
. Th

a reference manual for

DOT

"Dunion's Debugging Tool"

a screen-oriented debugging program for
use with the OSS MAC/65 Macro-Assembler

on computers built by Atari, Inc.

The programs and manuals comprising
DDT are Copyright (c) 1982, 1983 by

James J. Dunion
and

Optimized Systems Software, Inc.

This manual is Copyright (c) 1984 by
James J. Dunion and

Optimized Systems Software, Inc.

Please contact Mr. Dunion or OSS, Inc., at
1173-0 Saratoga Sunnyvale Rd.
San Jose, California, 95129

Telephone (408) 446-3099

Rev 1.0

PREFACE

DDT is the original design and product of Mr. James J.
Dunion. Versions of DDT have been produced for disk
based systems (sold through the Atari Program Exchange),
but this version marks the first time DDT has been
integrated with an assembler.

We at OSS like to think that it 	is 	especially
appropriate that Mr. Dunion chose to allow us to link
the fastest macro assembler for Atari computers with the
most exciting concept in debugging tools. We hope you
enjoy this powerful package as much as we have enjoyed
preparing it for you.

•

• TRADEMARKS

The following trademarked names may be used in various
• places within this manual, and credit is hereby givens

DOS XL, BASIC XL, MAC/65, and C/65 are trademarks of
Optimized Systems Software, Inc.

Atari, Atari 400, Atari 800, Atari Home Computers, and
Atari 850 Interface Module are trademarks of
Atari, Inc., Sunnyvale, CA.

All rights reserved. 	Reproduction or translation of
any part of this work beyond that permitted by sections
107 and 108 of the United States Copyright Act without

the permission of the copyright owner is unlawful.

Table of Contents

Section 1 t An Introduction to DDT
1.1 What DDT Is
1.2 An Overview of the Workings of DDT
1.3 An Example of Using DDT and MAC/65

Section 2 The DDT Screen Display
2.1 Register Display
2.2 Display Window
2.3 Breakpoint Table
2.4 Command Window

Section 3 I An Overview of the DDT Commands
3.1 A Summary of the Keyboard Commands
3.2 Legend

3.2.1 Specific Selections
3.2.2 Hexadecimal Values
3.2.3 Delimiters

3.3 Special Characters, '' and 'Y'

Section 4 : Command Descriptions
4.1 B -- Set or Reset a Breakpoint
4.2 D Deposit Value(s) in Memory
4.3 E -- Examine Memory
4.4 G -- Go to a Program at a Given Address
4.5 I -- Interpretive Mode
4.6 M -- Move Memory
4.7 N -- Next
4.8 0 -- Quit DDT, Reenter MAC/65
4.9 R 	Register Modify
4.10 S -- Search for a String of Bytes
4.11 W -- Window Change
4.12 f 	Move Display Window Down/Higher
4.13 (-- Move Display Window Up/Lower
4.14 • -- Set Contents of Program Counter

Section 5 s Push Button Controls
5.1 The START Button
5.2 The SELECT Button
5.3 The OPTION Button

Section 6 : Breakpoints

Section 7 DDT Entry Points
7.1 Hain Entry to DDT
7.2 Flash Entry to DDT
7.3 Breakpoint Entry to DDT
7.4 RESET Entry to DDT

Section 8 : Technical Details of DDT 	 37
8.1 Interaction with MAC/65 	 37
8.2 Keyboard Scanner 	 37
8.3 DDT's Use of System Resources 	 38
8.4 Things to Watch Out For 	 38
8.5 Graphics Locations Saved by DDT 	 39
8.6 Using 1IAC/65 ea a Mini-Assembler for DDT 39

1
1
2
3

9
10
11
12
12

13
13
14
14
15
16
16

17
17
19
20
21
22
23
24
25
26
27
28
28
29
29

31
31
31
32

33

35
35
35
36
36

• -N■

Section 1: An Introduction to DDT

1.1 What DDT Is

The name "DDT" (a software analog to the biological bug
killer of the same name?) has been used for many other
debug programs on other systems (where it usually stands
for "Dynamic Debugging Tool"). We at OSS are proud to
offer the beet and most "authentic" DDT, "Bunion's
Debugging Tool", by Jim Bunion.

DDT has become one of the most popular debugging tools
ever invented for use with Atari computers. In this
version, OSS and Mr. Dunion have attempted to keep the
spirit and flavor of DDT while scaling its sire down
enough to fit in an OSS SuperCartridge with MAC/65.
This combination of MAC/65 and DDT is truly an
all-in-one development system for assembly language
programmers.

- 	The heart of DDT is its ability to show what is
• happening inside the computer on a special display

screen. This special screen is kept completely separate
from your program's screen, whether you are using
sophisticated 	graphics 	or 	simply Atari standard

• character I/O.

In effect, then. DDT tries to be as invisible as
possible to your Atari computer's operating system,
screen display handlers, keyboard handler. More
importantly, though, DDT attempts to perform its tasks
without interfering with your program.

This extraordinary separation of debugger and user
program is coupled with the ability to easily change and
monitor the internal state of "your" machine's
environment, so that you can get a much clearer picture
of exactly what's going on inside your system and
program at any instant.

As with any software-based 	debugger, 	there 	are
limitations on speed, instruction and memory tracing,
and interrupt processing. All in all, though, DDT comes
close to providing you with the best possible debugging
environment, probably matched only by hardware logic
analyzers costing hundreds of times more.

--01--

1.2 An Overview of the Workings of DDT

DDT is separated into four major functional parts; a
display generator, a breakpoint handler, an instruction
interpreter, and a user command processor.

Generally, when you enter DDT from MAC/65 (via the "DDT"
command, of course), you are presented with an arbitrary
display of a portion of memory with the values of the
6502 registers (at the time DDT was entered).
Naturally, if you intend to debug your own program, you
must first tell DDT where it is. You do this via the
command processor (but we won't discuss exactly how at
this point).

If you are reasonably cautious, you will probably wish
to step through your program a line at a time. You can
do this thanks to DDT's instruction interpreter.

Once you have a subroutine or set of routines reasonably
debugged through the use of single stepping, you will
probably wish to execute them without full trace. Or
you may wish to allow your program to run up to a
certain point before you examine registers, memory
locations, etc. DDT's breakpoint handler accomplishes
both these tasks.

With a few exceptions, you accomplish all these tasks by
using the command processor of DDT. By simple, easy to
remember commands, you cen ask DDT to interpret your
program, show you the contents of memory in either
instruction or memory dump formats, change memory or
register values, and (in general) control the flow and
environment of the program you are debugging.

- -02 - -

1.3 An Example of Using DDT and MAC/65

We will present here a short and simple program, written
in MAC/65, which we ask you to type in to the MAC/65
editor. 	We will then assemble and debug this program
using DDT. 	We will not perform the more complex
operations of DDT, but we hope that we will give you at
least a feel for using DDT and its flexible commands.

NOTE: We assume here that you have read the MAC/65
manual and can use the MAC/65 editor and its
commands. For this example, though, we will
call out every keystroke to be used with DDT,
including (RETURN) keys, unless we note
otherwise

To begin, then, boot your DOS (if you are using a disk)
and enter the MAC/65 cartridge. To the "EDIT" prompt,
type "NUM" and enter the following program:

10 ; EQUATES
20 HPOSPO ■

30 PCOLRO ■

40 CHSET ■

50 PHRASE ■

60 SDMCTL ■

70 GRACTL ■

80 ;

-- FROM
$0000
$02C0
$5000
$0407
$022?
$D01D

'AMPPING THE ATARI'
;Hort. POSn, 	Player 0
;Player COLoR 0
;addr of std char. 	set
:Player/Missile BASE addr
;Set DMa ConTroL
1GRAphics ConTroL

90 * ■ $3800 	tan arbitrary address
0100 ; 	SET UP FOR PM GRAPHICS
0110 1
0120 SETUP
0130 LDA 1 , CHSET we use the char. 	set
0140 STA PMBASE ,...as data 	for player
0150 LDA 14•16+4 ;color, hue 4, 	intensity 4
0160 STA PCOLRO ;for our player
0170 LDA 1$2A istd playfield,DMA,players
0180 STA SDINCTL t...are 	all 	enabled
0190 LDA 12 ;the bit for players
0200 STA GRACTL ;...is turned on
0210 1
0220 LOX 1100 ;init our bort. pos'n
0230 ;
0240 LOOP
0250 STX HPOSPO ;where we want the player
0260 LDY 110 .
0270 DELAY

,--• 0280 DEY dust wait for awhile
0290 TINE DELAY
0300 ;
0310 INX Ito next position
0320 .)MP LOOP
0330 1
0340 .END .

--03--

Presuming that you have typed in and assembled this
program correctly, it is time to lead you through the
debugging process.

So give MAC/65 the "DDT" command, and you will be
presented • with a display similar to the one given below
(though the screen version will be easier to read than
our printed copy, thanks to inverse video etc.).

•

• IBKP1 BKP2 BKP3 BKP4 NV BDIZC
1

10000 0000 0000 0000 10110000

1
1 PCAXYSENTER COMMAND

1BED4 80 FF 00 FF

For now, let's not worry about what all that means.
Suffice to say, DDT thinks that your program's PC is at
location $8E04 and is showing you the code that it finds
at that location.

But our assembly placed our main code at location $3800,
so let's tell OUT to change what it is displaying. We
do that by entering a command (which will be shown under
the words "ENTER COMMAND") as follows:

• 3800(RETURN)
NOTE that we do NOT type in the space between the
and the '3'. DDT does that for us.

Now look at the main display window. The 'b' symbol
should be pointing to location 3800. Do you see your

• code listed there? If you typed in the program exactly
as we specified, and if you started from a "cold"
(power-on) machine, you will probably find nothing but a
series of 'BRA' instructions being displayed.

1 	LOC. VAL INSTRUCTION

1 	DDT 	(c) 	1984 JAMES J. 	DUNION

>BEIM 1.9 LDA I $04
BEDS 04
0E06 40 PHA
BED7 20 JSR $ASOE
13E08 OE
BED9 AS
BED?. 68 PLA
BEDB 38 SEC
BEDC E9 SBC I $01
BEDD 01

•
When you are satisfied that you have entered the program
correctly, you might save it to disk or cassette and
then assemble it. We used

ASH ,IFI
to get the listing which appears below. 	Of course,
using the 'IP:* requires that you have a printer hooked
up to your computer, so you may wish to modify this
command to suit your system's set-up (and see your
MAC/65 manual for details on how to do so).

Verify that your listing is essentially identical (we
have omitted the symbol table listing here).

10 ; EQUATES -- FROM 'MAPPING THE ATARI'
.0000 	20 HPOSPO 	$0000 	:Hort. POSn, Player 0
■02C0 30 PCOLRO 	$02C0 	;Player COLoR 0
■E000 	40 CHSET 	$E000 	laddr of std char. set
■0407 	50 PMBASE 	$0407 	;Player/Missile BASE addr
■022F 60 SDMCTL 	$022? 	;Set DMa ConTrol
■0010 70 GRACTL 	$0010 	1GRAphics ConTroL

80
0000 	90 	*■ $3800 	;an arbitrary address

• 0100 SET UP FOR PM GRAPHICS
0110 y

3800 	0120 SETUP
3600 A9E0 0130 	LOA I >CHSET two use the char. set
3802 800704 0140 	STA PHRASE 	;...as data for player
3805 A944 	0150 	LDA 114.'16+4 ;color, hue 4, intensity 4
3807 8DC002 0160 	STA PCOLRO 	for our player
380A A92A 	0170 	LDA 1$2A 	;std playfield,DMA,players
380C 802F02 0180 	STA SDMCTL 	;...are all enabled
386? A902 	0190 	LDA 12 	:the bit for players
3811 801000 0200 	STA GRACTL 	7...is turned on

0210 ;
3814 1.264 	0220 	LOX 1100 	;init our bort. pos'n

0230 y
3816 	0240 LOOP
3816 8E0000 0250 	STX HPOSPO 	;where we want the player
3819 1.001. 	0260 	LDY 110
3818 	0270 DELAY
3010 88 	0280 	DEY 	 ;just wait for awhile
381C DOFD 0290 	ONE DELAY

0300
381E ES 	0310 	INX 	 to next position
381? 4C1638 0320 	JMP LOOP

0330 ;
3822 	0340 	.END

--04--

"•—•••\

What went wrong? Actually, nothing. At this time, you
should go back to MAC/65 by typing the DDT command '0'
(just push the 0 key, nothing else). Now type the
following:

1 	.OPT OBJ
This line is necessary if you wish MAC/65 to assemble
code and place the resultant object directly in memory.
So, once again, you need to assemble your program. You
may do so by simply typing

ASH
as a command to MAC/65. 	And, when the assembly is
finished, you can go to DDT with the DDT command.

This time, after giving the
3800(PETURN7

command, you should see the beginning of your program
displayed in DDT's main display window. Compare what
you see to either your printed listing or the listing of
Figure 1.2 to be sure that all is okay.

At last we are ready to try debugging our little
program.

The first thing we will do is single step through the
first part of our program. 	At this time, push the
(OPTION] key one time. What happened? Presumably, the

is now pointing to location 3802. Also, the value
of the PC (displayed under the letters 'PC') should be
3802. Notice expecially that the A-register now
contains 50. In other words, we just executed the
Instruction 'LDA I$E0' which was at location 3800, and
DDT is telling us what the new state of the CPU is.

Now push (OPTION] four more times, observing changes to
the PC, display window, and A register. If you have
done everything the same way MO did, the A-register
should contain 2A and the PC should be set at 380C. IF
NOT, CHECK TO BE SURE YOUR PROGRAM HATCHES OURSI

Now comes the fun part. Push (OPTION] one more time.
Did your display change dramatically? Remember, in
section 1.1 we said there were a few limitations on
display processing, etc.? We have just run into one of
these limitations.

With this instruction (a STore A-register into SDMCTL,
the system DMA control), we altered the width of the
Atari's "playfield". DDT normally uses a narrow
display. 	We requested a 'normal" display. DDT accepts
our choice and allows the change in display formats.

Surprisingly, DDT continues to function! And, if you
are willing to ignore some of the junk on the screen,
you can even read and understand most of the display.
(Simply ignore the last 8 charactr positions on each
line.)

--06--

We could "fix' the display (by pushing the [SELECT]
button twice), but let us NOT do so at this time. (If
we did, we wouldn't be able to see what happens next.)

Push the [OPTION] key four more times. Presto, an Atari
"player" stripe full of character shapes appears. Since
this is a demo of DDT, not an explanation of the Atari
hardware characteristics, we don't want to spend too
much time here explaining what has happened, but a very
brief explanation will probably help you if now if you
are not experienced with Atari hardware. The
explanation which follows is given by address(es) from
our little program.

3800-3804 By using the built-in character set
as player 	'data' 	we eliminate the
to make player shapes for this demo.

3805-3809 This is the same as BASIC XL'.
PMCOLOR 0,4,0 and similar to
SETCOLOR 0,4,0

300A-380E We enable players and use a "standard"
width playfield (character display)

380E-3813 This is a "must", 	to enable the player
data registers. 	Actually, 	at this
time the player is turned on and
active. 	It's simply too far left of
the screen to see.

3814-3818 Move the player stripe to horizontal
position 100, which is a little left
of the middle of the screen.

Now simply hold down the [OPTION] key. 	Watch the
display of the registers. 	In particular, watch the
values for the X and Y registers (displayed under the
letters 'X' and 'Y'). Y seems to be decreasing at about
one count per second. When it gets to zero, X is
incremented and the player is moved right a little bit.
Why? Because we stored X in the horizontal position
register for our player.

If you continue to hold down [OPTION], the process will
continue, albeit very slowly, and the player will move
right across the screen. When you are tired of watching
this, release the (OPTION] key.

Let's try something new. 	Push the 'I' key. What
happened? Actually, what you are seeing is the same
thing you saw when you held down the (OPTION) key, its
just happening much faster. 	You get to watch the
registers 	changing, the instruction being executed
moving (apparently up and down in the DEY loop, but
that's an illusion), and the resultant movement of the
player. Again,, when you are tired of this, push the
(BREAK] key.

--07--

• 	•
So now we have seen two different speeds of instruction
interpretation. But there is yet a third. First,
though, push the [SELECT] key twice to restore DDT's
normal display.

Again, enter the command sequencer
• 3800[RETURN]

And the PC and '>' displays should both again refer to
location 3800. Push the (SELECT] key. The MAC/65
screen should reappear, just as you left it. CAUTION:
you are NOT back in MAC/65I This simply demonstrates
the independent screen display of DDT. Cute, yes?

Now, very carefully, push just the 'I' key. Once again,
the player should appear and start moving across the
screen. But now it is much, much faster. Why? Simply
because DDT knows that it does not need to continually
update its display of the registers, instructions, etc.
Yet STILL your program is being interpretedI

When you are ready, preps [BREAK] and DDT will regain
control. For our last experiment, let's enter the DDT
command sequence:

G 3800(RETURN]
Again, remember that DDT puts the space in for you. Do
NOT type it in.

What happened? 	Presumably you have a very messy,
smeared player moving impossibly fast across your
display. This demonstrates the true speed of assembly
language: the TV screen is not fast enough to keep upl

Push (CTRO[ESC] (hold down the (CTRL) key while pushing
CESC]). You should be back in DDT.

One final experiment: use the DDT command sequences
E 381A(RETURN]

to move the display pointer 1) 1 to location 381A. Then
enter the sequence:

D 00(RETURN]
which alters the contents of 381A. Finally, again use
the command:

G 3800[RETURN]
And observe the player, in more visible form, moving
rapidly across the screen. Believe it or not, this is
the slowest we can move the player if we use a simple
single register delay loop (the code from 381B to 381D).

Section 2: THE DDT SCREEN DISPLAY

The DDT Screen Display shows a user the internal state
of the machine. The display screen is divided into
several display areas which show different aspects of
what is going on inside the computer.

Please refer to Figure 1.1 in the previous section for a
rough picture of a typical display. Remember, to view
the DDT display simply type the command 'DDT' from the
editor of MAC/65.

The display areas are called I

- REGISTER DISPLAY -- Shows the current contents
of the 6502 registers

- DISPLAY WINDOW -- A window into memory
- BREAKPOINT TABLE -- Shows the settings of

DDT's breakpoint registers
- COMMAND WINDOW -- Where you enter DDT

commands from the keyboard

The following sections describe each of these display
areas in more detail. However, for a full understanding
of the capabilities of these deceptively simple
displays, you must read this entire manual. And, of
course, you should try using DDT. Only then will you
understand how these displays can be used to their best
advantage.

And now we are done with our demonotration. You may use
(CTRLHESC] to get back to DDT. Use '0' to return to
MAC/65. Or simply reboot your system if you are done
using DDT at this time.

- -08 - - --09--

2.1 	Register Display
2.2 	Display Window

The left side of the lowest part of the 	display 	screen
is 	used 	to 	display 	the 	current contents of the 6502
processor registers. Excepting that the status flag
register is shown on the right side of the lines next to
the bottom, on the same line as the breakpoints.

Whenever DDT is entered, the contents of 	the 	processor
registers 	are 	copied 	into 	register shadows which are
then displayed. 	These shadows are used to 	restore 	the

The display window forme a window into the system memory
address 	space. 	This 	window 	is 	located 	in 	the top
portion of the display screen, and occupies most of 	the
screen. 	The window is set to an arbitrary address upon
entry to DDT, but 	the 	initial 	address 	shown 	in 	the
window 	may be changed by severe). commands (as described
in later sections).

6502 	registers 	before 	control is released back to the
program being tested,

In 	the 	next to last line of the DDT display, the names
of 	the 	6502 	registers 	are 	displayed. 	The 	current
user-program 	values 	(contents) 	of these registers are
shown (in hexadecimal notation) in the Register 	Display
area directly beneath their names:

This display window may be thought of as having 	one 	of
two possible filters in front of it.

The Disassembly Filter

The first filter, which is set upon initial entry to DDT
is a disassembly filter. A GREATER THAN sign (>) points
to what is called the current position.

PC 	• Program counter
A 	■ Accumulator
X 	■ X index register
Y 	• Y index register

In the disassembly display, each line from 	the 	current
position 	down 	is 	shown 	in 	a 	similar 	format: 	the
hexadecimal address of a location, 	its contents and then

S 	■ Stack pointer
Excepting 	for 	the 	PC, the values (contents) shown for
these 	registers 	are 	all 	single 	byte 	values, 	thus
displaying 	two hexadecimal digits. 	This is, of course,
because all registers on the 6502 CPU chip are a 	single
byte in size. 	The sole exception is the Program Counter

%-, . a disassembly 	readout. 	Standard 	6502 	mnemonics 	are
used, with conventional address mode indications.

Note that the 	NCR 	65CO2 	additional 	instructions 	and
address modes are supported.

(PC), 	which 	is 	16 	bits 	(two 	bytes) 	in site and is
displayed with four hexadecimal digits.

Not shown in the basic 	Register 	Display 	area 	is 	the
processor 	status 	register. 	In 	order to allow you to
more easily view and understand the value of the 	status
register, it is shown in binary form. 	That is, each bit
of 	the 	status 	register's 	contents 	is displayed in a
special area of the DDT screen.

Several features have been added to aid debugging. 	If a
mnemonic is shown in inverse video, 	it indicates that 	a
breakpoint 	has 	been set at that location. 	In fact, 	if
you look at the actual contents 	of 	that 	location, 	it
will be a 0.

If 	the 	mnemonic in inverse video is a BRK instruction,
that particular BRK instruction was not placed there 	by
DDT. 	This 	would 	occur, 	for 	instance, 	in looking at
memory that contain, all zeros.

The legend "NV BDIZC" on the screen indicates 	that 	the
bit values shown directly under the legend correspond to
the various CPU status bits. 	In particular, the letters
stand for (and the bit values are to be interpreted as):

' Secondly, 	if 	the 	instruction 	is 	one 	of 	the branch
instructions, the 	computed 	target 	branch 	address 	is
shown. 	An 	arrow 	(1 	or 	4') 	is 	used to indicate the
direction of the conditional branch.

N • Negative flag .
V • Overflow flag
8 • BRK instruction flag The Hexadecimal Filter
D I. Decimal mode flag
I • Interrupt disable flag
Z • Zero flag
C • Carry bit

The 	second filter is a hexadecimal filter. 	This filter
causes the display window to show the hexadecimal 	value
and ATASCII representation of up to 40 memory locations.
Again, 	the) sign indicates the current position.

The blank in the legend (and the corresponding bit under
it) is an unused bit in the 6502 status register and
should be ignored, --le--

• I

If the hexadecimal 	filter is in place, 	each 	line 	after
the 	current 	position line will start on an even 4 byte
boundary.

—11--

This means the current position line can have 1 to 4
values on it. The current position line values will
always be left justified.

•

2.3 Breakpoint Table

The Breakpoint table is located just above the register
display.

There are four user definable breakpoints (labeled
'BKPI . , BKP2', '13KP3 and 'DKP4' in the display), each
of which will be shown with its current setting.

• If a register is clear (i.e., not set), then the value
shown will be 0000.

If a breakpoint register is set, the value in that
register will be the location (address) in memory where
DDT has placed a BRK instruction. ,,-

2.4 Command Window

The extreme right hand part of the bottom of the screen
• is devoted to the command window. Thin is the area that

shows the command that a user is typing in.

Often, a DDT command will consist of simply a single
keystroke. Since DDT executes commands very quickly,
you may never see the key appear in the command window.
Be assured, however, that every key you type (other than 	 •
the [OPTION], [SELECT], and [START] buttons) Is echoed
in this window.

Note that DDT commands requiring a following value,
etc., automatically display a space after the first
keystroke you type. This is for ease of understanding
only. You do NOT type the space.

•

- -12 - -

Section 3, An Overview of the DDT Commands

The command interpreter allows a user to issue keyboard
commands to DDT. You may recall from Section 2 that the
command window is shown in the lower right hand portion
of the display screen.

Each DDT command requires only a single keystroke. 	If
the key typed is not a valid DDT command, it will be
ignored. If a key is a valid command and requires no
additional arguments, the command which the key
represents is executed immediately. Again, recall from
Section 2 that most DDT commands execute so quickly that
you may never see the command key echoed in the command
window/ but it really does go there, however briefly.

Some DDT commands, though, require one or more
additional arguments. If you request a DDT command
which needs one or more parameters, DDT will wait for
you to enter the arguments it needs before proceeding.

SPECIAL NOTE, DDT always puts a space after the command
key when it echoes the key in the command window. 	You
do NOT type the space key. 	DDT places it there
automatically.

COMMENT, In addition to the keyboard commands, DDT
understands three "pushbutton commands", which are
described in Section S.

3.1 A Summary of the Keyboard Commands

The DDT Keyboard Commands are s

• (1,2,3,4>,(addr) 	[1] Breakpoint 1-4 set to given addr
D ()latrine> 	 [2] Deposit hex string
E (addr) 	 [3] Examine address addr
G (addr) 	 [4] Go at address addr
	 [5] Interpretive mode

M (addracaddr><1en* 	[6] Move memory
	 [7] Next instruction

o CU Quit, return to MAC XL
R (P,A,X,Y,S),(val) 	[9] Register selected receives val
S ()latrine , 	 [10] Search for hex string
	 [11] Window filter toggle
	 [12] Move display window down/higher

1 	 [13] Move display window up/lower
* (addr) 	 [14] Set Program counter

In the list above, the numbers in square brackets (e.g.,
(3)) indicate the subsection number in chapter 4 where a
full description of the command may be found.

The abbreviations enclosed in (angle brackets) are
described in the LEGEND (in section 3.2), starting on
the next page.

--13--

3.2 Legend
3.2.2 Hexadecimal Values, (addr),(val),(hstring),(len)

First, we must note that the abbreviations (addr),
(byte), (hstring), and (len) all represent hexadecimal
values which you, the user, must type in. When DDT is
expecting a hexadecimal value, it ONLY recognizes the
characters 0,1,2,3,4,5,6,7,8,9,A,0,C,D,E, and F (the
traditional hexadecimal 'numeric' characters).

Specifically, DDT expects a certain number of hex
digits, as noted in the following list,

(addr) . address value, 	1 	to 4 	hexadecimal
digits 	(i.e., 	2 bytes)

' (byte) ■ a 	single 	byte 	value, 	1 	or 	2
hexadecimal digits

(hstring) . a 	hex 	string 	up to 12 digits long
(i.e., 	6 bytes)

(len) = a 	two 	byte 	length 	specification,
must be either 3 or 4 hex digits

Generally, although DDT will accept fewer than the
maximum number of digits, it will NOT accept MORE hex
digits than it expects. Thus, if the legend (addr)
appears in the summary of a DDT command, you will
usually find that you will be unable to enter more than
4 characters (each of which must, of course, be a hex
digit).

You can however, delete characters, and then enter new
characters. Deleting back past the starting point of
the value field will result in the previous item in the
command being erased.

There are a couple of special cases in the above rules
about field sizes, but they will be clearly described in
Section 4, where individual commands are detailed.

In the summary of section 3.1, certain abbreviations
were enclosed in angle brackets (e.g., (addr>). In this
section we explain the meanings and legal range of
values for the data these abbreviations represent.

Also, these same abbreviations are used in Section 4,
where each DDT command is described in detail.

You may recall that the abbreviations were as follows:
(1,2,3,4) (addr) <Mitring) (val.) (len) (P,A,X,Y,S)

We explain these abbreviations in two groups and then
follow with some comments about delimiters.

3.2.1 Specific Selections, (1,2,3,4) and (P,A,X,Y,S)

When the commands 'B' or 'R' are used, each expects to
be followed immediately by a single character. The
characters between the angle brackets are the ONLY
characters which will be accepted by DDT in each of
these cases.

That is, if you type a '13 1 as a DDT command, you MUST
follow it with a '1', a '2', a '3', or a '4'. Any other
characters are illegal.

If you type in the wrong character (e.g., you type '04'
when you meant to type '113), you may push the delete
(back space) key. DDT will back up and delete the
offending entry, .and you may re-enter it.

See the descriptions of the 'D' and 'R commands in
Section 4 for more details.

--14--

r.,-,

Section 4, 	Command Descriptions

In 	this section, we present a more detailed description
of each of the DDT keyboard commands. 	For 	the 	meaning
and 	legal 	values 	of 	items enclosed in angle brackets
(e.g., 	xaddrx), 	please refer to section 3.2. 	For 	usage
of 	delimiters 	(shown 	in 	this section as commas), 	see
Section 3.3.

The commands are presented 	in 	alphabetical 	order, 	as
presented in the summary table in section 3.1.

4.1 	B -- Set or Reset a Breakpoint

Format: 	 B (1,2,3,4),taddrx

Examples: 	D 1,4000
B 1„
B 	2, 1'
B 4,)

-\

, You 	use the Breakpoint command to set (or reset) one of
DDT's four breakpoint registers 	to 	a 	memory 	location
(presumably an instruction byte) of your choice.

Note 	that 	two 	values (the breakpoint register number,
and the 	breakpoint 	location) 	are 	required 	for 	this
command. 	Both 	fields 	must 	be 	terminated 	with 	a
delimiter.

To 	enter the command given in the first example, 	above,
you could type 	'B' 	then 	'1' 	then SPACE then '4000' 	then
RETURN. 	(Remember, though, 	that all delimiters--SPACE.
COMMA and RETURN--are 	treated 	identically. 	Remember,
also, 	that 	DDT 	automatically 	supplies 	the 	space
following the B. 	You do not type it in.)

If a value other than a 1.2,3, 	or 4 	is entered 	for 	the
breakpoint register, it will usually be ignored. If,
however, you type in some other valid hexadecimal digit,
the command will be terminated when you enter the
following delimiter.

,
When 	a 	breakpoint 	is 	set, the location you specified
shows up in the breakpoint register 	display 	under 	the
breakpoint register number you specified.

. 1 If an Examine command is issued to look at a location in
memory 	where 	a 	breakpoint 	has 	been set. 	a 	'00' data
(instruction code) value will be seen, even 	though 	the
proper mnemonic is shown in the di 	mbly.

--17--

3.2.3 Delimiters
	 --- -

There are two usages for delimiters.

First, the commands 'B' and 'R' require both a specific
selection and a hexadecimal entry. You MUST separate
the selection from the hex entry.

You may use either a [SPACE], a [COMMA], or a (RETURN)
as a delimiter (separator). 	However, whichever you
Choose, DDT always DISPLAYS a comma as the delimiter.

Second, every hexadecimal value must terminated by a
delimiter (except see Section 3.3 for the special cases
of '•' and 'x'). If DDT did not wait for such a
delimiter, you would not be able to correct mistakes.

Again, you may use a [SPACE], a [COMMA], or a [RETURN].
Since a hexadecimal value is always the last item in the
command entry, your delimiter is NOT displayed in the
command window. Instead, the command is immediately
executed.

Once a command has been executed, the command window is
cleared to make room for your next command.

3.3 Special Characters, ' 4 ' and 'x'

For input convenience, there are two special characters,
'"' and 'x'. These are used as shorthand ways of
entering addresses (i.e., where the summary above calls
for an gaddrs),

means the current value of the PC (as you might
expect if you are familiar with 6502 assembly language).
Generally, when an saddrx is called for, you may type
just a single asterisk (x), and DDT will supply the
current value of the PC (as displayed in the register
display) for you.

Similarly, I x' means the current position of the Examine
window pointer (the ')' symbol on the screen). Anytime
an address is expected, you may type just a single
greater than sign (x). and DDT will supply the address
which the Examine window pointer (x) is pointing to.

In the command descriptions in Section 4, special note
will be made if either or both of these characters are
not legal for a given command.

SPECIAL NOTE, When either of these special characters is
used as shorthand for an. address, the command is
immediately executed. DDT does NOT expect nor wait for
a delimiter in this case.

CAUTION: Note that " 1 is itself a legitimate DDT
command. Do NOT confuse its usage as en address marker
with its usage as a command.

- -16 - -

• m

Also, if a breakpoint is set at an examined location,
the mnemonic will be shown in inverse video. This is a
special feature of DDT, to make it easier for you to
graphically see where a breakpoint is set and how.

If a breakpoint register is already in use when a new
breakpoint is requested„ the instruction at the old
breakpoint location is first restored to its original
value.

To clear a breakpoint register and restore the source
code, type any delimiter after selecting the desired
breakpoint register (e.g. typing '13' then '1' then
COMMA then COMMA will clear breakpoint 1 and restore the
source code).

Trying to clear a breakpoint that is not set will not
harm anything. 	Note, however, that trying to set a
breakpoint in ROM, in hardware registers, or in
non-existant RhM will have unpredictable (and possibly
disastrous) results.

SPECIAL NOTE* Remember, you may use "" and '5' as
shorthand notations for the current value of your PC and
the display window pointer. Thus you might examine rss
memory until you find a location where you want a
breakpoint. Then simply enter the command

B 2,5 (RETURN)
(as an example only) to set breakpoint number two at the
displayed location.

COMMENTARY: Physically, e 'OB value (a BRE instruction)
is stored in memory at the requested location. When DDT
performs a disassembly and encounters a BRE instruction,
it searches its breakpoint table to see if it had set
that particular BRE. If so, it recovere the instruction
for the disassembly but displays the mnemonic in inverse
video.

4.2 D -- Deposit value(s) in memory

Formats 	 D 411string ,

Examples, 	D 0
D 313233343536
D 1234

The Deposit command is used to place one through six 	bytes
in memory.

A string of hexadecimal values (up to 12 characters, 6
hex bytes) may be entered. The values entered will be
placed in successive locations starting at the current
position indicated in the display window (i.e., the
address pointed to by the replacing whatever was
there.

The input string is decoded two characters per hex byte
at a time. If there is an odd character left at the
end, it will be interpreted as the tow order nibble of a
hex value.

For example, entering a string of OIAABO will result in
three bytes (01, AA, and BO) being placed in memory.
However, entering 01AAD will result in 01, AA, and OB
being deposited.

Note that depositing a byte or a series of bytes will
NOT move the display window. This must be done with the
examine or the move window up or down commands.

SPECIAL FEATURE

DDT is able to switch screens by saving 13 locations the
operating system uses in managing the system graphics.
Thus, before each value is deposited, it is examined to
see if it should be deposited to these graphics
locations. If so, the value is placed instead in an
internal save table. Thus, for example, you can deposit
values directly to the color shadow registers and affect
the color of the user screen and not the DDT screen.

See Section 8.5 for a lint of the locations saved in
this fashion.

--18--
--19--

• 	•
4.3 E -- Examine memory

Formats 	 E saddr>

Exampless 	E 5000
E •
E S

The Examine command is used to set the display window to
view an area of memory. The extreme left hand edge of
the display window has a GREATER THAN sign () in the
3rd row. This points to what we refer to as the
"current position" in the display window.

Unless you have used the . 1 4 1 or 't . commands, the
current position will be the address entered via the
last 'E' command.

Note that the 'E' command does NOT change the state of
the display window filter, nor will it affect which
instruction will next be executed by a single step
command.

Since you may specify any arbitrary address as the
location to be Examined, and (if you are using the
disassembly filter) since you may accidentally
disassemble a nonsense intruction byte, we recommend one
or more of the followings

1. Examine only locations known to contain valid
instruction bytes. Refer to a printer listing
to be sure you are doing so.

2. After using 'E', move the display window up
(lower in memory) a few bytes and then back down
(via the 	and 4 commands), to ensure
that you are displaying instructions which are
on true instruction boundaries.

3. Examine a few bytes ahead of where you really

	

want to be. 	Then move down (via the '4'
command) to the proper position.

(See also the SPECIAL NOTE in Section 4.2.)

4.4 G 	Go to a Program at a Given Address

Formats 	 G (addr)

Examples* 	G 5000
G •
G >

The Go command is used to begin execution of your
program at a specific location in memory.

Before control is transferred to this location, several
actions take place:

1. All registers are updated based upon the current
. 	contents of the displayed registers.

2. The 13 locations saved for the graphics display
(see Section 4.2, above, and Section 8.5) are
restored, 	thus 	restoring your display and
removing DDT's display from the screen.

3. Vertical Blank Interrupts and Display 	List
Interrupts are BOTH enabled.

Obviously, since Going to your program can be dangerous
(e.g., your program may wipe out all of memory, attempt
to illegal I/O, or other miscellaneous nasties). We
therefore urge caution on your part (including, at the
least, saving your latest version of your program to
disk or cassette) before using this command.

For all intents and purposes, once you issue a Go
command your program has complete control of the Atari
computer. There are two methods of returning to °DTI
(1) If your program executes a BRK instruction (a zero
instruction byte), DDT is entered at its breakpoint
entry (see Section 7.3). (2) If you push ECTRO(ESC)
(hold down the [CTRL] key while hitting (ESC)), DDT is
entered at its "flash" entry point (see Section 7.2).

Method 1 is the most common method and is commonly used
when debugging. Method 2 is an emergency method,
reserved for when your program starts looping and
nothing else will get you out.

Breakpoints are discussed in some detail in Section 6.
The "Flash" entry point to DDT ie discussed in Section
7.2.

NOTE, The special command sequence 'G "' is exactly
equivalent to pushing the [START] button. See Section
5.1 for usage of the (START) button.

--20-- 	 --21--

4.5 / -- Interpretive Mode

Formats

Example:

The Interpretive Mode command is used to place DDT in an
automatic single step mode.

Interpretive mode will run with either the user screen
or the DDT screen being shown, but you pay a severe time
penalty for selecting the DDT screen. 	After each
instruction is interpreted, the screen display 	is
updated if the DDT screen is turned on. The display
window is automatically placed in the disassembly mode,
and all registers are displayed along with the updated
di mbly.

Interpretive mode runs much faster if the user screen is
selected, because DDT does not have to update its
screen if it is not active. See Section 5.2 for
information on how to enable and disable your display
screen when using DDT.

Pressing the BREAK key halts the interpretive mode.
Encountering and attempting to execute a BAK instruction
halts the interpretive mode.

COMMENTARY: When in interpretive mode, DDT attempts to
execute your program as true to form as possible. To
this end, DDT moves the instruction pointed to by your
PC to a special working area and executes it at that
location. Although, if the instruction is one which
transfers control (e.g., .IMP, JSR, BEO. etc.), DDT truly
"interprets" it.

Also, before DDT executes each instruction, it restores
all your registers to the values shown in the register
display. After executing (or interpreting) the
instruction, DDT restores the proper register values in
the register display.

SPECIAL NOTE

Because of the way interpretive mode works, you MAY
interpret through ROM-based code. You should NOT,
however, attempt to interpret any real-time I/O code
(whether in ROM or not), including disk and other serial
I/O.

--22-- -22--

4.6 4.6 M -- Move memory

Format: 	 M <addr><addr>glen>

Examples: 	M E00060000400
M 600060010040

The Move memory command simply does what its name
implies: it moves one or more bytes of memory from one
location to another.

This command requires a somewhat special format for its
values. Specifically, all three values (both <addr)'s
and the (len>) MUST be given, but you are NOT allowed to
put MY delimiter(s) (including spaces) between the
values.

Both the <addr> values MUST be specified with EXACTLY
four 	hexadecimal 	digits (using leading zeroes if ! 	!
needed).

The <len> may be any number from 0001 to FFFF (though
disastrous result, will obviously occur if you try to
move all--or even major significant portions--of
memory), but even (len) must be specified with three or
four hexadecimal digits.

The first <addr> given is assumed to be the source or
"from" address. The second <addr> is thus the
destination or "to" address. And, of course, the (len)
specifies the number of bytes to move.

Thus, the first example shown above will move $0400
(1024 decimal) bytes from memory location $E000 (through
$E3FF--the main character set area of ROM) to memory
location $6000 (through $63FF).

DDT does NOT check for possibility of overlapping "from"
and "to' memory areas before it does the move, so an
attempt to use a Move as in the second example above may
or may not work the way you expect it to.

--23--

111111 	-.;

4.7 N 	Next

Format:

Examples

The Next command is really a shorthand method of program
tracing which combines some of the best features of
breakpoints with the ease of interpretive mode.

-
Using 	the Next command is equivalent to visually
examining the disassembly display, determining the
address of the next instruction (after the one the '"
is pointing to), betting a breakpoint at that address,
and (finally) executing a 'G " command (or [START)
pushbutton command--see Section 5.1).

Most of the time, then, using N is equivalent to
interpreting a single instruction (as may be done via
the (OPTION) button--see Section 5.3). However, there
are several important differences:

1. The 	Next 	command 	uses 	its own internal
breakpoint and places it 	after 	the 	next
instruction 	to be executed. 	This internal
breakpoint is never displayed.

2. The user's screen is restored (as with. the Go
command, 	Section 	4.4, 	above) 	while 	the
instruction is being executed.

3. The 	instruction . is 	truly 	executed, 	not
interpreted, so you may not use 'N' when your PC
points to ROM code.

4. If the instruction being pointed to by your PC
(the '") is a JSR, then the entire subroutine
will be executed before DDT regains controll
This allows you to execute ROM code or real-time
I/O code at full processor speed and yet view
the results immediately after the called routine
finishes.

CAUTION: If your subroutine performs an error
exit and does not "properly" return (presumably
via an RTS instruction) to the calling program,
the breakpoint set by 'N' may never be executed.

5. If the instruction being pointed to by your PC
is a JHP or branch instruction, you should
usually NOT use the 'N' command, since the
program may never reach the point where the
internal breakpoint has been set.

-24 - -

4.8 0 	Quit DDT, Reenter MAC/65

Format: 	 0

Example: 	0

There is nothing fancy about this command. It is simply
a means of exiting from DDT back to MAC/65.

Before transferring .control to MAC/65, DDT restores
MAC/65's zero page locations and its critical page 4
locations (as described in Section 8.1).

DDT also removes all its own breakpoints from user code
before Quitting and "unhooks" its Flash entry point from
the system keyboard routine (see Section 7.2 and 8.2).

Upon re-entry to DDT (vie MAC/65's "DOT" command), the
user should restore any critical breakpoints by hand.

--25--

•
4.9 	R -- Register Modify Command

Format: 	 R (P,A,X,Y,S).cval,

Examples: 	R A,00
R X,FF
R P,01

The 	Register 	command is used to modify the contents of
any of the 6502's registers except the PC. 	.

After typing 	'R', 	only a 	'P'..A . ,'X','Y', 	or 	'5' 	will be
allowed. 	Any other character will be ignored. 	No other
character other than EDELETE).will be 	allowed 	until 	a
delimiter is typed.

'P' 	indicates the processor status 	register 	(which 	is
displayed 	in 	binary 	form under the "NV BDIZC"). 	'A',

and 'Y 	are the normal 6502 registers of 	the 	same
names. 	'S' represents the value of the stack pointer.

After 	entering 	the 	register designator . only two hex
digits (i.e. 	one byte) will 	be 	accepted. 	Note 	that
this 	command 	requires 	two 	separate 	values 	and 	two
separate delimiters.

WARNING(Indiscriminate 	use of this command to change
the stack value (the '5' register) could make it
impossible for DDT to continue to function without being
reset.

. 	 •

(--N /--',

of bytes in memory.

,

4.10 S -- Search for a String of Bytes

Format: 	 S Oistring ,

Examples: 	S 31
S 5F5F
S 8D0003

The 5earch command is used to locate a specific sequence

You may enter a hex string of up to 12 characters 	which
will 	he 	interpreted as up to 6 bytes. 	DDT will search
for the string you specify, 	starting 	from 	the 	current
position (as 	indicated by the 	'>' 	in the display window)
upwards (increasing addresses) through memory.

If 	the 	search 	is successful 	(the sequence of bytes is
found), 	the display window will be repositioned (and the
'>. will point 	to the first byte of the found sequence).
If it is unsuccessful, 	the command window will simply be
cleared for the next command, 	and 	the 	display 	window
will not move.

If no value 	is 	entered 	after 	the 	'S' 	(i.e. 	just 	a
delimiter 	is typed), 	the previous search string will be
used. 	This 	allows 	for 	easily 	finding 	multiple
occurencei of the search string.

The 	three 	examples given above might be interpreted as
follows,

S 31 	-- find a 	'1' 	character
S 5F5F 	-- 	find a pair of question marks 	('77')
S 8D0003 -- find a 	'STA $0300' 	instruction

--26--
--27--

m

4.13 t -- Hove Display Window Up (Lower in Memory)

4.11 W -- Window Change Command

Format:

Example:

The Window command is used to change the "filter" over
the display window.

You will recall from Section 2.% that there are two
different "filters" available to you: a disassembly
filter and a hexadecimal filter.

The 'W' command simply toggles between the two.

Note that certain commands will automatically change the
filter to their "desired" state. You may use the 'W'
command to change the filter back to the one you wanted
if your choice does not correspond to DDT's.

/"--"
4.12 4 -- Move Display Window Down (Higher in Memory)

Format,

Examples

The Move Window Down command is used to change the
memory being displayed in the display window.

Specifically, the 	pointer will be changed to point
to a location higher in memory. How far the window and
pointer are moved depend on which filter (hexadecimal or
di mbly) is in place at the time the key is pushed.

If the hexadecimal filter is in place, pushing the '4'
key will move the window down (higher in memory) by one
byte.

If the disassembly filter is in place, pushing the '4'
key will move the window down (higher in memory) by one
full instruction (which may be ono, two, or three
bytes).

SPECIAL NOTE: You should NOT hold down the CTRL
(Control) key when using this command. 	DDT recognizes

s m . as the 'down arrow key even without CTRL pressed.

ALSO NOTEt Auto Repeat on the keyboard IS active, so
that continuing to press the '4' key will continue to
move the window down.

--28--

	 _

Format,

Example:

The Move Window Up command is used to change the memory
being displayed in the display window.

Specifically, the 	pointer will be changed to point
to a location one byte lower in memory.

Since an instruction could be 1,2 or 3 bytes long, you
must be careful to watch and ensure that you remain on
instruction boundaries if the disassembly filter is in
place.

SPECIAL NOTE: As with the '4' key (section 4.12, above),
you should NOT use the CTRL key to select and auto
repeat IS active for 1.

4.14 * -- Set Program Counter

Format: 	 • (radar

Examples: 	• 5000

•

The command is used to set the program counter.

After you enter the '*' command, DDT expects you to
enter an address which will become the new PC contents.

After changing the PC, you may use the 'I' or
commands or the [OPTION] or [START] buttons to begin or
continue program execution (or interpretation) at the
new location shown in the PC portion of the register
display.

DDT 	always 	selects 	the disassembly filter after
executing the "' command and always sets the display
window pointer 0) to the same address as the PC.

Note that you may type '",' as a shorthand notation to
set the PC to the address currently being shown in the
display window (as indicated by the pointer).

Note also that you may simply type ' 	followed by
[RETURN] to force the display filter to hexadecimal and
force the display window pointer equal to the PC. This
can be thought of as a shorthand notation for 'E 5 ' (see
Section 4.3) possibly followed by 'W' (see Section
4.11).

--29--

O n •

Section 5: Push Button Controls

• The three ATARI console push buttons are used by DDT for
useful and special operations. In many ways, you may

. 	 think of these butons as extensions to the commands
given in Section 4.

Each console button has a unique use, which is described
below.

5.1 The START Button

A press of the START button is usually indicated in this
manual by the notation (START].

[START] is used to continue code execution at the
location indicated by the PC register.

Your screen display is restored and all 6502 registers
are updated with the current displayed contents before
control is transferred.

(7% 	•—s• 	Pushing (START] Is functionally equivalent to executing
the command sequence 'V', and we suggest reading
Section 4.4 for more information on the Go command.

5.2 The SELECT Button

A press of the SELECT button is usually indicated in
this manual by the notation (SELECT).

(SELECT] is used to toggle back and forth between the
DDT screen and whatever screen dynamics were active
before DDT was called and/or reentered (e.g., via a
breakpoint).

An attempt has been made to allow for most alternative
display features such as mixed Display lints, WILANK
routines, alternative character sets, display list
interrupts, playfield size changes, and player-missiles.
Thus, whenever DDT is entered or reentered, the
locations necessary to restore these features are
"remembered" by DDT before DDT puts its own display on
the screen. When you execute your program (via the 'G'
command, the (START) button, or the 'N' command), DDT
restores your screen display as well as it can (and it
usually does pretty well).

- -30 - -

Generally, then, [SELECT] has only two primary purposes,

1. When you simply wish to look at your display
screen momentarily.

2. When you wish to interpret your program (via the
'I 	command or the [OPTION] button) 	while
keeping your display active instead of DDT's.

5.3 The OPTION Button

A press of the OPTION button is usually indicated in
this manual by the notation [OPTION].

[OPTION] is used to "single step" the processor through
your program.

This causes the di 	mbly filter to be turned on, but
will not automatically toggle the display screen.
Holding down the OPTION button will continue to single
step, at the rate of approximately two instructions per
second.

• Excepting for the fact that only a single instruction is
executed before a pause is made, the [OPTION] button
"command" works identically with the 'I' (Interpretive
Mode) capability. 	Therefore, see Section 4.5 for more
details on interpreting code via DDT.

Note that you may NOT interpret a BRK instruction. 	The
interpreter will, for all intents and purposes, halt
when it encounters a BRK.

./Th

• n
	 • -)

- -32 - -

Section 6: Breakpoints and Breakpoint Processing

One of the most common debugging techniques is to make
use of a breakpoint.

This manual contains much additional information on
breakpoints, so we refer you also to sections 7.3, 4.1,
4.7, and 8.4. This Section will attempt to provide an
overview on breakpoints as well as suggested uses for
them.

The fundamental mechanism of a breakpoint is fairly
simple:

I. When 	a 	running 	program 	encounters 	a 'BRK .
instruction (a zero byte), the 6502 CPU simulates an
interrupt (an IRO, not an NMI, except that the 'SEI'
'instruction can NOT disable 'BR)' interrupts).

2. The only real difference between a true IRO and a
BRK-simulated interrupt is that a BRK causes the 'B'
bit (bit 4, $10) to be set upon entry to the
interrupt handler.

3. When the BRK-simulated interrupt occurs, Atari's OS
uses the '8' bit to recognize the fact and transfers
control, via a RAM vector, to DOT.

4. DDT's breakpoint entry simply eaves all the user's
registers (A,X,Y.Processor status, Stack, and the
Program Counter). 	It then sets the display window
pointer ()) equal to the user's PC, selects the
disassembly 	filter, 	saves 	the usual graphics
information (see Section 4.2 and 8.5), and presents
you with the typical DDT screen display.

After a breakpoint has been encountered, and control has
been transferred to DDT, there are several ways to leave
DDT. The 'N' command (Section 4.7) will set a
breakpoint at the next location and then continue code
execution, [START] (section 5.1) simply continues code
execution. 'G' (section 4.4) can be used to transfer
control to another location.

There are three ways to net a BRA instruction and
thereby allow a breakpoint to happen.

--33--

• r.
	 •

1. You can use the '11 . command (as described in Section
4.1) to set up to four special DDT breakpoint..
There are two advantages to this method: (a) DDT
remembers the instruction which was at the location
before you set the breakpoint, so when you reset or
remove the breakpoint DDT can automatically restore
the instruction for you. 	(b) The 	disassembly
display shows your original instruction in inverse
video, as a convenient reminder.

2. You 	can 	actually 	store a zero 'byte (a BRX
instruction) in your code. You can do this either
with the '0' (Deposit) command or by actually
assembling a BRK In you source code.

3. You can use the 'N' command (Section 4.7), which
automatically sets a BRK instruction in the byte
which follows the current instruction. 	Again, as
with the 'B' command, DDT remembers your original
instruction and restores it without effort on your
part. 	Note that you will never see the BRK placed
by 'N', as it ia automatically removed as soon as
DDT recovers control.

The best use of multiple breakpoints is to set one at
every path in your program where you do NOT expect to or
want to go (execute). That way, if your program takes a
wrong turn. DDT will alert you by saying, "Hey! How'd
we get to this breakpoint?"

Also, of course, you will normally step through your
code a little at a time, setting a breakpoint a little
farther ahead each time. For this use, we recommend
reserving a single breakpoint register (usually number
1). Use the other registers (2 through 4) for the
"side" or unexpected paths mentioned in the previous
paragraph.

When one of 	the breakpoints is encountered in
intrepretive mode, it will halt the intrepretive mode at
that point.

--34-..

Section 71 DDT Entry Points

There are four ways of entering or reentering DDT:

MAIN ENTRY
FLASH ENTRY 	 •
BREAKPOINT ENTRY
RESET ENTRY

Each is described separately below.

Sometimes, it will seem that the computer has locked up
and none of the Entry methods described below will work.
Generally, this is because something has gone wrong in
the program you are debugging, and it has modified
certain critical memory locations.

Disabling interrupts (executing an 'SE!'- instruction)
and/or modifying the interrupt vectors of Atari's OS are
particularly insidious ways of destroying DDT's access
to the system. And accidentally using the move command
incorrectly can obviously wipe out wholesale hunks of
memory.

These are obviously only some of the ways to effectively
disable DDT, but we would hope the most users will not
encounter any of them. It is usually only the more
sophisticated and complicated programs which will be
altering locations which DDT is sensitive to.

7.1 Main Entry to DDT

When you give MAC/65's editor the "VDT" command, DDT is
entered at what we call its Main Entry point.

Section 8.1 describes in some detail the process DDT
goes through when it is entered. In particular, DDT

' saves the state of MAC/65 so that you do not lose your
source code.

See also Section 0.1.

7.2 "Flash" Entry to DDT

This entry point is provided to allow immediate reentry
to DDT regardless of most other circumstances.

When DDT is called, the operating system code that looks
at the keyboard is modified so that it looks for a
special character first, before handling normal keyboard
input.

--35--

("-•

IIP

The special character looked for is one which is unused
by normal Atari operations: [CTRL] [ESC]

In other words, to reenter DDT when your program is
running, simply press both the Control and the Escape
keys at the same time.

When DDT's modified keyboard handler 	finds 	the
ECTRO[ESC] character, DDT is entered immediately
through the FLASH ENTRY point (which is essentially
equivalent to encountering a breakpoint).

Using the 'N' command or pressing START will return
control to whereever the processor was at when the DDT
special character was typed.

For more information on the Flash entry mechanism, and
some warnings about how you may inadvertently make it
inoperative, see section 8.2.

7.3 Breakpoint Entry to DDT

Breakpoint entries are the most common way of entering
DDT.

Once DDT has been entered via the Main entry, DDT's
breakpoint handler is set up. Thereafter, anytime your
program (or, for that matter, any program) attempts to
execute a BRK instruction (a zero byte), DDT ls entered
at its Breakpoint Entry.

For more information on the use and characteristics of
breakpoints, see Sections 6.and 4.1.

7.4 RESET Entry to DDT

If DDT was active before you executed your program
(e.g., via the 'G' or 'N commands or the (START)
button), then pushing the [RESET] button should return
control to DDT.

Obviously, 	if your 	program has scrambled enough
locations which are vital to DDT and/or the Atari OS,
then the RESET handling may never have a chance to
occur.

Section 81 Technical Details of DDT

8.1 Interaction with MAC/65

DDT is designed to be compatible with MAC/65 so that you
can easily go from editing to assembling to debugging
and so forth.

Specifically, you enter DDT via the 'DDT' command from
the MAC/65 editor. At that point, DDT saves certain
memory areas which are critical to MAC/65's functioning
in memory reserved by MAC/65 (and pointed to by MAC's
'Iomem' pointer—the first value given in the response
to a 'SIZE' command in MAC).

When you use the '0' command to exit DDT and reenter
MAC/65, DDT restores the critical memory areas. If,
during the course of your debugging session with DDT,
you have not changed any of the memory bounded by the
low and high values given in response to MAC's 'SIZE'
command, you will find your source code (if any) intact
and ready to edit and/or (re)assemble.

MAC/65 and DDT cooperate in another way: when you push
the (RESET) button on the Atari keyboard (hopefully,
only as a last gasp desperate measure). MAC/65 attempts
to determine whether DDT or MAC had control when the
button was pushed. If DDT had control. MAC
automatically and immediately reenters DDT at a special
RESET entry point.

0.2 Keyboard Scanner

During DDT initialization the system keyboard vector is
redirected to a preprocessor which checks for the DDT
FLASH ENTRY special character ((CTRL] (ESC) I. If this
character is seen, control transfers to the FLASH ENTRY
point, otherwise control p o the normal keyboard
processing routine.

Note that keyboard interrupts must be enabled. If your
program alters or disables the keyboard interrupt (or
ite vector), DDT will not be able to regain control.
You may or may not be able to push (RESET] to reenter
DDT.

Not that this implies that the 'SEI' instruction will
also disable the DDT keyboard scanner. This is somewhat
important, but since 'SE!' disables all keyboard
activity we would hope it is an instruction you will use
with care.

--36--
--37--

• fm
	 •

8.5 Graphics Location Saved by DDT

Whenever DDT in entered (see section 7), it saves
certain memory locations pertaining to user graphics
before presenting its own display (also nee Section
4.2). The locations saved are all "shadow registers" or
vectors in page two. The following are a list of the
locations saved, by label, hex address, number of bytes
saved, and very brief description. The labels given are
those used in "Mapping the Atari" (from Computel Books)
and in the Atari OS listings (pert of the Atari
Technical Manual net), and we refer you to those
publications for more information.

Label Address I bytes Description

VVBLKI $0222 2 VBI immediate vector address
VUBLKD $0224 2 VIII deferred vector address
SDLSTL $0230 2 ' Start address of display list
SDMCTL $022F 1 DMA control 	register
GPRIOR $0261' 1 Priority selection register

!---
COLOR1 $02C5 1 Color register 1
COLOR2 $02C6 1 Color register 2
COLOR4 $02C8 1 Color register 4
CHACT $02F3 I Character mode register
MIDAS $02F4 1 Character set base address

If your program uses other system memory locations which
are altered by DDT, or if your program changes graphics
characteristics by direct changes to the Atari hardware
registers, DDT will NOT be able to completely restore
the screen display your program was exhibiting when DDT
was entered.

8.6 Using MAC/65 as a Mini-Assembler for DDT

Those of you who have used other debugging tools may
note 	that, 	while DDT has a fairly sophisticated
disassembler, it lacks a built-in mini-assembler.
Thanks to the integrated nature of MAC/65 and DDT,
though, you may never even notice this omission.

Let us suppose, for the moment, that you have just
assembled a small to medium sized program from source
code in memory, placed the object code in memory, and

(e-, . have entered DDT. When you discover an error in your
code, you can simply pop back to MAC/65, change the
offending code, re-assemble, and be back in DDT in a
matter of a very few seconds.

--39--

8.3 DDT's use of System Resources (RAM and ROM)

DDT itself occupies a portion of the MAC/65 cartridge
space. When it is called, the upper half of page zero
and certain locations in page four ($400-$4FF, but not
all of this range) is saved for later use by MAC/65 (see
8.1, above).

While DDT is running, then, locations $80 through SAF
are used by DDT and should be avoided by user programs.
Otherwise, the locations in the upper part of page zero
may be used.

Also, DDT takes the RAM area from $3FD through $57F for
its display screen, breakpoint registers, etc. Since
the cassette buffer occupies $3F0 to $47F, this implies
that you can NOT do cassette I/O from within DDT (though
you may load a tape from MAC/65 before entering DDT or
save to a tape after exiting).

Remember, also, that MAC/65 is NOT capable of assembling
directly into page six ($600 through $6FF). You may,
however, assemble into other (higher and safer) memory
with an offset (see the MAC/65 manual, Section I.%%) and
then use DDT's Move command to place the resultant code
in page six.

8.4 Things to Watch Out For

There are a few areas where you have to be careful in
using the DDT cartridge. In general, these occur when
you are single stepping or running interpretively.

If the code being interpreted alters the display list or
does direct access to ANTIC or CTIA/GTIA, then you might
end up with a scrambled screen. Usually this is non
fatal, just distracting. (See our example program and
debug session in Section 1 for an instance of just this
occurrence.)

To restore the normal DDT screen, press the BREAK key to
halt the interpretive mode, then press SELECT twice
(though doing so may turn off any players, etc., which
you had made active).

Trying to do I/O from disk or any other real time
activity in either interpretive mode or single step mode
will almost certainly not work.

You should set up breakpoints around the real-time code
so that this type of I/O is done in real time. For
example, try using the "N . command anytime your code
does a JSR to CIO or SIO.

--38--

But what if the code you want to patch is NOT in memory
or is not directly related to the source currently in
memory. What can you do then? We suggest the following 	 •
steps,

Exit DDT via the 0 (Quit) command.
If there is a source program in MAC/65's edit

buffer, type in "RENUM 1000,1"
Type NUM 10,10. 	 ;

Enter your patch, using "=" to control where
the patch goes and • .OPT 003" to
ensure the patch really ends up in memory

Assemble via the "ASH" command.
Go back to DDT (via "DDT", of course), and your

patch is in place.
NOTES to get rid of your patch code without

affecting your main program, you may 	 •
type "DEL 1,999" to MAC/65.

There ARE some things to watch out for if you use this
method. Primarily, you want to ensure that MAC/65
doesn't wipe out the program you are trying to debug.
There are two possible ways this could happen.

First, remember that MAC/65 destroys the lower half of
page 6 ($600 through $67F). If you are using page six,
then, you should use the Move command to move page six 	 •.•
to someplace "safe" before going to MAC/65 (then move it
back when you return to DDT).

Second, the very process of editing (writing) even a 	 • ,:
small program will overwrite some of memory. However,
we direct your attention to the MAC/65 LOMEM and SIZE
commands. 	You can use LOMEM to set the bottom of the
memory that HAC/65 will use. 	You can use SIZE to
determine what memory MAC/65 is, indeed, using. We
suggest, if you intend to use the method we have
outlined, that you use LOMEM when you first enter 	 •
MAC/65.

The other major problem you can encounter relates to the
way DDT saves the state of MAC/65 when it is entered.
Since the two programs (and they really do operate as
almost totally separated programs) share some of the
same memory space, DDT eaves part of page zero and part
of page four ($80-$FF, $480-$4FF) when it is entered.
It saves these locations at the start of MAC/65's
'buffer" space.

You can determine where the buffer space is by using
SIZE* the first number displayed in response to SIZE is
the hexadecimal address of this buffer. You can change
where this buffer is by using LOMEM.

