% o o

Shadh

i ma—

?&

L

s

PREFACE

8UG/65 is an interactive debugging tool for use in
the development of assembly language programs for the ATARI
868 or ATARI 400 personal computers. It's designed to take
as much of the drudgery out of assembly °language debugging i
as possible. The design philosophy behind BUG/65 is that I
the computer should serve as a tool in the debugging process
as opposed to a hindrance. One result of this philosophy is
that BUG/65 requires a relatively large amouat of memory
when compared to simpler debug monitors. This is the result IRq .
of a tradeoff between memory and functiomality, with +
function winning out. .

I A S ToPg P s | e W e e S T T e S -

BUG/65 is a RAM loaded machine language program
occupying BK of memory; it is self relocatable as shipped
and requires a full 48K bytes of memory. BUG/65 is also
designed to be floppy disk hased - it isn't intended to be
used in cassctte-only systems. BUG/65 was designed for use

]

; by an experienced assembly language programmer. .
BUG/ 65 |

. BUG/65 1is an original product of the McStuff

a reference manwal for

Company, which developed the product under the name "McBUG®,
which name is their trademark.

' .
an Assebly Languége Debugging program for

use with 6%@2-based computers built by : For use on the ATARI 800 or 480 computer with a
Apple Computer, Inc., and Atari, Inc. minimum of 48K of RAM and one Eloppy disk drive.

TRADEMARKS

The programs, disks, and manuals comprising
BUG/65 are Copyright (c) 1982 by
McStuff Company
and
optimized Systems Software, Inc.

The following trademarked names are used in various
places within this manual, and credit is hereby given:]

0S/A+, BUG/65, MAC/65, and C/65 are trademarks of
Optimized Systems Software, Inc.

Apple, Apple lI, and Apple Computer(s) are trademarks

This manual is Copyright (c) 1982 by of Apple Computer, Inc., Cupertino, CA

Optimized Systems Software, Ilnc., of

10379 Lansdale Avenue, Cupertino, CA Atari, Atari 4¢0, Atari 890, Atari Home Computers, and

Atari 858 Interface Module are trademarks of

All rights reserved. Reproduction or translation of Atari, Inc., Sunnyvale, CA.

any part of this work beyond that permitted by sections
107 and 108 of the United States Copyright Act without
the permission of the copyright owner is unlawful.

ik

TABLE OF CONTENTS (continued)

F YT P T W e e 2 e S g

Section 7 -- Detailed Command Descriptions 14
7.1 A -- ASCIl memory change 15
7.2 8 -- set relocation DBase le
7.3 C -~ Compare memory blocks 17
7.4 D -- Display Memory . 18
7.5 E -~ Execute command file 18
7.6 F -= Fill a memory block 18
7.7 G -~ Go to user program 19
7.8 H -- Hexadecimal arithmetic 20
7.9 I =-- disk Inventory (directory) 21 - o
7.18@ J -- create command file 21 Ry L
7.11 K -~ convert hex to decimal 21 : Ej :
TABLE OF CONTENTS 7.12 L -- Locate hex string in memory 22
. —————mm 7.13 M -~ Move memory block 22 : Ewiy
7.14 P -- select output (Printing) device(s) 23 i
Summary of Major Features 1 7.15 Q -- Quit (to OS/A+) 23 N
7.16 The read commands 24 -t
Section 1 =-- Command Summary 2 7.16.1 R ~- Read binary file 24 N
7.16.2 R1 -~ Read sector 24 1
Section 2 -- Notation used, syntax 4 7.17 § -~- Substitute {change) memory 25 ¢
7.18 T ~- Trace user routine 26 2
Section 3 -~ Address Parameters 5 7.19 U -=- call User subroutine. 26 , 4
3.1 Spaces as Delimiters 6 7.20 V ~-- Verify user registers 27 3
7.21 The write commands - 28 !
Section 4 -- Loading and Running BUG/65 7 7.21.1 W -~ vrite binary file 28 -t
.1 Specifying BU3/05*s Loaidpoint Address 7 7.21.2 Wil -=- Write sector 28 ; i
1.2 Creating a llon-Relocatable Version 8 __“.1,22 X -- change user register values 29 nog
7.23 Y -- disassemble memory block 30 :
Section 5 -- Command Entry 9 7.24 Z -- instant assembler 31 :
5.1 Command Line Cliting 9 '
5.2 Hormal and Immediate Commands 11 Section 8 ~- Special Command Modifiers 33
5.3 Commund Execution 10 8.1 Return key 33
5.3 Multinle Comnands on a Line 11 8.2 / == repeat command line forever 33
8.3 = ~- display last command linea 33
Section 6 -~ Command Termination : 12
.l Mormal Termination 12 Section 9 -~ Memory Protection 34
6.2 Error Terminat.ion 12
6.3 Command Suspension 12 Section 10 -- Memory Usage 35
6.4 Command Abort 12 : 13.1 Page Zero Sharing 35
G.5 The RESET Key 13
6.6 Manual Restart 13 Section 11 -~ Customization, Configuration 36
Section 12 -- User Command Interface . 38 1
12.1 User Command Handler Example 41 |
I
Section 13 -- Error Messayes 43 |
{continued) -

SUMMARY OF MAJOR FEATURES OF BUG/65

A full set of debugging commands - change memory,
display memory, goto user program with break
points, etc. - .

N

Binary file rvead and write, including appended
write.

A disassembler. .
An instant assembler providing labeling cépability.

Expanded command addressing caéability: hex or
decimal addresses, + and - operators
supported, relocated addresses supported.

-

Read or write disk sector(s).

Multiple commands permitted in a command line.
Command lines can be repeated with a single
keystroke or repeated forever with the
special slash operator.

Support for relocatable assemblers - the base of a
module can De specified and then used to
reference addresses in that module.

BUG/65 commands can be executed from a command file,
.and there is a command to create command
files.

Hex to decimal and decimal to hex conversions
provided. ’

Memory protection of BUG/65's code and data. BUG/65
won't allow you to use a BUG/65 command that
will destroy any part of BUG/65 itself. For
example, you can't use the Fill command to
overwrite BUG/65's code.

Page zero sharing. BUG/65 shares page zero with a
user program Dby keeping two copies of the
shared page zero locations - one for the user
and one for BUG/65 itself.

—]le-

~
SECTION 1 COMMAND SUMMARY L L <startaddr> <endaddr> <bytel> [<byteN> ...]

Locate byte string in memory block
M M <startaddr»> <endaddr> <toaddr>

This section is intended to be a handy reference
Move memory block

guide and will probably prove indispensable after the wuser
has thoroughly read through the rest of this manual. For

the experienced debug user, might we suggest at least a P p [s] [¢] Print output on Screen and/or
quick perusal of Sections 2 through 6 and Sections 8 and 9. Printer
The following table is simply a syntax summary of Q Q Quit...go to 0OS/A+
the available commands. Excepting for the first three
commandas (which are Jdescribed in Section 8), all the R R [coffset>) #filespec Read a binary file to memory
commands are described in alphabetical order in Section 7. with optional offset
R% RY {<sectornumber> [<bufferaddr> [<numsectors>]] 1}
COMMAND Read sector(s) from disk to
CODE SYNTAX PURPOQOSC memory buffer
s S <addr»>p Substitute memory, numeric mode
{RETURN } Repeat last commani line
T T (5] {<count>] Trace, with optional Skip over
/ when appended to a command subroutine calls, for (optional)
line: repeat line forever. count intstructions.
= Display last command line u U <addr> [<param>] call User routine at given
address and pass optional
parameter in X,Y registers
A A <addr>p Ascii mode memory change
v v View user registers
B B caddr»> Base address for relocation
] W [:A) <startaddr> c<endaddr> #filespec
[of C <startaddrl> <endaddrl> <startaddr2» Write a block of memory to a
Compare memory blocks binary image file, optionally
appending instead of creating
o] D «<startaddr> [<endaddr>) Display memory new file.
E E #filespec Execute a command file W3 Wt [<sectornumber> ([<bufferaddr> [<numsectors>»]]]
Write sectors from memory
F F <startaddr> <endaddr> {<value>] buffer to disk
Fill nemory block with value
X XA or XX or XY or XS or XP or XF
G G [<startaddr>) [@<brearpoint> [Rn=<value>) [I=<count>)] change user register value
Go at adidress, set optional
hreakpoint, with optional Register Y Y ¢startaddr> [<endaddr>]
value breakpoint and pass Counter. . dissasemble memory block
H H <numberl>» <number2> Hexadecimal arithmetic result Z Z <addr>p instant assembler (at address)
.1 I disk Inventory (directory listing)
J J sfilespec,string create command file -
K K <number> ’ convert hex to decimal
-—2-- .3~

Cone?

...1

or

filespec

SECTION 2: Notations Used In This Manual

The following notations are used in this manual:

Is used to indicate a numerical address parameter.

The address expression between the two
characters "< and ">" may be any valid
address as described in Section 3. For

example, <START> means that you can enter any
valid address expression to specify the START
parameter.

Is used to indicate one and only one blank. In
most cases, blanks are insignificant and any
number of them may be entered between
commands and parameters. However, in certain
cases, one and only one blank must be entered
- this blank 1is indicated Dby the "Bt
character.

Is used to specify an optional parameter. For
example, [<VALUE>) would indicate that VALUE
is an optional address parameter. You'll find
that many parameters are optional, and in
such cases logical default values will be
supplied by BUG/65.

1s used to delimit a list of choices. In such a
list, one ani only one choice may be used.
For example, “+ or -" indicates that you may
enter a plus sign or a minus sign, but not
both.

Is used to indicate a standard OS/A+ filespec.
This consists of the device name followed by
a colon and the filename. For example,
“D:DATAFILE" 1is a valid filespec for a file
named DATAFILE on disk drive one.

—g--

SECTION J: Address Parameters .

8UG/65 allows numerical addres

. i ses to be specified
in a variety of ways. You can use hexadecimal or pdecimal
notation, add and subtract terms, or add a relocation factor
to any address: The following Backus-Naur definitions
describe the various address types:

<ADDR> 3= t or - <TERM> [+ or - <ADDR>]
<TERM> s <NUMBER> or X<NUMBER>

<NUMBER> ;= <DECNUM> or <HEXNUM>

<DECNUM> ;= +<DECIMAL DIGITS>

<HEXNUM>

<HEXADECIMAL DIGITS>

In the above the only item no i
] Rl . . i t literally defi
}dehe X" item in the definition of a TERM. This i: u::;n:g
13d¥cate that the following NUMDER is to be relocated b
adding the value of the current relocation base to the valuz

of MNUMBER. Th i
o e e current relocation base is set by the “p*

All address parameters are i
o 1 4 interpreted as -bi
gosxtxve numbers in the range of 9 to 65535, Overflovlg bft
etected or reported as an error. e

Some examples wil
address expressions)? 1 help (all of these are valid

1FAl 3 hexailecimal numser.

1008 .a decimal number (one hundred}.

1800+.29 a hexadecimal .numbet plus a decimal
?:TTgréecfgsi)?valuates to 1014 hex

1+2-3+4 a long expression. Evaluates to 4.

X1234 a relocated address. If the current

relocation base has the v

. alue
$1000, then this expression will
evaluate to $22134.

——5e-

3.1 Spaces as Parameter Delimiters

BUG/0S5 uses spaces as parawneter Jdelimiters. This
makes for easier aml quicker entry of commands. However, it
does introduce some conventions regardxng the use of spaces
that you must be aware of:

* Spaces may not be embedded in a number. For example,
12 34" is interpreted as two parameters (§12
and $34) and not as the single parameter
$1234.

. Spaces aren‘t allowed between the “"X" relocation
specifier and it's associated relocated
address. For example, "X 1234" is interpreted
as two parameters. The first will have the
value of the current relocation base and the
second is $1234.

. Any number of spaces may be used to separate two
parama2ters. For example, "1234 S67R" is
a perfectly valid way of entering the two
parametars $1234 and $5678.

-G

SECTIOH 4: Loading and Running BUG/6S

BUG/65 is shipped on your master diskette as a
relocatable TOMmand file, named “BUG65.COM". Therefore,
BUG/65 functions just as does any OS/A+ extrinsic command:
simply type “BUG65" when OS/A+ prompts with Dl; (or Dn: if
you have changed default drives...see the 08/A+ manual for
more details) and BUG/65 will load into memory and relocate
itself to just above the current value of LOMEM (contenta of
§$2E7-$2£8).,

4.1 Specifying BUG/65's Load Address -

If you need BUG/65 to load at some location other
than LOMEM (which is typically around 62008 with OS/A+
version 2 and around $2C0Q with version 4), you may also
enter a load address on the OS/A+ command line. The address
must be in hex, must be at or below $9A03, and should be
above LOMEM. Remember, BUG/65 occupies 8K bytes, which
means it will occupy memory starting at the address you give
and ending $2080 bytes higher. .Y

-~ .

[D1:)BUGES 8000 2
This usage will load BUG/65 at $80P0, set its
restart point at $8200, and occupy memory from
$8000 through $9FFF.

EXAMPLE:

Q

o

P, JE

4.2 Creating a Non-Relocatable Version

In order to allow itself to be relocated virtually
anywhere in memory, BUG/65 as shippud includes a relocation
bit map and a relocation program. iIn addition, relocatable
BUG/65 always loads in at locations $9808 through $BCOQ. If
these addresses are “poison" to you (e.g., Lf you want to
use BUG/65 with a cartridge plugged in), you may wish to
produce a non-relocatable version designed to run within an

address range you pick.

SECTION 5: Command Entry

character) in ihe Lefe-nami eotomn oer cheomES L Lthe "
har r - olumn o the s8creen, ¢

zirlrebexgnigrm?nq entry mode. Any data typed at that po?::
yill be 2 T into the command line buffer - the comm

n't exe%uted until you type RETURN. Yoy can ent e

TT:: cgm?unds in one commant line as will fit in the coir a:

Line u fef (100 characters). As soon-as you type m::

JUN, you !l leave command entry mode and BUG/65 i1l

begin executing the command(s) in the command iine Wit

1f so, USING A 48K SYSTEM, simply . specify the
loadpoint, as shown in the preceding section (e.g, via
“8UG65 7000") and allow BUG/65 to load and relocate. Then
exit to OS/A+ (via Quit) and use the 0s/A+ intrinsic command
SAVE to save a non-relocatable version. The address range

Y .
to be SAVEd may be calculated as follows: ou can tell the difference between command entry

mode and command exe ot ade. In command Gllt!y mode, the
N cution m
cursor 1is 151)13 d 2 T
\J [o] | y2d. When a command is executing, the curso

SAVE filename.COM loadpoint+$§200 loadpoint+$2000 ﬁg:", is blanked,
Thus, if you had specfied “gUG6S 7600", you could save the ; rE
non-relocatable version via the command ¥?:htIYB;?/zgte§lTore than 188 characters in
¢ $ G wi beevp the bell and
any m . i . N not allow
SAVE BUG7000.COM 7200 9080 ’ "iZhe?thf?drigisga :o be input. At that point, you may
. o Risd £, o o execute what's in the co
L . .. Ptk far, or edit so mmand line so
thus also giving-it a name which will later remind you where ’ - the BACKSPACE kZ;.°h°faCters out of the command line with -

it will load at. To execute this non-relocatable version,
simply type in its name (BUG700J in the example shown) .
5.1 Command Line Editing

When entering commands i
. 2n « YOu may edit mistakes wi
;2? BACKSPACE key. The BACKSPACE will move the cursor V;th
col::“ to‘the left and delcete whatever character was in thgg
‘ . - arun':. sdnfor:u?ately, the normal system editing facilities
| ! pported. This iy be i i i
‘ B06 765 doun Reyooard taput cause of the manner in which

VT WA g M

o v—-— T -

——g—-

3
i

R, Y

e
k]
e

LA
-
-~
LY

BUG/65 has two types of commands - normal and
jmmediate. Normal rcommands are those that jon't require
interaction with the operator for their execution. Immediate
commands do require operator interaction. Normally,’ you'll
never be aware of the distinction between the two types -
comnand entry “flows" without any consideration of the
command type required. The only difference is that Aan
immediate command must be the first command entered in a
command line. Once an immediate command is entered, BUG/65
will begin interacting with the operator for further input.
Since this interaction is required for completion of the
command, it doesn't make sensu to allow immediate commands
to be “stacked" in the middle of a command line for
execution between oOther commands. If you try to enter an
immediate command in the middle of a command line, you'll
get an “IMMEDIAYE ERROR" error message ant find yourself
back in the command entry moJde.

The immediata commands are the "A" command (ASCIT
memory change), the "3" command {hex memory change), the “X*
command {(change user reyisters), and the "2" command
(1nstant assembler).

5.3 Command Execution

for a normal type command, BUG/H5 will ‘begin
command execution as soon as you type KRETURN. For imnmediate
type commands, BUG/65 will begin command execution as soon
as you type the command character (provided that character
is the first character in the command line).

-——13--

'Multiple commands may be enterad on th
command line. Normally, successive commands in the zom:::§
line don't require command scparators between them other
than at least one space character. The exceptions to this
are commands for which an optional parameter is bei
defaulted. For example, the display memory command (“D") ;:?
have an optional parameter specified as the end of the areg
of menory to be displayed. If that ending parameter isn't
specxfxed, BUG/65 will default the end to the start lus
eight byte§. Lf you wanted to enter two succesgive disgla
commands in the command line without defaulting the eng
parameters, you could type '

D 1008 1191@ D 2000 2010

and no command separators would be required because BUG/65
knows that the "0" command only has two parameters and will
1ntg:p;uL further characters in the command line as the
beginning of a new command. However, if you wanted to
default the ending address of the first display command

then you'd have to insert a command separator so thaé BUG/G%
kpows that the first display command is finished. If ou
q;dn't do this, then the second display command "D" wouldyb

interpreted as the sccond parameter of the Ffirst displ v
command (the end address would be interpreted as $@D pT:Y
command . separator 1is a comma, 80 in this case ou. '8
enter the commands as follows: Y woutd

D j1ou, D 2000 2010

[T

SECTION G: Command Termination

This section describes the many ways that a
command will stop. .

6.1 Normal Termination

|

once a command line is given to BUG/LS fur
execution, BUG/65 will execute all of the commands in the
line to conclusion before returning to command entry mude.
It's possible to instruct BUG/65 to execute a command line
“forever® {see Section 8.2), in which case BUG/05 will never
come back to command entry mode until you manually intarvene
{with ESC or BRIAK - scee Section 6.1)

6.2 Error T2rmination
If an error occurs in command execution, BUG/GS
will beep the bell and display o short error message in

English indicating the cause of the crror. Command execut ion
will stop and you'll enter the command entry mode. Any
commands in the command line after the command which caused
the error won't be executed, (You should also Le awar: that
BUG/65 will close any file that has been opened using INCH
number one when any error occurs.) (A complete list of
error messages is in Section 14.)

6.3 Command Suspension

Once BUG/65 beqging gxecutlnq a commatil]inn, you
may temporarily suspend command execution by hitting the
space bar. This will put BUG/65% in a "hold” contitinn, At

which point‘you have two alternatives: you cdn restart the
command by hitting the space bar ajain, or you can ahort the
command with ESC or URIEAK.

6.4 Comunand Abort

You can Aabort any command that 1is executing
(except for the read and write disk commands) by hitting the
ESC or BREAK keys. BUG/6% will stop executing the command
and you'll enter commandi entry mode.

-—12--

6.5 The RESET Key

BUG/65 traps the RESET key so that hitting RESET
will bring you back to BUG/65. RESET will stop any command
that is executing. You'll see the BUG/65 version and
copyright prompt, and you'll be in command entry mode. RESET
will reset all of BUG/65's internal stuff except for any
user defined or modified parameters. For example, the
user's registers, the current relocation base, etc., aren’t
cleared on a RESET - they'l]l retain whatever values they had
before the RESET. (All of this depends, however, on the
fact that the reset vectors haven't been modified by the
user - either by wusing a BUG/65 command or by a user
program. If you've modified the reset vectors, then the
action of the RESET key is your responsibility.)

6.6 Manual Restart

Since BUG/65 is relocatable, the manual restart
point (coldstart) depends upon where it has been relocated
to. If you specified an address to load BUG/65 when you
gave the OS/A+ command line (e.g., BUG65 4600), then the
coldstart point is $200@ greater than the address specified,
and you may use 'RUN address' from OS/A+ if desired (e.g,
RUN 4208 if the original command was BUG65 4000). In any
case, you may inspect location $000C (via the BUG/65 command
‘D C') to determine the coldstart point. The 6502 word
address in locations $8C and $6D (LSB, MSB order) points to
BUG/65's restart point. The result of a manual restart is
the same as if the default RESET key processing occurred
(see section 6.5).

-e]l3~=

SECTION 7: Command Descriptions

Throughout the descriptions of the commands,
comments are sometimes presented in the command line
examples. These are denoted by the characters “*/“. Anything
gppearing on a line after these characters is a comment and
is NOT part of the command line being exemplified.

The commands are presented in alphabetical order.

»

R Y

A - Change Memory, ASCII mode

A <ADDR>P

The A command allows you to replace the contents of

memory bytes beginning at location <ADDR> with ASCII characters.

As soon as you type the required space character after the

address, BUG/65 will prompt you with the current contents of the
memory location at <ADDR>. Those. contents will be displayed as

an ASCII character. At that point, you have the following

options:

1.

will

Typing a SPACE will cause the cucrrent memory
location to be skipped and the contents of
the next memory location to be displayed.

Typing an UNDERLINE will cause the current address
to be decremented by one. The new address is
then displayed on the next line of the screen
followed by the contents of the new memory
location.

Typing a RETURN will cause the address of the
current memory location to be displayed on
the next line of the screen followed by the
contents of the current location.

Typing ESC will get you out of the command and back
_into command entry mode.

Typiﬂb‘any character other than "€" will cause the
ATASCII value of that character to be entered
into memory at the current address. The
address 1is then incremented by one and the
contents Of the new memory location are
displayed.

Typing the character “@" causes the next character
typed to be entered into the current memory
location as its pure ATASCII value without
any of its control character significance.
For example, typing "8 ESC" will insert the
ATASCII value for ESC into memory. The
address is then incremented by one and
operation continues as in 5. above.

After you exercise any option except option 4., BUG/6S
again prompt you with the contents of the current location

and you may then choose from any option again.

--15--

7.2 B - Set Relocation Base

B <ADDR>

The B command will set the value of the relocation
base to ADDR. The relocation base is intended for use with
relgcating assemblers. In a relocatable environment, listings
typically are addressed from location zero. When a module to be
debugged is subsequently loaded into memory, it will have a
relocation offset added to the addresses in the listing. The B
command allows you to s8set the relocation base to the load
address of the module you're working on and then to reference
addressgs w;thin the molule by simply prefixing each address
expression with the relocator symbol "X".

For example, suppose that a relocatable module is
loaded at location $5380 in memory. Suppose further that we
want to Jdisplay the contents of a memory location which is $§230
from the beginning of the module. The following commands would
do the job:

8 5380, D X238

The world isn't overrun with relocating assemblers for
the §TAR¥. However, until it is, the B command has other useful
applications. These take advantage of the fact that the
relocation base value is a variable which can be modified during
comqand execution. For example, suppose you know that the
string of characters "ABCD" is stored somewhere on ‘a diskette
and you want to find the sector that contains it. The following
comnands will do the trick:

B 1

D X, RY X 4000 1, L 4000 407F 41 42 43 44, B X+1/

eml6-= .

This uses some commands not introduced yet, but this
is what happens: First, X is set tol with one command line.

_Then a second command line will display memory at the location X

(so you'll know where you're at as you step through), read
gector number X into memory locations $4000-3427F, locate the
string "“ABCD" in that sector buffer, then bump X by one for the
next sector. The slash at the end of the command 1line means
that the command line will execute forever. What will happen is
that BUG/65 will continuously read diskette sectors. For every
sector read, you'll see at least a memory display of eight bytes
beginning at address X (which is the sector number) . If the
Locate instruction finds the gtring "ABCD™ in the sector buffer,
it will display the location of the string. At that point, just
hit ESC to stop the command, and display the value of X ("D X
RETURN"). The sector containing the string willreither be the
value of X or one before it, depending on how fast your ESC was.

7.3 C - Compare Memory Blocks

C <STARTBLOCK1> <ENDBLOCK1> <STARTBLOCK2>

Compare s used to compare the contents of two blocks
of memory. The block of memory beginning at STARTBLOCK1l and
ending with ENDBLOCK1 is compared to the same size block
beginning at STARTBLOCK2. If both blocks are the same, then
there will be no output. If any bytes in the blocks differ,
then BUG/65 will display a line of data in the following format
for every byte that is differents:

AAAA = BB CCCC = DD
where AAAA = the hex address of the differing location
in the first block, BB = the hex contents of location RAAA, CCCC

= the hex address of the differing location in the second block,
and DD = the hex contents of location CCCC.

“nl7--

7.4 D - Display Memory

D <START> [<END>]

The D command displays the contents of the memory
block beginning at START and ending at END. If END isn't
specified, then the default value of START+7 is used. The
memory block is displayed in the following format:

AAAA = BB BB BB BB BB B8 BB BB ceeeeccee

where AAAA = the hex address of the first byte in this

line, BB = the hex contents of succeasive memory locations

beginning at 1location AAAA, and C = the ASCIIl character

gnterpretacion of the positionally corresponding BB value of the
yte.

7.5 E - Execute a Command File

E #filespec

The E command is used to execute a command line from a
command file. The file specified by filespec must consist of a
line of BUG/65 commands and parameters and must be ended with an
ATASCII EOL character ($9B). BUG/65 will only execute one
commnand line from a command file and then it will stop reading
the file. Command files can be chained however, so that the
last command in onae file can execute another command file. An E
command ashould be the last command in a command line because any
commands after the E in the line won't be executed.

7.6 F - Pill a Memory Block with a Value

F <START> <END> [<VALUE>]

The F command will £ill the block of memory beginning
with START and ending with END with VALUE. 1f VALUE isn't
specified, then zero will be usad. Note that VALUE is a byte
value ~ the least significant byte of the 16-bit VALUE will be
used for the fill.

-=18-- .

7.7 G - Goto a User Program

G [<START>] [@<BRKPOINT> [RN=<VALUE>] [I=<counT>]]

The G command will execute a user program beginning at
START. If START isn't specified, then execution begins at the
current value of the user's PC register. BRKPOINT is an
optional breakpoint. If the user's program trys to execute the
instruction at BRKPOINT, the program will break back to BUG/65
and BUG/65 will display the contents of the user's registers at
that point. Examples: .

G 1000 /* go at location $1000, no breakpoint

G €4300 /* go from wherever our PC was and break
/* at location $4399

A breakpoint may be conditionally qualified by a
required value in a specified register. “RN=<VALUE>" will tell
BUG/65 to break at that point only if the value of user register
“N* egquals VALUE. If that condition isn’'t met, then the user's
program is allowed to continue executing at the location of the
breakpoint. (The instruction that was at the breakpaint
location WILL be executed.) The mnemonic names of the registers
that may be specified for "N" are: A, X, Y, S, and F, which
stand for the wuser's A, X, Y, Stack, and Status (flags)
registers respectively. (Note that only the least significant
byte of VALUE is used for this qualification.) .

Example:

G 1900 @1422 RX=33 /* go from location $1080 and
/* break at location $1422
/* only if register X equals

R /* $33

A Dbreakpoint may also be qualified with an iteration
counter. “I=<COUNT>" tells BUG/65 to allow the execution of the
instruction at the breakpoint COUNT times before breaking.

)

Example:

G 1000 82300 1=2 /* go from location $1808 and
/* break the second time we hit
* the instruction at §$2309

[y Y- Yo

The register and iteration qualifications may be used
together. 1In this case, the register condition must be met
before the iteration counter 1is decremented. As in the
following example:

G 1000 81234 RA=58 I=3 /* go from location $1300
/* and break the third time
/* the instruction at loc-~
/* ation $1234 is executed
/* with register A equal
/* to $50

A1l of this flexibility isn't without its price,
however. Because BUG/65 has to do quite a bit of evaluation at
every breakpoint before deciding if the break condition has been
met, Jdon't expect to be able to conditionally pass through
breakpoint instructions at real-time speed. As long as you
never execute the instruction at the breakpoint, you're OK, but
as soon as BUG/65 gets the break, expect several hundred
instructions to be executed before your program is given back
control after the break isn't met.

Also, BUG/65 was NOT designed to allow breakpoints in
PROM resident code. If you attempt to set such a break point,
or if you try to set a breakpoint at a non-existent memory
location, you'll get a “BREAKPOINT ERROR".

One other thing. BUG/65 will automatically remove
breakpoints from your program after a break occurs. Breakpoints
aren't left set after the break is performed. .

7.8 i - Hexadecimal Arithmetic

I «NUMBERI> <NUMBER2>

The H command will calculate the sum NUMBERL + NUMBER2
and the difference NUMBERl - NUMBER2 and display the results on
the next line of the screen as two hex words. The sum is the
firast word displayed, the difference is the second.

-—20--

, \
B

7.9 1 - Display Disk Directory

I

The 1 command will display the directory of the
diskette .in drive one. The display can be suspended or halted
with the SPACE or ESCAPE keys respectively.

7.19 J - Create a Command File

J #filespec, string

The J command allows you to create command files for
execution by the E command. The string in the command is any
string of valid BUG/65 commands. The string will be written to
the file specified by filespec in the format expected by the E
command. Please note the comma after the filespec - it's
required, else BUG/65 won't know where your filespec stops and
your command string starts. Also note that the J command
doesn't allow multiple commands in the command 1line to be
executed after the J command ~ everything in the line after the
filespec and up to the RETURN is written to the flle instead of
being executed.

7.11 K - Convert Hex to Decimal

- o 2 = o = = > = S 4 -t o n

K <NUMBER> -

The K command will convert NUMBER to a decimal number
and display the result on the next line of the sacreen. NUMBER
can bhe any valid address expression. A

To convert decimal to hex, just display memory at the
decimal location of the number you want to convert. The hex
equivalent of the decimal location appears in the display output
as the hex word on the beginning of the line. For example, to
convert 1000 decimal to hex, just execute the command "D .1€00".
You'll see the hex conversion of 10U® as the first hex word on
the next line.

-=21--

i
Lk
4
. ‘
B
3‘v.

7.12 L - Locate a Hex String

L <START> <END> <BYTEl»> <BYTE2> ... <BYTEn>

The L command . will K search the block of memory
beginning at START and ending at -END for a hex string. The
hex grring is defined by BYTELl...BYTEn, which are
interpreted as the hex bytes of the pattern string. (only
the least significant bytes of the address values are used
for each byte in the string.) Wildcard bytes which will
match any byte in memory may be specified by the character
#a* iy the string. BUG/65 will output the addresses of
every occurrence of the string found in the block. For
examples: .

L 1800 10¢F 41 42 43 /* will locate any occur-=
* rences of the string “ABC"
/* in the memory block
/* $1883 to $10FF :

L 1800 2000 10 * 208 /* will locate any occur-
. * rences of a three-character
/* string which begins with
* $10 and ends with $28 in
/* the memory block $1200
/* to $20060 . .

"7.13 M - Move a Memory Block

-y > = m e e e e e e e e
\ B

M <START> <END> <TO>

The M command will move. the block of memory
beginning at START and ending at END to TO. BUG/65 will
take care to handle overlapping moves correctly, either for
moves up or down.

-—-22-- .

7.14 P - Select Output Devices

= . = = T - - - -

p [s]1 (r]

The P command is used to select output to either
the screen ("S") or the printer ("P") or to bpeth ("SP").
For example:

/* turns screen output on, printer output off
turns printer output on, screen output off
4 /* turns both screen and printer output on

/* turns both outputs off - commands will

/* still be accepted and executed, you just

/* won't see their entry or output anywhere.

TUU R
nmuovwn
~
.

In addition to allowing you to list BUG/65 results
to the printer, this command was designed to allow you to
debug the genecration of intricate screen displays without
having the outputs of BUG/65 commands scroll your display
off the screen. It is a little crude, and might have a few
problems depending on what your program has done to 0S5, but
is handy to have in emergencies. {The LFFLAG and NULFLG
bytes in the Configuration Table can help you here - see
section 11.) . .

7.15 Quit to 05/A+ command

The Q command will coldstart DOS. The results are
eggentially the same as when you power-up the machine.

i
A

Y, P

7.16 Read Commands

7.16.1 R - Read a File

R [<OFFSET>] ¢#filespec

The R command is used to load binary files. If
OFFSET is specified, then OFFSET. is added to tpe load
address(es) specified in the file, and the data will be
loaded at the loading point{s) plus OFFSET. This allows you
to load a file into a different memory location than where
it is origined at. After the file |is %oadud, - the l1oad
starting point specified in the file is placed into the
user's PC register.

BUG/65 supports concatenated binary file scgtioqs
as described in the DOS 2.9S manual. If such a Eng is
loaded using the OFFSET option, however, ALL file §egtxoqs
will be loaded starting at the load addresses specxflgd in
the file plus OFFSET. In addition, the user's PC register
will contain the value of the load point of the last file
section loaded (not plus OFFSET).

7.16.2 RE - Read Sector(s)

Rt [<SECNO> [<BUFFER> [<«NOSECS> 1]]

The RY command allows you to read a sector vr a
group of sactors from a diskette in disk drive number oune.
SECNO specifies the sector number to be read anquefaults to
one. BUFFER specifies the buffer the scctor is to be read
into and defaults to BUG/65's loadpoint plus $2000. NOSECS
specifies the number of sectors to read and defaults to one.
If more than one sector is specified, then consgcutxve
secturs are read sequentially into memory beginning at
BUFFER.

-—24--

A e

5 <ADDR>p

The S command allows you to replace the countents
of memory bytes beginning at location ADDR with numerical
values. As soon as you type the required space character
after the address, BUG/65 will prompt you with the current
contents of the memory location at ADDR, Those contents
will be displayed as a hexadecimal byte vaiue. At that
point, you have the following optinns:

l. "Typing SPACE will cause the curreat memory
location to be skipped and the contents of the next memory
location to be displayed.

2. Typing an UNDERLINE will cause the current
address to .be decremented by one. The new address is then
displayed on the next line of the screen followed by the
contents of the new memory location.

. 3. Typrng o RETURN will cause the address of the
curreft ‘memory location to be displayed on the next line of
the screen followe:d by the contents of the current location.

4. ‘Typing ESC will get you out of the command and
put you hack into command entry mode.

5. Typing an address value (any valid address
expression} will cause thar value to be cntered into memory
at the current address. The address is then incremented hy
one aml the contents of the new memory location are
displayed. (Unly the least significant byte of the address
value will be entered into memory.) ’

After you exercise any option except option 4.,
BUG/65 will again prompt you with the contents of the
current memory address and you may select any of these
options again.

. Y

7.24 Z ~ Instant Assembler

Z <ADDR>Y

The 2 command allows you to assemble instructions
to be stored in memory at ADDR. Immediately after typing
the SPACE character {(or RETURN, which is allowed as well),
BUG/65 will prompt you with the current program counter
value of the instant assembler (which initially will be

2;33___f_:_?:fiiiff?if_TfT?iZ_?l?SE ADDR). At that point you may type in a valid asgsembly
language instruction. The format for an instruction line
is:

Y <STAKT> <END>

The Y command will dJdisassemble instructions in [<LABEL>] <OPCODE» [<OPERAND>]

memory beginning at START and ending at ERD. The foltowing
conventions are used in the disassembly:

LABEL may be any label in the form "Ln®, where .*n"
may be any digit from zero to nine. OPCODE may be any valia
MOS Technology instruction mnemonic or one of two pseudo-ops
{described below). OPERAND, if allowed by the addressing
mode of the instruction, may be any valid address
expression. At least one space must separate a label from
an opcode or an opcode from an operand.

————~

1. Standard MOS Technology mnemonics are used for opcodes.

Hada"
.

2. Illegal opcodes are displayed as

3. All numeric operands are displayed as hexadecimal

numbers. After typing your instruction, type RETURN and the

instruction will be entered into memory at the current PC if
it doesn't contain any errors. If there are any errors,
then BUG/65 will display an error message and will reprompt

4. Zero page operands will display as two hex digits, all
other non-immediate operands will display as four hex

d1g1ty. X
aigits you with the current {unchanged) PC. If there are no

. N 1 is di 1 :d for accumulator mode operands. errors, then pUG/GS will dxsylay the ob]ec; code c;eated by
5 © operand 1s displaye ¢ P . the instruction to the right of the instruction on the
screen and will prompt you with the PC of the next

instruction on the next screen line. You may exit the

instant assembler by typing ESC at any time, or by typing
RETURN by itself in response to the PC address prompt.

The indtant assembler provides you with two
pseudo-ops. “/" followed by an address will change the PC
to that address. It acts like an ORG (“*=") pseudo-op. For
example, "/4000" will set the PC of the next instruction
location to $4909. "+" followed by an address will insert
the value of that address (least significant byte) at the
current PC and bump the PC by one. It acts like a DB
(.BYTE)} pseudo-op. For example, "+34" will insert the hex
byte 34 at the curreat PC. N

--39-- .

ww3)--

SECTION 9: BUG/65 Memory Protection

) BUG/65 won't allow you to modify any portion of
it's code or variable storage areas with a BUG/65 command.
Any attempt to do so will result in a “PROTECTION ERROR".
For example, if we assume that the BUG/65 was loaded via the
command “BUG6S 2080", the following command will cause an
error because it attempts to move a memory block into
BUG/65's area;

M 4000 4UFF 2000

BUG/65 protects all memory from loadpoint to
loddPuintf$1FFF in this manner, where 1loadpoint i3 that
specified in the invoking OS$/A+ commnand line (or LOMEM, if
0o loadpoint is gpecified). (The memoury protection feature
_ ;a;l b? turned off by changing a byte in the Configuration

able.

T W

SECTION 18: BUG/65 Memory Usage

BUG/65 uses memory from $88 to $§XX and loadpoint
to loadpoint+$@1FF for variable storage. You can determine
the value of XX by looking at the LSTPG? byte in the
Configuration Table. It uses memory from loadpoint+$200 to
loadpoint+$1FFF for code storage.

18.1 Page Zero Sharing

BUG/65 will share the page zero memory that it
needs with a wuser program. It does this by keeping two
copies of these page =zero locations. when BUG/65 1is
running, the BUG/65 page zero locations contain BUG/65's
stuff. When a Co is done to a user program, BUG/65 will
save it's own page zero data and replace it with the user's
data. If a user program breaks back to BUG/65, the reverse
operation is performed.

In addition, BUG/65 will translate any command
reference to these shared page zero locations so that the
user may modify or inspect his own page zero data. It does
this by translating any command reference to the user's page
zero data to the location where the user's copy of the data
is actually being stored. This is all transparent to the
user. For example, you can fill memory from $88 to $FF with
zeros without crashing BUG/65. If you then display $88 to
$FF, you will see zeros. They aren't really in locations
$80 to $FF of course, but they will be when you run your
program. (This is the reason it may seem to take an
extraordinarily long time to perform certain commands
(Fills, .. for example). The reason is that every memory
tfeference has to go through this translation process - both
to translate zero page references if necessary and to check
to make sure that BUG/65 isn‘'t being overwritten.)

-—35-=

SECTION 11: Customization with the Configuration Table

" - = 8 0 S = 8 = = = S 4 o - > -

Therw is a Configuration Table 1located near the
beginning of the code segment of BUG/6S. By changing this
ddta, you can customize some BUG/65 stuff. In the table
which follows, "+$xxx" means that the configuration value is
located $xxx bytes above the loadpoint address, where
loadpoint is the address specified in the invoking O0S/A+
command 1line (or LOMEM, if 1loadpoint is not specified).
Example: if the invoking command was "BUG65 6080", then
DISPV will be located at $6209.

NAME LOCATION FUNCTION/COMMENTS

DISPV +5209 A JMP instruction to BUG/65's display a
character routine. All chars displayead
on the screen go through here. The char
to be displayed is passed in reg A.

PRINTV +§20C A JMP instruction to BUG/65's print a
character routine. All chars sent to the
printer go through here. The char to be
printed is passed in reg A.

GETKYV +$20F A JMP instruction to BUG/65's get a
keyboard character routine. All keyboard
reads go through here. The key read is
returned in reg A.

TSTKYV +$212 A JMP instruction to BUG/65's test for a
key waiting routine. All tests for key
waiting go through here. If no key is
waiting, the equal flag is returned set.
‘(The key is NOT returned by this routine
- GETKYV will be called to read the key
if there's one waiting.)

BEEPV +$215 A JMP instruction to BUG/65's bell

' routine. All becps are generated through
here. To eliminate the beeps, just patch
this out with an RTS.

CHRCLR +$218 Character background color byte value.

CHRLUM +5219 Character luminance byte value.

BRDCLR = +§21A Border color byte value.

EOLBYT +$218 This is’ the byte sent to the printer at
the end of a line. Normally seet to @éDH
or 9BH.

-=36-- .

~
LFFLAG +§21C 1f nonzero, then a linefeed character |is
sent to the printer after every EOLBYT.

NULFLG +§21D If nonzero, then 40 nulls will be sent
to the printer after every line. Used to
flush the printer buffer maintained by the
ATARI OS so that all lines will print
immediately. .

PROTFG +$21E If nonzero, then BUG/65 will not allow
itself to be overwrittem with a BUG/65
command. If zero, then BUG/65 will allow
itself to be modified.

MCBEND +$21F High byte of end address of BUG/65's
code. Normally set to high byte address
of loadpoint+$2900 (e.g, §50 if the
invoking OS/A+ command were BUGE5 3900).
You would change this {if you added any
user command handlers after BUG/65. The
handlers would then be included in
BUG/65's memory protection features.

To change anything in the Configuration Table, you
must first disable memory protection by writing a small
program to stuff a zero into PROTFG. For example, assuming
that the loadpoint is $2000 (command line was BUG65 2000),
then using the instant assembler, you could enter “LDA 0,
STA 221£, RTS" at location $5000, and then run the program
with the *"U”" command by entering “US00& <RETURN>®. This
will disable memory protection. Then make your changes,
reecnable memory protection if you want by storing $FF into
PROTFG, then dump the modified BUG/65 to diskette.

Be careful when changing any of the JMP
instruction vectors. Since BUG/65 1is constantly calling
these locations, the instant you change them control will be
passed to the new routine. Your replacement routines had
better be in place and ready to run or it's ga-ga time.
Actually, you will probably have to change all three bytes
of a vector at once with a small user program.

Also, be careful about calling the vectors DISPV,
PRINTV, GETKYV, TSTKYV, and BEEPV. Since they use BUG/65's
page zero data to operate, they can't be called from a
running user program without first calling ‘the MCBGPD
routine defined in the User Program Interface section.

—-37-=

e .

q

4
i

TR A T L
SRR W3 -4 T W Wis 7}

oy b § =

SN a2 B v e - it e

SECTION 12: User Command Interfgce

It's possible to add commands to BU3/65. The

hooks to do so have been provided in a group of vectors
located at loadpoint+30220 called the User Commani Interface
Vectors. These vectors provide most of the interfaces to

BUG/65 that you'll need to add commands.

The commands you add may be activated by any non-
BUG,/65 command char. For example, you could add the numeric
commands “1" through “9". When BUG/65 recoynizes a non-
alphabetic command character, it will <call the vector
USERCMD. In it's {nitial state, USRCMD is just a 3-byte
subroutine that returns the equal flag reset. BUG/65
assumes that the equal flag being reset means that a user
comnand handler considers the command illegal. In this
case, BUG/65 will report a *“CMD ERROR". If USRCMD returns
the equal flag set, then BUG/65 assumes that a user command
handler processed the command. In this case, BUG/65 won't
generate a command error, and will proceed to process the
rest of the command line.

So, to add your own command handler, just patch a
JMP to your handler at USRCMD. BUG/65 will pass you the
command character that it considered illegal in reg A. On
return, you must indicate the status of the command -~ equal
set means you handled it, equal reset means you didn't like
it either.

--38-~ .

There are a number of other vectors in the User
Interface group which you may use to process the command.
Here's the complete list (and, as in the previous section,
the string “+$xxx" indicates a displacement from the
loadpoint}): -

NAME LOCATION FUNCTION/COMMENTS

- USRCMD +$220 Subroutine called by BUG/65 on every non

alpha comand char. Returns equal set if
command handled by user, else equal

reset. .
GETCHR +$223 User handler can call this to get the
next char from the command line in reg
A.
PUTCHR +$226 User handler can call this to return the

last char taken from the command line.
The char itself doesn't have to be

passed. This is used to put chars back
that you've taken but don't want = like
an EOL.
GET!1HX +3229 User handler can call this to collect a
hex addreses from the command line. The
. address is returned in a word at

SFE,$FF. If next command line chars are
not a valid address, zero is returned.

GET2HX +5220 User handler can call this to collect
two hex addresses from the command line.
The first address is returned in a word
at S¥C,SFD, the second at $FE,$FF. Zero
is returned for any invalid address.

GET 3HX +922F User handler can call this to collect
three hex addresses from the command
line. The first address is returned in a
word at S$FA,$FB, the second at $FC, $FD,
and the third at §FE,SFF. Zero |is
returned for any invalid address.

%

-=39-- -

el

¥ Trvry

ADRCHK

ERRPAR

DHXBYT

DHXWRD

CTBPTR

LSTPGO

+5232

+$235

+$238

+$238

+$23E

+5240

User handler can call this to perform

the usual BUG/65 address checking and

translation. The checking refers to not

allowing BUG/65 to be overwritten. The

translation refers to correcting user

page zero addresses. The user handler

passea the address to check in reg X

(LO) and reg Y (HI). If the address

points into BUG/65, a "PROT ERROR" will
occur, and the user handler will not be

returned to. If the address references a

user page zero value that is being

stored somewhere else by BUG/65, then the
address of where the actual user page

zero byte is located will be returned in

reg X (LO) and reg Y (HI).

The user handler can JYP to here to
report a parameter error. There is no
return back tu the user handler. BUG/65
will abort command line processing.

The user handler can call this to
display a hex byte. The byte is passed
in reg A.

The user handler can call this to
display a hex word. The hex word is
passed in reg X (LO) and reg Y (HI).

This is a pointer to BUG/65's jump table
for the alphabetic comandsa. Every letter
has a word entry in this table. The
entry is the addreas of the handler for
that command minus one. The first word
in the . table is the address minus oOne
far the "A" command, the ltast is the

game for the "2 command. [f you want,
you can change this table to point to
your own comand routines, thereby

changing the BUG/65 command set.

This is the address (byte value) of the
last page zero location used by BUG/65.
You can use this to locate free page
24ro memory for your own use. (See the
example user command listing.).

Y, J .

E4s SPECIAL NOTE ®%%**

All of the above routines assume that BUG/65 data is in
page zero. THEY WILL NOT WORK if called from a running user
program for that reason, unless the user program manages page
zero ﬂxth the following two routines:

MCBGPQ +5241 Assumes BUG/65 data is in page zero.
Saves BUG/65 page zero and replaces with
user page zero. Use this routine from a
running user program before calling any
of the above routines.
USERPO +$244 Assumes user data is in page zero. Saves
user page zero and.restorsg BUG/65 page
zero. Use this routine fxom a running
user program after calling any of the
above routines to restore the running
proyram's page zero data.

Herv is an assenbly listing of an example wuser

comand. This command will be command “1". It will
calculate and display an exclusive-or checksum byte on a

range of memory. The syntax of the command is:
1 <START> <END>

NOTE: It 1s highly recommended that user commands only be
patched into' a non-relocatable version of BUG/65. See
Section 4.2 for instructions on making a non-relocatable
version with a user specified loadpoint.

"".........'....'.....'.-l..t...'..............."
;
; EQUATES INTO BUG/65:

loadpoint = 2277
lp = loadpoint

to be determined by userll
just an abbreviation

MCBERD = IpeS21F BUG/65 END CODE MSB
DISPV = lper$289 LISPLAY CHAR
USRCMD = lp+$220 USER COMMAND VECTOR
GET2HX = lp+$22C GET 2 HEX PARAMS i
HEX1 = $FC HEX PARAM 1 RESULT
HEX?2 - SFE HEX PARAM 2 RESULT
ERRPAR = lp+$2135 REPORT PARAM ERROR
DQXBXT a lp+3$238 DISPLAY HEX BYTE
%bTPbD - 1p+5249 LAST BUG/65 P8 BYTE USED
EQL - $98B END OF LINE CHAR

-—3] -

TED RS ke A s e o wba

'.t-ttlt.tt-.nin--ntl-t-.-tll.iti-th.tt--ttltn.t.llt

.
H

USERC!

CMDOK

PARMER

PARMOK

Loop

H
NXTEOR

LONE

*= USRCMD PATCI US INTO BUG/65
JMP USERCL

LE] 1p+$2000 RIGHT AFTER BUG/65 CODE
cMP 'l COMMAND "1" 2?2

BEQ CMDOK YES

RTS ELSE RTN EQUAL RESET - ERR
JSR GET2HX GET START, END

LDA HEX1 MAKE SURE BOTH SPECIFIED
ORA HEX1+1

BEQ PARMER OR ELSE ERROR

LDA HEX2

ORA HEX2+1
BNE PARMOK

JMP ERRPAR REPORT PARAM ERROR
LDX LSTPGY LAST BUG/65 PO BYTE

(WE'LL USE THE NEXT
FOR OUR ACCUMULATOR)

LDA $0 CLEAR ACCUMULATOR
STA 1,X

TAY INIT Y PLR INDEX
LDA HEX2+1 PAST END ADDRESS ?
CMP HEXL ¢l

BCC DONE YES

BNE NXTEOR NO

LDA HEX2

CMPp HEXL

BCC DONE YES

LDA (H4EXL), Y CALC EOR CHKSUM
EOR 1,X EOR WITH ACCUM
STA 1,X AND SAVE IN ACCUM
INC HEX] BUMP PTR

BNE Loop

INC HEX1+1
JMP LOOP

LDA $1EOL TO NEXT SCREEN LINE
JSR DISPY

LDX LSTPGY RESTORE ACCUM ADDRESS
LDA 1,X DISPLAY HEX RESULT
JSR DHXBYT

LDA $0 RTN OK (EQUAL SET)
RTS

‘e MCBEND CHANGE BUG/65 CODE
«BYTE >{*+SFF]) END BYTE TO INCLUDE
- EHD THAT'S ALL FOLKS

—f 2= .

Come v

e B SRV e A NS e e ¢ @

7.18 T = Trace a User Program

T [S) [<COUNT»]

The T command will single-step through user
program instructions beginning with the instruction at the
current user PC register. The number of instructiouns to be
executed are specified by COUNT, which defaults to one. If
“sS* is specified, then all of the instructions in a
subroutine are counted as one instruction for tracing
purposes = the trace {is turned off until return from the
subroutine ("S" stands for “"skip the subroutine”). After
every instruction traced, BUG/65 will display the contents
of the user's registers. Some examples:

7.20 V - Display User's Registers

'
i
{
:
i
i

v

The V command will display the contents of the
uger's registers in the following format: '

A X Y SP NV BDIZC PC INSTR
HE M HH HH BBDBBBBB HHHH LDA 1000,X

T /* will execute one instruction and then

/* display the register contents This is interpreted as follows:

the hex value of the A reg

A =
TS : . /* will execute five instructions, displaying X = the hex value of the X reg
/* registers after each instruction Y = the hex value of the Y reg
Sp = the hex value of the stackpointer
TS 19 /* will eéxecute 16 instructions. 1f any of N = the binary value of the negative flag
/* the instructions are JSR's, then the Vv = the binary value of the overflow flag
/* trace will be turned off after the JSR = the binary value of an unused bit in the
/* until the subroutine executes an RTS - status req
B = the binary value of the break flag
The trace command can't be use to trace D = the binary value of the decimal flag
instruction execution through PROM resident code. Any I = the binary value of the interrupt enable bit
attempt to 40 so, or to trace through non-existent memory, Z = the binary value of the zero flag
will result in a "BREAKPOINT ERROR". ¢ = the binary value of the carry flag
' PC = the hex value of the PC reg (This is a

pseudo register maintained by BUG/65.

It contains the location of the next

user program instruction to be executed.)
INSTR = the instruction at the current PC

7.19 U - Call a User Subroutine

U <ADDR> [<PARAM>]

The U command is used to call a user subroutine at
ADDR. The wuser routine is passed the optional parameter
PARAM in the X register (low byte) and Y register (high i
byte). The user routine should return to BUG/65 via an RTS
instruction. 1If PARAM isn't specified, then zero is used.

--26-- —e27mm

7.22 X - Change User's Registers

7.21 Write Commands

cemmm—————— e o ———— X REGNAME
.
7.21.1 W - Write a File The X command allows you to change the contents of
_________________ v —— user registers. REGNAME is a one-character register name
mnemonic. The allowed register names and their meanings
Ww [:A] <«START> <END» tfilespec are:
The W command is used to write a binary file. A = A register
Memory from START to END is written to the file specified by X = X register
e filespec in the standard OS/A+ binary file format. If the Y = Y register
ﬁ ;A" option isn't specified, then the data written will S = stackpointer register
v, replace the current contencs of the file if the file already P = program counter pseudo-register
i exists. If the ":A" option is specified, then the data is F = status register (flags)
X appended to any data already in the file. A load header .
* consisting of a start and end address as described in the After you type in the name of the register to be
" 05/A+ manual will precede the appended data. changed, BUG/65 will prompt you with that name character
3 followed by an equals sign. At that point you have the
o 7.21.2 W% - Write Sector(s) following options:
? 1. Enter the new value for the register. The new
% Wt [<«SECNO> [<BUFFER> [<NOSECS>]]] value may be any valid address expression. After the new
o value, typing RETURN will end the command. Or you can type

SPACE which will prompt you with another reglister name for
possible change. The next register name is determined by
number to be written and defaults to one. BUFFER specifies the order of the above list. For example, if you change
the memory location of the sector data to be written and ' register .Y then hit a space after the new value, BUG/65 will
defaults to the BUG/65 loadpoint plus $2000. NOSECS) prompt you for possible change of register S. This prompt
specifies the number of sectors to be written and defaults = list continuas through register F and then wraps back to
to one. If more than one sector is specified, then register A again.

consecutive sectors are written sequentially from memory
beginning at BUFFER.

The WY command is wused to write a sector or a
group of sectors to a diskette. SECNO specifies the sector

oy

2. Enter RETURN or ESC to end the command.
BUG/65 will display the new contents of the registers and
then put you back into command mode. i

4
A
N
?
3
1
g:
A

‘
e ——

—=28==
=20

.
. '

