick button.
If you do nothing further, you will probably crash
(albeit perhaps slowly). That's because there are six
possible settings on the LEM. You increase thrust by
pushing forward on the joystick, decrease by pulling
back. Need we tell you that greater thrust eats fuel
faster? (If you run out of fuel, you run out of thrust.
Need we tell you the results?)

If you manage to land (or- even crash) on the landing
pad, you get points. Too fast a landing results in a
crash. A landing of moderate speed gives you a bouncing
good time. And a near perfect gets you applause and
cheers from the crowd. (Which ignores the fact that
sound doesn't carry in the vacuum on the Moon. Oh,
well, maybe they're back on Earth?) You get 250 points
for a great landing, 100 points for a bounce, and
credit for remaining fuel. You also get bonus points
for the actual speed of your landing and the narrowness
of the pad you landed on.

135

The BASIC XL Programming Environment

It's a good game. We've played it many, many times, and
it's still a real challenge to score over 2500 points
in five landings (a standard game) on the Advanced
level. Before perusing the explanation of the workings
which follows, why not try it yourself a few times.

This is a big program, but it is very well self-
documented (with both REMarks and self-explanatory
variable names). As with PICOADV (section 9.2.3) we
will discuss this game in blocks, concentrating on the
non-obvious features.

1000-1290 After waiting for the player to let up on the
joystick button, we present him/her with a menu and
some brief instructions. LEVEL is set to zero for a
beginner and one for an advanced player. Notice how
we position the arrow, basing it or, the value of
LEVEL. Also note how, after detecting the fact that
the joystick has been pushed, we wait for the stick
to come back to the center before continuing the
loop. If we didn't do this, the arrows would flick
back and forth from one level to the other almost
too fast to see. (Try it yourself. Remove line
1180, and see what happens.)

1300-1760 Mostly simply initializing various arrays and
strings. We will show later how these variables are
used. Note how we choose one or the other set of
DATA in lines 1700 to 1720, depending on the level
of the player. You could have more than two levels
here, if you wished, by adding choices to the
initial menu and DATA for the acceleration values.

Speaking of which: The first acceleration number is the
force of gravity. In other words, the positive
attraction inviting you to crash into the rocky
surface. The other six numbers are the acceleration
values produced by the various thrust settings.
Note that, on advanced level, the lowest thrust
doesn't even cancel the pull of gravity. You can
play with these numbers, but the game works pretty
well with the values shown.

1800-1830 These are some critical constants used
throughout the game. We need to discuss them just a
little.

A POKE of any value to HITCLR clears the collision
registers (see "Mapping the Atari"). The YSIZE is
the height of the active playing area (in pixels)
in GRAPHICS 7+16. If you wanted to play with
GRAPHICS 15+16 (available only on XL machines), you
could change this.

The lander spaceship (LEM) uses player 0. Its flame
(from the thrust) uses player 1. They are offset a

136

Chapter 9: THE BASIC XL TOOLKIT

bit (from the base addresses of their respective
players) to account for differences in their sizes.
If you changed the appearance of the ship, you
could adjust just ADRLANDER and ADRFLAME, and all
would still work.

LANDER and FLAME are established just to save time
in the tight loops later on.

We display the fuel remaining using player 2. The
"+ 32" and "+159" values are empirical--they match
the line to the size of the playfield nicely.

1890,3750 The limits of the once-per-landing loop. Big,
isn't it?

1900-2050 Look at all the stuff we have to set up each
time! Most of these variables are self-explanatory
or nearly so. Especially if we tell you that "pos"
means "position" and "vel" means "velocity". FUEL
is actually fuel remaining, while BURN is the
current rate of burn (thrust). BURN is the number
which is adjusted by moving the joystick back and
forth. CURRENTTHRUST matches BURN only if the
button is pushed, otherwise it is zero.

2060-2140 We set up the fuel-remaining indicator.
Rather than a solid bar, we liked the pattern that
$BDDB produced for a pair of vertically adjacent
lines within the bar. We replicate the pattern via
the MOVE of line 2090. Note how this trick works
and use it in your own programs: If you initialize
the first N bytes of an area of memory, you can
replicate those bytes via

 MOVE area,area+N,(N of replicates/N)

Another trick you might steal is our method of
moving character shapes from ROM to a player (lines
2100 to 2130). The usual character set starts at
$E000, but we bias it by -$100 because screen byte
values are no identical with ATASCII values. Recall
that each character in ROM occupies 8 bytes, and
you should get an idea how this works. After the
"fuel line" is ready, we move it to the left side
of the playfield screen.

2160-2510 We make the playfield look pretty. After
picking the size and width of the landing pad, we
draw the moonscape in three pieces: From the left
edge to the pad (line 2290), the pad itself (2310
to 2340), and from the pad to the right edge
(2360). The subroutine at line 3980 draws the
jagged mountains. (Note how the mountains are
guaranteed to get no more than 20 units high. If

137

The BASIC XL Programming Environment

ALT gets up to 20, 0.96*ALT immediately drops it
back to 19. Cute.)

After putting a few distracting stars in the sky,
we blink the landing pad (that's one reason it was
drawn using a different COLOR than the rest of the
moonscape) and then give it the same color as the
rest of the mountains.

2600,2770 This WHILE loop constitutes all the actual
movement in the game! Do you see how few lines
there are here? That's the primary reason the game
can run so fast, thanks to the extensive set up
which we have done. And what terminates the
movement loop? Look at the five conditions in the
WHILE statement: (1) Hitting the landing pad. (2)
Hitting the mountains. (3) Going off the left edge
of the playing area. (4) Going off the right edge.
(5) Going off the top of the area.

2610-2620 We move both the lander and its thrust flame
into position. For vertical movement, we actually
MOVE data from the strings we set up (from the hex
DATA). We do this because it is faster than PMMOVE,
which must move 512 bytes in single line resolution
(256 bytes out to a buffer and then back in, to
avoid overlap problems). For horizontal movement,
PMMOVE is just as fast as POKE, so we use it.

2630-2730 After adjusting the BURN rate as requested,
we set CURRENTTHRUST to either zero or BURN,
depending on whether the button is being pushed.
Since fuel is used at a rate equal to 0.1 times the
thrust, we use an intermediate variable (LOSS) to
accumulate thrust in units of 10. When the LOSS
exceeds 10, we use up a unit of fuel and reflect
that fact in the fuel line on the left side (lines
2710 to 2730).

2740-2760 The horizontal velocity is easy: we just
accumulate the horizontal stick pushes in one-
twentieth of a unit increments. The vertical
velocity is also cumulative, but It uses the
elements of the THRUST array for its acceleration
values. And, you may recall, the values in THRUST()
depend on whether you are playing at beginner or
advanced level. Finally, after updating the
horizontal and vertical positions, we make an
appropriate rocket sound.

2800-3060 For really great landings, we bring out the
crowd. Note the way we assign the bonus points in
line 3060.

3070-3250 For so-so landings, we bounce the ship. The
number of bounces depends on how hard the landing

138

Chapter 9: THE BASIC XL TOOLKIT

was. Note how we choose the frequency for the
plopping sound from the PLOP() array.

3270-3650 A crash landing. We allow pieces of the ship
to spew all over the place. Up to 10 pieces are
given independent positions--X() and Y()--and
velocities--XVEL() and YVEL(). Each follows the
laws of physics until it goes off the playing
field.

3660-3740 We display the score for this landing as well
as the cumulative score so far.

3770-3870 After five landings, we give the grand total.
We restart the game (via a simple RUN) when the
joystick button is pushed (which is why we waited
for the button to be released up there at the
beginning).

There it is. A practical real-time game written
entirely in BASIC XL. There are a lot of unnecessary
frills (e.g., the various types of landings), but they
add to the overall effect of the game. Try this on your
Apple-owning friends. They'll never believe it was done
entirely in BASIC.

139

The BASIC XL Programming Environment

9.2.5 GTIATEST

The earliest Atari computers had a graphics chip called
a CTIA. About two years after their introduction,
though, Atari started shipping all 400 and 800 machines
with a newer chip, called a GTIA. (All XL computers use
the GTIA.) The most significant difference between the
two chips is the GTIA's ability to accept commands for
three additional graphics modes, GRAPHICS 9, 10, and 11
in BASIC parlance.

For reasons we at OSS find hard to understand, little
in the way of commercial software has been produced
which uses these three modes. True, compatibility with
older machines is an issue, but the cost of a CTIA to
GTIA upgrade is nominal, at most. And if you must
maintain compatibility, why not provide two versions of
a program? Well, one argument for not doing so was
that, according to Atari literature, there was no way
for a running program to tell which chip was installed.
Would you believe Atari literature?

We thought not. It turns out that a workable method is
a bit involved but more than doable. The subroutine
from line 9000 up in this program demonstrates one way
which we know works.

The principle is as follows: If you are in a text mode
(e.g., GRAPHICS 0) and you turn on one of the GTIA
enable bits (the upper two bits of GPRIOR), then the
collision detection mechanism does not work between a
player and a character displayed in the modified text
mode. As a sidelight, the characters become unreadable
under these conditions, but this in itself is not
detectable by a program.

We believe this subroutine (and its sample calling
program) are fairly self-explanatory, but we will make
a few comments.

9100 As long as we are testing, we might as well PRINT
something which makes sense.

9130-9150 All of this ensures that we will place a
black bar (player 0) right over the word GTIA.

9160-9210 We turn on the GTIA bits, wait for a clock
tick, clear the collision registers, then wait at
least two clock ticks.

9220 If $D004 contains any non-zero bits, it means a
collision was detected and that the machine under
test does not have a GTIA.

140

Chapter 9: THE BASIC XL TOOLKIT

We hope that some of our users, either of BASIC XL or
other languages, will see fit to produce some programs
which take advantage of GTIA graphic modes when
possible.

141

The BASIC XL Programming Environment

9.2.6 CIRCLES

We at OSS cannot take credit for discovering the
algorithm used in this program, but we do think that we
have made it a little more useful.

The program's workings are certainly self-explanatory
up to line 1590. It is the subroutine starting at line
1600, which actually draws the circles, which needs a
few comments.

The principle involved is simple in theory: calculate
the sine and cosine of angles which get increasingly
larger (until they reach 45 degrees), and plot a circle
by reflecting these values in all octants. The trouble
is, if we use conventional means of generating sine and
cosine values, drawing a circle takes so long we might
want to take a nap. The trick here is an algorithm,
involving the variable DELTA which approximates the
sine and cosine values so close as to be
indistinguishable when a circle is plotted on an Atari-
size screen.

When we enter the subroutine, we assume that XC, YC,
and RADIUS are already set up. Then comes the fun.

1670 This begins the real work. The formula for DELTA
is magic. Don't question it (unless your math is a
whole lot better than average). The values for X
and Y are more obvious: We begin at an angle of
zero degrees, so the sine is zero and the cosine is
one. We will plot the points where lines parallel
to the axes intersect the circle.

1680 This allows us to get to 45 degrees, where the
sine and cosine values are identical.

1690-1780 We plot the values in all octants. The cute
trick we added here was the TRAP statements. Even
if the circle is completely outside the bounds of
the playfield, we can PLOT it in theory at least!
The beauty of this method is that all of those
points which fall within the playfield will be
plotted, no matter how few or how many they are.

1800-1840 This is the algorithm at work. Again, It's
partly magic, but you can sort of see how it works.
X is always increased by one, so we never plot the
same point twice. Whether or not Y is decreased by
one depends on the value of DELTA (which in turn
depends on either X or the difference between X and
Y) as its sign changes. Those of you with a
mathematical streak may enjoy calculating the arc-
tangent of X/Y, to see how close this algorithm is.

Once again, this subroutine is one you can use in your
own program. Try it, it works.

142

Chapter 9: THE BASIC XL TOOLKIT

9.2.7 DISKIO

This is another program which in and of itself is only
marginally useful. Its main purpose is to present its
primary subroutine (lines 9000 and greater), which you
may use in your own programs.

As you may or not be aware, when you ask BASIC to do
I/O (Input/Output) to or from most devices attached to
your computer (including particularly the disk drive),
what actually happens is quite complex. BASIC
Interprets your request, into a call to CIO (Central
Input Output), which in turn determines what device you
are using and vectors to the appropriate driver
routine. We assume here that CIO accesses FMS, the File
Management System for the disk, usually called DOS
(Disk Operating System).

Finally, FMS makes a call to SIO (Serial Input Output),
the routine which does the actual physical reading and
writing to the device. In the case of the disk drive,
this involves the actual transfer of a single sector of
128 bytes (or 256 bytes in non-1050 double density).

Most BASIC programmers seldom –- if ever –- have need
to read or write a physical disk sector. Writing is
dangerous, since disturbing the format of portions of a
sector can destroy DOS's ability to manage the disk for
you. Reading a sector, though, can be informative,
especially if you are trying to either understand DOS
or find "lost" information.

However, should you ever feel the need to directly read
or write sectors, the subroutine we provide here will
do the work for you. Just so you can see how it works,
we have included an interactive program which reads
selected sectors. (We took our own advice and didn't
allow it to write sectors.)

The set-up program, all lines except the subroutine
startling at line 9000, is fairly self-explanatory. It
simply asks the needed questions before calling the
actual read-a-sector code. It then displays the
contents of the sector in an easy to read hex and
ATASCII dump format. Only a couple of points are worth
making regarding this part.

First, we have arbitrarily used $600 through $6FF as
our sector buffer. This is the infamous "page 6" which
is so often overused. If you would like to avoid
conflicts with other routines using page 6, feel free
to locate the buffer anywhere else (e.g., within a
DIMensioned string). Second, note the way we print out
the dumps. The HEX$() function always returns a four-
character string; but, because we want only the last

143

The BASIC XL Programming Environment

two (least significant) digits, we assign its value to
a temporary string from whence we can print out only
the last two characters. Also, we avoid problems with
the ATASCII display by prefacing every character with
the ATASCII code for ESCape and ensuring that only
seven bits of the characters value are used in the
display. The former mechanism forces E: (the screen
device here) to display what would otherwise be cursor
control codes, etc. The latter "fix" ensures that
RETURN ($9B) won't be sent to the screen, a desirable
feat since it overrides even the ESCape sequence.

And now, before describing the code in the sector
access routine, we need to examine what SIO expects to
be where when it is called.

9.2.7.1 SIO and the Device Control Block
--

The entry point to the SIO calling routine is located
at $E459. When SIO is called, it does not care what
values are in the various CPU registers (A,X, and Y),
but it insists that a block of memory known as the
Device Control Block (DCB) be properly set up. There is
only one DCB used in the Atari OS, and it begins at
location $0300 (768 decimal). Its contents are as
follows:

 Location # of bytes Description
 -------- ---------- -----------
 $0300 1 Physical Device ID
 $0301 1 Device Unit Number
 $0302 1 Device Command Character
 $0303 1 Data movement control (on call)
 SIO Returns Status (on exit)
 $0304 2 Buffer Address
 $0306 2 Timeout value
 $0308 2 Buffer Length
 $030A 2 Auxiliary Information

Some of those brief descriptions need a little
explanation: The physical device ID is something not
seen in Atari's OS outside of SIO. Atari has assigned
each standard serial peripheral type a unique ID; disk
drives have an ID of $31 ('1', not to be confused with
$01). The device unit number is more familiar as, for
example, the drive number ('n' in 'Dn:').

The device command is again unique to SIO. As we shall
see in the next section of this manual, there are many
possible command characters, though they tend to be
normal ATASCII letters. For example, the command to
read a sector is 'R' while write is 'W', Note that for
versatility disk drives support a second write command,
'P', which means write sector without verify.

144

Chapter 9: THE BASIC XL TOOLKIT

The byte at $303 has two uses. When you call SIO, it
must contain $40 if you wish to obtain data from a
device or $80 if you need to send data. A few device
control commands need to neither read nor write data,
so they use a value of $00 here. On return from SIO,
the error code value (if any) is placed in this
location.

Buffer address and buffer length are similar, if not
identical, to their CIO counterparts. They simply tell
SIO where the data is and how much of it there is. One
unfortunate point: ATARI did not choose to include the
data length in the packet sent out over the serial bus.
This means that the device and SIO must agree on the
length of data being sent. (Example of the consequence:
Atari's OS always sends data to a printer in 40 byte
chunks. Wouldn't it have been simpler if OS could have
sent any number of bytes, from 1 to say 255, to the
printers?)

Finally, the auxiliary information is sent unmodified
to the device along with the command. Each device
chooses what the auxiliary info implies, but for disk
drives it is always the sector number.

9.2.7.2 The Sector Access Routine

Actually, now that you have seen what SIO requires,
this subroutine (lines 9000 up) is almost self-
explanatory. Once again, though, a few things need
clarifying.

9230 No real reason for this, except that the resultant
listing looks so much neater.

9240 We use ASC("1") to emphasize the fact that Atari,
for some reason, used printable characters for most
of the SIO control information. (As a guess, we
would say that they did this to make debugging
using a serial data analyzer easier.)

9270-9320 We only allow the values we said we would.
Everything else is fatal. Not fancy, but safe.

9330 A little sneaky, but we have already verified that
CMD equals either 1 or 2, so only a legal value is
possible here.

9350 The timeout value is arbitrarily large.

9360-9410 Again, we allow only legal density values.
Note that 1050 density-and-a-half is considered
Single density by this routine.

145

The BASIC XL Programming Environment

9420-9470 Validating the sector number. If you are
using a 1050 in density-and-a-half mode, you
obviously need change the 720 value to 1040,
instead.

9480-9490 This is such a neat trick! Because BASIC XL
allows us to specify that the count of parameters
will not be pushed on the stack, we can call
machine language routines which do not expect
values in registers without any need for an
intermediate routine! So simple it's almost hard to
believe.

9500 As advertised.

9510 Just in case the caller is using a routine where
he wants the count of parameters pushed!

9.2.7.3 Technical Sidelight

There are two sectors on a standard Atari DOS disk
(version 2.0s and its derivatives, including OS/A+ and
DOS XL versions 2) which you may read or write at will,
since they are "invisible" to DOS: sector 3 and sector
720.

Sector 720's availability has been documented before:
DOS "manages"·sector numbers 0 to 719, but the disk
drive understands only sectors 1 to 720. DOS has been
"fixed" to think that sector 0 is always in use, but
sector 720 remains outside its Ken. Sector 3 is a
quirk: it is the last sector of the traditional 3-
sector boot process. But, for some reason lost in
programming legend, it turns out that none of the disk
boot code used by DOS is present in sector 3: sectors 1
and 2 contain all the boot that is needed!

A word of warning, though: if you erase, write, modify,
or rename the DOS.SYS file, sector 3 will automatically
be rewritten by DOS (it thinks it needs to reestablish
the boot code). So, if you choose to use sector 3 for
your own purposes, be sure to do so on a disk which
either never receives a DOS.SYS file or which has one
which you feel is reasonably permanent.

146

Chapter 9: THE BASIC XL TOOLKIT

9.2.8 CONFIG

This program was written in response to all of our
users who wanted to know how to read and/or change the
configuration information which all true double density
drives utilize. The configuration scheme, often called
the config block, was developed by Percom Data
Corporation, the producers of the first commercially
available double density disk drive for Atari
computers. Since that time, all other manufacturers
except Atari have followed the Percom lead. Strangely
enough, the Percom scheme was in turn developed from
the ill-fated Atari 815, a double density drive which
never saw retailers' shelves.

In any case, the degree of double density compatibility
between drives of rival manufacturers in the Atari
market is nothing short of amazing. In those instances
where one drive cannot read a diskette written by
another make of drive, the problem is almost always
related to the rotational speed of the motor turning
the disk. Adjusting that speed can often work wonders
with a diskette which otherwise produces only ERROR144.

Of course, when Atari finally came out with their own
"double density" drive, naturally they had to invent a
new standard. (It wouldn't do to accept one begun by a
rival--that would be an insult to Atari's dignity.) As
a result we now have three important diskette
configurations in the Atari world, which are summarized
in the chart below.

 Sectors Bytes per
Our Name Style per Track Sector Kbytes
--
Single Density 810 18 128 90
1050 Density 1050 26 128 130
Double Density Percom 18 256 180

All drives use 40 tracks per diskette. In addition to
those shown, various manufacturers have also made
drives with 80 tracks, two heads (i.e., 40 tracks per
side of the disk), double-headed with 80 tracks per
side, and even 8" disks with other strange and wondrous
configurations. Since only OS/A+ version 4 (of all OSS
DOS's) supports other than ordinary single and double
density drives, we will not go into detail about these
drives here.

As of this writing, the following drives are known to
be capable of understanding Percom-standard double
density mode:

 Indus TRAK
 Astra Rana

147

The BASIC XL Programming Environment

 SWP NCT Turbo
 and, of course, Percom

In addition, Amdek conforms to the software standard
even though their diskettes are 3.5" (instead of the
usual 5.25"). If you hook a 5.25" drive up to an Amdek
controller (e.g., as a second or third drive on the
controller), then its diskettes will be hardware
compatible as well.

Now that we have all that out of the way, maybe we
ought to find out just what the "Percom standard" is.

9.2.8.1 The Percom Standard

For a drive to qualify for that title, we at OSS feel
that it must be capable of all the following:

1. Read and write standard Atari 810 single density
diskettes.

2. Read and write double density diskettes with 40
tracks, 18 sectors per track, 256 bytes per sector.
Peculiarity: because of the way Atari's OS wants to
boot, the first three sectors of a double density
disk will hold only 128 bytes of data (excess is
ignored) and transfer only those 128 bytes on all
SIO reads and writes to sectors 1 through 3.

3. Be able to transfer an internal configuration block
to the host computer on request.

4. Be able to accept changes in that same configuration
block sufficient to at least allow the drive to be
changed back and forth between single and double
density.

5. Have that configuration block be read/written by SIO
commands 'N' and 'O' (respectively) and consist of
12 bytes conforming to the following table:

 Byte # # of Bytes Description

 0 1 Number of Tracks
 1 1 Step Rate
 2 2 # of Sectors per Track
 4 1 # of Sides per Track
 5 1 Density (0=Single, 4=Double)
 6 2 # of Bytes per Sector
 8 1 Drive Selected?
 9 1 Serial Rate Value
 10 2 Miscellaneous (reserved)

148

Chapter 9: THE BASIC XL TOOLKIT

Once again, a little explanation of some of those items
is necessary: First of all, note that all double byte
values are not in standard 6502 low/high order. The
reason is historical: Percom uses a 680x CPU chip in
their disk controller, and all 680x chips do double
byte work in reverse of the 6502 manner.

'Step Rate' is not a meaningful number from one
manufacturer to another. Step rate 1 might mean 6
milliseconds per track to one manufacturer and 20
milliseconds each to another.

"Number of sides" is a misnomer: it is actually the
number of sides minus one. Thus most drives will show a
zero here. Note that, in theory, this number could have
any value. For example, a hard disk drive might show 4
here (five heads).

The only agreed upon values for "Density" are 0 ("FM"
recording mode) and 4 ("MFM") recording mode. Other
values are possible for strange circumstances.

Some drives can actually be turned "off-line" by an
appropriate value in "Drive selected." There seems
little value in this, since they can only be brought
back into the system by turning them off and back on
again.

The "Serial Rate Value" has not found any compatible
acceptance. As originally conceived by Percom, it would
inform the drive what baud rate the computer would use
for high speed data transfer. So far, those
manufacturers offering higher speed transfers have not
used this byte in any meaningful way.

Finally, the "Miscellaneous"· value is not—to the best
of our knowledge--being used by anyone for any purpose.

Now that you know what a Config Block looks like, how
can you tell, from software running in the Atari
computer, whether a particular disk drive is set up for
a particular density of diskette? Equally important,
how can you change a drive's set up? If you want the
answers to these questions, read on.

9.2.8.2 Reading and Writing the Config Block
--

As noted in section 9.2.7, SIO is a means of
transferring control and/or data between an Atari
computer and a peripheral device via the standard
serial bus. Although the most common operations on the
bus involve reading (command 'R') and writing (commands
'W' or 'P'), other commands are certainly possible. In
fact, all devices are required to support a status
('S') command, if for no other reason than so that the

149

The BASIC XL Programming Environment

computer can tell whether they exist on a given bus or
not.

When Percom invented their double density disk drive,
they invented their Config Block and, quite naturally,
a pair of commands to pass such a block between the
computer and the drive.

The command to read a Config Block from the drive into
the computer memory is 'N' (think of it as iNto the
computer). The command to write a Config Block to a
drive is 'O' (think of it as Out of the computer).
Aside from the need to use these command characters,
the only differences between making an SIO call to
read/write a sector and making one to read/write a
Config Block are (1) the length of the data, which is
always 12 bytes (instead of the 128 or 256 for a
sector) and (2) the auxiliary bytes (used for sector
number) have no effect.

For example, then, to read a configuration block from
drive 1 into a buffer at location $600 (page 6) you
would need to set up the following values in the DCB at
the locations shown:

 $300 $31 Unit ID
 $301 $01 Drive 1
 $302 $4E 'N', read Config Block
 $303 $40 see section 9.2.7
 $304 $00
 $06 $600, LSB first, buffer address
 $306 $0F
 $00 15, an arbitrary timeout value
 S308 $0C
 $00 12, length of the Config Block

And that's it! A JSR (or USR) to location $E459 will
read that block right into memory. If, of course, the
drive is capable of reading/writing Config Blocks.
Atari drives, for example, will return an error 138
(NAK), because they do not understand the command. A
command given to a drive not on the serial bus will
result in a time-out error.

1000-1200 Mostly just simple constants. Note that we
will read the configuration table into the string,
Config tables, rather than using valuable page six
memory. Also note in line 1200 the way we produce
screen control characters which will list on any
printer.

1240 This allows us to call system routines via USR()
directly. See section 9.2.7.

150

Chapter 9: THE BASIC XL TOOLKIT

1270-1290 We will discuss these DATA statements later.
For now, note that each line has 12 values (funny
how that matches the size of a Config Block).
Negative values indicate bytes we won't change.

1330, 1920 Look at the size of this endless loop. We
think that, in a well structured program, a loop
really shouldn't get any bigger.

1340 Two ways to use screen controls in BASIC XL,
thanks to the fact that you can PUT to channel
zero.

1430 This is one way to ensure that all the
configuration games we are playing here will take
effect. When you change a drive's configuration,
DOS needs to know about it. Usually, one does this
by calling a routine named DOSINI, which will
return to you after reestablishing DOS's internal
drive configuration table. If you don't need the
routine to return to you, simply force a system
reset by a jump (of any kind) to $E474. This is
exactly equivalent to hitting the RESET key.

1490-1500 See, we can use our SIO calling routine to do
more than just read/write Config Blocks. In this
case, we simply do a drive status call.

1600-1730 The status was okay, so read the Config
Block. Hmm? Can't do it? Why did you buy an Atari
drive?

1750-1890 Here is where we display and then
(optionally) change the Config Block in a form
readable by humans. Note how little of the code is
actually here; it is almost all in subroutines.

1940-2220 Once again, we have a keyboard access routine
which avoids the vagaries of the INPUT statement
(see PICO.BXL for a fully commented example of this
same thing). In this case, we want only numbers in
the proper range. It's easy if you step through it.

2230-2590 Remember what we said about a handful of
subroutines which do the real work? Here's one of
them. If you followed our discussion of the meaning
of each byte of the configuration table (above) you
shouldn't have any trouble following this code.
That's primarily thanks to the fact that all the
pertinent values have already been placed in
variables with meaningful names by...

2600-2750 A very important subroutine. This takes the
bytes of the Config Block and converts them as
appropriate. Note how we can not use the DPEEK()
function, thanks to the fact that the double byte

151

The BASIC XL Programming Environment

values are "backwards"·compared to standard 6502
practice.

2760-2910 The opposite of the previous routine. Take
the values in the variables and stuff them into the
bytes of the Config Block. Again, note that we can
not use DPOKE.

2920-3120 We really shouldn't need to explain this
routine, since it is virtually identical to its
counterpart in DISKIO, described in section 9.2.7.

3130-3380 Here's where we allow you to play games, if
you wish. We give you a menu. If you choose one of
the standard configurations (Single, 1050, or
Double Density), then the appropriate RESTORE
allows us to read the standard configuration
information from our DATA statements. Once again we
note that some bytes are never changed: Step Rate,
Acia, and the Miscellany locations.

3390-3900 Anything goes. You can tell the disk drive's
controller that it's connected to a drive with 130
tracks, 204 bytes per sector, 12 heads, or
whatever. Some controllers will believe you and try
to do as you ask. We sincerely hope that you have a
blank or trash diskette in the drive when you give
such commands. Other drives will only accept a
limited number of configurations, ignoring much of
the information you send them. For example, Indus
drives allow only the three standard densities.

Note how we re-read the Config Block after writing.
This is to ensure that we haven't lost control of
the drive. (With same drives, you can de-select
them, and they will cease responding to anything.)

That's about it. If you are confused, try playing with
the program with a copy of a listing in front of you.
It should become a bit clearer.

152

Chapter 9: THE BASIC XL TOOLKIT

9.2.9 PHONE

PHONE.BXL is a fairly large but well organized program
which is a simple but very efficient phone number list
organizer. It will maintain a list of first and last
names and phone numbers, keeping the list "sorted" by
last name. Thanks to the "sort" scheme adopted, it
finds a phone number in less than a second, no matter
how many names there are in the list, when given a last
name to work with.

Its other advantage is that it is easily changed and
expanded to provide, for example, a mailing list pro-
gram. Or perhaps a list of books in your library. The
possibilities are limited mostly by your willingness to
tackle its code and bend it to your purposes.

Again, this program has been provided in response to
numerous requests for a complete explanation of how to
do random access file I/O under DOS 2. We hope that
this program and its description will satisfy most of
these requests. Before exploring the program, though,
there are several technical considerations which you
may enjoy considering. If you get lost in all the
technical stuff, skip down to the program description
and come back and try to understand the rest later. (It
is worth understanding.)

9.2.9.1 Sequential and Other Files

Perhaps the biggest flaw in Atari DOS 2.0s (and all its
derivatives, including OS/A+ and DOS XL version 2.x) is
in the structure of the files it creates. Atari DOS 2
files are classified as "linked sequential" types. That
means, each sector in the file points to (links to) the
next sector.

Sequential files have a few advantages: (1) File
managers which handle sequential files are generally
simpler and smaller than those for other file types.
(2) If a disk is partially "clobbered," you can often
still recover much of its data when linked sequential
files are used. This is true even if the disk's
directory is damaged,a generally fatal condition in
other file systems. (3) File manager disk space
overhead is reasonably low.

Unfortunately, there are also several major
disadvantages: (1) To erase a linked sequential file,
the file manager must read through each sector of the
file, a very time-consuming process. As disk and file
sizes get larger, this become a major factor in disk
I/O time. (2) To locate a particular record in a linked
sequential file, you generally have no choice but to

153

The BASIC XL Programming Environment

start at the beginning of the file and read until you
come to it. (3) Similarly, to append to a linked
sequential file, you may have to read the entire file.

Now, truthfully, file manager types don't matter if you
are using a DOS to do nothing but save programs,
letters, and other things where you always load all the
information into memory before working on it. You're
actual1y using the disk as a slightly smart tape drive
in these circumstances. Where file structure be comes
important is when you need to randomly use bits and
pieces of a hunk of data (a file) too big to fit in
memory.

The best of all worlds would be a DOS smart enough that
you could say something like this: "Give me the address
of John Doe." Generally, the computer world considers
convenience like this beyond the scope of DOS,
relegating it to the world of Data Base Managers and
their ilk.

The next step down is usually being able to say, "Give
me the 433rd record in that file." With most file
organization schemes, this is a trivial task if the
records are all the same length (and about as hard as
the first request if they are not).

9.2.9.2 How to Use NOTE and POINT to Advantage
--

But what about those linked sequential files we are
stuck with? To get to the 433rd record, we have to read
through the first 432! And we would be stuck here were
it not for the fact that Atari DOS does provide one
added feature: it allows you to find out just where on
the disk you are as you read or write a file. The magic
statement is NOTE. As you may remember from your BASIC
XL reference manual, its format is:

 NOTE # filenumber,avar1,avar2

where the first avar gets the sector number of the
current position within the file and the second avar
gets the byte number within that sector.

Then, if you once read a file and find out (via NOTE)
where its 433rd record begins, you can later ask DOS to
change its file position marker to that same location
(via POINT, which has the same format as NOTE). Voila,
you are then able to read or re-write the record.

How, you may wonder, is this different from those DOS
systems which allow you direct access to any byte (and
thus record) in a file? Don't they allow you to POINT
to any disk location, also? Not really. Atari DOS
allows only what we call Absolute access. That means

154

Chapter 9: THE BASIC XL TOOLKIT

that the numbers you use with POINT describe a physical
location on the diskette. Other DOS types allow you to
POINT to a location which is relative to the beginning
of the file. (Example: To point to the 22nd record when
each record has 20 bytes, you would simply POINT to
relative byte number 440, if records are numbered
starting at zero.)

With Atari DOS, knowing that record number 22 starts at
sector 301, byte 115, doesn't tell you anything about
where record number 23 starts (unless record 22 is
shorter than 10 bytes), because sectors are not always
allocated to a file in order. (Instead, as a file is
built it is always given the next unused sector.) To
make matters worse, when a file is appended to, sectors
with fewer than 125 bytes (253 bytes in double density)
may be left in it.

The only real solution, then, is to build a table of
pointers, one per record. This technique has been
described often before (among other places, in Atari's
DOS 2.0s Reference Manual). In most such discussions,
what is built is a numeric array (or arrays) of
pointers to records by number. A segment of a typical
program is shown:

 950 NOTE #3,Sector,Byte
 960 Sector(Recordnumber)=Sector
 970 Byte(Recordnumber)=Byte

This is a lot of overhead: 12 bytes per record.

Let us sidetrack for a moment. Consider this: when you
use NOTE, you are given a sector number and a byte
number. But the maximum sector number is 720 and the
maximum byte number is 253 (double density), so we can
store the sector number in as little as two bytes
(remember, a double byte location can hold values from
0 to 65535) and the byte number in a single byte.
Total: three bytes. Again, a program fragment to
implement this scheme is shown here:

 930 NOTE #3,Sector,Byte
 940 Temp=Recordnumber*3+1
 950 Shi=Int(Sector/256) : Slow=Sector&255
 960 Pointer$(Temp,Temp+2)=Chr$(Slow),Chr$(Shi),Chr$(Byte)

Look at the savings when compared to the numeric
arrays! But an additional advantage of using a string
to hold our pointers is that it can hold any other
string as well. Why not a record's 'name'?

If you are using 100 byte records, a file with 500
records needs only 1500 bytes worth of pointers, which
can easily be held in memory. Even if you add "record

155

The BASIC XL Programming Environment

names" (as PHONE.BXL does), the memory requirement for
a set of pointers is quite small compared to the amount
of disk space we can access with them.

And, while you could re-build the pointers each time
you RUN a program, isn't it just as easy to keep them
in another file on the disk? Yes! And all of this is
made so much easier thanks to same statements in BASIC
XL. There is, however, a necessary caveat: Recall that
the sector and byte numbers given you by NOTE are
absolute. If you copy the data file to another disk,
your set of pointers is no longer valid. You thus have
two choices: rebuild the pointers after copying the
data file or duplicate the entire disk instead (which
preserves everything on the disk).

9.2.9.3 The Concept Behind PHONE.BXL. alias BlackBook
---------------------------- -----------------

It's kind of funny that, because other COS systems
support random access files implicitly, you seldom see
programs such as this published for them. And what's so
special about this program? In it we give you a
complete set of routines for performing what is known
as an "Indexed" or "Keyed Sequential Access Method".
Remember how we said it would be neat to be able to
access John Doe's account information using just his
name? Remember how we said this was in the domain of
Data Base systems? Guess what. PHONE.BXL (or, as we
prefer, "BlackBook") is actually a mini-Data Base. All
in all, we have turned a DOS limitation into a helpful
situation.

(Sidelight: Actually, there is no reason you couldn't
use all the techniques of this program under any DOS.
In fact, most random access would make some of the
steps in our process -- such as "prebuilding" all data
files – unnecessary.)

BlackBook always works with its files in pairs: a data
file and an index file. The structures of the files are
shown below:

9.2.9.4 BlackBook Data Files

Each record consists of three fields. Each field is a
string of up to 24 characters which is written to the
file via BASIC XL's RPUT statement. Since RPUT uses
five bytes of overhead per string (as a safety measure
-- see your reference manual), the total number of
bytes per record is 87 (24+5 is 29; 3 times 29 is 87).
If you were to look at a record byte by byte, it would
look like this:

156

Chapter 9: THE BASIC XL TOOLKIT

Record Structure in BlackBook Data File

Record:
 Field 1:
 Byte 1 String Field indicator
 Bytes 2-3 Dimension of String Field
 Bytes 4-5 Length of String Field
 Bytes 6-29 Field data, as a string
 Field 2:
 Byte 30 String Field indicator
 Bytes 31-32 Dimension of String Field
 Bytes 33-34 Length of String Field
 Bytes 35-58 Field data, as a string
 Field 3:
 Byte 59 String Field indicator
 Bytes 60-61 Dimension of String Field
 Bytes 62-63 Length of String Field
 Bytes 64-87 Field data, as a string

9.2.9.5 BlackBook Index Files

Aside from the actual key (index) entries, there are
two pieces of information needed when maintaining a
keyed file as BlackBook does: (1) We must know how many
records the file is capable of holding. This number --
called MAXREC -- is established when the empty file is
pre-built. (2) Out of those MAXREC records, how many
are currently in use? NUMREC tells us.

In BlackBook, MAXREC and NUMREC are placed first in the
index file via RPUT. They are directly followed by all
the bytes of the index string. Since MAXREC describes
the size of this string, we chose to write/read it with
BPUT. (There is another advantage to using here, as we
shall see later.) The byte-by-byte form of an index is
thus as follows:

 Byte 1 Numeric field indicator
 Bytes 2-7 MAXREC, a number
 Byte 8 Numeric field indicator
 Bytes 9-14 NUMREC, a number
 Bytes 15-? The index string

Sidelight: the reasons we set up the files for MAXREC
records, instead of just adding space to the file as we
need it, are twofold and related: (1) You can only use
POINT on a file which has been OPENed in update mode.
(2) You can't append to a file when you are in update
mode.

157

The BASIC XL Programming Environment

9.2.9.6 The Index String

The proper structure to the index string is the secret
to not only the success but also the speed of this
program. Rather than trying to explain it as we
describe the workings of the program, we will present
it in some detail here.

The string actually consists of MAXREC "elements", just
as if it were an array. In BlackBook, we have chosen to
use the first four characters of each person's last
name as our key value. This is arbitrary and could,
without a lot of trouble, be changed. (In fact its size
is dependent on the value of the Indexsize variable.)

In addition to the 4 character key, there are 4 bytes
of overhead. Three of them we know about: two bytes for
the sector number, one byte for the byte number. The
last byte is used as a key separator and always has a
value of 255 ($FF). At this point, you may be wondering
why we went to the trouble of using a long string (with
its complicated subfield addressing) in favor of a
string array (where we could get the entire key
pertinent to a record with a simple record number). One
main reason: BASIC XL's FIND() function works only on a
single string (not an array), and we wanted to use it
for speed.

But using FIND() has its own problem. Suppose that,
just by coincidence, the sector and byte number
characters (which is what they have become, once they
are in the string) happen to have values which make
them look like characters in a key name we are
searching for with FIND(), causing the function to
return a false match. We avoid the problem through the
mechanism of the $FF byte field separators: When we
search for a key name with FIND(), the search string is
preceded by a byte of $FF. A match is thus guaranteed
to start on a key separator boundary. (We go further
for safety: we separate the sector number into high and
low bytes by dividing by 128, instead of the more
conventional 256. This means that the sector number and
byte number characters can never have a value of 255
either. Overkill? Perhaps, but why not when it costs us
nothing.)

Got all that? If not, don't worry about it. If the
description of the program still doesn't make it clear,
it doesn't matter. If you follow our lead, the scheme
will always work.

158

Chapter 9: THE BASIC XL TOOLKIT

9.2.9.7 Program Description: PHONE.BXL, BlackBook

If you list this program to a printer (and we sincerely
hope you do before trying to follow this description),
you will find that it will take over 8 pages of paper.
Obviously, there is no way we can give you a line-by-
line description of such a program. Instead, we can
only point out the functions of various subroutines,
etc. Of necessity, some of the detail about program
function, etc., given in other descriptions will be
missing here. We hope and expect that your programming
skills will have been sharpened enough by now to allow
you to work through the details.

As with some of our other programs, we will describe
this program from the "top down". That is, we will
present it in roughly execution order rather than
listing order.

1000-1330 The usual constants, both strings and
numbers. Note how we have given "names" to commonly
used small numbers such as zero and one. This saves
memory space, not time.

1340-1430 If you adapt BlackBook to your own purposes,
you can add data fields here and/or change the
sizes of the ones given. If you do so, be sure to
adjust Recsize, the number of bytes in each record.
If you choose to change the length of the portion
of a field used as the key, change Indexsize at
your own risk. In theory, everything in the program
keys off this variable, but we have never tested
the theory.

1540-1550 One advantage of using BGET with the index
string is that we do not need to make the DIMension
of Index$ match the size in the file, as we would
if we used RGET. This makes building a file
somewhat easier also, as we shall see.

1570-1710 We have given all major subroutines names in
this program. This makes renumbering and
reorganizing a bit more difficult, but pays off in
much more readable code.

1720-1950 Did we mention that BlackBook will even dial
your phone for you? Here, we're just setting up an
array of values for later use with SOUND.

2000-2290 This monstrous program is all driven from
these few lines. All we do is present a menu and
accept only one of five choices. If you are using
BlackBook, you have to create a file before you can
do anything else, so we will now track what happens
when you ask for that main menu option.

159

The BASIC XL Programming Environment

15000-15280 This major routine figures out how big a
file you have, allows you to specify any size up to
that maximum, makes you choose a name for the file,
and creates an empty data file corresponding index.
Such a lot of work for so little code! It's done
with mirrors, otherwise called subroutines.

6900-7060 The Calcsize routine. It figures out how big
a data file is possible using a trick or two we
hadn't seen before. First, it creates a trash file
containing 200 bytes. It does this so that it can
read the sector count for this file in the
directory: 200 bytes is guaranteed to require one
sector in double density, two sectors in single
density. Then, when it finds out how many free
sectors there are, it knows how many free bytes
there are on the disk. From this count of free
bytes it estimates the maximum number of records by
dividing by the number of bytes used by each
record, which is in turn the sum of the record size
and the index size. Finally, we never allow
ourselves more records than we have room to point
to in the index string.

5000-5260 Our Getline routine is used to avoid the
INPUT statement. We avoid INPUT because we don't
want the user moving the cursor all over the
screen, erasing the screen, etc. Either the ESCape
key or the RETURN key terminate a line here (mainly
because they have the same value if you ignore the
upper bit). The only editing key we allow is Back
Space, and then only to the beginning of the field.
We even provide for the use of a flag which changes
lower case into upper case, used by the
Getfilenames routine to avoid lower case in file
names. Finally, we will only get as many characters
as the caller asks for (the contents of Maxline on
entry).

5400-5480 Getfilenames is only a little bit smart. The
user should not type the file name extension, and
typing the drive specifier is optional (D1: is
provided automatically if the specifier is
omitted). Two names are returned, alike except for
the extensions, DBF and DBX (Data Base File and
indeX).

7500-7680 Most of the work in Create is done by this
routine, Makeindex. Since this is a very important
routine, we will examine it in some detail.
Exception: As this routine works, it keeps the user
informed of where it is. The code for this is
fairly obvious and will not be discussed.

We first set up the data fields with some filler
byte ($FF, in fact). After performing a NOTE (line
7570) to find out where the beginning of the

160

Chapter 9: THE BASIC XL TOOLKIT

current record is, we write the filler data to the
data file (line 7610). As we did that, we built a
key string. Note its structure (line 7590): first
byte is always $FF (255), followed by four bytes
which match the first four characters in the last
name of the person being indexed, followed by the
NOTEd information. We lengthen the index string
(line 7600) by simply tacking the key we built onto
the end of it.

We perform all those steps for each record in the
file (the FOR loop). When all data records have
been written out, we write out the new index file
(lines 7640-7660). Note the presence of the check
in line 7630: if the length of the index string
doesn't correspond to the number of blank records
which were set up, something went disastrously
wrong. When writing your own code, checks like this
are a good idea (but see our final comments also).

After creating a blank BlackBook file, you would
presumably want to put some data in it. In this
program, one main routine is used for operations on the
data in the file: the Edit operations start at line
10000.

10000-10310 Once again, a major routine devolves to a
small loop with many subroutine calls. And once
again its primary purpose is to present you with a
menu of selections and make you choose one. In the
case of Edit, it first asks you a question and does
a little set up.

7200-7320 Even though BlackBook files on only the first
drive are listed for you, the Showfiles routine
will accept a choice of a pair of files from any
on-line drive.

7400-7460 Getindexinfo is a simple routine: it opens
the index file, reads the count of available and
in-use records, and gets the index string in place.

5700-5850 By never using zero as a real record number,
we make Showrec's Job easy: If it sees us trying to
display record number zero, it displays blanks
instead. Note that the record number referred to is
actually an 8 byte key entry in the index string,
which may bear no relationship to the record's
position within the data file. If you modify
BlackBook to add fields, this routine must change
to fit; but the POSITION and PRINT statements are
easy to modify. To get the data to be displayed,
this routine in turn calls...

161

The BASIC XL Programming Environment

6300-6340 Getbykey simply gets the various fields of
the data record after requesting a POINT to the
right spot in the file. Again, you could add data
fields in each record quite easily in this routine,
simply by extending the RGET statement.

6000-6070 Even deeper in the GOSUB information about
sector and proper spot in the data file.

10240-10290 Finally, back in the Edit menu, we
demonstrate a neat way of making menu choices using
the FIND() function. The nice part about it is that
an invalid choice provides an Option value of zero.
Valid choices are vectored to the appropriate
routine. For the sub-commands of Edit, we chose to
use line numbers, primarily so we could renumber
this section of the program more easily. Let's look
at some of those choices in a logical order.

11110-11290 Again, on the assumption that we are
setting up a new BlackBook file, we start by adding
records. Since the Edit menu routine at lines 6600
through 6770 simply sets up a set of blank fields
to be filled in, we won't describe it further here.
The Getline routine does yeoman duty again,
ensuring that we get nice neat data, confined to
the proper areas of the screen.

Before bumping the count of records (as well as the
current record number), we call two routines which
do the bulk of our work. Observe how, in line
11250, we built up KEY$. By now, you know that an
index string entry consists of a separator byte,
four bytes of the record's name, and three bytes of
NOTE info. But look where that NOTE info comes from
here: from the last possible index entry in the
index string! As you follow the next subroutine,
you will see why.

7800-7930 This is potentially the slowest part of
BlackBook when you are adding to a large file.
Using a FOR loop, we search through the index
string looking for a record whose name is equal to
or greater than the one in KEY$. Because we never
try to insert into a full index, we are guaranteed
to find one such name: blank records were given a
name of all $FF characters!

When we find the proper position to insert our new
entry, we must make room. We leave it to you to
work out how beautifully the MOVE of line 7900
works (though we will remind you that a negative
length forces an insertion-type move). The special
case shown is only used if we are putting the last
possible name in and it happens, to fall at the end
of the list.

162

Chapter 9: THE BASIC XL TOOLKIT

Do you see what we have done? If this was the first
real name being inserted into all the dummy names
in the index string, its 8 bytes find their way to
the beginning of the string. But look what data
record we will use: the last possible one. So what?
That's why we are using an indexed file, right?

6360-6400 Speaking of which, we new need to Putbykey to
get the data record on the disk. As with GetbyKey,
we let the PointbyKey routine set up the POINT for
us and then we simply RPUT the data fields to the
disk. It would be easy to add more data fields
here, to correspond to GetbyKey.

Back in the Edit menu: Once you have added some
records, you may want to go forward or backward in the
file looking at what you have done. Or maybe you want
to find a particular name.

10330-10450 As long as we're still within the bounds of
valid data, we let the user go to the Next or Last
(previous) name (alphabetically) in the file.
Simple, isn't it? Thanks to the fact that the index
string is already sorted in alphabetical order.
(Well, that's really ATASCII order, but for names
the difference is moot, unless some use upper case
and some use lower case.) Notice that these
routines do not need to display any data, since the
main Edit menu loop does that for them.

10470-10590 This is why we went to all the trouble to
set up that monstrous index string! See how we
build our search name in line 10540, with a leading
$FF byte. Then all the work is done for us in line
10550: we simply FIND the first match! Very fast,
very efficient. Again, by calculating REC as a
function of the position we found the name in the
index string, we can let the Edit menu loop display
the data for us.

And the only other things this program allows you to do
with your data is dial a phone number or erase a name
from the list.

10600-10950 This only works on touch-tone phone
systems, but it does work. If you hold your phone's
microphone up to your computer's speaker it is
actually possible to let the computer dial for you.
Some other things to note: A 'P' in a phone number
indicates a short pause (some long distance
companies need such pauses during dialing). You may
easily adjust the duration of the pause by changing
line 10780. A 'W' causes the dialer to wait until
you give it the go-ahead. Once again, our friend
the FIND() function passes through only those
values we actually want to handle.

163

The BASIC XL Programming Environment

The tone generator uses the special 16-bit
resolution mode of the Atari sound generators to
produce frequencies which are more accurate in
pitch than those available with the SOUND
statement. The subject is too complex for further
explanation here. Many graphic and sound books for
the Atari explore this fairly fully.

10960-11090 In most ways, the Erase a Record routine is
simply the reverse of the ADD routine. We first
remove the record pointer from the index string by
simply squeezing up the string (lines 11020 and
11030). But, because we don't want to lose the NOTE
information in that pointer, we fill it in with the
standard dummy name (all $FF characters) and tack
it onto the end of the index string (line 11050).
We mark the record as deleted in the data file by
zapping just the last character of its PHONE$
string (11060 and 11070). Naturally, the number of
records is now one less than it was before.

Aside from the various edit options, the Edit menu
provides an exit choice and a hidden choice (note the
presence of the underline character in line 10240).

11300-11370 To exit from the Edit menu, we simply close
the data file and write out a new version of the
index file. The next time we get to the Edit menu,
reading the index file will put us right back where
we left off.

9900-9940 In the process of developing this program, we
had several occasions to doubt our sanity. Loops
would straighten out. GOTOs wouldn't. Data would be
lost. And the index string would get mangled
unmercifully. To help view what was going on, we
would often write small routines to display certain
pieces of data. For example, we built in this debug
routine, which simply displays the current contents
of the index string in a reasonably readable
manner. It then waits for a key press before going
back to the Edit menu.

Now, truthfully, there is no need for this routine
in the final version of the program. The indexing
bugs seem to be gone, data moves smoothly, and
loops keep on looping. But we thought it might be
educational for you to see how we approach the
debug process: carefully and with a lot of extra
displays.

Well, after we've created a BlackBook file and added
several records, we may notice that the file is getting
full. Time to expand the file and make room for more
phone numbers, right? Right.

164

Chapter 9: THE BASIC XL TOOLKIT

20000-20270 Actually, this increase file size routine
is almost identical with the Create a BlackBook
file routine. The major difference is that we use
the information about file space left on the disk
(and the user's response to our query) to append a
chunk of file to our existing. The Makeindex
routine, discussed above, does all the work. Now
you may notice why Startrec and Maxrec and Rec were
all set up before the call to Makeindex in ADD. By
doing so, we need only use other appropriate values
to properly call the same routine here in Increase.

The only other possibility provided for here is the
case of the clobbered index file. There are four ways
the index file could become invalid: (1) Power to the
computer goes off before the file is Closed or the disk
is some how damaged. (2) The program crashes with an
error. (3) You erase some records you didn't mean to.
(4) You COPY the data file to another disk so that the
NOTE pointers are no longer valid.

No matter what the cause, the Fix/Recreate Index
routine will cure all ills. In the case of deleted
records, it gives you a chance to recover them (so long
as you didn't ADD a name after doing the accidental
ERASE).

25000-25110 Again, we show the user what BlackBook
files are on the disk and allow him/her to choose
one. We prepare the screen for·some messages and
fill the index string with $FF characters.

25130, 25540 Don't you wish BASIC XL had a function
which would detect the end of a file? Well, it
doesn't, but the PEEK() which controls this loop
functions as one just fine.

25140-25180 We simply figure out where we are at in the
data base file, get the record from disk (line
25160 would have to change if you add more fields
to each record), and create a valid key, consisting
of the separator byte, the record name, and the
NOTE info.

25190-25310 Remember how we zapped the last byte of the
PHONE$ string when we erased a record? Here's where
that pays off. If such a record is detected, FIX
gives you a chance to "undelete" it.

25320-25410 If the user wants to undelete the record,
we change that magic character in PHONE$ to a
space. If not, we change all the fields (and the
record's name in the index string) to filler bytes.
In any case, we write out the modified record.
Lines 25390 and 25400 are necessary to avoid a

165

The BASIC XL Programming Environment

false end-of-file indicator (produced because of a
bug in DOS) when writing the last record.

25430-25510 This part's almost easy: If the record
found is a filler (blank) record, we simply add its
pointer info to the end of the index string. If the
found record is a real·one, we have to put its name
in the proper place in the index string. Look at
that! A call to our old friend, InsertKey, just
exactly as if we were adding a new record.

25520-25530 Since we have to count the number of
records in the file anyway, why not give the user
some thing to watch as we work.

25550-25600 Funny how this code resembles that at the
end of the Edit Menu exit and the end of the
Makeindex routine. Maybe we need another subroutine
just to write out the completed index file.

There will be a quiz tomorrow.

Whew! Did you get through all that? If so, then you are
ready to convert BlackBook to your own needs.

Several fairly simple improvements would increase the
usability and safety of the program dramatically. We
leave them as exercises for you:

1. There's not a single TRAP in this entire hodgepodge.
May we suggest TRAPping at least the most dangerous
sections, such as where we create file, etc.

2. The Edit Menu is missing one obvious and important
choice: Change (edit) an existing record. No good
reason for the omission other than the fact that it
seemed unnecessary in a demo program.

3. Cut the program up into pieces, chaining between
them via RUN, so that the index string can be
bigger.

4. Use a larger key. Change the file to a mailing list
file (add field info in all the places we noted) and
use the zip code plus first two letters of last name
as the record name for the index string.

5. Use this basic program for something we didn't think
of. Tell us about your efforts.

166

Chapter 9: THE BASIC XL TOOLKIT

9.2.10 MAKEAUTO

We have received many requests for this program. Its
purpose is quite simple: it creates an AUTORLN.SYS file
for use with BASIC XL. More importantly, it allows you
to specify one or more commands or statements which
BASIC XL will execute on power-up.

We will not explain this program on a line-by-line
basis, because the bulk of the program is so simple. It
simply allows you to type in one line after another
until you either enter a blank line (RETURN only) or
you run out of room (you are allowed up to 159
characters, including RETURNs). It then writes out a
new AUTORUN.SYS file by (1) reading the machine
language program, including the run address, from some
hex data statements and then (2) writing out your
commands in a format acceptable to DOS's binary file
loader.

Perhaps the only other thing worth mentioning is the
fact that your commands are written out backwards (the
FOR loop of lines 770 to 790) to make the job of the
machine language program easier. When AUTORUN.SYS is
loaded by DOS, your backward commands will start at
location $0601, preceded by a byte containing their
total length less one (line 750). Again, this is all to
make the machine language program smaller and simpler.

Normally, we use AUTORUN.SYS to just cause BASIC XL to
RUN our menu program. In other words, we respond to
this program's prompt with

 RUN "D:MENU.BXL"

However, you may choose any commands you wish. For
example, suppose you had a very large program you
wished to run on power up, but you want the user to
know that the loading delay was normal. There are two
solutions to that: (1) Have AUTORUN.SYS run a small
program which simply prints a "please wait" message and
then chains to the larger program, (2) Let AUTORUN.SYS
do all the work, by answering its prompts like this:

 GRAPHICS 16:POSITION 4,11
 PRINT#6;"please wait"
 RUN "D:MYPROG.BXL"

Why not? About the only statements you can't use via
AUTORUN.SYS are those which might affect page six
(e.g., POKEs) or the device handler table (at $031A).
Try it out yourself.

167

The BASIC XL Programming Environment

9.3 BASIC XL Extended Statements

9.3.1 How to Install the Extended Statements
--

Because BASIC is usually an interpreted language, it is
no more flexible than the keywords with which it is
endowed. When we at OSS designed BASIC XL, we wanted a
true interpretive BASIC with a reasonable amount of
power and speed. However, we also wanted a degree of
flexibility unmatched in most versions of the language.
Hence the ability to add statements to the language was
included, even though no such "extended" statements
existed. Until now!

This release of The BASIC XL ToolKit includes six new
extended statements for you to use in your own
programs. The statements added fall into two groups:
(1) procedure calls and (2) string array sorting.
Before describing the new statements (in sections 9.3.3
and 9.3.4, respectively), we need to discuss how these
extended statements are added to BASIC XL.

If you request a directory of the reverse ("flip") side
of your BASIC XL ToolKit disk (via BASIC XL's DIR
command), you will find the file

 EXTEND.COM

and it is this file which contains the code which
implements the extended statements.

There are several ways to begin using the extended
statements. The easiest way is to simply duplicate that
flip side of your ToolKit disk and boot the resultant
copy. (Again, please don't use your original disk for
anything other than making duplicates. Thank you.)

The reason booting that flip side works is that, in
addition to EXTEND.COM, we have provided you with an
AUTORUN.SYS program which incorporates both the
extensions (identical code to that in EXTEND.COM) and a
BASIC XL command invoker identical to that provided by
MAKEAUTO.BXL (see section 9.2.10). In the version on
your disk, we have given this MAKEAUTO equivalent only
one command:

 RUN D:EXTEND.BXE

In turn, EXTEND.BXE is a very, very short program. We
list it here in its entirety:

 10 Graphics 18 : Position 2,12
 20 Print #6; "...please wait..."

168

Chapter 9: THE BASIC XL TOOLKIT

 30 Move $570,$C4,4
 40 Run "D:MENU.BXL"

The only important line here is line 30, the MOVE
statement. NOTE CAREFULLY: even after the extended
statements have been loaded into memory, they must be
made available to BASIC XL. This is accomplished by
placing pointers to their execution and syntax tables
in $C4-$C5 and $C6-$C7. This has to be done after BASIC
XL issues the Ready prompt, because BASIC XL always
clears these locations to zero upon a coldstart (e.g.,
at power-on). Note the other implication of this: if,
later, you convince BASIC XL to undergo a coldstart
(either by exiting to DOS and performing a LOAD of some
kind or, as some programs do, by POKEing the warmstart
flag off), you must once again perform this MOVE or the
extended statements will not be available to you.
(Actually, if you exit to DOS and LOAD or run some
program, the chances are good that you should then LOAD
EXTEND.COM again, since most disk-based programs will
overwrite the memory used by the extensions.)

Another way to implement the extensions was just hinted
at: you may, from virtually any DOS, simply LOAD
EXTEND.COM and then enter the BASIC XL cartridge. If
you are using a menu-driven DOS, choose the appropriate
menu options to do the LOAD and enter the cartridge. If
you are working with OS/A+ or DOS XL, you may simply
type

 EXTEND
 CARTRIDGE

in response to the D1: prompts (and, in turn, these
commands could be part of a STARTUP.EXC file -- see
your DOS XL manual). If you enter BASIC XL in either of
these ways, you will be presented with the Ready
prompt. In order to use the extended statements, you
will have to use a MOVE $570,$C4,4 command as was given
above.

The final way to implement the extensions which we will
explore here is a variation on the first one. Simply
replace the program EXTEND.BXE with your own program of
the same name. If you keep the MOVE statement in your
program, and if it is executed before you use any
extended statements, this will work just great.
Probably the easiest way to customize EXTEND.BXE to
your own purposes would be to simply change the name of
the program to RUN in line 40.

Remember: the DOS given you on this disk has neither
menu nor command processor. It is only capable of
booting a disk with an AUTORUN.SYS file present. You
may, however, COPY all or some of the files on this

169

The BASIC XL Programming Environment

disk to another one which has your preferred version of
DOS already on it.

Without further ado, then, let us proceed toward the
descriptions of the extended statements.

9.3.2 Abbreviations Used In Formal Statement Definitions
--

The following are the abbreviations used in the formal
format definitions of the following sections (an
abbreviation marked with an asterisk is new; others are
consistent with the BASIC XL Reference Manual):

avar arithmetic variable, neither a string nor an
array.

Examples: TOTAL I J X0

svar string variable, either a string array or
simple string, distinguished from an avar by a
trailing dollar sign.

Examples: NAMES$ SA$

Note that one, two, or three subscripts are
often used between the parentheses following
an svar. For the special case of an svar used
to satisfy the requirement for a pvar or cvar
(see be low), no paren theses may be used.

savar string array variable, same format, etc., as
svar but must be a properly dimensioned array.

mvar matrix variable, numeric array, distinguished
from an avar by a trailing left parenthesis.

Examples: VALUES() SCORES()

Note that one or two subscripts normally
appear between the parentheses following an
mvar. For the special case of an mvar used to
satisfy the requirement for a pvar or cvar
(see below), nothing may appear between the
parentheses.

aexp arithmetic expression, any valid combination
of numeric value, operators, etc.

Examples: 33 7+VALUE SCORE(3*J)

170

Chapter 9: THE BASIC XL TOOLKIT

* rparm receiving parameter, either an avar or an
exclamation point followed by an svar or mvar.

Examples: TOTAL !NAMES$!VALUES()

* cparm calling parameter, either an aexp or an
exclamation point followed by an svar or mvar.

Examples: 29*SIN(30) !TEMP$!AMAX()

slit string literal, a string of characters
enclosed in quotation marks.

Examples: "TOTALIZE" "Test-->>"

* pname procedure name, used to identify a procedure,
always consists of only an slit.

* cname calling name, used to name a procedure to be
CALLed, may be either a slit or svar. If a
svar is used, it may not be a string array and
may not use any subscripts.

Remember: words in a format definition which are given
in all capital letters (e.g., USING) must be entered
exactly as shown. Items in square brackets are
optional. Items with ellipses following may be repeated
as desired. Example: rparm [,rparm,...] implies that
you may use one or more receiving parameters.

9.3.3 Procedure Blocks and Related Statements

Before describing the individual statements, we present
an overview of PROCEDUREs in BASIC XL.

If you have programmed at all in any dialect of BASIC,
you have used the GOSUB statement and its companion,
RETURN. For example, you might see a program which
looks something like that which follows. (This program
is for demonstration purposes only, but it is a fairly
amusing little thing to spring on an unsuspecting
friend.)

20 Value=100
30 Min=10 : Max=90 : Gosub 100
40 Result1=Num
50 Min=10*Value : Max=90*Value : Gosub 100
60 Result2=Num
70 If Result2 > Value*Result1 Then 90
80 Print "You appear to be conservative in nature." : End
90 Print "You seem ready to take risks." : End
100 Rem THE SUBROUTINE

171

The BASIC XL Programming Environment

110 Print: Print "Please give me a number between "; Min
120 Print" and "j Max ;
130 Input ", inclusive > ",Num
140 If Num>=Min And Num<=Max Then Return
150 Print "Can't you read? That number is"
160 Print" out of the range I gave you."
170 Goto 100

And, in a small program like this one, that usage of
GOSUB may be just fine. As programs get larger, though,
lines such as GOSUB 3250 become less and less
meaningful. Atari BASIC (and thus BASIC XL) allows you
to do something like this:

10 Let Getinrange=100
20 Value=100
30 Min=10 : Max=90 : Gosub Getinrange
 (etc.>

Do you see what we did? By giving a name to the
subroutine, we can make our code more readable. A
disadvantage to this method is that BASIC XL (in common
with Atari BASIC) allows only 128 unique variable
names. Using a variable like this to name a subroutine
diminishes the pool of available names. This, then, is
the first advantage of BASIC XL's new procedures:
because we use a literal (quoted) string to name them,
we need waste no variables! For example:

20 Temp=100
30 Call "Get In Range" Using 10,90 To Result:
50 Call "Get In Range" Using 10*Temp,90*Temp To Result2
70 If Result2 < Temp*Result1 : Type$="conservative"
80 Else: Type$="a risk taker"
90 Endif
95 Print "You Seem to be "; Type$; " by nature." End
100 Procedure "Get In Range" Using Min,Max
110 Local Temp: Temp=1E90
120 While Temp<Min Or Temp>Max
130 If Temp<>1E90 : Print
140 Print "Can't you read? That number is"
150 Print " out of the range I gave you."
160 Endif
170 Print : Print "Please give me a number between "; Min
180 Print " and "; Max ;
190 Input " , inclusive > ",Temp
200 Endwhile
210 Exit Temp

Confused? Not too surprising. Let's take a look at the
new lines a step at a time. First, in line 30, note the
CALL to the PROCEDURE named "Get In Range" (which
starts at line 100). Note how clear that CALL is, since

172

Chapter 9: THE BASIC XL TOOLKIT

we can use any characters we like in the string. That's
pretty easy, right?

But what about that USING which appears in both the
CALL and PROCEDURE statements? In line 30, we are
"Using" values of 10 and 90. But in line 100, we are
"Using" the variables Min and Max. Isn't that neat? We
didn't have to do the assignments to the variables
before we called the subroutine: CALL does the work for
us! It automatically moves the values (10 and 90) into
the corresponding variables (Min and Max). This is
called "passing parameters" to a PROCEDURE.

It gets better. Notice the EXIT statement of line 210.
It specifies a value (the contents of Temp) which is to
be placed in to the variable Result1 that follows the
TO in the CALL statement. That's reasonable, right? If
you Can "pass" parameter values, you should be able to
"return" parameter values.

But doesn't using the variable Temp in the procedure
subroutine wreak havoc on its later use in the main
program (e.g., in line 60)? Ah, but there's line 110,
with ts deceptively simple-looking LOCAL statement.
Between the use of LOCAL Temp and the EXIT statement,
the old value of Temp is saved for you. When EXIT is
executed, all LOCAL variables are automatically
restored to their previous values. Wow! And Whew!
The example we just worked through used all of the new
PROCEDURE-oriented extended statements:

 PROCEDURE
 CALL
 LOCAL
 EXIT

By no means, though, did we use all of the capabilities
of these 5tatements. In addition to the formal
definitions which will follow, we will present further
examples both in the text and in programs on the disk.

We have presented these statements before the formal
definitions because they are all closely related, and
we felt that having a small but effective demonstration
of their use would make it easier to understand the
definitions.

173

The BASIC XL Programming Environment

9.3.3.1 PROCEDURE (PROC.)

Format: PROCEDURE pname [USING rparm [.rparm...]]

Examples:

1000 Procedure "Calculate Pay" Using Hours,Rate,Taxtable()
 387 Procedure "Print Msg" Using !Msg$
4040 Procedure "Quit"

The PROCEDURE statement is the nucleus around which the
other statements in its group are built. It is used to
define the beginning of a subroutine which is intended
to be executed via a CALL statement.

A PROCEDURE must be given a name, which may be any set
of ATASCII characters enclosed in quotation marks, the
number of characters being subject only to the
limitation that the entire line must be of legal
length. Note in the examples above how spaces have been
used in the PROCEDURE names to add clarity to the
program. As a matter of good programming style, you
should make the names as self-explanatory as possible,
shortening them only if you begin to run out of memory.

When a CALL statement is executed, it places an entry
on the Run-Time Stack (the same stack used by GOSUB,
FOR, WHILE, and their partners). This entry serves to
identify the fact that a PROCEDURE statement has been
encountered, and its subroutine (which we will here
call the "procedure block") is now in control. When the
PROCEDURE statement itself is executed, then, it
ignores its own name and does nothing further to the
Run-Time Stack. Unless, that is, the user has
specified that one or more parameters are being passed
via the USING keyword.
If USING is coded, it must be followed by one or more
variable names. If the variable names refer to string
variables, string arrays, or numeric arrays, the name
must be preceded by an exclamation point (!). No matter
which kind(s) of variable(s) is/are used, when
PROCEDURE is executed, their current "values" are
pushed onto the Run-Time Stack. Then, after the values
have been pushed, the new values as specified in the
CALL which invoked this procedure block, are copied
into these same variables.

When working with simple numeric variables, this is a
fairly straight-forward process. Take the following set
of statements as an example:

10 Junk=20
20 CALL "Test" USING 12*17
30 Print Junk
40 End

174

Chapter 9: THE BASIC XL TOOLKIT

 ...
70 PROCEDURE "Test" Using Junk
80 Print Junk+Junk
90 Exit

In this example, when the PROCEDURE named "Test"·at
line 70 is invoked and the statement is executed, the
current value of the variable Junk (20, as assigned in
line 10) is pushed on the Run-Time Stack. Then the
value of the expression (12*17, or 204) is copied into
Junk. Any subsequent references to Junk will find that
it contains this new value. For example, the Print of
line 80 will display the value 408.

The effect of pushing the prior value of Junk is
simple: when the EXIT statement (line 90) is executed,
it will discover the value that was pushed on the stack
and restore Junk to its prior condition. Thus the Print
of line 30 will display the value 20. (The EXIT
statement is discussed in more detail in section
9.3.3.4.)

The purpose of all this pushing may be less clear.
First, by "reusing" the variable name Junk in our
procedure block, we are conserving our precious names
(remember, we are allowed only 128 different names in a
program). Since the value of the variable is restored
on EXIT from the block, we need not worry about
changing it within the block. Second, and perhaps more
difficult to grasp from this simplistic example, we are
able to pass values "into" the procedure block without
having to be aware of what names are used within it.
The example which introduced this chapter shows this
feature to some advantage and also serves to
demonstrate how the resultant code can be both smaller
and more readable.

For strings and arrays used as PROCEDURE parameters,
the methodology is the same, but the results are more
complex. The difficulty lies in understanding just what
is the "value" of a string or array. In Atari BASIC and
BASIC XL, the value of any variable is the content of
its entry in the Variable Value Table. This table
reserves eight (8) bytes per variable and consists of a
flag byte, the variable's number (0 through 127), and
six bytes of "information".

In the case of simple numeric variables, the
information is the numeric value of the variable,
expressed in an internal floating point form. (You may
consult the Atari Technical Manuals or COMPUTE!'s Atari
BASIC Source Book for much more detail on the structure
of these and other tables.)

For string and array variables, the flag byte indicates
that the "information" describes the location and

175

The BASIC XL Programming Environment

characteristics of the contents of the variable. For
example, a simple string variable needs information
about its address (within string/array space), its
dimension, and its current length. The string itself
(the "contents" of the variable from an external point
of view) is located at the given address. Arrays (both
string and numeric) need an address and two dimensions
instead; but, again, the actual "contents" are found at
the given address.

Thus, when we push the "value" of a string or array
variable on the Run-Time Stack, we are pushing this
information about where the actual contents are located
in memory. Similarly, when we copy a value passed by
the CALL statement into one of these variables, we are
not copying the actual string or array. Instead, we are
copying the address, dimension, etc., as appropriate.
Consider this sequence:

 10 Fun$="Swimming is fun." : X$ = "Right?"
 20 CALL "What Fun" USING !Fun$
 30 Print Fun$, X$
 40 End
 ...
 60 PROCEDURE "What Fun"·USING !X$
 70 Print Fun$, X$
 80 X$(1,5)="Laugh"
 90 EXIT

Hopefully. you will actually try this little program.
If so, you will find that line 70 shows that, as we
have described above, the "value" of Fun$ has been
copied into X$. Line 70 will display:

 Swimming is fun. Swimming is fun.

The real surprise comes when line 30 is executed
(following the successful EXIT in line 90). The
resultant display is:

 Laughing is fun. Right?

Do you see why? If the value of Fun$ is copied to X$,
then the address of the contents of Fun$ is now in X$'s
address entry with its value in the variable table.
Thus, any change we make in the string pointed to by X$
affects the memory at that address and thus affects the
contents of Fun$. Complicated, yes?

A similar action takes place when a string array or
numeric array is passed as a parameter: changes in the
contents of the PROCEDURE's parameter affect the
contents of the CALLer's parameter.

176

Chapter 9: THE BASIC XL TOOLKIT

Technical Note: In computer lingo, simple numeric
variables are passed to a procedure block via a "call
by value". Arrays and strings, on the other hand, are
passed via a "call by reference". The exclamation point
required by the syntax of the extended statements can
be used as a reminder that these are calls by
reference, something not hitherto seen in BASIC XL.
(Actually, the exclamation point is necessary so that
the expression evaluator can make the distinction
between an expression – which could, for example, start
with a string or array reference – and one of these
special calls by reference.)

9.3.3.1.1 Secondary Considerations

(1) You may, if you wish, pass too many numeric
parameters to a PROCEDURE. BASIC XL makes no check for
matching number of parameters. It does, however, insist
on a type match. Thus this sequence will cause a "USING
Type Mismatch" error:

 4010 CALL "Gorp" USING 33
 ...
 72B9 PROCEDURE "Gorp" Using !A$

If the CALL passes too many parameters, the excess are
ignored. If it passes too few, a numeric value of zero
(0.0) is assigned to all remaining PROCEDURE
parameters. This, in turn, can cause a type mismatch,
since only numeric variables may receive a numeric
value.

Exception to the last paragraph: If the CALL passes no
parameters, BASIC XL does nothing at all to the
parameter passing area. This is on purpose, since
passing parameters takes time . Thus, even a PROCEDURE
expecting only numeric parameter(s) may report a
mismatch error, since it attempts to obtain those
parameters from the miscellaneous data left in the
parameter area. Generally, we recommend passing the
correct number of parameters unless you have a specific
purpose which can use the "default" feature to a real
advantage.

(2) You must be careful when changing the value of a
simple string passed as a parameter. Recall that the
length of a CALLing string variable is found in its
variable value table entry, and that the entry is
copied intact to the PROCEDURE's string variable. If
you then change the length of the string within the
procedure block, it will indeed change the PROCEDURE
variable's entry. However, when you EXIT, the entry is
not automatically copied back to the CALLer's variable!
This can produce some bizarre results.

177

The BASIC XL Programming Environment

To demonstrate: modify line 80 of the last example
program to read

 80 X$="Laugh" : Print X$

Not surprisingly, the new Print in line 80 shows us
that the contents of X$ are simply "Laugh". However,
look at the display resulting from line 30:

 Laughing is fun. Right?

Do you see the problem we warned of? Changing X$ in
line 80 changed the memory at the address which Fun$
also used for its contents, but it did not change the
length of Fun$. Presumably, this could be a feature
under the right circumstances, but there are stranger
consequences possible. For example, try changing line
80 to read

 80 X$="XXX"

Now line 30's Print will display

 XXXmming is fun. Right?

which is almost surely not we wanted.

One solution to this situation is simply to avoid
changing a passed string within a procedure block. This
may not be satisfactory, though, so we have provided
another mechanism which you can use to circumvent the
problem: Change lines 20 and 90 in the original program
to read

 20 CALL "What Fun" USING !Fun$ TO !Fun$
 90 EXIT !X$

EXIT will be discussed in more detail in section
9.3.3.4, but suffice to say that this sequence
guarantees that the complete new value of X$ is copied
back to Fun$. On this same topic, you may be relieved
to know that the difficulty with length does not exist
with arrays, either of strings or numeric values.

(3) One way to get in real trouble with either strings
or arrays is to pass back (via EXIT) one which was not
passed in as a CALLing parameter. Examine the following
program excerpt:

 100 CALL "Oops" To !A$
 110 CALL "Oops" To !B$
 120 Print AS,B$: End
 …
 300 PROCEDURE "Oops"
 310 Input "Type something: ",Line$
 320 EXIT !Line$

178

Chapter 9: THE BASIC XL TOOLKIT

If you enter and RUN this program, giving a different
response each time you are prompted, you will be
surprised at the results of the PRINT of line 120: A$
and B$ will be identical (up to the length of the
shorter), taking on the value of your second INPUT. If
you recall our discussion of what actually gets passed
when a string or array is involved, this seemingly
bizarre result can be explained.

When you pass LINE$ back to the CALLer, you are
actually transferring the contents of LINE$'s variable
value table entry to first A$ and then to B$. But that
table entry consists (among other things) of LINES's
address. Thus you end up with all three variables
pointing to the same piece of memory!

Once again, the proper solution is to pass a string
both in via USING and back out via EXIT. For arrays (of
either strings or numbers), you need only pass the
value in, since anything the PROCEDURE does to a
parameter array is properly reflected in the CALLer's
original value(s).

The only way you can get in trouble with arrays is if
you pass an undimensioned array to a procedure block
which then dimensions it. Unless you pass back the
"value" via EXIT (similar to the fix for strings just
given above), the space dimensioned within the block is
simply lost, since no variable will any longer be
referring to it via the address portion of its entry in
the variable value table.

When in doubt, then, pass strings and arrays both ways.
It can't hurt. It may help.

(4) Finally, another caution. A PROCEDURE must be the
first statement on a line. CALL can not find a
PROCEDURE if is not at the beginning of a line. Strange
and wondrous and woefully unpredictable things can
happen if you violate this rule.

Similarly, you should never allow a program to "fall
through" to a PROCEDURE. Always make sure that the
program immediately preceding each PROCEDURE finishes
with a GOTO, STOP, END, RETURN, or EXIT statement. We
recommend grouping all procedure blocks at one spot in
your program and ensuring that they are preceded by an
END statement.

179

The BASIC XL Programming Environment

9.3.3.2 CALL

Format: CALL cname [USING cvar[,cuar...]] [TO pvar[,pvar...]]

Examples: 10 CALL "Test"
 720 CALL "Totals" USING !Values() TO Sum
 800 CALL "Get Num' TO Number
 100 CALL Proc$ USING 7,!A$ TO Result

The CALL statement has been discussed and demonstrated
in both the introduction to this chapter and in the
explanation of the PROCEDURE statement (section
9.3.3.1). In this section, then, we will not dwell on
such things as the mechanics of parameter passing.
Rather we will discuss the subtleties of the CALL
statement itself.

First, unlike a PROCEDURE statement, the name specified
by a CALL may be contained within a string variable
instead of being a string literal (see the last of the
above example lines). However, you have no other choice
of format than that shown. You may use neither a
substring nor an element of a string array as a CALLed
name. (This stricture was necessary for consistency, in
order to allow the syntax to be as close as possible to
that of PROCEDURE. The alternative was using a comma
instead of the word USING.) This is not an onerous
restriction, though, as the great bulk of all calls
will probably be made with litera1 strings.

For those rare occasions where you wish to choose one
of several PROCEDUREs based on the value of some index,
may we suggest a program format similar to the
following:

 30 Input "Give me an index > ",Index
 40 Name$=Proc$(Index;) : CALL Name$

Remember, also, that the name which you CALL with
(whether literal or variable) must match exactly that
given in a PROCEDURE statement. All characters are
considered in the match (including leading or trailing
spaces), with upper case, lower case, and inverse video
all distinct.

Second, we remind you of the possible problem
associated with using a string variable as a CALLing
parameter (if its length is modified in the procedure
block, the length change is not visible to the CALLer
–- see section 9.3.3.2). Generally, it is good form to
always code a simple string variable as both a calling
and returning parameter, thus:

 999 CALL "Invert String" USING !Gorp$ TO !Gorp$

180

Chapter 9: THE BASIC XL TOOLKIT

Similarly, any array which may not be dimensioned at
the time of the CALL should receive the same treatment.
Recall our earlier cautions, also: DIMensioned arrays
need not be passed back to the CALLing routine, but
they must be passed in as parameters.

9.3.3.2.1 Secondary Considerations

The number of levels you may nest CALLs is limited only
by the amount of FREe memory left in your system which
may be used by the Run-Time Stack. Like GOSUBs and
WHILEs, each CALL uses four (4) bytes of Run-Time Stack
space. Each parameter passed (either expression value
or string/array reference) occupies 12 bytes. A
demonstration of the implications of these facts may be
found in the example programs in section 9.4 (see
especially the FACTORIAL program).

CALLs are slow when compared to GOSUB line-number in
BASIC XL's FAST mode. However, when compared to normal
GOSUBs in slow mode, they may actually be just a bit
faster if they do not pass parameters. Parameter
passing can, indeed, slow things down remarkably. But,
when you compare it to the method of doing several
assignments before a GOSUB followed by one or more
afterward, it may actually save time in some
situations.

Within a CALLed procedure block, you must never attempt
to POP the parameter variables. You can cause a sytem
crash if you POP a variable with the wrong value. Only
if a procedure block has neither parameters nor LOCAL
variables may you safely POP the CALL itself. We
recommend that you do not use POP anywhere in a
procedure block unless absolutely necessary.

181

The BASIC XL Programming Environment

9.3.3.3 LOCAL

 Format: LOCAL avar [,avar...]

 Examples: 730 LOCAL Temp1
 1370 LOCAL Sum,N,Count,Misc

The LOCAL statements has been provided to allow you
more flexibility in your programming. While the
parameter received by a PROCEDURE are automatically
made local to that procedure block, there are many
times when you need a simple variable to hold a
temporary value, such as the result of a calculation, a
flag, etc. LOCAL gives you such temporary variables.

LOCAL works in a very simple fashion. When a LOCAL
statement is excuted, all simple arithmetic variable
names (no strings or arrays allowed) following it are
"pushed" onto BASIC XL's run-time stack (the same stack
which receives GOSUBs, FORs, CALLs, etc.). Then, when a
subsequent EXIT is encountered, all such LOCAL
variables are pulled back off the stack and put in
their original places. The effect of this is simple yet
powerful: within the bounds of LOCAL and EXIT, you may
change the value of any of these variables to your
heart's content without worrying about whether some
other routine in your program is using a variable with
the same name.

A simple example will help:

 10 Test=1234567 : Print 10,Test
 20 Gosub 40 : Print 20,Test
 30 End
 40 Local Test : Print 40,Test
 50 Test=0.54321 : Print 50,Test
 60 Exit

Note that PRINT statements purposely display the
current line number as well as the value of Test. This
is simply to make tracing the flow of the program
easier. Does it surprise you to find that the output of
the above program will look something like this?

 10 1234567
 40 1234567
 50 0.54321
 20 1234567

Let's examine that program a little closer. First, line
10 is simple enough. We just assign a value to the
variable and verify that it has been accepted. In line
20, we first GOSUB to a routine and then again display
the contents of our variable. Note that in the
program's running this PRINT of Test is the last thing
executed (other than END).

182

Chapter 9: THE BASIC XL TOOLKIT

Line 40, then, begins the interesting part of this
program. We declare that Test is a LOCAL variables and,
once again, display its value. Line 50 is a repeat of
line 10 except that we assign a different value to our
variable. Note that the PRINT verifies our change.
Finally, in line 60, we use another new statement,
EXIT, to restore our variable to its original value, as
shown by the PRINT in line 20.

Once again, the point of all this was that our
subroutine (lines 40 through 60) could do what it liked
with the now-LOCAL variable without affecting its value
in the rest of the program.

9.3.3.3.1 Secondary Considerations

Some things are made obvious in the above program which
(1) LOCAL does not have to be used in conjunction with
(2) The value of a variable which is made LOCAL does
because of the push onto the Run-Time stack. We will
points in order.

The fact that LOCAL may be used with GOSUB-typ"
subroutines is not an accident. EXIT was specially
constructed to examine what invoked its subroutine and
handle the returning condition appropriately (either
GOSUB or CALL only, though). This small fact alone may
allow you to change many programs to use LOCAL without
the need to modify all GOSUBs·to CALLs.

Also, there are occasions where it could be advanta-
geous to use GOSUB instead of CALL. In particular,
GOSUB to an absolute line number is significantly
quicker when your program is·in FAST mode than any
other type of subroutine access. (A mild warning,
though: LOCAL does occupy precious processing time, so
you may do best to use truly unique variable names in a
routine which must be super fast.)

Our second point, the fact that variables do not change
value when they are made LOCAL can actually be used to
advantage in a few cases. Try the following small
example program:

10 Input "An integer greater than 1, please >> ",N
20 Sum=0 : Gosub 50
30 Print "The sum of integers from 1 to ";N;" is ";Sum
40 End
50 Local N
60 Sum = Sum+N
70 If N=1 Then Exit
80 N=N-1 : Gosub 50
90 Exit

183

The BASIC XL Programming Environment

To follow what happens here, assume that we choose a
value of 3 for our integer. The first time lines 50
through 70 are executed, then, Sum will take on the
value of 3 and, since N is not 1, we continue on to
line 80. There N is given a value of 2 (one less than
its current value), and we again call the subroutine at
line 50.

The second time through, the same things happen: Sum
acquires a value of 5 and we do not yet do the Exit of
line 70. In line 80, N's value changes to 1 and line 50
is called once again.

This third time performing the same lines sees lines 50
and 60 performing as before, with Sum getting a new
value of 6. In line 70, though, since N now has a value
of 1 we do take the Exit. We return to the Gosub of
line 80, fall through to line 90, return to line 80
again, fall through to line 90 again, and (at last!)
return to the original Gosub of line 20.

9.3.3.4 EXIT

 Format: EXIT [cparm [,cparm...]]

 Examples: 390 EXIT 10*Maxvalue
 799 EXIT Flag,!Names$
 24990 EXIT !Inverse() ,Rows,Columns
 835 EXIT

If you have been reading this instruction manual in
front to back order, you have encountered several
examples of the use of EXIT by now. If you have not, we
refer you to sections 9.3.3, 9.3.3.2, and 9.3.3.3 for
some illustrative examples.

Just as Return is a partner to Gosub, so is Exit a
partner to Call. Every Procedure which you invoke via
Call must end with an Exit statement.

Exit performs three functions, in the following order :
(1) If there are any parameters after the Exit keyword,
they are placed into BASIC XL's parameter-passing area,
for use by the TO-keyword's processing (which is, in
turn, part of the work which Call does). (2) If there
are any variables on the run-time stack (either as a
result of using a local statement or needing to save
the parameter variables of a Procedure), Exit must
restore them to their proper places in the variable
value table. (3) Exit checks to see whether the current
subroutine was invoked via Call or Gosub. If via the
latter, Exit simulates the action of a Return
statement; otherwise, it performs the special
processing needed to allow TO to access its parameters
(if any).

184

Chapter 9: THE BASIC XL TOOLKIT

9.3.3.4.1 Secondary Considerations

In common with the other stack pulling statements
(Return, Endwhile, Next), if Exit discovers a For on
the Run-Time stack which doesn't "belong" there, it
ignores it (e.g., it "throws it away") and tries the
next entry on the stack. For example, the following
program will not cause an error:

 10 Gosub 50
 20 End
 50 Rem === Subroutine ===
 60 For I=1 To 5
 70 Exit

Even though the For loop started in line 60 has not
finished (and is thus still sitting on the stack), Exit
has no trouble finding that its subroutine was called
via the Gosub of line 10.

On the other hand, this program will cause a 'nesting'
error because While can only be terminated by Endwhile!

 10 Gosub 50
 20 End
 50 Rem === Subroutine ===
 60 While 1 : Rem (a never ending loop)
 70 Exit

Another thing to be careful of is that no error will
result if an Exit statement tries to pass parameter
values back to a Gosub. Instead, they are simply
ignored. (The reason for this, again, is that the
cartridge BASIC XL is not prepared for such things, so
it does not check for them.)

Similarly, if you pass back too many parameters to a
Call, the excess ones will be ignored. This design
allows a single Procedure to serve more than one
function, returning more values to some Callers than to
others. Remember, though, that all parameters expected
by the TO portion of a Call statement must be matched
by type by the parameters of Exit (e.g., a string
variable to a string variable, a numeric expression to
a numeric variable). The matching needed is the same as
that needed by parameters passed to a Procedure via a
Call. See section 9.3.3.1 for more details.

Since you can never properly Pop variables, you may not
use Pop in a subroutine which uses either local
variables or Procedure parameter variables. Thanks to
the fact that Exit may return a parameter value, we
find little need to use Pop in these circumstances
anyway. A better method is illustrated here:

185

The BASIC XL Programming Environment

 10 While
 15 Call "Demo 1"
 20 Endwhile
 ...
 50 Procedure "Demo 1"
 55 N=Random(8) : Call "Demo 2" Using N To Flag,Inverse
 60 If Flag Then Exit
 65 Print "The inverse of ";N;" is ";Inverse
 70 Exit
 ...
 85 Procedure "Demo 2" Using Value
 90 Trap 95 : Exit 0,1/Value
 95 Exit 1

The trick in this program is embodied in lines 90 to
95. In line 90, we first set up a Trap to line 95, in
case an error occurs. But where can an error occur?
Certainly not in the evaluation of the zero following
the Exit. But what about when we evaluate 1/Value? If
Value is zero, this expression will cause overflow, an
error condition. If the error occurs, the Trap will
send us off to line 95, where we simply return the flag
value of one, indicating failure.

Line 60 is where we check the value of the returned
flag. If it is non-zero, we immediately Exit rather
than displaying the results. Do you see why this is
cleaner than using a Pop statement? Aside from the fact
that the flow of the program becomes much more
readable, we could add man y local variables at any
point in this program without adversely affecting its
functioning.

This concludes our presentation of the BASIC XL ToolKit
extended statements which relate to Procedure blocks.
See also section 9.4 for discussions of the example
programs provided on your ToolKit disk.

186

Chapter 9: THE BASIC XL TOOLKIT

9.3.4 Sorting String Arrays

Apart from the PROCEDURE blocks described in section
3.3, the only extended BASIC XL statements included
with this ToolKit are those which allow you to easily
sort a string array. There are two such statements,
SORTUP and SORTDOWN, which are described formally in
sections 9.3.4.1 and 9.3.4.2 (respectively). However,
since both sorting statements have many foibles in
common, we thought it best to begin with some comments
and hints about their use.

First and foremost, note that SORTUP and SORT DOWN can
only be used to sort string arrays. In their simplest
form, they are extremely easy to use. For example,
consider the following short program:

 10 Dim Array$(5,20)
 20 For I=1 To 5 : Input Array$(I;) : Next I
 30 Sortup Array$
 40 For I=1 To 5 : Print Array$(I;) : Next I
 50 Run

This program simply allows you to INPUT five strings,
sorts them, and then shows the sorted order. At this
time, we would like to suggest that you boot a copy of
side 2 of your master ToolKit diskette. Then type in
this program and try it out. (Keep it around. We will
use it more later.) Give several sets of common and
uncommon words as answers. Note how neatly it sorts the
words into ascending order.

Or does it? Try entering some words in upper case and
some in lower case. What happens? Does it surprise you
to find that "ZOO" comes "apple"? Actually, the reason
for this behavior is readily understood once you
realize that SORTUP works on characters using ATASCII
ordering (ATari version of ASCII, the American
Standards Code for Information Interchange –- how's
that for a mouthful). For a list of ATASCII codes as
they relate to your computer's keyboard, see Appendix D
of the BASIC XL Reference Manual.

Even if we restrict ourselves to the "printable"
characters in the ATASCII set (usually the numbers,
upper and lower case letters, and standard typewriter-
style symbols –- codes numbered 32 through 124 in the
manual), we find no real help. Numbers come before
upper case letters which come before lower case
letters, but symbols are intermixed in no real useful
fashion.

187

The BASIC XL Programming Environment

Because the effects of this hodgepodge ordering may not
be desirable in a sorted list, you may wish to limit a
SORTUP or SORTDOWN to work with only part of each
element of a string array. For example, if you have an
array where each string within it contains both a
person's name and their phone number, you may wish to
perform a sort based solely on names. Further, to
ensure that the sorted order is consistent, you may
wish to ensure that the names being sorted are stored
as upper case letters only.

Fortunately, the design of SORTUP and SORTDOWN is good
enough that sorting based on "fields" (portions of each
element in the string array) is extremely easy. And,
while BASIC XL does not provide a built-in method of
obtaining upper-case-and-non-inverse-video-only strings,
it isn't very hard to build a routine which will do the
real work for you. For example, the following PROCEDURE
converts all characters in its parameter string (not a
string array) to non-inverse video and converts lower
case letters to upper case:

 800 Procedure "To Upper" Using String$
 810 Local I,Temp
 820 For I=1 To Len(String$)
 830 Temp=Asc(String$(I)) & $7F
 840 If Temp>$60 And Temp<$7B Then Temp=Temp & $5F
 850 String$(I,I)=Chr$(Temp)
 860 Next I
 870 Exit

For now, don't enter that subroutine.

Instead, let's investigate the concept of " fields", as
mentioned above. Just change line 30 in that little
program we typed in earlier so that a LIST gives you
the following:

 10 Dim Array$(5,20)
 20 For I=1 To 5 : Input Array$(I;) : Next I
 30 SORTUP Array$ USING j 3,5
 40 For I=1 To 5 : Print Array$(I;) : Next I
 50 Run

Once again, enter some strings in response to INPUT's
prompt. This time, though, pay special attention to the
third through fifth characters of each string. Notice
any thing funny about the sorted order? That's right,
it is based solely on the characters in those posi-
tions. If you have worked with BASIC XL string arrays
at all yet, the notation in line 30 may be both famil-
iar and confusing. Perhaps changing line 40 as follows
will allow us to clarify the meaning of line 30:

188

Chapter 9: THE BASIC XL TOOLKIT

40 For I=1 To 5 : Print Array$(I;3,5),Array$(I;) Next I

This little example should serve to remind you that you
may reference characters within an element of a string
array just as easily as you may reference them in an
ordinary string. The "magic" character is the semi-
colon. It separates the array element number from the
desired· character positions. (And, as the second usage
of ArrayS in that same line shows, the semi-colon is
always necessary when referring to an element of a
string array.)

Now, since the SORTUP of line 30 refers to the entire
array, String$, there is no need for the following
parentheses (and, indeed, they are not allowed).
Instead, the keyword USING tells BASIC XL that we will
be working with only part of the array and/or its
elements. In particular, the semi-colon following USING
again serves as a reminder that the numeric expressions
following it refer to character positions within an
element (or, more properly when using SORTUP or
SORTDOWN, within all elements) of a string array.

By the way, as a simple variation on what we have done
so far, you might change line 39 to read:

 30 SORTDOWN Array$ USING ; 3,5

Again, try it out. Not too surprised by the results?
Good. The only difference between SORTUP and SORTDOWN
is where the "top" of the sort (the "largest" string)
appears.

There is one last capability of the sorting statements
which we will discuss before moving on to other helpful
hints. The program we have been working with seems all
fine and good if we wan t to enter exactly five
elements into the array. Suppose, though, that we did
not know how many elements we would be working with.
Fear not, BASIC XL's extended statements shall provide.
Time for another example:

 10 Dim String$(20,20)
 20 For I=1 To 20 : Input String$(I;)
 25 If Len(String$(I;)) Then Next I
 30 Sortup String$ Using 1,I-1
 40 For J=1 To I-1 : Print String$(J;) : Next J
 50 Run

The first change you will notice is in lines 20 and 25.
Instead of blindly continuing to ask for INPUT until 20
items have been entered, the program only goes back for
another if the length of the current item is non-zero.
That means that you may stop entering items at any time

189

The BASIC XL Programming Environment

by hitting the RETURN key alone in response to any
INPUT prompt.

And look at SORTUP in line 30. Can you guess what Using
1,I-1 is for? That's right, only the first I-1 elements
of the array will be sorted! And if, for some reason,
you wanted to never sort the first element of the
array, you could have coded

 30 Sortup String$ Using 2,I-1

(Why would you ever do that? Well, maybe you keep
special information about a file in the first "record"
of the file, thus having the actual data start at the
second "record".) In fact, you are not limited as to
which elements may be sorted other than having to
follow two rules: (1) The maximum element number to be
sorted must be greater than or equal to the minimum
element number. (2) Each number must be within the
bound of the array, as dimensioned.

Naturally, we have to give you the last of the possible
variations on SORTUP (and, similarly, on SORTDOWN). We
won't explain this. Just type it in and try it:

 30 Sortup String$ Using 1,I-1 ; 2,4

Now for some hints.

We already noted that it is probably a good idea to
restrict the contents of a normal alphabetic field to
upper-case, non-inverse characters only. Suppose,
though, that you really want to sort some numbers. What
can you do? A program such as the following will not
work:

10 Dim String$(5,20)
20 For I=1 To 5 : Input N : String$(I;)=Str$(N) : Next I
30 Sortup String$
40 For I=1 To 5 : Print String$(I;) : Next I
50 Run

Why not? Well, try some numbers in response to the
INPUT prompts and see what happens. May we suggest
values of 1, 11, 111, 2, and 22 for your test. When we
tried those numbers, BASIC XL told us that the order
was

 1
 11
 111
 2
 22

190

Chapter 9: THE BASIC XL TOOLKIT

If you think about the ATASCII values of those
characters (and they are characters, since they are in
a string) for a bit, you will realize that those are
the proper results. The problem, then, is to make
numbers appear in a string in a fashion such that the
sort statements can handle them.

We could present a complete solution here, but we leave
that for a program on the ToolKit disk (called
SORTNUM.BXL. We will, however, consider at least the
case of sorting positive integers, which may cover all
the cases you will ever need.

 10 Dim String$(5,10)
 20 For I=1 To 5 : Input N : String$(I;)="0000000000"
 25 String$(I;11-Len(Str$(N))) = Str$(N) : Next I
 30 Sortup String$
 40 For I=1 To 5: Print String$(I;) : Next I
 50 Run

We have altered line 20 and added line 25. The trick
here is not too terribly obscure: We first fill the
pertinent element of the string array with place-
holding zeroes. Then we position our integer at the
proper location within that field of zeroes. Since all
numbers (as represented in ATASCII) are now the same
length, it is only the significant digits which affect
the sort process. Try it and see.
Note that there is no protection in this program to
keep you from entering a number which is not a positive
integer. Purists might add line 22:

22 If N<>Int(N) Or N<0 Or N>=1E10 Then Print "Bad
number":Stop

And, if you prefer a neater looking numeric print-out,
you can change line 40 to:

40 For I=1 To 5 : Print Val(String$(I;)) : Next I

We at OSS can see many uses for SORTUP and SORTDOWN.
Again, we invite you to peruse the sorting demo
programs on the ToolKit disk. Perhaps you can find a
use for some of the techniques in your own programs.

9.3.4.1 SORTUP

Format: SORTUP savar [USING [aexp TO aexp] [;aexp,aexp]]

Examples: SORTUP Stringarray$
 SORTUP Array$ USING Min TO Max
 SORTUP X$; 1,4
 SORTUP X$ Using 5 To 10 ; 4,8

191

The BASIC XL Programming Environment

This statement will sort selected elements of a
specified string array in ascending order, based on the
contents of a selected portion (a "field") of each
element of the array. Unless otherwise specified by the
user, the field of each element which forms the basis
for the sort shall consist of the entirety of each
element. Unless otherwise specified by the user, all
elements of the array will be selected to be sorted.

The user may choose the beginning element of the range
of elements to be sorted by coding the keyword USING
followed by an arithmetic expression. If a beginning
element is so specified, an ending element must also be
given by an arithmetic expression following the keyword
TO.

The user may choose the beginning position of the field
in each element which forms the basis of the sort by
coding a semi-colon followed by an arithmetic
expression. If a beginning position is so specified, an
ending position must also be given by an arithmetic
expression following a comma. If a range of elements
was not selected by the user (see preceding paragraph),
the keyword USING must precede the semi-colon.

Secondary considerations: (1) The sort is done in
ascending ATASCII order. (2) If the length of an
element is less than the ending position of the field
being used as the basis of the sort, the field shall be
shortened accordingly. This condition applies
regardless of whether the field is specified implicitly
or explicitly. (Note that if two compared fields are
equal except that one is longer than the other, the
longer one is greater than the shorter one. This is
intuitively correct as well as being consistent with
string comparisons made with other BASIC XL statements
and operations.)

9.3.4.2 SORTDOWN

Format: SORTDOWN savar [USING[aexp TO aexp] [;aexp,aexp]]

Examples: SORTDOWN Stringarray$
 SORTDOWN Array$ USING Min TO Max
 SORTDOWN X$; 1,4
 SORTDOWN X$ Using 5 To 10 ; 4,8

This statement will sort selected elements of a
specified string array in descending order, based on
the contents of a selected portion (a "field") of each
element of the array. Unless otherwise specified by the
user, the field of each element which forms the basis
for the sort shall consist of the entirety of each
element. Unless otherwise specified by the user, all
elements of the array will be selected to be sorted.

192

Chapter 9: THE BASIC XL TOOLKIT

The user may choose the beginning element of the range
of elements to be sorted by coding the keyword USING
followed by an arithmetic expression. If a beginning
element is so specified, an ending element must also be
given by an arithmetic expression following the Keyword
TO.

The user may choose the beginning position of the field
in each element which forms the basis of the sort by
coding a semi-colon followed by an arithmetic
expression. If a beginning position is so specified, an
ending position must also be given by an arithmetic
expression following a comma. If a range of elements
was not selected by the user (see preceding paragraph),
the keyword USING must precede the semi-colon.

Secondary considerations: (1) The sort is done in
descending ATASCII order. (2) If the length of an
element is less than the ending position of the field
being used as the basis of the sort, the field shall be
shortened accordingly. This condition applies
regardless of whether the field is specified implicitly
or explicitly. (Note that if two compared fields are
equal except that one is longer than the other, the
longer one is greater than the shorter one. This is
intuitively correct as well as being consistent with
string comparisons made with other BASIC XL statements
and operations.)

193

The BASIC XL Programming Environment

9.4 Example BASIC XL Programs with Extended Statements
--

This section gives examples of programs written using
the extended statements presented in section 9.3. Three
of the programs here (those in sections 9.4.1, 9.4.2,
and 9.4.3) are "brand new", presenting aspects of the
extended statements which are very difficult to
duplicate in BASIC XL (or any BASIC) without the unique
capabilities of the extended statements. Of necessity,
then, their descriptions are somewhat detailed.

The other three programs are retreads of three of our
old friends from section 2. We present them again here
to show you how you can turn a hard-to-read program
riddled with GOSUBs into a well structured exercise.
For these programs, only the significant differences
from their originals are noted. You are invited to
peruse the descriptions in section 9.2 for details on
other parts of these programs.

9.4.1 FACTOR.BXE

For such a short program, this will be a rather long
explanation. The program given here is actually one of
the classic ones used to show how recursion works: We
calculate the factorial of a number by repetitive calls
to a procedure.

Now, actually, this is a fairly inefficient way to
calculate a factorial. Perhaps the simplest way is the
following little program:

 10 Input "Give me a positive integer> ",N
 20 P=1
 30 For I=1 To N: P=P*I: Next I
 40 Print N; "! is "; P

So if all you want is the factorial of a number, use
the above routine and forget about the demo on the
disk. But if you want to understand how recursion
works, read on.

If you will examine a listing of FACTOR.BXE, you will
find the first part, lines 100 through 220, rather
ordinary and mundane. The possible sole exception is
the CALL to the Factorial procedure, where we pass in a
number and expect a result.

But now look at the Factorial procedure itself. If you
recall our discussion of procedure parameters and local
variables in section 9.3.3, you probably aren't too
surprised to find the name used in the main routine
reused here in the procedure. Recall also that the

194

Chapter 9: THE BASIC XL TOOLKIT

effect of using an arithmetic variable either as a
parameter (i.e., Number in this example) or as a local
variable (i.e., Result) is that, upon Exit from the
Procedure, its original value is restored. Now, there
isn't really any reason to use these same variable
names again in this program other than as a teaching
mechanism, but its a fairly effective mechanism.

Well, once we get past the Procedure and local
declarations, there isn't much left to the routine, so
let's examine it in close detail.

Since the main code ensured that we would, indeed, use
a positive integer for Number, we know that we have a
number which will produce a valid factorial. Now, the
factorial of 1 is 1, so line 280 makes sense: If the
parameter is 1, then Exit with an answer of 1. Simple.
Clean. Neat.

Just as an exercise, let's assume that we want the
factorial of 3. Okay, Number is not 1, so we get to
line 290. How about that? We turn around and Call
ourselves again, but this time our calling parameter
has a value of 2 (...Using Number-1...). Let's keep
going.

We're back at line 280. But Number now has a value of
2, so we don't take the Exit here. Instead, we once
again Call ourselves. Ready to keep going?

Back at line 280, Number now has a value of 1. Aha!
Finally, we get to Exit with a value of 1. But wait a
minute? Certainly 3! is not 1, is it? Not to worry.
Remember, the last time we called the procedure, we did
so from line 290, when Number had a value of 2. Okay,
so we return back to that same line 290, and Result
gets a value of 1. Then we continue on to line 300,
where we Exit with what?

Well, we just said Result is 1, and since Number had a
value of 2 when line 290 made the call, that value has
been restored by now (as we noted above). So
Number*Result is 2*1, and we Exit with a value of 2.

But where do we Exit back to? Well, we got rid of the
last of the calls on that last Exit, so this time we
end up back at line 290 from the time we called with
Number equal to 3, and Result gets a value of 2. By the
same logic, we continue to line 300 and Exit with 3*2.

This time, though, we have dispensed with all the calls
except the original one, in line 190, so that Result
gets the Exit value of 3*2, or 6. Voila! 3! is truly 6,
as we wanted.

195

The BASIC XL Programming Environment

There was nothing magic about our choice of 3 for our
example. The principle holds no matter what the value
we use: Keep calling the procedure with successively
smaller values until the value reaches 1. Then start
Exiting back up the Call chain, multiplying as we go.
Terribly inefficient, but a beautiful example of
classical recursion at work.

So, do you see the advantage of truly local values, not
only for parameters but for other explicitly declared
variables? No? You think this was an artificially
created example? Well, just wait ... we have some more
realistic examples coming up.

Technical Sidelight: By the way, try to discover the
largest integer whose factorial can be represented
within your Atari's numeric range (it's less than 100).
Then try finding out what 100! is. Bang! You got
numeric overflow when the multiplies created a result
larger than Atari floating point can represent. But for
real fun, try finding out what 5000! is. Do you
understand why you got that error? Does it help if we
remind you that each local or parameter variable uses
12 bytes of memory? And that each Call itself uses 4
bytes? Hmmm ... how much memory does your machine have?
(To get rid of all that junk on the stack, just use the
CLR command from the Ready prompt level.)

9.4.2 SORTDIR.BXE

This isn't really a very exciting program. All it does
is read in a disk directory and then allow you to
choose which one of three ways you would like to see it
sorted. Its primary purpose is to show how you may sort
on different "fields" within the single "record" each
element of a a string array can represent.

100-240 Just the usual necessary set up. Note the names
given to the console keys; obviously not a
necessary step, but one which makes a prettier
program. The FILES() array is dimensioned large
enough to hold the largest directory a standard DOS
2 disk will allow. If your DOS allows more files,
or if the entries in the directory are longer, feel
free to change the DIMensions.

260, 600 By now, you are used to seeing endless WHILE
loops in our programs. The beginning of this loop
may be in the wrong place for you. As is, it reads
the directory in off the disk each time a new sort
is done. This is so that you can change diskettes
if you wish. It might have been better to at least
give you a chance to tell the program that you have
changed disks. Sounds like a good programming
exercise for you to us.

196

Chapter 9: THE BASIC XL TOOLKIT

270-340 This is an easy way to read in the directory.
The LINES variable is not really needed –- you can
INPUT directly into a string array element if you
wish –- but it avoids having the "FREE SECTORS"
line end up in the array. Just a small nicety.

Notice how we depend on the space in the second
character position for each directory line except
the "xxx FREE SECTORS" of the final line.

350-390 Self-explanatory. Actually, we could have
special cased a directory with a single file (why
bother to sort it?), but it isn't necessary.

400-480 After presenting the menu, a beep (PUT #0,253)
reminds you to push a button. After you do, we
clear the screen.

490-560 This is what we really wanted to demonstrate.
Depending on which button you pushed, we SORTUP
based on a particular field. The SORTUP statements
of lines 500, 520, and 540 are identical except for
the numbers following the semi-colon. Inspect a
single line of the directory listing. Do you see
how the numbers are the character positions within
the line? Easy, isn't it.

Notice, also, that we do not sort the entire array.
Rather, we only sort the part which holds valid
directory entries. Also very easy, right?

588-648 Just a way to display the directory in two
columns. The sorted listing reads down the first
column and then down the second. It would have been
easier to simply alternate, but this is easier to
scan visually.

Again, feel free to modify this program to your liking.

9.4.3 SORTNUM.BXE

In the presentation of the sort statements in section
9.3.3, we discussed a way to sort integers by
converting them into a consistent form in a string.
This program presents a different and more general way
to sort the floating point numbers which BASIC XL (and
Atari BASIC) uses.

Performing this sort depends upon knowing the internal
format of floating point numbers used by BASIC. The
form is fairly simple: A single byte of sign and
exponent followed by 10 BCD digits, two to a byte. The
sign of the number is given by the uppermost bit of
that first byte. The exponent is a power of 100 in what

197

The BASIC XL Programming Environment

is known as "excess-64" form. (That means that the true
power of 100 has 64 added to it so that all exponents
appear as positive numbers. To form the true exponent,
then, subtract 64 from the byte after getting rid of
the sign bit.)

If you study this format, you will discover a
fortuitous occurrence: If you treat the six bytes of a
positive number as if they were a string, positive
numbers will automatically be sorted correctly by SORT
UP and SORTDOWN. Truthfully, this is not a coincidence.
Internal to BASIC, such consistency is used for
comparisons (e.g., as when you code something like IF
A>B THEN ...).

On the other hand, because negative numbers have that
upper bit set, they will all sort as larger than any
positive number! Oops, to say the least. Not only that,
if you ignore the sign bit, the negative numbers look
exactly like positive numbers, so they will be sorted
in reverse order. And, finally, what about zero. Which
consists of six bytes of $00? Well, it is now time to
examine the program listing to see how we turned
adversity to advantage.

150-160 The only reason for the DUMMY$ string is to
provide an address for that single element numeric
array. Recall that in BASIC XL (and Atari BASIC),
string and array variables always use memory in the
order they are DIMensioned. Thus the address of
VALUE has to be one greater than the address of
DUMMY$.

180 This array is actually going to hold our array of
floating point numbers. In fact, notice that it is
the same size as an array of 20 numbers. Of course
we have to use a string array because SORTUP And
SORTDOWN can only handle string arrays. That's only
a minor inconvenience, as we shall see.

280, 360 We're going to generate, manipulate, and
display 20 random numbers.

290 This is just to give each element of the array a
LENgth of six. Otherwise, the sort process won't
know how many bytes in each array element need
sorting.

300 We generate random numbers in an arbitrary range,
but one which is easy to view.

310-320 See how we move the six bytes of the floating
pointer number into the element of the string
array? Didn't know you could do that in BASIC?

198

Chapter 9: THE BASIC XL TOOLKIT

330 All we do here is flip the state of the sign bit:
if the number was positive, it is now negative; and
vice versa. Note the effect of this: What were
negative numbers will now sort as smaller than what
what were positive numbers. Just think of that bit
as representing a plus sign now, instead of a minus
sign.

340 We count all the numbers which were negative. Don't
worry why. We'll show you.

350 We Just display the numbers in an easy to view
form. Mixed up bunch of digits, aren't they?

370-380, 410-420 The only reason for these lines is so
that you can see how fast the array is sorted.
Pretty impressive, even if it is only 26 numbers.
Feel free to try it with more.

390 Okay. This is obvious. Everything is now sorted
very prettily. Except that playing games with that
sign bit didn't fix the fact that the negative
numbers will be sorted backwards.

400 The magic. Because we kept track of the count of
negative numbers, and because the SORTUP of line
390 put all the negative numbers before the
positive ones in the array, this works! We simply
re-sort the negative numbers in backward order via
SORTDOWN. You'll simply have to RUN this program to
believe it.

440-490 This loop just displays the now sorted array.
Note how we now have to flip the sign bit back to
its original state before moving it back to
VALUE(0) for printing. Not very hard, right?
(Actually, we didn't have to flip the bit. We could
have moved the number as is and then printed
-VALUE(0) for the same effect. But the way shown is
more orderly.)

That's it. The best part of this method is that you
could easily incorporate the six byte 'field' of
the floating point number into a longer "record" so
that you could sort the array several ways, as we
did in the last section.

199

The BASIC XL Programming Environment

9.4.4 GTIATEST.BXE

This is the first of our "conversions' from a standard
BASIC XL version to one using extended statements. In
the mainline code, line 1040 has been changed to a
CALL. The subroutine starting at line 9000 has been
turned into a PROCEDURE, and the variables used in it
have been made LOCAL (line 9080).

Now, truthfully, there was little incentive to change
this routine into a Procedure. What have we saved? The
variables are local, so they can get used for other
purposes elsewhere in the program. And since we Exit
with the test value, the caller doesn't have to aware
of name we use in the subroutine. Big deal.

No, the real reason we changed this program was once
again instructional. We just wanted to show how easy it
really is to use Procedures and write readable code.
There's more to come.

9.4.5 DISKIO.BXE

Another fairly simple conversion from the original
standard BASIC XL program . This time, though, there is
little more justification for using Procedures.

Just look at lines 9560, 9600, 9620, and 9660. What
could be clearer? Just think: You could have an entire
library of Procedures sitting around on disks. And you
could keep a listing of just the entry (Procedure) and
Exit lines. You almost wouldn't need any other
documentation, would you?

Watch how easy it is to use these routines if the code
from 9000 up is included in your code:

10 Dim High$(128) : High$="0000000000"
20 Call "Read Sector" Using 1,720,Adr(High$),1 To Test
30 Print "High score is ";Val(High$)
40 Input "New high score ? ",High
50 High$=Str$(High),Chr$($9B)
60 Call "Write Sector" Using 1,720,Adr(High$),1 To Test
70 Stop

If you included something like that in your code, you
could save the high score from a game in the usually
invisible sector 720. Cute?

Trickies in that code: We give High$ that initial value
so that it will have a valid LENgth (like BGET, direct
sector access doesn't change the length of a string).

200

Chapter 9: THE BASIC XL TOOLKIT

Similarly, we put a RETURN character into the string
(line 50) so that a later sector read and VAL() will
find something to terminate the number.

Finally, we leave you with the thought that a sector
holds 128 bytes. If you used a string array such as

 DIM High$(11,10)

and then, in the Call used ADR(High$(1;))-2 (minus 2 so
that we get the length bytes for the first element of
the array), we could keep track of up to 10 high scores
with, perhaps, 3 initials and up to 7 digits of score
each. (Why not 11 scores, when we dimensioned the array
to have 11 elements? Well, the actual size of that
array in bytes is 11*(10+2) or 132 bytes, where the +2
accounts for the length bytes in each element. But the
sector can only hold 128 bytes, so we would be missing
4 bytes from the last element.)

9.4.6 PHONE.BXE

This last program "conversion" is our "Little Black
Book" program from section 9.2.9. It was a monster as a
standard program. It remains a monster using extended
statements. But, perhaps, it is a more manageable
monster now.

Actually, we changed the character of the program very
little. And we even tried to keep all subroutines at or
near the same line numbers. What we tried to do was
change every GOSUB to a CALL. Now, we will admit that
some of the routines didn't really need to be made into
Procedures, but once again it is at worst an
educational exercise.

We invite you to peruse especially the Procedures in
lines 5000 through 9999. What you might find most
interesting is looking for the variables which we left
global, those we did not pass as parameters. The most
notable of these are strings used as field names (e.g.,
Last$) and file names (DBX$, DBF$). The hassle of
making these into parameters every place they are used
was fueled with the likelihood that in any application
of this system you would most likely use only one data
base file at a time. Result: they are left global.

On the other hand, look at the "Get Line" routine,
lines 5000 to 5260. Here was a great opportunity to
pass a string both in and out, thus allowing us to put
the edited line directly into the user's string
variable space, no muss, no fuss. This same Procedure
benefits by being able to easily call it with the
maximum number of characters you want to get as well as
a flag determining the fate of lower case letters.

201

The BASIC XL Programming Environment

And look at all the routines which use the variables
Temp1 and Temp2, which they inevitably make into LOCAL
variables. How nice it is to not have to worry about
possible conflicts in temporary variable usage anymore.

Similarly, "Make Index" starting at line 7500 shows off
its usage of parameters passed to it. Look at the Call
to it in line 20240. How nice to not be forced into
making variable names match!

Aside from all of that, you might look at the code in
lines 1570 through 1710. Notice how we build up two
string arrays with the names of our Procedures
carefully ensconced as elements therein. Then look at
line 2260 and lines 10250 and 10260. Do you see how we
can use a menu option to nicely choose even the correct
Procedure to call?

The most important aspect of all this, though, may be
that now the routines have been somewhat freed of the
tyranny of line numbers and variable names. Feel free
to copy them and use them in your own programs. Who
knows? You may be a budding data base programmer who
just hasn't had the right tools. Until now.

202

Appendices

Appendix A: ERROR DESCRIPTIONS

ERROR
NUMBER DESCRIPTION

1 While SET 0,1 was specified, the user hit the
BREAK key. This TRAPpable error gives the BASIC
XL programmer total system control.

2 All available memory has been used. No more
statements can be entered and no more variables
(arithmetic, string or array) can be defined.

3 An expression or variable evaluates to an
incorrect value. Example:

An expression that can be converted to a two
byte integer in the range 0 to 65535 (hex
$FFFF) is called for and the given expression
is either too large or negative.

A = PEEK(-1)
DIM B(70000)

Both these statements will produce a value
error.

Example:

An expression that can be converted to a one
byte integer in the range ~ to 255 hex(FF) is
called for and the given expression is too
large.

POKE 5000,750

This statement produces a value error.

Example:

A=SQR(-4) Produces a value error.

4 No more variables can be defined. The maximum
number of variables is 128.

203

The BASIC XL Programming Environment

ERROR
NUMBER DESCRIPTION

5 A character beyond the DIMensioned or current
length of a string has been accessed. Example:

1000 DIM A$(3)
2000 A$(5) = "A"

This will produce a string length error at line
2000 when the program is RUN.

6 A READ statement is executed but we are already
at the end of the last DATA statement.

7 A line number larger than 32767 was entered.

8 The INPUT or READ statement did not receive the
type of data it expected. Example:

1000 READ A
2000 PRINT A
3000 END
4000 DATA 12AB

Running this program will produce this error.

9 A previously DIMensioned string or array is
DIMensioned again. Example:

1000 DIM A(10)
2000 DIM A(10)

This program produces a DIM error.

10 An expression is too complex for BASIC XL to
handle. The solution is to break the
calculation into two or more BASIC XL
statements.

11 The floating point routines have produced a
number that is either too large or too small.

12 The line number required for a GOTO or GOSUB
does not exist. The GOTO may be implied as in:

1000 IF A=B THEN 500

The GOTO / GOSUB may also be part of an ON
statement.

204

Appendix A: ERROR DESCRIPTIONS

ERROR
NUMBER DESCRIPTION

13 A NEXT was encountered but there is no
information about a FOR with the same variable.
Example:

1000 DIM A(10)
2000 REM FILL THE ARRAY
3000 FOR I = 0 TO 10
4000 A(I) = I
5000 NEXT I
6000 REM PRINT THE ARRAY
7000 FOR K = 0 TO 10
8000 PRINT A(K)
9000 NEXT K
10000 END

Running this program will cause the following
output:

0
ERROR- 13 AT LINE 9000

NOTE: Improper use of POP could cause this
error.

14 The line just entered is longer than Basic can
handle. The solution is to break the line into
multiple lines by putting fewer statements on a
line, or by evaluating the expression in
multiple statements.

15 The line containing a GOSUB or FOR was deleted
after it was executed but before the RETURN or
NEXT was executed.

This can happen if, while running a program, a
STOP is executed after the GOSUB or FOR, then
the line containing the GOSUB or FOR is
deleted, then the user types CONT and the
program tries to execute the RETURN or NEXT.
Example:

1000 GOSUB 2000
1100 PRINT "RETURNED FROM SUB"
1200 END
2000 PRINT "GOT TO SUB"
2100 STOP
2200 RETURN

If this program is run the print out is:

GOT TO SUB
STOPPED AT LINE 2100

205

The BASIC XL Programming Environment

ERROR
NUMBER DESCRIPTION

Now if the user deletes line 1000 and then
types CONT we get

ERROR- 15 AT LINE 2200

16 A RETURN was encountered but we have no
information about a GOSUB. Example:

1000 PRINT "THIS IS A TEST"
2000 RETURN

If this program is run the print out is:

THIS IS A TEST

ERROR- 16 AT LINE 2000

NOTE: Improper use of POP could also cause this
error.

17 If when entering a program line a syntax error
occurs, the line is saved with an indication
that it is in error. If the program is run
without this line being corrected, execution of
the line will cause this error.

NOTE: The saving of a line that contains a
syntax error can be useful when LISTing and
ENTERing programs.

18 If when executing the VAL function, the string
argument does not start with a number, this
message number is generated. Example:

A = VAL("ABC") produces this error.

19 The program that the user is trying to LOAD is
larger than available memory.

This could happen if the user had used LOMEM to
change the address at which Basic tables start,
or if he is LOADing on a machine with less
memory than the one on which the program was
SAVEd.

20 If the device / file number given in an I/O
statement is greater than 7 or less than 0,
then this error is issued.

Example: GET #8,A

206

Appendix A: ERROR DESCRIPTIONS

ERROR
NUMBER DESCRIPTION

21 This error results if the user tries to LOAD a
file that was not created by SAVE.

22 This error occurs if the length of the entire
format string in a PRINT USING statement is
greater than 255. It also occurs if the length
of the sub-format for one specific variable is
greater than or equal to 60.

23 The value of a variable in a PRINT USING
statement is greater than or equal to 1E+50.

24 In a PRINT USING statement, the format
indicates that a variable is a numeric when in
fact the variable is a string. Or the format
indicates the variable is a string when it is
actually a numeric. Example:

PRINT USING "###",A$
PRINT USING "%%%",A

Will produce this error.

25 The string being retrieved by RGET from a
device (i. e., the one written by RPUT) has a
different DIMension length than the string
variable to which it is to be assigned.

26 The record being retrieved by RGET (i. e., the
one written by RPUT) is a numeric, but the
variable to which it is to be assigned is a
string. Or the record is a string, but the
variable is a numeric.

27 An INPUT statement was executed and the user
entered CTRL-C <RETURN>.

28 The end of a control structure such as ENDIF or
ENDWHILE was encountered but the run-time stack
did not have the corresponding beginning
structure on the Top of Stack. Example:

10 WHILE 1 : REM loop forever
20 GOSUB 100
100 ENDWHILE

ENDWHILE finds the GOSUB on Top of Stack and
issues the error.

207

The BASIC XL Programming Environment

ERROR
NUMBER DESCRIPTION

29 An illegal player/missile number. Players must
be numbered from 0-3 and missiles from 4-7.

30 The user attempted to use a PMG statement other
than PMGRAPHICS before executing PMGRAPHICS 1
or PMGRAPHICS 2.

32 End of ENTER. This is the error resulting from
a program segment such as:

SET 9,1 : TRAP line# : ENTER filename

when the ENTER terminates normally.

34 The second aexp in a RENUM or NUM command
evaluated to zero, and an increment of 0 is
invalid.

35 When RENUMbering, the maximum line (32767) was
exceeded.

40 You attempted to use a string variable as a
string array variable, or visa versa. Example:

DIM A$(3,29)
A$="THIS CAUSES AN ERROR"

would create this error.

208

Appendix B: SYSTEM MEMORY LOCATIONS

 HEXADECIMAL
LABEL LOCATION COMMENTS and DESCRIPTION
----- -------- ------------------------

APPMHI DE Highest location used by BASIC XL
(LSB, MSB)

RTCLOK 12,13,14 Screen Frame Counter (1/60 sec.)
(LSB, NSB, MSB)

SOUNDR 41 Noisy I/O Flag (0=quiet)

ATRACT 4D Attract Mode Flag (128=Attract Mode)

LMRGIN, 52,53 Left, Right Margin (Defaults 2, 39)
RMRGIN

RAMTOP 6A Actual top of memory (page number)

LOMEM 80,81 BASIC XL low memory pointer

MEMTOP 90,91 BASIC XL high memory pointer (usually
same as APPMHI)

FR0 D4,D5 Value returned to BASIC XL from a USR
function (LSB, MSB)

MEMTOP 2E5,2E6 OS top of available memory (LSB, MSB)

MEMLO 2E7,2E8 OS low memory pointer (LSB, MSB)

CRSINH 2F0 Cursor Inhibit (0=cursor on)

CHACT 2F3 Character Mode Register (4=vertical
reflect; 2=normal; 1=blank)

CHBAS 2F4 Character Set Base Register

ATACHR 2FB Last ATASCII Character

CH 2FC Last keyboard key pressed (keyboard
matrix code)

FILDAT 2FD Fill data for graphics Fill (XIO)

DSPFLG 2FE Display Flag (1=display control
character)

209

The BASIC XL Programming Environment

 HEXADECIMAL
LABEL LOCATION COMMENTS and DESCRIPTION
----- ----------- ------------------------

CONSOL D01F Console Keys (bit 2=OPTION;
bit 1=SELECT; bit 0=START)

SKCTL D20F Serial Port Control Register (bit 2=0
if last key still pressed)

210

Appendix C: BASIC XL MEMORY MAP

 $00 +----------------------------+
 | OS Variables |
 $80 +----------------------------+
 | BASIC XL System RAM |
 $CB +----------------------------+
 | Free BASIC XL RAM |
 $D2 +----------------------------+
 | ATARI Floating Point |
 | Registers |
 $100 +----------------------------+
 | Hardware Stack |
 $200 +----------------------------+
 | OS Variables |
 | IOCBs |
 $3C0 +----------------------------+
 | Printer Buffer |
 $3E8 +----------------------------+
 | OS RAM |
 $3FD +----------------------------+
 | Cassette Buffer |
 $480 +----------------------------+
 | BASIC XL Stack and |
 | Miscellaneous Variables |
 $57E +----------------------------+
 | ACTION! Hash Tables |
 $680 +----------------------------+
 | Free RAM |
 $700 +----------------------------+
 | DOS RAM |
 (MEMLO) +----------------------------+
 | BASIC XL program, buffers, |
 | tables, run-time stack. |
 (APPMHI) +----------------------------+
 | Free RAM |
 MEMTOP +----------------------------+
 | Screen Memory |
 | also optional P/M Memory |
 $A000 +----------------------------+
 | BASIC XL Cartridge |
 $C000 +----------------------------+
 | OS, ROMs, etc. |
 $D000 +----------------------------+
 | Hardware Registers |
 $D800 +----------------------------+
 | OS and Floating Pt. ROM |
 $FFFF +----------------------------+

211

The BASIC XL Programming Environment

212014

Appendix D: ATASCII CHARACTER SET

ATASCII stands for "ATARI ASCII". Letters and numbers
have the same values as those in ASCII, others are
different.

Dec Hex CHARACTER Dec Hex CHARACTER DEC HEX CHARACTER

0 $00 32 $20 64 $40

1 $01 33 $21 65 $41

2 $02 34 $22 66 $42

3 $03 35 $23 67 $43

4 $04 36 $24 68 $44

5 $05 37 $25 69 $45

6 $06 38 $26 70 $46

7 $07 39 $27 71 $47

8 $08 40 $28 72 $48

9 $09 41 $29 73 $49

10 $0A 42 $2A 74 $4A

11 $0B 43 $2B 75 $4B

12 $0C 44 $2C 76 $4C

13 $0D 45 $2D 77 $4D

14 $0E 46 $2E 78 $4E

15 $0F 47 $2F 79 $4F

16 $10 48 $30 80 $50

17 $11 49 $31 81 $51

18 $12 50 $32 82 $52

19 $13 51 $33 83 $53

20 $14 52 $34 84 $54

21 $15 53 $35 85 $55

22 $16 54 $36 86 $56

23 $17 55 $37 87 $57

24 $18 56 $38 88 $58

25 $19 57 $39 89 $59

26 $1A 58 $3A 90 $5A

27 $1B 59 $3B 91 $5B

28 $1C 60 $3C 92 $5C

29 $1D 61 $3D 93 $5D

30 $1E 62 $3E 94 $5E

31 $1F 63 $3F 95 $5F

Note: Columns with two symbols for one dec/hex value
show standard ATASCII to the left, and to the right the
symbol from the international character set available
with XL/XE computers.

213

The BASIC XL Programming Environment

Dec Hex CHARACTER Dec Hex CHARACTER DEC HEX CHARACTER

96 $60 128 $80 160 $A0

97 $61 129 $81 161 $A1

98 $62 130 $82 162 $A2

99 $63 131 $83 163 $A3

100 $64 132 $84 164 $A4

101 $65 133 $85 165 $A5

102 $66 134 $86 166 $A6

103 $67 135 $87 167 $A7

104 $68 136 $88 168 $A8

105 $69 137 $89 169 $A9

106 $6A 138 $8A 170 $AA

107 $6B 139 $8B 171 $AB

108 $6C 140 $8C 172 $AC

109 $6D 141 $8D 173 $AD

110 $6E 142 $8E 174 $AE

111 $6F 143 $8F 175 $AF

112 $70 144 $90 176 $B0

113 $71 145 $91 177 $B1

114 $72 146 $92 178 $B2

115 $73 147 $93 179 $B3

116 $74 148 $94 180 $B4

117 $75 149 $95 181 $B5

118 $76 150 $96 182 $B6

119 $77 151 $97 183 $B7

120 $78 152 $98 184 $B8

121 $79 153 $99 185 $B9

122 $7A 154 $9A 186 $BA

123 $7B 155 $9B 187 $BB

124 $7C 156 $9C 188 $BC

125 $7D 157 $9D 189 $BD

126 $7E 158 $9E 190 $BE

127 $7F 159 $9F 191 $BF

Notes: Add 32 to upper case code to get lower case code
for same letter.

Characters from 128 to 255 are reverse colors of
1 to 127.

214

Appendix D: ATASCII CHARACTER SET

Dec Hex CHARACTER Dec Hex CHARACTER

192 $C0 224 $E0

193 $C1 225 $E1

194 $C2 226 $E2

195 $C3 227 $E3

196 $C4 228 $E4

197 $C5 229 $E5

198 $C6 230 $E6

199 $C7 231 $E7

200 $C8 232 $E8

201 $C9 233 $E9

202 $CA 234 $EA

203 $CB 235 $EB

204 $CC 236 $EC

205 $CD 237 $ED

206 $CE 238 $EE

207 $CF 239 $EF

208 $D0 240 $F0

209 $D1 241 $F1

210 $D2 242 $F2

211 $D3 243 $F3

212 $D4 244 $F4

213 $D5 245 $F5

214 $D6 246 $F6

215 $D7 247 $F7

216 $D8 248 $F8

217 $D9 249 $F9

218 $DA 250 $FA

219 $DB 251 $FB

220 $DC 252 $FC

221 $DD 253 $FD

222 $DE 254 $FE

223 $DF 255 $FF

Note: To get ATASCII code, tell computer (direct mode)
to PRINT ASC ("__"). Fill blank with letter, character,
or number of code. Must use the quotes!

215

Appendix E: SYNTAX SUMMARY AND KEYWORD INDEX

All keywords, grouped by statements and then functions,
are listed below in alphabetical order. A page number
reference is given to enable the user to quickly find
more information about each keyword.

EXPLANATION OF TERMS

exp - expression
aexp - arithmetic exp
sexp - string exp
var – variable
avar - arithmetic var
svar - string var
mvar - matrix var (or element)
fn - file number
<stmts> - one or more statements
filename - svar or string literal (quotes are optional
 except with LIST)
line - line number (can be aexp)
pm - Player/Missile number (aexp)
[xxx] - xxx is optional
[xxx...] - xxx is optional, and may be repeated
addr - address aexp, must be 0 - 65535

NOTE: Keywords denoted by an asterisk (*) are not
available in Atari BASIC.

STATEMENTS

page syntax
---- ------
49 *BGET #fn,addr,len
50 *BPUT #fn,addr,len
21 BYE
50 CLOAD
51 CLOSE #fn
21 CLR
91 COLOR aexp
22 CONT
23 *CP
51 CSAVE
51 DATA <ATASCII data>
72 DEG
22 *DEL line[,line]

217

The BASIC XL Programming Environment

page syntax
---- ------
10 DIM avar(aexp)
10 DIM mvar(aexp,aexp])
12 DIM svar(aexp)
12 *DIM savar(aexp, aexp)
52 *DIR [filename]
23 DOS
82 *DPOKE addr,aexp
92 DRAWTO aexp,aexp
40 *ELSE {see IF}
34 END
40 *ENDIF {see IF}
46 *ENDWHILE
52 ENTER filename
53 *ERASE filename
23 *FAST
35 FOR avar=aexp TO aexp [STEP aexp]
53 GET #fn,avar
36 GOSUB line
37 GOTO line
87 GRAPHICS aexp
39 IF aexp THEN <stmts>
39 IF aexp THEN line
40 *IF aexp : <stmts>
 ELSE : <stmts>
 ENDIF
54 *INPUT "...",var [,var...]
53 INPUT [#fn,] var [,var...]
41 *[LET] svar=sexp [,sexp...]
41 [LET] avar=aexp
41 [LET] mvar=aexp
24 LIST [filename]
24 LIST [filename,] line [,line]
55 LOAD filename
92 LOCATE aexp,aexp,avar
24 *LOMEM addr
55 LPRINT [exp [;exp...] [,exp...]]
25 *LVAR [filename]
105 *MISSILE pm,aexp,aexp
43 *MOVE fromaddr,toaddr,lenaexp
25 NEW
35 NEXT avar
55 NOTE #fn,avar,avar
25 *NUM [line] [,aexp]
43 ON aexp GOTO line [,line...]
43 ON aexp GOSUB line [,line...]
56 OPEN #fn,mode,avar,filename
93 PLOT aexp,aexp
102 *PMCLR pm

218

Appendix E: SYNTAX SUMMARY AND KEYWORD INDEX

102 *PMCOLOR pm,aexp,aexp
102 *PMGRAPHICS aexp
104 *PMMOVE pm[,aexp] [;aexp]
page syntax
---- ------
105 *PMWIDTH pm,aexp
57 POINT #fn,avar,avar
83 POKE addr,aexp
44 POP
93 POSITION aexp,aexp
57 PRINT [#fn]
57 PRINT exp [[;exp...] [,exp...]] [;]
57 PRINT #fn [[;exp...] [,exp...]] [;]
58 *PRINT [#fn,] USING sexp, [exp [,exp...]]
67 *PROTECT filename
63 PUT #fn,aexp
72 RAD
70 RANDOM
63 READ var [,var...]
26 REM <any remark>
64 *RENAME filenames
27 *RENUM [start][,increment]
45 RESTORE [line]
36 RETURN
64 *RGET #fn, svar [,svar...]
64 *RGET #fn, avar [,avar...]
65 *RPUT #fn,exp [,exp...]
27 RUN [filename]
66 SAVE filename
28 *SET aexp,aexp
94 SETCOLOR aexp,aexp,aexp
97 SOUND aexp,aexp,aexp,aexp
66 STATUS #fn,avar
35 STEP {see FOR}
31 STOP
67 *TAB [#fn], avar
39 THEN {see IF}
35 TO {see FOR}
31 *TRACE
31 *TRACEOFF
45 TRAP line
67 *UNPROTECT filename
46 *WHILE aexp
67 XIO aexp,#fn,aexp,aexp,filename
57 ? {same as PRINT}

219

The BASIC XL Programming Environment

FUNCTIONS

page syntax
---- ------
69 ABS(aexp)
81 ADR(svar)
73 ASC(sexp)
72 ATN(aexp)
80 *BUMP (pmnum,aexp)
73 CHR$(aexp)
69 CLOG(aexp)
72 COS(aexp)
81 *DPEEK(addr)
82 *ERR(aexp)
70 EXP(aexp)
74 *FIND(sexp,sexp,aexp)
82 FRE(0)
78 *HSTICK(aexp)
70 INT(aexp)
75 LEN(sexp)
70 LOG (aexp)
78 PADDLE (aexp)
78 *PEN(aexp)
81 *PMADR(pm)
78 PTRIG(aexp)
83 PEEK(addr)
71 RND(0)
71 SGN(aexp)
72 SIN(aexp)
71 SQR(aexp)
79 STICK(aexp)
79 STRIG(aexp)
76 STR$(aexp)
84 *SYS(aexp)
84 *TAB(aexp)
84 USR(addr [,aexp...])
76 VAL(sexp)
79 *VSTICK(aexp)

220

Appendix F: COMPATIBILITY WITH ATARI BASIC

Generally, BASIC XL is totally compatible with Atari
BASIC. Virtually all programs written in Atari BASIC
and SAVEd or CSAVEd thereunder will LOAD or CLOAD
properly with BASIC XL and run without changes.
However, in a few very subtle ways, there are minor
differences between Atari BASIC and BASIC XL. This
appendix presents a list of known differences, but OSS
cannot guarantee that it is an exhaustive list.

1. VARIABLE NAMES

When programs are SAVEd or CSAVEd under Atari BASIC and
then LOADed or CLOADed under BASIC XL, there will never
be a conflict in variable name usage. However, when a
program is LISTed from Atari BASIC and then ENTERed
into BASIC XL, or when a program listing published in a
magazine or book is typed into BASIC XL, it is possible
that BASIC XL will not accept lines of code which are
valid in Atari BASIC.

The reason, of course, is that BASIC XL has a much
richer range of keywords for statements and functions
than does Atari BASIC, and in neither language can a
variable name begin with a statement name unless it is
preceded with a LET keyword. To illustrate the problem,
let us examine the following valid Atari BASIC line:

 NUMBER = 7

Because NUM is a valid BASIC XL statement name, it will
now be seen by our syntax parsers as this:

 NUM BER=7

That is, it is seen as a NUM command with a starting
line number of (BER=7). Since you probably don't have a
variable named BER in your program, BER will not equal
7, so the statement becomes the equivalent of simply

 NUM 0

which is certainly not what was intended.

In most cases, variable name conflicts such as this
will result in a syntax error. In this particular case
(and a few others), the result appears valid to BASIC
XL so no syntax error results. How can you detect such
problems easily? The easiest way is to examine the
LISTed form of the program. Since BASIC XL always lists
a space after every keyword, and since all keywords and
variables are listed in lower case except for the first

221

The BASIC XL Programming Environment

letter, it is often easy to spot discrepancies of this
form.

In any case, the intent of the original Atari BASIC
program can always be accomplished by simply placing
the LET keyword in front of the offending variable,
thusly:

 LET NUMBER=7

In the case of array variables, the situation is both
simpler and more complex. Only those variables which
have EXACTLY the same name as a new BASIC XL function
(such as BUMP or RANDOM) will be in conflict, so the
number of offending names is much smaller. However, the
only fix that can be made in these cases is to change
the name of the variable, usually by simply adding a
single character (e.g., change BUMP to BUMPS).

2. Upper and Lower Case, Inverse Video

Again, these problems will never occur with programs
SAVEd in Atari BASIC and LOADed under BASIC XL. In
order to make keyboard entry more flexible and more
consistent, BASIC XL allows you, the programmer, to
type your programs in with upper case letters, lower
case letters, or even inverse video characters. BASIC
XL accomplishes this by simply changing all such
characters to their conventional normal video, upper
case counterparts, excepting ONLY those characters
enclosed in quote marks.

The only times that this makes any difference at all
are (1) when the user types in a string and does not
terminate it with a quote mark and (2) in DATA and REM
statements where the user really desired the lower case
or inverse characters. In either case, enclosing the
desired characters in matching quotes will solve the
problem (recall that BASIC XL supports quoted strings
in DATA statements).

However, BASIC XL also provides a means of completely
emulating Atari BASIC in this regard, should you wish.
Simply use the command

 SET 5,0

and all characters will remain unconverted. This is
also handy when ENTERing programs LISTed from Atari
BASIC.

This same SET has a secondary effect: when non-
converting, upper case only entry is selected, then all
LISTings will be in upper case only. This allows the
BASIC XL user to LIST programs which will be compatible

222

Appendix F: COMPATIBILITY WITH ATARI BASIC

with Atari BASIC's ENTER capability (providing, of
course, that no advanced statements or functions were
used in the code).

3. Programs Which RUN Too Fast

Of course, the fact that your programs will run faster
is probably one of the primary reasons that you bought
BASIC XL. And, generally, the speed-up provided is only
beneficial.

A few programs, though, will depend on timing loops,
etc., to run properly. There is no real "cure" for this
·problem". Hopefully, you will be able to play the
faster games and/or read the faster messages.

A related problem has to do with the fact that BASIC XL
always automatically executes a FAST command whenever
it encounters a statement of the form

 RUN filename

(that is, ONLY when a filename is given in conjunction
with RUN).

Many programs which run only somewhat faster with
normal BASIC XL will run much, much faster when the
FAST command is given. You may really find yourself
with a game which is simply too fast to play.

There are two solutions. The first is simply to LOAD
the program first and then issue a separate RUN
command. If, however, you have an auto-booting disk or
a program which chains to another program via RUN, this
is not a practical solution. The second solution, then,
is to simply hold down the SELECT button when the RUN
is executed (which may imply holding the button for a
while when an auto-booting disk is started). BASIC XL
allows this usage of SELECT as a means of telling it to
slow down.

4. Memory Locations

BASIC XL attempts to conform to all memory location
usage published in any or all of the following books:

Atari BASIC Reference Manual,
 by Atari, Inc.

Operating System Source Listing for Atari 400/800,
 by Atari, Inc.
 (except that locations SIN, COS, ATAN, and SQR
 are incorrect, even for Atari BASIC)

223

The BASIC XL Programming Environment

De Re Atari,
 by Chris Crawford, et al

Mapping the Atari,
 from COMPUTE! Books

Master Memory Map,
 by Educational Software, Inc.

A few programs written by extremely knowledgeable
individuals have, in the past, made use of one or more
of the following unpublished facts about Atari BASIC:

(1) Atari BASIC uses certain memory locations only at
certain times. (2) Certain zero page memory locations
have special meanings to Atari BASIC. (3) Certain
subroutines, internal to Atari BASIC, are located at
certain addresses.

Obviously, it was impossible to add the features and
speed to BASIC XL which we did without adding code and
making more use of the memory reserved for BASIC.
Although we attempted to keep the changes to an
absolute minimum, we cannot possibly be responsible for
maintaining compatibility with programs which use such
undocumented and unpublished information.

May we remind you of the memory locations and map which
we presented in Appendices B and C. We invite
comparison of these with Appendices D and I in the
Atari BASIC Reference Manual. All usage is compatible.

Finally, for those who are experienced programmers, we
present here a list of all zero page locations which
ARE used in the same way by both Atari BASIC and BASIC
XL. Only addresses are given. Refer to a memory map
book or The Atari BASIC Sourcebook (published by
COMPUTE! Books) for descriptions of the locations'
uses.

 $80 to $92 $94 to $B3
 $B6 to $B8 $BA to $BB
 $C2 to $C3 $C8 to $C9
 $D2 to $FF

CAUTION: Some of these locations may be used by BASIC
XL for additional purposes, beyond (but compatible
with) the usages of Atari BASIC. These additional
purposes may imply use of the locations at times when
they were unused by Atari BASIC or even use of certain
bits left unmodified by Atari BASIC. It is suggested
that the user should not modify these locations, though
he might profitably use the information they contain.
Additionally, OSS reserves the right to change usage of
these locations if necessary for future corrections or

224

Appendix F: COMPATIBILITY WITH ATARI BASIC

improvements, though you may safely assume that those
locations mentioned in "Mapping the Atari" will remain
unchanged.

5. AUTOMATIC STRING DIMENSION

BASIC XL automatically dimensions strings to 40
characters. Again, this should have no effect on
currently running Atari BASIC programs. If desired, you
can use

 SET 11,9

to ensure total compatibility.

6. INDENTED LISTINGS

When BASIC XL lists a program, it automatically adds
indentation for FOR...NEXT loops (and other control
structures). This could only be a problem with long
lines LISTed to disk and then re-ENTERed into BASIC.
Again, you may use

 SET 12,9

to ensure compatibility and remove the indenting.

225

Appendix G: BENCHMARKS

These are the benchmark tests known from Compute!
(issue 57, February 1985, pp. 139-142), adapted to
BASIC XL.

INSIGHT: Atari by Bill Wilkinson

I am much gratified by the response to my decision to
work harder on answering readers' questions. I have
received several very interesting letters with both
good comments and good questions. Since it is always
fun to defend Atari BASIC against the outside world,
let me start with a subject near and dear to my heart.

Benchmarks

Several readers have asked me why Atari BASIC compares
so unfavorably to other computers on certain
benchmarks. The two most commonly mentioned are the
BYTE magazine benchmarks (September, 1981 BYTE
Magazine, pp. 180-198) and the Creative Computing
benchmark invented by David Ahl (November, 1983
Creative Computing Magazine, pp. 259-260). Stan Smith,
of Los Angeles, asked some very pointed questions,
which I will try to answer here.

The BYTE benchmark is reproduced below in Atari BASIC.
It is the often-mentioned "Sieve of Erastothenes," a
program which produces (and counts) prime numbers. Its
primary advantage as a benchmark is that it can be
implemented in virtually any language (although only
with much difficulty when using Logo and its ilk). It
relies only on addition and logical choices, with very
little number crunching.

 10 DIM N$(8192)
 20 N$="0":N$(8192)="0":N$(2,8192)=N$
 30 FOR I=1 TO 8192:IF N$(I,I)="1" THEN 60
 40 PRIME=I+I+I:CNT=CNT+1:K=I
 50 K=K+PRIME:IF K<8193 THEN N$(K,K)="1":GOTO 50
 60 NEXT I
 70 PRINT CNT : REM BETTER PRINT 1899!!!

An aside: If you have seen the BYTE original and are
puzzled by my changes, be aware of three things: (1) I
had to use a string because there is not enough room
for an array of 8192 elements. (2) The math was
modified very slightly to accommodate the fact that
string indices start at one, instead of zero. (3)
Multiple statements per line simplify the original
somewhat.

227

The BASIC XL Programming Environment

Anyway, why is Atari BASIC so slow (317 seconds versus,
for example, the IBM PC at 194 seconds)? Primarily for
three reasons. First, note all the numbers in this
listing, which must be treated as integers. Line
numbers and indices are always kept and calculated as
floating-point numbers, but all must be converted to
integers before being used. (You simply can't GOTO line
137.38, can you?) And, sigh, the routine in the Atari
Operating System ROMs which converts numbers to
integers is incredibly slow (in fact, it is the only
floating-point routine we modified when we produced
BASIC A+ and BASIC XL).

Second, Atari BASIC performs FOR-NEXT loops by
remembering the line number of the FOR statement. Then,
when NEXT is encountered, BASIC must search for the FOR
line, just as if a GOTO had been used. (Other BASICS
remember the actual memory address of the FOR
statement. Faster, but less flexible. Atari BASIC
allows you to STOP in the middle of a loop, change the
program, and continue, something no other home computer
BASIC allows. (This - among many other things - is in
direct opposition to Consumer Reports' claim that Atari
BASIC is hard for beginners.)

Third, if you type in and use this listing as shown,
you are paying almost a 50 percent penalty in speed,
thanks to Atari's screen DMA and Vertical Blank
Interrupts taking up a significant portion of the
processing time. The simple addition of the following
two lines will improve the time for this little test to
211 seconds:

 5 POKE 54286,0 : POKE 54272,0
 65 POKE 54286,64

All of a sudden, Atari BASIC isn't even near the bottom
of the list. And, yet, there is more we can do to
improve the machine's performance. As many have
suggested, you can install the Newell Fastchip, a
replacement for the floating point routines built into
your computer (available from many dealers, produced by
Newell Industries of Plano, Texas).

Or you can change to another BASIC. Obviously, there is
Atari's Microsoft BASIC. It produces results very close
to those of Applesoft; but it, too, can be improved by
turning off screen DMA, etc. And there is OSS's own
BASIC XL. Using a combination of clever programming and
a Fastchip, the BASIC XL program below will count up
all those prime numbers in 58.5 seconds, about three
times as fast as Microsoft BASIC on an IBM PC can do
it. 'Nuff said. (Except a P.S.: The Set 3 in line 10
requests zero-time FOR loops, something not available
in many BASICs, which alone accounts for about 20
seconds worth of improvement. See section 3.15 for
details.)

228

Appendix G: Benchmarks

 10 FAST: POKE 54286,0: POKE 542
 72,0: SET 3,1: DIM N$(8192):
 N=ADR(N$)
 30 FOR I=0 TO 8191
 50 IF NOT PEEK(N+I) THEN PRIME=
 I+I+3:CNT=CNT+1:FOR K=I+PR
 IME TO 8191 STEP PRIME: POKE
 N+K,1: NEXT K
 60 NEXT I
 70 POKE 54286,64: POKE 559,34:
 PRINT CNT

Measures Of Accuracy

The Ahl benchmark is listed below. It purports to
measure both accuracy and number-crunching ability. It
does neither very well. Still, we have to ask why Atari
BASIC is near dead last in its rankings, requiring 6
minutes and 45 seconds to complete the test.

 10 FOR N=1 TO 100: A=N
 20 FOR I=1 TO 10: A=SQR(A): R=R
 +RND(0): NEXT I
 30 FOR I=1 TO 10: A=A^2: R=R+RN
 D(0): NEXT I
 40 S=S+A: NEXT N
 50 PRINT "ACCURACY="; ABS(1010-
 S/5), "RANDOM="; ABS(1000-R)

The culprit here (in terms of time-wasting) is line 30,
with its A=A^2. Atari BASIC, in common with most small
computer BASICS, calculates powers according to a
formula:

 x^y = exp(y * log(x))

where log() is the natural logarithm function and exp()
is the exponent-of-e function.

If you don't understand that, don't worry about it. The
point is that the calculation of such a simple thing as
a number to the second power involves the calculation
of a logarithm and an exponentiation. And why is that
so bad? Simply because the floating-point routines in
the Atari OS ROMs are too slow. Again, the solution is
to install the Newell Fastchip and/or turn off DMA and
VBI (as outlined above).

I am indebted to Clyde Spencer, one of the founders of
the Bay Area Atari Users Group (one of the oldest), for
supplying me with a most surprising figure. Spencer
reports that, using the Fastchip and with DMA turned
off, he obtained a timing of 1 minute 38 seconds, a

229

The BASIC XL Programming Environment

very respectable (albeit not record-shattering)
performance. I still wouldn't use my Atari for advanced
scientific applications, but it is more than adequate
for most purposes.

There is a problem with the "accuracy" figures in this
test, however. First, because Ahl's accuracy number is
the result of 1000 simple sums, it is clearly possible
that a particular machine may exhibit wildly variant
results for various numbers and still show a good
figure in his test. (To illustrate, assume that the
SQR() function randomly tosses in an error of plus or
minus one. If it tossed in an equal number of errors,
they would balance to zero. Yet choosing to make the
loop just one unit shorter [FOR N=1 TO 999] might give
a completely different result. To be fair, this is a
very unlikely result with modern math algorithms; but,
still, one never knows.) A minor change to his program
would improve the testing qualities considerably:

 40 S=S+ABS(A-N):NEXT N

Do you see the difference? This method produces the sum
of the errors, and doesn't fall prey to offsetting
errors.

The Random Number Trap

There is no hope for the accuracy of this random number
tester, though. I will quote Clyde Spencer on this
matter: "If the numbers are truly random and not
normally distributed, any difference between 0 and 1000
is possible. All you can say is that you would have a
high probability of ... being near zero for a perfect
random number generator." The benchmark test falls into
the infamous BASIC repeating-random-sequence trap.

In most BASICS, when you command a program to run, the
pseudo-random generator is always reseeded with the
same number. So each and every time you will get the
same results, with Ahl's test. And, depending on what
seed is chosen, you may get truly phenomenal results
(because you happened to hit a hot spot in the
generator's sequence). Now, though, try starting the
generator off with a different (and randomly chosen)
seed each time. What happens? The test's randomness
figure wanders all over the place.

Once again, to quote Spencer...... in eight tests I
obtained numbers ranging from 1.6 to 24.2, with the
mean being 7.02

Finally, I would like to point out that Ahl's test
penalizes small machine BASIC interpreters in yet
another way: When you have 32K bytes to spend on a
BASIC, one thing you do is insure that numbers to a

230

Appendix G: Benchmarks

power are performed by successive multiplications, if
possible. Thus Cromemco 32K Structured BASIC (for
example) performs A^2 with just one multiply. In other
words, it converts A^2 to A*A. If you manually
substitute that same form in Ahl's program, the times
for almost all of the smaller and less expensive
machines will improve dramatically. (Surprisingly,
though, the accuracy figures may not change. After all,
the original version may have had offsetting errors.)
Of course, if you need to use non-integer powers in
your programs, this comment doesn't apply, and the
benchmark's results are a bit more meaningful for you.

Well, what does all this long-winded discussion boil
down to? Two simple points: (1) Always presume that a
benchmark program is worth slightly less than the paper
it is printed on. (2) If you want to do number
crunching on your Atari computer (against my best
advice), go out and buy the Newell Fastchip. (And it
won't hurt to try some other languages.)

231

Programs Run Faster: A special FAST command precom

piles the program currently in memory. Programs run 2 to 4 times

faster than they would using Atari BASIC.

Write Better Programs Faster: BASIC XL will automati-

cally number program lines and renumber entire programs on re-

quest. The LIST command displays your program in an easy-to-

read format.

More Built-In Features: Offers many advanced commands

and special functions that up to now were only available on other

computer systems...string arrays and search...disk commands di-

rectly from BASIC...extended input and output...English like error

messages, and program debugging with the TRACE command.

And best of all BASIC XL still uses only 8K of RAM!

Simplifies Using Atari Graphics: Ten NEW graphic

commands offer you uncomplicated, direct access to using

player/missiles, animation, and dazzling computer graphics.

ToolKit: Comes with Runtime package. Now your programs go

everywhere without a BASIC XL cartridge. And it contains new ex-

tended commands like: PROCEDURE, CALL, EXIT, LOCAL, and

SORT. Assistance for techniques as Keyed File Access,

Player/Missile Graphics, direct disk drive control, and much more.

BASIC XL
The Right Tool For

All Atari® BASIC Programming

A reference manual for

The BASIC XL Programming Environment

comprising

Cartridge Version
Run Time
Toolkit

A complete programming system designed
for your ATARI home computer system.

The programs, cartridges, ROMs, and manuals
comprising the BASIC XL environment

are Copyright (c) 1983, 1984 by
Optimized Systems Software, Inc.

Atari, Atari Computers, and Atari Home Computers are
trademarks of Atari, Inc.

This comprehensive information
provided by Atari enthusiasts
aims at the preservation of

The BASIC XL Programming Environment

1st revised edition (p) 2022

	Chapter 1: Introduction
	1.1 Features of BASIC XL
	1.2 Special Notations used in this Manual
	1.3 Glossary and terminology
	1.4 Operating Modes

	Chapter 2: VARIABLES, OPERATORS, EXPRESSIONS
	2.1 Variables (var)
	2.1.1 Arithmetic variables (avar)
	2.1.2 Array / Matrix Variables (mvar)
	2.1.3 String Variables (svar)
	2.1.4 String Array Variables (savar)
	2.1.5 DIM

	2.2 Operators
	2.2.1 Arithmetic Operators (aop)
	2.2.2 Logical Operators (lop)
	2.2.3 Operator Precedence

	2.3 Expressions (exp)
	2.3.1 Numbers
	2.3.2 Arithmetic Expressions (aexp)
	2.3.3 String Expressions (sexp)

	Chapter 3: PROGRAM DEVELOPMENT COMMANDS
	3.1 BYE (B.)
	3.2 CLR
	3.3 CONT (CON.)
	3.4 DEL
	3.5 DOS
	3.6 FAST
	3.7 LIST (L.)
	3.8 LOMEM
	3.9 LVAR (LV.)
	3.10 NEW
	3.11 NUM
	3.12 REM (R.)
	3.13 RENUM
	3.14 RUN
	3.15 SET
	3.16 STOP
	3.17 TRACE and TRACEOFF

	Chapter 4: PROGRAM CONTROL STATEMENTS
	4.1 Assignment Statement
	4.2 END
	4.3 FOR(F.)...TO...STEP / NEXT(N.)
	4.4 GOSUB (GOS.) / RETURN (RET.)
	4.5 GOTO (G.)
	4.6 IF/THEN
	4.7 IF...ELSE...ENDIF
	4.8 LET
	4.9 MOVE
	4.10 ON...
	4.11 POP
	4.12 RESTORE (RES.)
	4.13 TRAP (T.)
	4.14 WHILE...ENDWHILE

	Chapter 5: INPUT/OUTPUT COMMANDS AND DEVICES
	5.1 Comments and Notations
	5.2 BGET
	5.3 BPUT
	5.4 CLOAD
	5.5 CLOSE (CL.)
	5.6 CSAVE (CS.)
	5.7 DATA (D.)
	5.8 DIR
	5.9 ENTER (E.)
	5.10 ERASE
	5.11 GET
	5.12 INPUT (I.)
	5.12.1 Advanced use of INPUT

	5.13 LOAD (LO.)
	5.14 LPRINT (LP.)
	5.15 NOTE (NO.)
	5.16 OPEN (O.)
	5.17 POINT (P.)
	5.18 PRINT (PR or ?)
	5.19 PRINT USING
	5.20 PROTECT
	5.21 PUT (PU.)
	5.22 READ
	5.23 RENAME
	5.24 RGET
	5.25 RPUT
	5.26 SAVE (S.)
	5.27 STATUS (ST.)
	5.28 TAB
	5.29 UNPROTECT (UNP.)
	5.30 XIO (X.)
	5.31 An Example Program

	Chapter 6: FUNCTION LIBRARY
	6.1 Arithmetic Functions
	6.1.1 ABS
	6.1.2 CLOG
	6.1.3 EXP
	6.1.4 INT
	6.1.5 LOG
	6.1.6 RANDOM
	6.1.7 RND
	6.1.8 SGN
	6.1.9 SQR
	6.1.10 An Example Program

	6.2 Trigonometric Functions
	6.2.1 ATN
	6.2.2 COS
	6.2.3 DEG and RAD
	6.2.4 SIN
	6.2.5 An Example Program

	6.3 String Functions
	6.3.1 ASC
	6.3.2 CHR$
	6.3.3 FIND
	6.3.4 LEFT$
	6.3.5 LEN
	6.3.6 MID$
	6.3.7 RIGHT$
	6.3.8 STR$
	6.3.9 VAL
	6.3.10 An Example Program

	6.4 Game Controller Functions
	6.4.1 HSTICK
	6.4.2 PADDLE
	6.4.3 PEN
	6.4.4 PTRIG
	6.4.5 STICK
	6.4.6 STRIG
	6.4.7 VSTICK
	6.4.8 An Example Program

	6.5 Player/Missile Functions
	6.5.1 BUMP
	6.5.2 PMADR

	6.6 Special Purpose Functions
	6.6.1 ADR
	6.6.2 DPEEK
	6.6.3 DPOKE
	6.6.4 ERR
	6.6.5 FRE
	6.6.6 HEX$
	6.6.7 PEEK
	6.6.8 POKE
	6.6.9 SYS
	6.6.10 TAB
	6.6.11 USR
	6.6.12 An Example Program

	Chapter 7: SCREEN GRAPHICS AND SOUND
	7.1 GRAPHICS (GR.)
	7.1.1 GRAPHICS Mode 0
	7.1.2 GRAPHICS Modes 1 and 2
	7.1.3 GRAPHICS Modes 3, 5 and 7
	7.1.4 GRAPHICS modes 4,6
	7.1.5 GRAPHICS mode 8
	7.1.6 GRAPHICS modes 9, 10, and 11
	7.1.7 GRAPHIC modes 12 and 13
	7.1.8 GRAPHIC modes 14 and 15

	7.2 COLOR (C.)
	7.3 DRAWTO (DR.)
	7.4 LOCATE (LOC.)
	7.5 PLOT (PL.)
	7.6 POSITION (POS.)
	7.7 PUT and GET (as applied to graphics)
	7.8 SETCOLOR (SE.)
	7.9 XIO (X.) Special Fill Application
	7.10 SOUND (SO.)

	Chapter 8: PLAYER / MISSILE GRAPHICS
	8.1 An Overview of P/M Graphics
	8.2 P/M Graphics Conventions
	8.3 BGET and BPUT with P/M's
	8.4 PMCLR
	8.5 PMCOLOR (PMCO.)
	8.6 PMGRAPHICS (PMG.)
	8.7 PMMOVE
	8.8 PMWIDTH (PMW.)
	8.9 POKE and PEEK with P/M's
	8.10 MISSILE (MIS.)
	8.11 MOVE with P/M's
	8.12 USR with P/M's
	8.13 Example PMG Programs

	Chapter 9: THE BASIC XL TOOLKIT
	9.1 THE BASIC XL RUNTIME PACKAGE
	9.1.1 How Does the RUNTIME Package Work?
	9.1.2 How Do You Use the RUNTIME Package?
	9.1.3 Statements that can NOT be used with RUNTIME
	9.1.4 Error Handling In RUNTIME BASIC XL
	9.1.5 RunTime Restart
	9.1.6 Incompatibilities

	9.2 BASIC XL Example Programs
	9.2.1 MENU.BXL
	9.2.2 SNAILS
	9.2.3 PICOADV
	9.2.4 LEM
	9.2.5 GTIATEST
	9.2.6 CIRCLES
	9.2.7 DISKIO
	9.2.7.1 SIO and the Device Control Block
	9.2.7.2 The Sector Access Routine
	9.2.7.3 Technical Sidelight

	9.2.8 CONFIG
	9.2.8.1 The Percom Standard
	9.2.8.2 Reading and Writing the Config Block

	9.2.9 PHONE
	9.2.9.1 Sequential and Other Files
	9.2.9.2 How to Use NOTE and POINT to Advantage
	9.2.9.3 The Concept Behind PHONE.BXL. alias BlackBook
	9.2.9.4 BlackBook Data Files
	9.2.9.5 BlackBook Index Files
	9.2.9.6 The Index String
	9.2.9.7 Program Description: PHONE.BXL, BlackBook

	9.2.10 MAKEAUTO

	9.3 BASIC XL Extended Statements
	9.3.1 How to Install the Extended Statements
	9.3.2 Abbreviations Used In Formal Statement Definitions
	9.3.3 Procedure Blocks and Related Statements
	9.3.3.1 PROCEDURE (PROC.)
	9.3.3.1.1 Secondary Considerations

	9.3.3.2 CALL
	9.3.3.2.1 Secondary Considerations

	9.3.3.3 LOCAL
	9.3.3.3.1 Secondary Considerations

	9.3.3.4 EXIT
	9.3.3.4.1 Secondary Considerations

	9.3.4 Sorting String Arrays
	9.3.4.1 SORTUP
	9.3.4.2 SORTDOWN

	9.4 Example BASIC XL Programs with Extended Statements
	9.4.1 FACTOR.BXE
	9.4.2 SORTDIR.BXE
	9.4.3 SORTNUM.BXE
	9.4.4 GTIATEST.BXE
	9.4.5 DISKIO.BXE
	9.4.6 PHONE.BXE

	Appendices
	Appendix A: ERROR DESCRIPTIONS
	Appendix B: SYSTEM MEMORY LOCATIONS
	Appendix C: BASIC XL MEMORY MAP
	Appendix D: ATASCII CHARACTER SET
	Appendix E: SYNTAX SUMMARY AND KEYWORD INDEX
	Appendix F: COMPATIBILITY WITH ATARI BASIC
	Appendix G: BENCHMARKS

