a reference manual for

"punion's Debugging Tool"

a screen-oriented debugqing program for
use with the 0SS MAC/65 Macro-Assembler
on computers built by Atari, Inc.

The programs and manuals comprising
DDT are Copyright (c) 1982, 1983 by
James J. Dunion
and
Optimized Systems Software, Inc.

This manual is Copyright (c) 1984 by
James J. Dunion and
Optimized Systems Software, Inc.

Please contact Mr. Dunion or 0SS, Inc., at
1173-D Saratoga Sunnyvale Rd.
San Jose, California, 95129
Telephone (408) 446-3099
Rev 1.0

All rights reserved. Reproduction or ¢translation of -

any part of this work heyond that permitted by sections) h

187 and 188 of the United States Copyright Act without
the permission of the copyright owner is unlawful,

PREFACE

DDT is the original design and product of Mr. James J.
punion. Versions of DDT have been produced for disk
based systems {(sold through the Atari Program Exchange),
but this version marks the first time DDT has been
integrated with an assembler.

We at O0SS 1like ¢to think that it is especially
appropriate that Mr. Dunlon chose to allow us to link
the fastest macro assembler for Atarl computers with the
most exciting concept in debugging tools. We hope you
enjoy this powerful package as much as we have enjoyed
preparing it for you.

TRADEMARKS

The following trademarked names may be used in various
places within this manual, and credit is hereby given:

DOS XL, BASIC XL, MAC/65, and C/65 are trademarks of
Optimirzed Systems Software, IncC.

Atari, Atari 400, Atar{ 820, Atari Home Computers, and
Atari 858 Interface Module are trademarks of
Atari, Inc., Sunnyvale, CA.

Section

Section

Section

Section

Saction

Section

Section

Section

2

Table of Contents

An Overview of the Workings of DDT
An Example of Using DDT and MAC/65

The DDT Screen Display
1 Regiater Diaplay

2 Display Window

.3 GOreakpoint Table

4 Command Window

An Overview of the DDT Commands
1 A Summary of the Keyboard Commands
2 Legend
3,2.1 Specific Selections
3.2.2 Hexadecimal Values
3,2.3 Delimiters
3,3 Special Characters: '*' and *>°

ommand Descriptions
-~ Set or Reset a Breakpoint
-- Deposit Value(s) in Memory
~= Examine Memory
-=- Go to a Program at a Given Address
<= Interpretive Mode
~- Move Memory
Next
-= Quit DDT, Reenter MAC/6S
-~ Regiater Modify
~= Search for a String of Bytes
-- Window Change
-« Move Display Window Down/Higher
-« Move Display Window Up/Lower
~= Set Contents of Program Countar

nz@mqmuauwnn

“ s b s e 8 8 s o o o

.
[

.
[l o
bwN
Pt EIOZIHONO®
)
i

F o S N L R R

Push Button Controls
1 The START Button
2 The SELECT Button
$.3 The OPTION Button

t
5.
S.

1 Breakpoints

DDT Entry Points

Main Entry to DDT

Flash Entry to DDT
Breakpoint Entry to DDT
RESET Entry to DDT

PV RN RN
e s s

N WNFT SwN -

echnical Details of DDT
Interaction with HMAC/65
Keyboard Scanner
DDT's Use of System Resources
Things to Watch Out For
Graphica Locations Saved by DDT
Using MAC/65 zo a Mini-Assembler for DDT

39

—

Section 11 An Introduction to DDT

-t s o o A o e > > o o o e

The name "DDT" {a software analog to the biological bug
xiller of the same name?) has been used for many other
debug programs on other syatems (where it usually stands
for "Dynamic Debugging Tool"). We at OS5 are proud to
offer the best and most “authentic" DDT, "bunion's
Debugging Tool”, by Jim Dunion. .

DDT has become one of the most popular debugging tools
ever invented for use with Atari computers. In this
version, 0SS and Mr. Dunion have attempted to keep the
spirit and flavor of DDT while scaling its slze down
enough to fit in an 0SS SuperCartridge with MAC/65.
This combination of MAC/65 and DDT {s truly an
all-in-one development system for assembly language
programmers.

The heart of DDT is its ability to show what {s
happening inside the computer on a special display
screen. This special screen is kept completely separate
from your program's screen, whether you are using
sophisticated graphics - or simply Atari standard
character 1/0.

In effect, then, DDT tries to be as invisible as
possible to your Atari computer’'s operating system,
screen display handlers, keyboard handler. More
importantly, though, DDT attempts to perform its tasks
without interfering with your program.

This extraordinary separation of debugger and user
program is coupled with the ability to easily change and
monitor the internal state of "your"” machine's
environment, so that you can get a much clearer picture
of exactly what's going on insi{de your syatem and
program at any instant.

As with any software-based debugger, there are
li{mitations on speed, {instruction and memory tracing,
and interrupt processing, All in all, though, DDT comes
close to providing you with the best possible debugging
environment, probably matched only by hardware logic
analyzers costing hundreds of times more.

-—f] -

Q-

1.2 An Overview of the Workings of DDT

DDT 1is separated into four major functional parts: a
display generator, a breakpoint handler, an instruction
interpreter, and a user command procesaor.

Generally, when you enter DDT from MAC/6S5 (via the "DDT"
command, of course), you are presented with an arbitrary
display of a portion of memory with the values of the
6582 registers (at the time pDOT was entered).
Naturally, if you intend to debug your own program, you
must first tell DDT where it is. You do this via the
command procassor (but we won't discuss exactly how at
this point).

If you are reasonably cautious, you will probably wish
to step through your program a line at a time. You can
do this thanks to DDT's instruction interpreter.

Once you have a subroutine or set of routines reasonably
debugged through the use of single atepping, you will
probably wish to execute them without full trace. Oor
you may wish to allow your program to run up to a
certain point before you examine registers, memory
locations, etc. DDT's breakpoint handler acccmplishes
both these tasks.

With a few exceptions, you accomplish all these tasks by
using the command processor of DDT. By simple, easy to
remember commands, you can ask DDT to interpret your
program, show you the contents of memory in elithor
instruction or memory dump formats, change memory oY
register values, and (in general) control the flow and
snvironment of the program you are debugging.

——f2e-

0 -

1,3 An Example of Using DDT and MAC/65

We will present here a short and simple program, written
in MAC/65, which we ask you to type in to the MAC/6S
editor. We will then assemble and debug this program
using DDT. We will not perform the more complex
operations of DDT, but we hope that we will give you at
least a feel for using DDT and its flexible commands.

[- -
| NOTE: We assume here that you have read the MAC/65 |
manual and can use the MAC/65 editor and its |
commands. For thias example, though, we will |
call out every keystroke to be used with DOT, |

1

!

including [RETURR] keys, unleas we note
otherwise

— - - o e 2 +

P o —— e

To begin, then, boot your DOS (if you are using a disk)
and enter the MAC/65 cartridge. To the "EDIT" prompt,
type "NUM" and enter the following program:

18 ; EQUATES ~~ FROM ‘AMPPING THE ATARI'

20 HPOSP@ = $D00G ;jHort. POSn, Player @

38 PCOLRO = $92C0O sPlayer COLoR @

40 CHSET = $EDOQ saddr of std char. set

SO PMBASE = $p4e7 ;Player/Missile BASE addr
6@ SDMCTL = $022F :1Set DMa ConTrol

70 GRACTL = $DB1D 1GRAphics ConTroL

89

o *~= $3800 1an arbitrary address
%192 ¢+ SET UP FOR PM GRAPHICS

#1110

'
8128 SETUP
8138 LDA # >CHSET iwe use the char. set
2140 STA PMBASE t...a8 data for player
0150 LDA 14*%16+4 1color: hue 4, intensity 4
0160 STA PCOLR® 1 for our player
2170 LDA #82A 18td playfield,DMA,players

2180 STA SDMCTL t+.e.are all enabled
8198 LDA 2 i1the bit for players
0200 STA GRACTL 3+..i8 turned on

8218

82290 LDX {100 1init our hort. pos’'n
8230

9240 LooP

8258 STX HPOSPO twhere we want the player
0260 LDY {10

0279 DELAY

8280 DEY 7just walt for awhile
0290 BNE DELAY

8300

231e Inx 1to next position
8320 JMp LOOP

8338

8340 +END
Y L e

@

When you are satisfied that you have entered the program
correctly, you might save it to disk or cassette and
then assemble it. We used
ASM , 1Py

to get the listing which appears below. Of course,
using the '#P:' requires that you have a printer hooked
up to your computer, 80 you may wish to modify this
command to suit your system's set-up (and see your
MAC/65 manual for details on how to do so).

Verify that your listing is essentially identical (we
have omitted the symbol table listing here).

18 5 EQUATES -- FROM 'MAPPING THE ATARI'®
=DBBG 28 HPOSPB = $DOOGO tHort. POSn, Player @
=02Cd 39 PCOLR®

$02co 1Player COLoR @

=E0D0 40 CHSET = $EG0D 1addr of std char. set
=D407 50 PMDASE = $D407 1Player/Miesile BASE addr
=P22F 68 SDMCTL = $022P 1Set DMa ConTrol
=DBLD 78 GRACTL = §$DBI1D " 1GRAphics ConTroL
ag ;
9880 99 t= $3800 1an arbitrary address
- 8160 3 SET UP FOR PM GRAPHICS
. 2110 ¢
lgeg 2128 SETUP

3808 A9ED 2138 LDA # >CHSET jwe use the char, set
3802 8DOA7D4 0140 STA PMBASE 2esens data for player

3895 A944 O159 LDA #4*16+4 jcolor: hue 4, intensity 4

3887 8DCAB2 160 STA PCOLRgO 1 for our player

J80A A92A 0170 LDA #S$2A 1std playfield,DMA,players

388C BD2FP2 0188 STA SDMCTL f...2re all enabled
388F A902 8199 LDA 2 tthe bit for players
Jsll 8DLIDD2 62008 STA GRACTL 1+.e+l8 turned on

9210 ¢ .

3814 A264 0220 LDX 1168 1init our hort. pos'n
0238

k1: 3V 8249 LOOP

3816 BE28DY @250 STX HPOSP2 swhere we want the player

JBl9 ABOA 9260 LDY 1@ .

381B 0278 DELAY
3sls 88 8280 DEY s just wait for awhile
3alc DOFD P29@ BNE DELAY

0300
381E 8 8313 INX 1to next position
3IB1F 4C1638 ©320 JMP LOOP

9338

3822 9340 «END

[NV Y

Preasuming that you have typed 4in and assembled this
program correctly, {t is time to lead you through the
debuggling process.

So give MAC/65 the “DDT" command, and you will be
presented with a display similar to the one given below
(though the screen version will be easier to read than
our printed copy, thanks to inverse video, etc.).

] LOC. VAL INSTRUCTION
e c——— - o s et o e
| DOT (c) 1984 JAMES J. DUNION
U S P -
>BED4 A9 LDA § $04
BEDS 94

BED6 4B PHA
BED7 20 JSR $ASQE

BEDA 68 PLA
BEDB 38 SEC

|
|
|
|
|
| BEDY9 AS
|
|
} BEDC E9 SBC # $81

BEDD 81
o e 20 o w0 o e 0 e e o 0 e e
|BKP1 BKP2 BKP3 BKP4 NV BDIZC
o i
leces 8gec 9000 ©0Cd 1011P200 |
B el - - o 2 e o b 1 e e +
l PC A X Y S ENTER COMMAND |}
frmr e —— e ———————— e ———————— +

|BED4 8D FFP 08 FF |

+ -— ———— oy

For now, let's not worry about what all that means.
Suffice to say, DDT thinks that your program’'s PC is at
location $BED4 and is showing you the code that it finds
at that location.

But our assembly placed our main code at location $3862,
80 let's tell DDT to change what it is displaying. We
do that by entering a command (which will be shown under
thas words "ENTER COMMAND") as followa:

* 380B[RETURN]
NOTE that we do NHOT type in the space betwaen the °‘*'
and the *3', DDT doaeas that for us.

Now look at the main display window. The '>' symbol
should be pointing to location 3808. Do you see your
code 1isted there? If you typed {in the program exactly
as we specified, and {f you started from a “cold”
{power-on} machine, you will probably find nothing but a
series of 'BRK®' inatructions being displayed.

-85~

o

What went wrong? Actually, nothing. At this time, you
should go back to MAC/65 by typing the DDT command 'Q’
(just push the @ Xkey, nothing else). Now type the
followings

1 «OPT OBRJ
This 1line is necessary Lf you wish MAC/65 to assemble
code and place the resultant object directly in memory.
So, once again, you need to assemble your program. You
may do so by simply typing

ASM

as a command to MAC/6S. And, when the assembly is
finished, you can go to DDT with the DDT command.

This time, after giving the

* J830[RETURN]
command, you should see the beginning of your program
displayed in DDT's main display window. Compusre what
you see to either your printed listing or the listing of
Figqure 1.2 to be sure that all is okay.

At last we are ready to try debugging our little
program. :

The first thing we will do is single stop through the
first part of our program. At thia time, push the
(OPTION) key one time. Wwhat happened? Presumably, the
'>* {s now pointing to location 3882. Also, the value
of the PC (dlsplayed under the letters 'PC') should be
3sg2. Notice expecially that the A-register now
contains E6. In other words, ws 3Jjust executed the
instruction 'LDA #$EB8' which was at location 3800, and
DDT is telling us what the naw state of the CPU is.

Now push [OPTION] four more times, observing changes ¢to
the PC, display window, and A register. If you have
done everything the same way we did, the A-register
should contain 2A and the PC should bs set at 3B80C. IF
NOT, CHECK TO BE SURE YOUR PROGRAM MATCHES OURSI

Now comes the fun part. Push [OPTION] one more time.
Did your display change dramatically? Remember, in
section 1.1 wa said there were a few limitations on
display processing, etc.? We have just run into one of
these limitations.

With this instruction (a STore A-register into SDMCTL,
the system DMA control), we altered the width of the
Atari's “playfield". DDT normally uses a narrow
display. We requested a "normal™ display. DDT accepts
our cholce and allows the change in display formats.

Surprisingly, DDT continuas to function! And, if you
are willing to ignore some of the junk on the screen,
you can evan read and understand most of the display.
(simply ignore the last 8 charactr positions on each
line.) .

T

s

We could “"fix" the display (by pushing the [SELECT])
button twice), but let us HOT do so at this time. (1€
we did, we wouldn't be able to see what happens next.)

Push the [OPTION] key four more times. Presto, an Atari
"player" stripe full of character shapes appears. Since
this 1is a demo of DDT, not an explanation of the Atari
hardware characteristics, we don't want to spend too
much time here explaining what has happened, but a very
brief explanation will probably help you if now if vyou
are not experlenced with Atari hardware. The
explanation which follows is given by address{es) from
our little program.

3806-3884 By using the bullt-in character set
as player ‘'data’ we eliminate the
to make player shapes for this demo.
3805-3809 This is the same as BASIC XL's
PMCOLOR ©,4,0 and similar to
SETCOLOR 6,4,0
382A-180E We enable players and uee a "standard”
width playfield (character display)
360F-3813 This is a "must”, to enable the player
) data registers. Actually, at this
time the player is turned on and
active. It's simply too far left of
the screen to sce.
3814-3818 Move the player stripe to horizontal
position 106, which is 2 little left
of the middle of the screen.

Now saimply hold down the [OPTION] key. Watch the
display of the registers. In particular, watch the
values for the X and Y registers (displayed under the
letters 'X' and 'Y'). Y seems to be decreasing at about
one count per second. When it gets to zero, X is
incremented and the player is moved right a little bit.
Why? Because we stored X in the horizontal position
register for our player.

If vyou continue to hold down [OPTION], the process will
continue, albelt very slowly, and the player will move
right across the screen. When you are tired of watching
this, release the [OPTION]) key.

Let's try something new. Push the °*I' key. What
happened? Actually, what you are =seeing 1is the same
thing you saw when you held down the [OPTION]) key, it's
just happening much faster. You get to watch the
registers changing, the instruction being executed
moving (apparently up and down in the DEY loop, but
that's an 4{llusion), and the resultant movement of the
player. Again, when you are tired of this, push the
(BREAK] Xey.

T, N

-

S50 now we have seen two different speeds of instruction
interpretation. But there {s yet a third. Firet,
though, push the [SELECT] Xey twice to restore DDT's
normal display.

Again, enter the command sequences

* J8EP[RETURN)
And the PC and '>' displays should both again refer to
location 38040, Push the [SELECT] Xey. The MAC/65S
screen should reappear, just as you left it. CAUTION:
you are NOT back in MAC/65! This simply demonstrates
the independent screen display of DDT. Cute, yes?

Now, very carefully, push just the 'I' key. Once again,
the player should appear and start moving across the
screen. But now it is much, much faster. Why? Simply
because DDT knows that it does not need to continually
update its display of the registers, instructions, etc.
Yet STILL your program is being interpretedl

When you are ready, press [BREAK]) and DDT will regain
control. For our last experiment, let's enter the DDT
command sequences :

G 1890([RETURN]
Again, remember that DDT puts the space in for you. Do
NOT type it in. ’

What Thappened? Presumably you have a very messy,
smeared player moving impossibly fast across your
display. This demonstrates the true speed of assembly
language: the TV screen is not fast enough to keep upl

Push [CTRLI[ESC] (hold down the [CTRL]) key while pushing
{ESC)). You should be back in DDT, ~

One final experimentt: use the DDT command sequences

E 381A[RETURN])
to move the dlsplay pointer '»' to location 381A. Then
enter the sequence:

D 99[RETURN]
which alters the contents of 38lA. Finally, again use
the command:

G J800[RETURN]
And observe the player, i{in more visible form, moving
rapidly across the screen. DBelieve it or not, ¢this is
the slowest we can move the player iIf wa use a simple
single register Adelay loop (the code from 381B to 381D).

And now we arn dons with our demonstration. You may use
{cTRLI[ESC) to get back to DDT. Use 'Q' to return to
MAC/65. Or simply reboot your system if you are done
using DDT at this time.

—

<

Section 2: THE DDT SCREEN DISPLAY

The DDT Screen Display shows a user the {internal state
of the machine. The display screen is divided into
several display areas which show different aspects of
what 1is going on inside the computer.

Pleane refer to Figure 1.1 in the previous section for a
rough picture of a typical display. Remember, to view
the DDT display simply type the command °*DDT' from the
editor of MAC/6S.

The display areas are called :

~ REGISTER DISPLAY ~~ Shows the current contents
of the 6502 registers

DISPLAY WINDOW == A window into memory

= BREAKPOINT TABLE ~~ Shows the settings of
DDT's breakpoint registers

COMMAND WINDOW ~= Where you enter DDT
commands from the keyboard

1}

The following sections describe each of these display
areas in more detail. However, for a full understanding
of the capabilities of these deceptively simple
displays, you must read this entire manual. And, of
course, you should try using DDT. Only then will vyou
understand how these displays can be used to their best
advantage,

. T Y

1
{
i
L]
H
i
i
H
i
1
1

2.1 Register Display

The left side of the lowest part of the display scraeen
is used to display the current contents of the 6502
processor registera. Excepting that the status flag
register is shown on the right side of the lines next to
the bottom, on the same line as the breakpoints.

Whenever DDT is entered, the contents of the processor
registers are copied 4into register shadows which are
then displayed. These shadows are used to reatore the
6502 registers before control is released back to the
program being tested.

In the next to last line of the DDT display, the names
of the 6502 registers arec displayed. The current
user-program values (contents) of these registers are
shown (in hexadecimal notation) in the Register Display
area directly beneath their names:
Program counter
A = Accumulator
X = X index reglister
Y = Y index register

S = Stack pointer
Excepting for the PC, the values (contenta) shown for
theae registers are all single byte values, thus
displaying two hexadecimal digits. This ia, of course,
because all registers on the 6502 CPU chip are a aingle
byte in size. The sole exception is the Program Counter
{PC), which 4is 16 bits (two bytes) in size and is
displayed with four hexadecimal digits.

Not shown in the basic Reglster Display area is the
processor status register. In order to allow you to
more easily view and understand the value of the satatus
register, it is shown in binary form. That is, each bit
of the status register's content. is displayed in a
special area of the DDT scroen.

The legend "NV BDIZC"™ on the screen indicates that the
bit values shown directly undar the legend correspond to
the various CPU status bits. In particular, the letters
stand for (and the bit valuea are to be interpreted as):

Negative flag

Overflow flag

BRK instruction flag
Decimal mode flag
Interrupt disable flag
Zero flag

Carry bit

ANHOoODBACX
AR EER]

The blank in the legend (and the corresponding bit under
it) is an wunused bit in the 6502 status register and
should be ignored.

Y S,

.

S~

2.2 Display WLndow

The display window forms a window into the system memory

address sgpace. This window 4§s located in the top
portion of the display screen, and occuples most of the
screen. The window is set to an arbitrary address upon

entry to DDT, but the 4initial address shown in the
window may be changed by several commands (as described
in later sections).

This display window may be thought of as having one of
two possible filters in front of it.

The Disassembly Filter

The first fllter, which is set upon initial entry to DDT
is a disassembly filter. A GREATER THAN sign (») points
to what. is called the current position.

In the disassembly display, each line from the current
position down is shown in a similar format: the
hexadecimal address of a location, its contents and then
a disassembly readout. Standard 6502 mnemonics are
used, with conventional address mode indications.

Note that the NCR 65C92 additional fnstructions and
address modes are supported.

Several features have been added to aid debugging, 1If a
mnemonic is shown in inverse video, it indicates that a
breakpoint has been set at that location. 1In fact, if
you look at the actual contenta of that location, it
will be a 8.

If the mnemonic in inverse video is a BRK instruction,
that particular BRK instruction was not placed there by
DoT. This would occur, for inatance, in looking at
memory that contains all zeros.

Secondly, if the instruction {a one of the branch
instructions, the computed target branch address is
shown. An arrow (! or +) {is used to indicate the
direction of the conditional branch.

The Hexadecimal Filter

The second filter is a hexadecimnl filter. This filter
causes the display window to show the hexadecimal value
and ATASCII representation of up to 4@ memory locations.
Again, the > sign indicates the current position,

If the hexadecimal filter is in place, each 1line after

the current position line will atart on an even 4 byte

boundary. '
welle-

o

This means the current position line can have 1 to 4
values on it. The current position line values will
always be left justified.

f

2,3 Breakpoint Table

The Breakpoint table is located just above the register
display.

There are four user definable breakpoints (labeled
'sxPl1', BKP2', “‘BKP3' and 'BKP4' in the display), each
of which will be ahown with its current setting.

If a register is clear {i.e., not set), then the value
shown will be 2000,

If a breakpoint reglster is set, the value in that

register will be the location {address) in memory'wherc
DDT has placed a BRK instruction.

2.4 Cormmand Window

The extreme right hand part of the bottom of the screen
is devoted to the command window. This {s the area that
shows the command that a user is typing in.

Often, a DDT command wil) consist of simply a single
Xeystroke. Since DDT executes commands very quickly,
you may never see the key appear in the command window.
Be assured, however, that every key you type (other than
the [OPTION], [SELECT), and [START] buttons) 4s echoed
in this window.

Note that DDT commands requiring a following value,
etc., automatically diaplay a space after the first
Xeystroke you type. This ia for ease of understanding
only. You do NOT type the space.

-—)2e=

Section 3: An Overview of the DDT Commands

The command interpreter allows a user to issue Xeyboarad
commands to DDT. You may recall from Section 2 that the
command window is shown in the lower right hand portion
of the display screen.

Each DDT command requires only a single keystroke. 1f
the key ¢typed is not a valld DDT command, it will be
ignored. If a xey is a valid command and requires no
additional arguments, the command which the Xey
represents is exccuted immediately. Again, recall from
Section 2 that most DDT commands execute 80 quickly that
you may nover see the command key echoed in the command
window; but it really does go there, however briefly.

Some DDT commands, though, require one or more
additional arguments. If you request a DDT command
which needs one or more parameters, DDT will wait for
you to enter the arguments it needs before proceeding.

SPECYIAL NOTE: DDT always puts a space after the command
key when it echoes the key in the command window. You
do NOT type the space Xkey. DDT places it there
automatically.

COMMENT: In addition to the keyboard commands, DDT
understandes three “"pushbutton commands”, which are
described in Section 5.

3.1 A Summary of the Keyboard Commands

The DDT Keyboard Commands are 3

<1,2,3,4>,¢<addr>..[1) Breakpoint 1-4 set to glven addr
<hatringd.iecesee.[2) Deposit hex string
€8ddC% 1 asessss0ss+[3)] Examine address addr
€addr>.eiecveeases[4) Go at address addr
tesvsesssaanenesse[5] Interpretive mode
<addr><addr><len>.{6)] Move memory
esesensassssssssss[7) MNext instruction
eisarseesssesssens{B] Quit, return to MAC XL
<P,A,X,Y,S>,¢val>.[9] Register melected receives val
<hstringd..vs0000.[18) Search for hex string

Window filter toggle
essacecsssssssnses(12) Move diasplay window down/higher
vesecnrsrsssssneeall3] Move display window up/lower
€addr>.cvsesesssss.[14] Set Program counter

Severes e

P TNV OZIHIAIMOD

In the 1ist above, the numbers in square brackets {(e.g.,
[3)) indicate the subsection number in chapter 4 where a
full description of the command may be found.

The abbreviations enclosed in <¢angle brackets> are
described in the LEGEND (in section 3.2), starting on

the next page.
—-m]ew

J.2 Legend

In the summary of section 3.1, certailn abbreviations
were enclosed in angle brackets (e.g., <addr>). In this
section wa explain the meanings and legal range of
values for the data these abbreviations represent.

Also, these same abbreviations are used {n Section 4,
where each DDT command is described in detail.

You may recall that the abbreviations were as followa:
<1,2,3,4> <addr>» <hstring> <val> <len> <P,A,X,Y,S>

We explain these abbreviations in two groups and then
follow with some comments about delimiters.

3.2.1 Specific Selections: <¢1,2,3,4> and <P,A,X,Y,5

When the commande 'B' or 'R' are used, each expects to
be followed immediately by a single character. The
characters between the angle bracketa are the ONLY
characters which will be accepted by DDT in each of
these cases.

That {is, {f you type a 'B' as a DDT command, you MUST
follow 1t with a *1', a '2*, a '3', or a '4'. Any other
characters are illegal.

If you type in the wrong character (e.g., you type 'B4'
when you meant to type ‘B3'}, you may push the delete
(back space) key. DDT 'will back up and delete the
offending entry, .and you may re-enter it.

See the descriptions of the ‘D' and 'R' commands in
Section 4 for more detalles.

[

3.2.2 Hexadecimal Values: <addr>,<val>,<hatring>,<len>

First, we must note that the abbreviations <addr>,
¢byte>, <hstring>, and <len> all represent hexadecimal
valuee which you, the user, must type in. When DDT is
expecting a hexadecimal value, it OHNLY recognizes the
characters 0,1,2,3,4,5,6,7,8,9,A,8,C,D,E, and F (the
traditional hexadecimal ‘numeric’ characters).

Specifically, DOT expects a certain number of hex
digits, as noted in the following list:

<addr> = address value, 1 to 4 hexadecimal
digite {i.e.,, 2 bytes)

' <byte> - a single byte value, 1 or 2
hexadecimal digits

¢hstring> = a hex string up to 12 digits long
" (i.e., 6 bytes)

<len> = a two byte length specification,
must be either 3 or 4 hex digits

Generally, although DDT will accept fewer than the
maximum number of diglts, it will NOT accept MORE hex
digite than it expects. Thus, if the 1legend <addr>
appears in the summary of a DDT command, you will
usually find that you will be unable to enter more than
4 characters (each of which must, of course, be a hex
digit).

You can however, delete characters, and then enter new
characters., Deleting back past the starting point of
the value field will result in the previous item in the
command being erased.

There are a couple of speccial cases Iin the above rules

about field sizes, but thay will be clearly deascribed in
Section 4, where individual commands are detailed.

——]5w=

3.2.3 Delimiters

There are two usages for delimiters.

Pirst, the commands 'B' and °‘R' require both a specific
selection and a hexadecimal entry. You MUST separate
the selection from the haex entry.

You may use either a [SPACE), a [COMMAJ, or a [RETURN]
as a delimiter (separator). However, whichever you
choose, DDT always DISPLAYS a comma as the delimiter.

Second, every hexadecimal value must terminated by a
delimiter (except see Section 3.3 for the special cases
of **' and '), 1t DDr dAid not wait for such a
delimiter, you would not be able to correct mistakes.

Again, you may use a [SPACE), a [COMMA), or a {RETURN].
Since a hexadecimal value is always the last item in the
command entry, your delimiter is NOT displayed in the
command window. Instead, the command is immediately
executed.

Once a command has been executed, the command window is
cleared to make room for your next command.

3.3 Special Characters: '*' and "'

Por input convenience, thexe are two special charactera,
‘¢! and >’ These are used as shorthand ways of
entering addresses {(i.e., where the summary above calls
for an <addr>).

'#' means the current value of the PC (as you might
expect if you are familiar with 6502 assembly language).
Generally, when an <addr> is called for, you may type
just a single asterisk (*), and DDT will supply the
current value of the PC (as displayed in the register
display) for you.

Similarly, ‘>’ means the current position of the Examine
window pointer (the '>' symbol on the screen). Anytime
an address is expected, you may typa just a single
greater than sign (>), and DDT will supply the address
which the Examine window pointer (») is pointing to.

In the comm;nd descriptions in Section 4, special note
will be made {f either or both of thess characters are
not legal for a given command.

SPECIAL NOTE: When either of these special characters is
used as shorthand for an. address, the command is
immediately executed. DDT does NOT expect nor walt for
a delimiter in this case.

CAUTION: WNote that '¢' s {itself a legitimate DDT
command, Do NOT confuse its usage as an address marker
with its usage as a command.

S -

@

Section 4t Command Descriptions

In this section, we present a more detailed description
of each of the DDT keyboard commands. For the meaning
and legal values of items enclosed in angle brackets
{e.g., ¢addr>), please refer to Section 3.2. For usage
of delimiters (shown 4{in this section as commas), see
Section 3.3J.

The commands are presented in alphabetical order, as
presented in the summary table in smection 3.1,

4,1 B -~ Set or Reset a Breakpoint

. - > - " > 4 " - 4o = -

Format: B <1,2,3,4>, caddr>

Examplest:

You use the Breakpoint command to set (or reset) one of
DDT's four breakpoint registers to a memory location
(presumably an instruction byte) of your choice.

Note that two values (the breakpoint register number,
and the breakpoint location) are required for this
command. Both fields must be terminated with a
delimiter.

To enter the command given in the first example, above,
you could type ‘B' then ‘l' then SPACE then '4808' then
RETURN, {Remember, though, that all delimitere-—~SPACE,’
COMMA and RETURN--are treated ldentically. Remember,
also, that DDT automatically supplies the space
followlng the B. You do not type it in.)

If a value other than a 1,2,3, or 4 is entered for the
breakpoint register, it will usually be ignored. 1If,
however, you type in some other valid hexadecimal digit,
the command will be terminated when you enter the
following delimiter.

¥hen a breakpoint s set, the location you specified
shows up in the breakpoint regiaster display under the
breakpoint register number you specified.

1f an Examine command is issued to look at a location in
memory where a breakpoint has been set, a '@8' data
(instruction code) value will be seen, even though the
proper mnemonic is shown in the disassembly.

celTm-

® -

Also, {f a breakpoint is set at an examined location,
the mnemonic will be shown in inverse video. This {s a
special feature of DOT, to make it easler for you to
graphically see where a breakpoint is set and how.

If a breakpoint register ia already in use when a new
breakpoint {s requested, the {nstruction at the old

br;akpoint location is first restored to {ts origlinal
value,

To - clear a breakpoint register and restore the source
code, type any delimiter after selecting the desired
breakpoint register (e.q. typing °'B* then 'l‘' then
COMMA then COMMA will clear breakpoint 1 and restore the
source code).

Trying to clear a breakpoint that {s not set will not
harm anything. Note, however, that trying to set a
breakpoint in ROM, in hardware registers, or in
non-exjistant RAM will have unpredictable (and possibly
disastrous) results.

SPECIAL NOTE: Remember, you may use '*' and '>' as
shorthand notations for the current value of your PC and
the display window pointer. Thus you might examine
memory until you find a location where you want a
breakpoint. Then simply enter the command -
B 2,» [RETURNS

(as an example only) to set breakpoint number two at the
displayed location.

COMMENTARY: Physically, a '@0' value (a BRK {netructfon)
is atored in memory at the requested location. When DDT
performs a disassembly and encounters a BRK {natruction,
it searches its breakpoint table to sea Af it had set
that particular BRK. If g0, it recovers the fnstruction
for the disassembly but displays the mnemonic in inverse
video.

Y. .

I

4,2 D -- Deposit value(s) in memory

Formats D <hatring>
Examples: Do
D 3132333413536
D 1234

The Deposit command is used to place one through six bytes

in memory.

A sstring of hexadecimal values (up to 12 characters, 6
hex bytes) may be entered. The values entered will be
placed in successive locations starting at the current
position indicated in the display window (i.e., the
address pointed to by the '»')}, replacing whatever was
there.

The input string {s decoded two characters per hex byte
at a time. If there is an odd character left at the
end, it will be interpreted as the low order nibble of a
hex value.

For example, entering a string of 81AABO will result in
three bytes (@81, AA, and B@) being placed in memory.
However, entering BlAAB will result in @1, Ak, and 6B
being deposited.

Note that depositing a byte or a series of bytes will
NOT move the display window. This must be done with the
examine or the move window up or down commands.

SPECIAL FFATURE 11

DDT i{s able to switch screens by saving 13 locations the
operating system uses in managing the system graphics.
Thus, before each value is deposited, it is examined to
sece {f it should be deposited to these graphics
locationa. If so, the value is placed instead {n an
internal save table. Thus, for example, you can deposit
valuey directly to the color shadow registers and affect
the color of the uscr screen and not the DDT screen.

See Section 8.5 for a list of the locationas saved in
this fashion.

Y-

®

4.3 E -- Examine memory

Format: E <addr>
Examples: E 5000
E‘
E @

The Examine command is used to set the display window to
view an area of memory. The extreme left hand edge of
the display window has a GREATER THAN sign (») in the
3rd row. This points to what ' we refer to as the
“current position” in the display window.

Unless you have used the ‘%' or 'f' commands, the
current position will ba the address entered via the
last 'E' command.

Note that the 'E' command does NOT change the state of
the diaplay window filter, nor will it affect which
instruction will next be executed by a single step
command.

Since you may specify any arbitrary address as the
location to be Examined, and (i{f you are using the
disassembly filter) since you may accidentally
disassembls a nonsense intruction byte, we recommend one
or more of the following:

1. Examine only locationa Xnown to contain valid
instruction bytes. Refer to a printer 1listing
to be sure you are doing so.

2. After using ‘E', move the display window up
(lovwer in memory) a few bytes and then back down
{via the 't' and '¥' commands), to ensure
that you are displaying instructions which are
on true instruction boundaries.

3. Examine a faw bytes shead of where you really
want to be. Then move down (via the ‘¥
comnand) to the proper position.

(See also the SPECIAL NOTE in Section 4.2.)

._,\
3

4.4 G -- Go to a Program at a Given Address

Format: <addr>

G
Examples:s G 5009
g @
G

>

The Go command {s used to begin execution of your
program at a specific locatlion in memory.

Before control is transferred to this location, several
actions take place:

1. All registers are updated based upon the current
contents of the displayed registers.

2. The 13 locations saved for the graphics display
(see Section 4.2, above, and Section B8.5) are
restored, thus restoring your display and
removing DDT's display from the screen.

3. Vertical Dlank Interrupts and Display List
Interrupts are BOTH enabled.

Obviously, saince Going to your program can be dangerous
(e.g., your program may wipe nut all of memory, attempt
to {illegal I/0, or other miscellaneous nasties). We
therefore urge caution on your part (including, at the
least, saving your latest version of your program to
dlsk or cassette) before using this command.

For all intents and purposes, once you issue a Go
command your program has complete control of the Atar{
computer., There are two methods of returning to DDT:
(1) If your prograsm executes a BRK instruction (a zero
instruction byte), DDT {is entered at Iits breakpoint
entry (see Section 7.3). (2) If you push [CTRLI(ESC]
{(hold down the [CTRL] key while hitting [ESC])), DDT {is
entered at its "flash" entry polnt (see Section 7.2).

Method 1 {s the moat common method and {s commonly used
when debuggling. Method 2 is an emergency method,
reserved for when your program atarts looping and
nothing else will get you out.

Breakpoints are discussed in some detail in Sectlon 6,
;he “Flash” entry point to DDT is discussed in Section
.2,

NOTE: The special command esequence ‘G *' is exactly
equivalent to pushing the [START] button, See Section
$.1 for umage of the [START] button.

2]

4.5 1 -- Interpretive Mode

Format: 1
Example: I

The Interpretive Mode command is used to place DDT {n an
automatic single step mode.

Interpretive mode will run with elther the wuser screen
or the DDT screen being shown, but you pay a severe time
penalty for wselecting the DDT screen. After each
instruction §{s interpreted, the sacreen display is
updated if the DDT acreen is turned on. The dlsplay
window i{s automatically placed in the disassembly mode,
and all registers are displayed along with the updated
disassembly.

Interpretive mode runs much faster if the user screen ls
selected, because DDT does not have to update it's
screen {if it 4is not active. See Section 5.2 for
information on how to enable and disable your display
screen when using DDT.

Pressing the BREAK key halts the interpretive mode.

Encountering and attempting to execute a BRK instruction
halts the interpretive mode.

COMMENTARY: When in interpretive mode, DDT attempts to
execute your program as true to form as possible. To
this end, DDT moves the instruction pointed to by your
PC to a special working area and executes it at that
location. Although, if the instruction is one which
transfers control (e.g., JMP, JSR, BEQ, etc.), DDT truly
"interprets” it.

Also, before DDT executes each instruction, it restores
all your registers to the values shown in the reglster
display. After executing (or interpreting) the
instruction, DDT restores the proper register values in
the register display.

SPECIAL NROTE

Bacause of the way interpretive mode works, you MAY
interpret through ROM-based coda. You should NOT,
however, attempt to interpret any real-time 1/0 code
(7hether in ROM or not), including disk and other serial
1/0.

-e22ew

4.6 M -~ Move memory

Format: M <addr> <addr» <len>

Examples: M EBOQ68020400
M 600060810040

The Move memory command eimply does what {ts name
implies: it moves one or more bytes of memory from one
location to another.

This command regquires a somewhat special format for its
values. Specifically, all three values (both <addr>'s
and the <len>} MUST be given, but you are NOT allowed to
put ANY delimiter(s) (including spaces) between the
values.

Both the <addr> values MUST be specified with EXACTLY
four hexadecimal digite (using leading zerces ({f
needed).

The <len> may be any number from @81 to FFFF (though
disastrous results will obviously occur if you try to
move all--or even major significant portions--of
memory), but even <len> must be specified with three or
four hexadecimal digits.

The first <addr> glven is assumed to be the source or
“from" address. The second <addr> is thus the
destination or "to" address. And, of course, the <len>
specifies the number of bytes to move.

Thus, the first example shown above will move $8498
(1024 decimal) bytes from memory location $SEB@M {through
SE3FF-~the main character set area of ROM) to memory
location $6009 (through $63FF).

DDT doea NOT check for possibility of overlapping “from®
and "to" memory areas before it does the move, so an
attempt to use a Move as in the second example above may
or may not work the way you expect it to.

-e23am

4,7 N ~- Next

Format N

Examples N

The Next command i{s really a shorthand method of program
tracing which combinea some of the best features of
breakpoints with the ease of interpretive mode.

Using the Next command {s equivalent to visually
examining the disassembly display, determining the
2ddress of the next instruction (after the one the '*'
is pointing to), setting a breakpoint at that address,
‘and (finally) executing a 'G *' command (or [START])
pushbutton command--see Section 5.1).

Most of the time, then, using N {s equivalent to
interpreting a single {nstruction {(as may be done via
the [OPTION] button--see Section 5.3). However, thare
are soveral important differences:

1. The Next command uses ' its own internal
breakpoint and places it after the next
instruction to be executed, This {internal
breakpoint is never displayed.

2. The user's screen is restored (as with. the Go
command, Section 4.4, above) while the
instruction is being executed.

3. The instruction . is truly executed, not
interpreted, so you may not use 'N' when your PC
polnts to ROM code.

4. If the {instruction being pointed to by your PC
(the '*') i{s a JSR, then the entire subroutine
will be executed before DDT regalns control!
This allows you to execute ROM code Or real-time
1/0 code at full processor speed and yet view
the results immediataly after the called routine
finishes.

CAUTION: If your subroutine performs an error
exit and does not "properly"” return (presumably
via an RTS instruction) to the calling program,
the breakpoint set by 'N' may never be executed.

5. If the {instruction being pointed to by youz PC
is a3 JMP or branch instruction, you should
usually NOT use the ‘N' command, wsince the
program may never reach the point where the
internal breakpoint has been set.

_—2fem

4.8 Q -~ Quit DDT, Reenter MAC/65

Format;
Example:

There is nothing fancy about this command. It is simply
a means of exiting from DDT back to MAC/6S.

Before transferxing .control to MAC/65, DDT restores
MAC/65's zero page locations and {its critical page 4
locations (as described in Section 8.1).

DDT also removes all ite own breakpoints from user code
before Quitting and "unhooks" its Flash entry point from
the system keyboard routine (see Section 7.2 and 8.2).

Upon re-entry to DDT (via MAC/65'm “DDT" command), the
user should restore any critical breakpoints by hand.

. T

4.9 R -- Register Modify Command

- -

Format: R <P,A,X,Y,5>,¢val>
Examples: R A,00

R X,FF

R p,01

The Register command is used to modify the contents of
any of the 6502's registers except the PC.

After typing 'R', only a 'P',*A’,'X','Y’, or 'S* will be
allowed. Any other character will be ignored. No other
character other than [DELETE].will be allowed until a
delimiter is typed.

‘P’ indicates the procesaor status register (which {s
displayed in binary form under the "NV BDIZC"). ‘A°‘,
‘X', and 'Y' are the normal 6502 reglsters of the same
names. '5' represents the value of the stack pointer.

After entering the register designator , only two hex
digits (i.e. one byte) will be accepted. Note that
this command requires two separate values and two
separate delimiters.

WARNING I Indiscriminate use of this command to change
the stack value (the °'S' register) could make it
impossible for DDT to continue to function without being
reset,

we2bem

4,18 S -~ Search for a String of Bytes

Format: S <hatring>
Examples: s 31

S 5FSF

s 8DO9R2I

The Saarch command is used to locate a specific sequence
of bytes in memory.

You may enter a hex string of up to 12 characters which
will be Interpreted as up to 6 bytes. DDT will search
for the string you specify, starting from the current
position (as indicated by the '>' in the display window)
upwards (increasling addresses) through memory.

If the search 18 successful (the sequence of hytes ia
found), the display window will be repositioned (and the
'>' will point to the first byte of the found sequence).
If it is unsuccessful, the command window will simply be
cleared for the next command, and the display window
will not move,

I1f no value is entered after the ‘'S' (i.e. just a
delimiter is typed), the previous search string will be
used. This allows for caesily finding multiple
occurences of the search string.

The three examples given above might be interpreted as
follows:
8 31 ~- find a '1' character
-8 SF5P -- find a pair of question marks ('??')
S 8DB2B3 -~ find a 'STA $§0300' instruction

-—27--

4.11 W ~-- Window Change Command

Format: L
Example: W

The Window command is used to changé the “filtar" over
the display window.

You will recall from Section 2.% that there are two
different “fllters® available to your a disassembly
filter and a hexadecimal filter.

The ‘W' command simply toggles between the two.

Note that certain commands will automatically change the
filter to thelr “desired” state., You may use the 'W'
command to change the filter back to the one you wanted
if your choice does not correspond to DDT's.

4.12 4 -- Move Display Window Down (Higher in Memory)

- - > o AP P D D P e 8 R A8 T D 8 S D A TR O S U L e O S

Format: ¥
Example: L4

The Move Window Down command {s used to change the
memory being displayed in the display window.

Specifically, the '>' pointer will be changed to polint
to a location higher in memory. How far the window and
pointer are moved depend on which filter (hexadecimal or
disassembly) is in place at the time the key is pushed.

If the hexadecimal filter is in place, pushing the 'y
Xey will move the window down (higher in memory) by one
byte.

If the dlsassembly fllter is in place, pushing the A
key will move the window down {nigher in memory) by one
full 4instruction (which may bs one, two, oOr three
bytes),

SPECIAL NOTE: You should NOT hold down the CTRL
(control) key when using this command. DDT recognizes
‘w' as the 'down arrow key' sven without CTRL pressed.

ALSO NOTE: Auto Repeat on the keyboard IS active, so
that continuing to press the '¥' key will continue to
move the window down.

Y

Format: 1
Examplet t

The Move Window Up command is used to change the memory
being displayed in the display wiridow.

Specifically, the '>‘' pointer will be changed to point
to a location one byte lower in memory.

Since an instruction could be 1,2 or 3 bytes long, you
must be careful to watch and ensure that you remain on
instruction boundaries Lif the disasaembly filter is in
place.

SPECIAL NOTE: Ae with the 'V' key (section 4.12, Zbove),
you should NOT use the CTRL key to select '!' and auto
repeat IS active for '1°,

4.14 * -- Set Program Counter
Format: * <addr>
Examplesa: v 5088

LY

The command is used to set the program counter.

After you enter the '*' command, DDT expects you to
enter an address which will become the new PC contents.

Afrer changing the PC, you may wuse the ‘I’ or ‘N’
commands or tha [OPTION] or [START] buttons to begin or
continue program execution {or interpretation) at the
new location shown in the PC portion of the register
display.

DoT always sclects the disassembly flilter after
executing the '*' command and always sets the display
window pointer (») to the same addrasas as the PC.

Note that you may type '*>' as a shorthand notation to
set the PC to the address currently being shown in the
display window (as indicated by the ‘»>' pointer).

Note also that you may simply type '*' followed by
[RETURN) to force the display filter to hexadecimal and
force the display window pointer equal to the PC. Thias
can be thought of as a shorthand notation for ‘E*’' (see
Sect%on 4.3) possibly followed by 'W' (see Section
4.11).

~—29mm

Y. P

‘I. [f\!

s

Section 51 Push Button Controls

The three ATARI conscle push buttons are used by DDT for
useful and speclal operationa. In many ways, you may
think of these butons as extensions to the comnands
given in Section 4.

Each console bhutton has a unlqué'uue, which is described
below.

5.1 The START Button

A press of the START button ia usually indicated in this
manual by the notation [START].

[START] is used to continue code execution at the
location indicated by the PC register.

Your screen display Is restored and all 6502 registers
are updated with the current displayed contents before
control is transferred.

Pushing [START] 1s functionally equivalent to executing
the command sequence 'G*', and we suggest reading
Section 4.4 for more information on the Go command.

5.2 The SELECT Button

- s - s e o o -

A press of the SELECT button s wusually dindicated in
this manual by the notatlion [SELECT].

[SELECT) is wused to toggle back and forth between the
DDT screen and whatever screen dynamica were active
bafore DDT was called and/or reentered (e.g., via a
breakpoint).

An attempt has been made to allow for most alternative
display features such as mixed Display linmts, VBLANK
routines, alternative character sets, display list
interrupts, playfield size changes, and player-missiles.
Thus, whenever DDT is entered or reentered, the
locations necessary to restore these features are
“remembered” by DDT before ODT puta its own display on
the screen. When you execute your program (via the °‘G°
command, the (START] button, or the °‘N' command), DOT
restores your acreen display as well as it can (and it
usually does pretty well).

——qle-

®

Generally, then, [SELECT] has only two primary purposes:

1. then you simply wish to look at your dieplay
screen momentarily.

2. When you wish to interpret your program {via the
‘I' command or the [OPTION) button) while
keepling your display active instead of DDT's.

5.3 The OPTION Button

A press of the OPTION button is wusually indicated in
this manual by the notation [OPTION].

{OPTION] is used to "single step™ the proceseor through
your program.

This causes the disassembly filter to be turned on, but
will not automatically toggle the display screen.
Holding down the OPTION button will continue to single
step, at the rate of approximately two instructions per
second. -

£xcepting for the fact that only a single instruction is
executed before a pause is made, the [OPTION] button
"command® works identically with the 'I' (Interpretive
Mode) capability. Therefore, see Section 4.5 for more
details on interpreting code via DDT.

Note that you may NOT interpret a BRK instruction. The
interpreter will, for all intents and purposes, halt
when it encounters a BRK.

.

Y Y

Section 6: Breakpoints and Breakpoint Processing

One of the most common debugging techniques is to make
use of a breakpoint.)

This manual contains much additional information on
breakpoints, =80 we refer you also to Sections 7.3, 4.1,
4.7, and 8.4, This Section will attempt to provide an
overview on breakpoints as well as suggested uses for
them.

The fundamental mechanism of a breakpoint is fairly
simples

1. When a running program encounters a ‘'BRK'
instruction {(a zero byte), the 6502 CPU simulates an
interrupt {an IRQ, not an NMI, except that the 'SEI‘
"instruction can NOT disable ‘BRK' interrupts).

2, The only real difference between a true IRQ and a
BRK-simulated interrupt is that a BRK causes the °'B'
bit {(bit 4, $18) to be set upon entry to the
interrupt handler.

3. When the BRK-simulated interrupt occure, Atari's OS
uses ths 'B* bit to recognize the fact and transfers
control, via a RAM vector, to DDT. :

4, DDT's breakpoint entry simply saves all the user's
registers (A,X,Y,Processor status, Stack, and the
Program Counter). It then sets the display window
pointer (>) equal to the user's PC, selects the
disassembly filter, saves the usual graphics
information (see Section 4.2 and 8.5}, and presents
you with the typical DDT screen display.

After a breakpoint has been encountered, and control has
been transferred to DDT, there are several ways to leave
boT. The 'H' command (Section 4.7) will set a
breakpoint at the next location and then continue code
execution, [START] (section S5.1) simply continues code
execution. 'G" (section 4.4) can be used to transfer
control to another location.

There are three ways to Bet a BRK {nstruction and
thereby allow a breakpoint to happen.

Y, P

l. You can use the 'B' command (as described in Section
4.1) to set up to four special DDT breakpoints.
There are two advantages to this method: (a) DDT
remembers the instruction which was at the location
before you set the breakpoint, so when you reset or
remove the breakpoint DDT can automatically restore
the instruction for you. (b) The disassembly
display shows your original instruction in inverse
video, as a convenient reminder.

2. You can actually store a rzero byte (a BRK
instruction) in your code. You can do this aeither
with the ‘D' (Deposit) command or by actually
assembling a BRK in you source code.

3. You can use the 'N* command (Sectfon 4.7), which
automatically sets a BRK instruction in the byte
which follows the current instruction. Again, as
with the 'B' command, DDT remembers your original
instruction and restores it without effort on your
part. Note that you will never see the BRK placed
by 'N', as it ig automatically removed as soon as
DDT recovers control.

The best use of multiple breakpoints is to set one at
every path in your program where you do NOT expect to or
want to go (execute). That way, 1f your program takes a
wrong turn, DDT will alert you by saying, “Heyl How'd
we get to this breakpoint?”

Alsa, of course, you will normally step through your
code a little at a time, setting a breakpoint a little
farther ahead each time. Por this use, we recommend
reserving a single breakpoint register (usually number
1}). Use the other registers (2 through 4} for the
“side® or unexpected paths mentioned in the previous
paragraph.

When one of the breakpoints J§s encountered in

intrepretive mode, it will halt the intrepretive mode at
that point.

—— -

Section 7: DDT Entry Points

There are four ways of entering or reentering DDT:

MAIN - ENTRY
FLASH ENTRY
BREAKPOINT ENTRY
RESET ENTRY

Each is described separately below.

Sometimes, it will seem that the computer has locked up
and none of the Entry methods described below will work.
Generally, thias 18 because something has gone wrong in
the program you are debugging, and {it has modified
certain critical memory locations.

Disabling interrupts (executing an 'SEI*- instruction)
and/or modifying the interrupt vectora of Atari’'s OS are
particularly insidious ways of destroying DDT's access
to the system. And accidentally using the Move command
incorrectly can obviously wipe out wholesale hunks of
memory.

These are obviounly only some of the ways to effectively
disable DDT, but we would hope the most usars will not
encounter any of them. It {is wusually only the more
sophisticated and complicated programs which will be
altering locations which DDT is sensitive to.

7.1 Maln Entry to DDT

When you give MAC/65's editor the "DDT" command, DDT is
entered at what we call ftes Main Entry point.

Section 8.1 describes in some detail the process DDT
goes through when it is entered. In particular, DDT

' saves the state of MAC/65 so that you do not 1lose your

sourca code.

See also Section 8.1.

7.2 "Flash" Entry to DOT

- = e o o

This entry point is provided to allow immediate reentry
to DDT regardless of most other circumstances.

When DDT is called, the operating system code that looks
at the keyboard is modified so that it looke for a
special character first, before handling normal kXeyboard
input.

—e35-m

The special character looked for is one which is unused
by normal Atari operations: [CTRL] (ESc)

In other words, to reenter DDT when your program {is
running, simply press both the Control and the Escape
keys at the same time.

When DDT's modified keyboard handler finds the
[cTRL]I(ESC] character, DDT 4is entered immediately
through the FLASH ENTRY point (which is essentially
equivalent to encountering a breakpoint).

Using the °'N' command or pressing START will return
control to vhereever the processor was at when the DDT
special character was typed.

For more Information on the Flash entry mechanism, and
some warnings about how you may inadvertantly make it
inoperative, see section 8.2.

7.3 Breakpoint Entry to DDT

-

Breakpoint entries are the most common way of entering
DOT.

Once DDT has been entered via the Main entry, DDT's
breakpoint handler is set up. Thereafter, anytime your
program f{or, for that matter, any program) attempts to
execute & BRK instruction (a zero byte), DDT Ls entered
at its Breakpoint Entry.

For more information on the use and characteristics of
breakpoints, see Sectlions 6.and 4.1.

7.4 RESET Entry to DDT

1f DDT was active bYafors you executed your program
(e.g., via the 'G' or 'N' commands or the {START)
button), then pushing the [RESET] button should return
control to DDT.

Obviously, if your program has scrambled enough
locations which are vital to DDT and/or the Atari O0S,
then the RESET handling may naver have a chance to
occur.

P Y-,

Section 81 Technlical Details of DDT

DDT is designed to be compatible with MAC/65 so that you
can easily go from editing to assembling to debugging
and sa forth.

Specifically, you enter DDT via the °‘DDT' command from
the MAC/65 editor. At that point, DDT saves certain
memory areas which are critical to MAC/65's functioning
in memory reserved by MAC/65 (and pointed to by MAC's
'lomem' polnter--the first value given in the response
to a 'SIZE' command in MAC).

When you uase the 'Q’ command to exit DDT and reenter
MAC/65, DDT restores the critical memory areas. 1If,
during the course of your debugging esession with bDDT,
you have not changed any of the memory bounded by the
low and high values given in response to MAC'as 'SIZE’
command, you will find your source code (if any) intact
and ready to edit and/or {(re)assemble.

MAC/65 and DDT cooperate in another way: when you push
the [RESET] button on the Atari keyboard f(hopefully,
only as a last gasp desparate measure), MAC/65 attempts
to determine whether DDT or MAC had control when the
button was pushed. 1f poT had control, MAC
automatically and immediately reenters DDT at a special
RESET entry point.

During DDT initialization the system keyboard vector {a
redirected to & preprocessor which checks for the DDT
FLASH ENTRY special character ([CTRL) [ESC)). If this
character {s seen, control transfers to the FLASH ENTRY
point, otherwise control passes to the normal keyboard
processing routine.

Note that keyboard interrupts must be enabled. If your
program alters cr disabhles the keyboard interrupt (or
its vector), DDT will not be able to regain control.
You may or may not be ables to push [RESET] to reenter
ODT,

Not that this implies that the °'SEI" instruction will
also disable the DDT keyboard scanner. This (s somewhat
important, but since 'SEI' disablea all keyboard
activity we would hope it is an instruction you will use
with care.

e=37en

o

8.3 DDT's use of System Resources (RAM and ROM)

DDT itself occuples a portion of the MAC/65 cartridge
space. When it is called, the upper half of page zero
and certain locations in page four ($480-$4FF, but not
all of this range) is saved for later ume by MAC/E€5 (see
8.1, above).

While DDT {s running, then, locations $89 through $AF
are used by DDT and should be avoided by user programs.
Otherwise, the locations in the upper part of page zero
may be used.

Also, DDT takes the RAM area from $3FD through $57F for
its display screen, breakpoint regiaters, etc. Since
the cassette buffer occupies $3IFD to $47F, this implies
that you can NOT do cassette I/O from within DDT (though
you may. load a tape from MAC/6S before entering DDT or
save to a tape after exiting).

Remember, also, that MAC/65 is NOT capable of assembling
directly into page six ($688 through §6FF). You may,
however, assemble into other (higher and safer) memory
with an offset (sae the MAC/65 manual, Section 3.3%) and
then use DDT's Move command to place the resultant code
in page six.

8.4 Things to Watch Out For

There ara a few areas where you have to be careful in
using the DDT cartridge. 1In general, these occur when
you are single stepping or yunning interpretively.

If the code being interpreted alters the display list or
does direct access to ANTIC or CTIA/GTIA, then you might
end up with a scrambled screen. Usually this is non
fatal, just distracting. (See our example program and
debug session in Section 1 for an instance of just this
occurrence.)

To restore the normal DDT screen, press the BREAK key to
halt the interpretive mode, then press SELECT twice
(though doing 8o may turn off any players, etc., which
you had made active).

Trying to do 1/0 from disk or any other real time
activity in either interpretive mode or single atep mode
will almost certainly not work.

You should set up breakpoints around the real-time code
80 that this type of I/0 is done 4in real time. For
example, try using the *“N* command anytime your code
doos a JSR to CIO oxr SIO.

Y

® -

8.5 Graphics Location Saved by DDT

- o D o > o o A e e P A -

Whenever DDT {s entered {see section 7), it saves
certain memory locations pertaining to user graphics
before presenting its own display ({also see Section
4.2). The locations saved are all “shadow registers”™ or
vectors in page two. The following are a 1liast of the
locations saved, by label, hex address, number of bytes
saved, and very brief description. The labels given are
thoss used in “Mapping the Atari” (from Computel Books)
and 4in the Atari OS 1listings (part of the Atari
Technical Manual set), and we refer you to those
publications for more information.

Label Address § bytes Description

VBI immediate vector address
VBI deferred vector address
Start address of dieplay list
DMA control reqister
Priority selection register
Color register }

Color register 2

Color register 4

Character mode register
Character set base address

SDLSTL $02136
SDMCTL §022F
GPRIOR §$026F
COLOR1 $§02C5
COLOR2 $82C6
COLOR4 $02C8
CHACT $02F3
CHBAS $O2F4

Pt s b pud e e s D) A N

If your program uses other syatem memory locationa which
are altered by DDT, or if your program changes graphics
characteriaticas by direct changes to the Atari hardware
registers, DDT will HOT be able to completely restore
the screen display your program was exhibiting when DDT
was entered,

8.6 Using MAC/6S as a Mini-Assembler for DDT

Those of you who have used other debugging tools may
note that, while DODT has a fairly sophisticated
disassembler, {t lacks a built-in mini-assembler.
Thanks to the Jdntegrated nature of MAC/65 and DDT,
though, you may never even notice this omission.

Let us suppose, for the moment, that you have just
asnembled a emall to medium sized program from source
code in memory, placed the object code in memory, and
have entered DDT. When you discover an error in your
code, you can simply pop back to MAC/65, change the
offending code, re-assemble, and be back in DDT in a
matter of a very few meconds.

O T- P

But what {f the code you want to patch is NOT in memory
or is not directly related to the source currently in
memory. What can you do then? We suggest the following
steps:
Exit DDT via the Q (Quit) command.
If there is a source program in MAC/65's edit
buffer, types in “"RENUM 1000,1"
Type NUM 10,18,
Enter your patch, using "*=" to control where
the patch goes and " .OPT OBJ" to
ensure the patch really ends up in memory
Assenble via the “ASM" command.
Go biack to DDT (via “DDT", of course), and your
patch is in place,
NOTE: to get rid of your patch code without
affecting your main program, you may
type “DEL 1,999" to MAC/6S.

There ARE some things to watch out for if you use this
method. Primarily, ‘you want to ensure that MAC/65
doesn't wipe out the program you are trying to debug.
There are two possible ways this could happen.

First, remember that MAC/65 deatroys the lower half of
page 6 ($600 through $67F). If you are using page s=ix,
then, you should use the Move command to move page six
to someplace “safe" before going to MAC/65 (then move it
back when you return to DDT).

Second, the very process of editing (writing) even a
emall program will overwrite some of memory. However,
we direct your attention to the MAC/65 LOMEM and SIZE
commands. You can use LOMEM to set the bottom of the
memory that MAC/65 will use. You can use SIZE to
determine what memory MAC/65 4is, 4indeed, using. Wwe
suggest, if you intend to use the method we have
outlined, that you use LOMEM when you first enter
MAC/65.

The other major problem you can encounter relates to the
way DDT saves the state of MAC/6S when {t is entered.
Since the two programs (and they really do operate as
almost totally separated programs) share some of the
same wmemory space, DDT saves part of page zero and part
of page four ($B3-$FF, $4B80-§4FF) when {t is entered.
It saves these locations at the start of MAC/65's
"buffer" space.

You can determine where the buffer space is by ualing
SIZE1 the first number displayed in response to SIZE is
the hexadecimal address of this buffer. You can change
where this buffer is by using LOMEM.

Y .

UL AR S

