ZOIT @304

~ M.

| r = ’cﬁg‘g :
| COMPUTER BASED SOFTWARE ENTERPRISES n (

Saint Louis, Missouri

EDIT ©303

[akussiaerin

J

COMPUTER BASED SOFTWARE

ENTERPRISES

Saint Louis, Missouri

T.M.

EDIT 6502 ATARI

PROGRAM REGISTRATION FORM

LJls,

SEND FORM TO:

COMPUTER BASED SOFTWARE ENTERPRISES

P.0. Box 10827 St. Louis, Mo. 63129

PROGRAM NUMBER_Il- 1074 DATE OF PURCHASE
STORE NAME
ADDRESS
CITY, STATE, ZIP

PURCHASER
ADDRESS
CITY, STATE, ZIP

’

PLEASE ANSWER THE FOLLOWING SO THAT WE MAY BETTER
ANSWER YOUR QUESTIONS SHOULD YOU HAVE PROBLEMS.

PRINTER TYPE
INTERFACE TYPE
MODEM (Y/N)____ATARI 400 OR 800
MEMORY SIZE
OTHER HARDWARE OR MODIFICATIONS TO YOUR ATARI:

(MAIL WITHIN 10 DAYS OF PURCHASRE)
THE OPPOSITE SIDE MUST BE SIGNED

(over)

EDIT 6502 ATARI

THIS SIDE MUST BE SIGNED TO REGISTER YOUR PROGRAM

SOFTWARE LICENSE AGREEMENT

LJK Enterprises Inc. (hereafter referred to as LJK) has sold or
will §e11 to the undersigned ("purchaser”) magnetic diskettes
containing original data and programs expressed and arranged in
electronically coded and magnetically stored form. LJK has sold
or agreed to sell the diskettes only upon the condition that the
purchaser acknowledge and agree to the following. By signing
the Agreement, the purchaser so acknowledges and agrees.

1.

The purchaser understands and acknowledges that the data and
programs recorded on the diskettes are copyrighted original

:grks of authorship and are unique proprietary material of
K.

The purchaser will not copy or reproduce any portion of the

data or programs recorded on the diskettes, nor allow others
to do so.

¢

The purchaser will not create or prepare any derivative
materials from the data and programs recorded on the
diskettes, nor will the purchaser translate such data and
programs into another computer system or create any
combination which includes any portion thereof, nor allow
others to do so.

The purchaser will not sell, transfer, distribute, or
display to the public any copy or reproduction of the data
or programs recorded on the diskettes or any materials
derived therefrom or translation or adaptation thereof to
any person or organization, nor allow others to do so.

The purchaserlacknowledges and agrees that the purchaser
will be liable for damages to LJK for any violation of this
Agreement,

The purchaser acknowledges that LJK makes no warranty or
representation whatsoever with respect to the data and,
programs recorded on the diskettes, and that neither LJK nor
any author thereof will be responsible for error or
omissions therein or erroneous or inaccurate application of
any results from the use thereof.

LJK ENTERPRISES, INC.

PURCHASER

DATE

o

" /a

.
4

EDIT 6502 <™

ASSEMBLER, EDITOR, SYMBOLIC DISASSEMBLER,
AND MACHINE LANGUAGE MONITOR FOR THE
ATARI 800 AND ATARI 400
COPYRIGHT <C> 1981

LJK ENTERPRISES, INC.
P. O. BOX 10827
ST. LOUIS, MO. 63129
(314) 846-6124

VERSION 1.0

-NOTICE-LJK ENTERPRISES, INC. MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. LJK shall not be liable for any errors or omissions
contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this
material .NO PART OF THIS PROGRAM OR MANUAL MAY BE COPIED,
PHOTOCOPIED, FOR IN ANY WAY REPRODUCED WITHOUT EXPRESSED WRITTEN
PERMISSION OF LJK ENTERPRISES, INC. COPYRIGHT 1980, 1981, LJK
ENTERPRISES, INC.

EDIT 6502 is a trademark of LJK Enterprises, Inc.

Atari, Atari 400, and Atari 800 are trademarks of Atari
Computer, Inc.

®

EDIT 6502

AUTHOR'S PREPACE
EDITORIAL -- ELEMENTS OF GOOD PROGRAMMING

When asked to lecture on assembly language programming two of
the most often asked questions I get is "What are some good
techniques in programming the 6502?" and "Most assembler
manuals expect you to know too much before you start, why don't
they have tutorials?" In response to the second question, I
feel that there are a number of books in the marketplace that
explain, in great detail, what is required for good assembly
lanquage programming. The problem in the beginner getting the
most out of it leads back to ‘the first question, where my
overwhelming response is to be a good programmer the first
requirement is to KNOW THE INSTRUCTION SET OF THE PROCESSOR YOU
ARE WORKING WITH. And by knowing the instruction set, I mean,
knowing exactly what each instruction does for you. I can pick
up almost any magazine and see articles with assembly listings
that demonstrate my point (and these people must have some
proficiency or else they wouldn't be published). A typical
example might be:

LDA FLAG
CMP #0
BEQ OK

This code will always work, but if the programmer completely
understood the instruction set of the 6502 he would KNOW that
the LDA FLAG instruction did, indeed, either set or clear the 0
flag in the 6502's status register and that the CMP #0
instruction is redundant. This may seem a trivial matter to
some of you; but, compounding this type of thing several times
in code and not taking advantages of other *'features' of the

<i>

EDIT 6502

microprocessor by not understanding exactly what happens is what
generally is the cause of good, concise code to be turned into
slow and long code. I could demonstrate countless examples just
like the one above on this subject.

.
With the memory size of systems increasing this point DOES NOT
GO AWAY! The philosophy should be the majority of the memory
(as much of it as possible) should go to the user for USER DATA
rather than to expand the program. There are only two viable
exceptions to this, those being 1 - when thére is no data and 2
- when shrinking the program costs the user something. The
program is written for the USER, not the programmer.

Most of the code I see is not geared this way. It generally
' takes more time and organization to write user oriented codé,
but that is what it is all about. We call it designing a good
user interface. Others call it human engineering. To me, it is
a good practice to write code, even that is just for yourself,
to be geared toward someone who is not familiar with the

machine.

To observe this phenomenon, just take any program that you've
written and place someone in front of the machine who has no
knowledge of the machine, tell 'then to run the program and WALK
AWAY FROM THE MACHINE. If the program is designed with the user
interface foremost in mind, they should be able to run_the
program without assistance! This is a very hard thing for the
programmer to do. He ‘or she will want to help them along to

warn them of pitfalls in the system; but that is what the test
s

ey

is all about.

< il >

EDIT 650 2

I highly recommend that people flowchart their programs and
spend a great deal of time in organization of the program before
they ever sit down in front of a machine. This organizing time
should be though of in terms of how the user will be perceiving
and using the program and the possible things that they might do
that the program never intended them to 8o (this is the hard
part, you can never think of all the ways). Nothing is more
frustrating to the user than a program that crashes for no
reason that they can discern. In this organizational time
methods of actual coding should be thought out so that by the
time you sit down at the machine to write the code, it is merely
an exercise in typing.

All of the aforementioned material deals with programming in
general. To»get specific to the 6502 and Atari, one of the key
things to understand is that the status register controls all.
All of your decisions are based on it. Pay particularly close
attention as to how each instruction may affect the status. Lay
out your entire memory map of the system before you start out
coding including temporaries, zero page allocation and user data
space.

You may notice that this particular program is less user
oriented than other LJK programs which may seem a contradiction
in what we have been discussing. It is not, however. As this
program is geared toward a USER who would find menus and the
like a retardant doing things 'in an efficient manner. The
program is geared to a more knowledgeable user.

< iii >

EDIT 6502

POR THE BEGINNER

Most beginners are familiar with another programming language
such as basic. The key thing they seem to forget is that theyg
did not learn that language overnight. Remember the first daj,.
you brought your Atari home and sat down and said "What does
PRINT mean?" Computers are excellent educational tools in that
you can try something on the machine without worrying about
destroying the hardware. If you totally crash the system you
can just turn off the machine and reboot it. Just as you aid
when first learning, write small pieces of code and TRY THEM.
The logic of assembly language is very similar to other
programming languages, it is only a matter of learning new
nomenclature and, in most cases, learning that in assembly
language, you must provide the memory allocation. My
recommendation on early routines is to write something that will
VISUALLY show you its results. It is one of the most rewarding '
ways to experiment and learn.

FOR THE INTERMEDIATE PROGRAMMER

The best way to learn new techniques is to steal them. Before I
get in trouble, let me say that you shouldn't steal peoples
code, but examine the techniques they have used to perform
tasks. There is nothing wrong with taking any piece of source
listing that you can find and read through and understand
exactly what the author was doing. This is an excellent way of
finding new and better ways of performing tasks. Store any new
technique you may see a way for that future time when it just

happens to fit the bill.

< iv >

EDIT 6502

FOR THE ADVANCED PROGRAMMER

Before you read this, you should read the other two sectionsl!
The key thing to being a good programmer is to always look to
improve. Ego can oftentimes get in the way of this. The very
best of programmers don't claim to know it all and are always
looking for new and better ways of doing things. Another key
point is to not come in looking at things with a preconceived
notion. The single biggest stifler of creativity is
preconceived notions. Let your imagination run with ideas and
keep it free of constraints that you think might be there.

Ken Leonhardi
LJK Enterprises, Inc.

i

< v >

SECTION

EDIT 6502

TABLE OF CONTENTS

III
IV

VI
VII
VIII
IX

XI
XII
XIII
XIV

INTRODUCTION cceccesceccccscssosanossscocoscs
LINE INPUTS c.ceevvrccesessocsrsvsoacasnsocnce
CONTROL OF OUTPUT ceiveesoscsnccncsossssoccse
INSTALLING YOUR EDIT 6502 CARTRIDGE.......-.
STARTING THE SYSTEM .euivevecnsssosssoocccne
THE COMMAND CONTROL PROCESSOR secessssccces
INPUT/OUTPUT COMMANDS tvvvvencococonosoncas
SYSTEM MANAGEMENT ...ivvssvvcocccccacccance
EDITING COMMANDS «...veeescccssocscncsacnsne
MODE CHANGERS cveeeeeesessococssssnsnnsccane
MACHINE LANGUAGE MONITOR ¢cceveescvccsccces
COMMAND SET FOR MONITOR ¢cecececcsccssccccce
ASSEMBLY ...ccce eescesssessssssesasscscane
PSUEDO OPCODES sccccceccososscsscscsscsscscns
DISASSEMBLY ceecesvcsecsccnncssossscccncsasns

APPENDICIES
MEMORY MAP OF SYSTEM ® © 0 0 05 0 0 9 0O C¢ O O OO OO PO OO

ERROR MESSAGES ® © 006060 00000 0 0000 00 0000008
SOFWARE STACKING ®© 0 0 90000 0 0 000 00 0O E PO PO QTP

< vi >

O © SN N B > N -

11

N =
H oo N W!

24
27

31
33
35

%)

>

> >

>
| mmw >

Ve

CLEAR
INSERT
“DELETE
sDELETE

BACK S
TAB SET
TAB CLR
TAB

<CR>

CAPS LOWR
logo key
ESC

BREAK

NOTE: °

EDIT 6502

KEYBOARD FUNCTIONS
INPUT CONTROLS

Exit entry of line at current cursor position.

Go to the beginning of the line.

Go to the end of the line.

Find character after cursor location.

Move the cursor back 1 space (non-destructive
backspace).

Advance the cursor by copying over the character from
‘the screen and adding it to the input buffer.

Move the cursor up. This will not change your
position in the input buffer, but will only move the
cursor up.

Move the cursor down. Again, this will not change
your position in the input buffer, but will only move
the cursor down.

Clear entire screen

Insert one character (space) at cursor location.
Delete character at cursor location.

Cancel entire input line and start over. The input
buffer will be cleared and you will be placed on a
new line (with prompting) for new input.

Delete previous character typed into input buffer.
Clear screen from cursor location to end of line.
Clear screen from cursor location to end of screen.
Tab cursor over to next multiple of 8 column. This
will copy the screen contents into input buffer over
the range of characters it copies

Exit entry of input line by accepting entire line.
Set lower case enter mode.

Toggle input inverse flag off and on.

Esc allows for entering and viewing’'any control
character into the input buffer.

Abort operation and return to outer leveL command.

CONTROL
SHIFT

EDIT

6 502

COMMANDS SHEET

INPUT/OUTPUT COMMANDS

LOAD "DEV:FNAME, EXT"

BLOAD [ADR1l] "DEV:FNAME.EXT"
BRUN [ADR1] "DEV:FNAME,EXT"
BSAVE ADR1,ADR2 "DEV:FNAME.EXT"
XIO ADR1,ADR2 "DEV:

MERGE "DEV:FNAME, EXT"
SAVE "DEV:FNAME. EXT"
DIR (D]

DOS NONE

SYSTEM MANAGEMENT

NEW NONE

LEN NONE

HIM (ADR1]

TABS [LNOl] [,LNO2] [,LNO3]
HELP NONE

CLR NONE
LOM [ADR1]) #
SYMB [ADR1]

DATE NONE .

EDITTING COMMANDS

ADD NONE

INS LNO1

FIND [LNO1) [,LNO2] "STRINGL"

CHNG [LNOl)[,LNO2] "STRING1"STRING2"
SRCH [LNOl1] [,LNO2] "STRING1"STRING2"

TABLE NONE

EDIT LNOl [,LNO2]

DEL LNO1 [,LNO2]

LIST [LNO1][,LNO2]
PLIST [LNO1] [,LNO2]
COPY LNOl,LNO2 TO LNO3

MODE CHANGING

ASM [PLTSWA"]
DIS ADR1l,ADR2 "STRINGl"

MON NONE

EDIT

6 50 2

MONITOR COMMANDS

HEX RESULT (16 BIT)

DISPLAY (HEX AND ASC)

LIST (DISASSEMBLE)
HEX SEARCH

ASC STORE

RETURN TO CCP
WRITE SECTOR

TURN ON PRINTER
STEP

DOS

VERIFY

PARAMETER SEPARATOR

(-]

A C 23 Z 0 o+ N

DECIMAL RESULT

GO

ASC SEARCH

HEX STORE

FILL MEMORY
DISPLAY REGISTERS
READ SECTOR

TURN OFF PRINTER
TRACE

MOVE

USER
PARAMETER SEPARATQOR

EDIT 6502

I. INTRODUCTION

EDIT 6502 consists of a co-resident assembler, symbolic
disassembler, text editor, and machine language monitor for the
Atari 400 and Atari 800 computers. Assemblies and disassemblies
can be linked. You are in no way limited in the length, or
memory size of the program you are working on. The machine
language monitor is very comprehensive in allowing step, trace,
read and write a sector to disk, ASCII dumps of memory. and many
other commands. The disassembler allows predefinition of labels
and differentiation between 6502 code, ASCII strings, hex data,
word data, and stack data. EDIT 6502 allows you to disassemble
6502 machine language programs, edit, assemble, execute. debug,
reedit and go on without ever having to reload a program. This
package works well for anyone from the neophyte to the
professional programmer.

The command structure is set up very similarly to the immediate
mode in Basic to allow the beginner to make the transition from

basic to assembly language programming very comfortably.

This manual is not intended to be an instruction course on
assembly language programming. Novice assembly language
programmers are encouraged to consult one of the many books in

the marketplace on the subject.

<1>

o

EDIT 6502

II. LINE INPUTS

t is different in EDIT 6502 than in
Additional editing key functions are
It is possible to go to the end or back

Inputting a line of tex
standard Atari operation.

always at your command.
to the beginning of a line of the program. Inserting a

character, deleting a character, Or searching for a character
may also be done. You have the option of cancelling a line of
the program, going to the end of the line or exiting the line.

The additional line input changes are only one of the added

editing capabilities of EDIT 6502. You also have the advantage

of being able to pause the operation by hitting the space bar.

While repeatative hitting'of the space bar will cause the

program to scroll a line at a time. To abort an operation do a

[BREAK]). Following is a list of the useful editing functions
that will make your use of EDIT 6502 far easier than any other

assembler program available today.

TABLE I
KEYBOARD FUNCTIONS

1. [CTRL A] will end the line input at that point in the input

line.
2. [CTRL

line. A
3. [CTRL E] will move the cursor to the end of the input line.

4. [CTRL F] (char) will find char on a forward (only) ‘search.
If the character is not found, the cursor will go to the
end of the input line. The search can be called
recursively (going over and over forward for the same

B] will move the cursor to the beginning of the input

character.
5. [<-] will backspace the cursor one position on the input
line.
6. [->] will copy one character from the video screen, place
If™"in

it in the input buffer, and advance the cursor.
Jlower case mode, the character copied over will be

converted to lower case if it is alpha.
7. (1] will move the cursor up one line. This will not change

< 2>

10.
11.
12.

13.

14.

15.
16.

17.
18.

19.
20.

EDIT 6502

your position in the input buffer, but will only move the

cursor up one line.)
[1] will move the cursor down one line. Again, this will

not change your position in t
move the cursor down one line.

[INSERT] will insert one space at the cursor location on

the screen that can later be replaced with another

character.

[CTRL DELETE] will delete one character from the input line
at the current cursor location.)
[SHIFT DELETE] will delete the entire line and provide a

new line for input. . .
[BACK S] delete previous character typed into the input

buffer.

[CR) will end the line of input at the current end of line.
All input after the cursor that is on the current line will
be accepted.

[TAB] will act as a tab to the next multiple of 8 column
location. If there are characters on the screen, they will
be copied over with a screen read. -
[TAB SET] Clear screen from cursor location to the end of

the line.
[TAB CLR] Clear screen from cursor location to the end of

the screen.

[BREAK] will return to outer level command (break).

[logo key] will toggle on and off an input inverse flag.
This will allow the most significant bit of the character
to be set if the flag is set. This will allow the input of
low bit ASCII directly into the text file. Please notice
that this is not true inverse video basis a 40 column Atari
in that inverse on the Atari is actually the control
representation on Alpha characters. Under Edit 6502, all
inverse characters will appear as inverse video.

[CAPS LOWR] will set the Atari into upper/lower case input.
[ESC] will allow the entry and viewing of any into the

input buffer.

o

< 3>

he input buffer, but will onl¥

EDIT 6502

I1I. CONTROL OF OUTPUT

When text is being output (either to the video screen or
the printer), the keyboard is being polled for a keystroke.
If a key is pressed, the output is paused until another key
is pressed. If the key is the space bar, the output will
stop at the end of the next line, just as if a key had been
pressed. In this way, listings a line at a time by hitting
the space bar every time a new line is desired. Pressing
[BREAK] during output will return you to the outer command
level. There are places where no output is going on (as in
pass 1 of an assembly). In these cases, the keyboard is
polled for the [BREAK] only.

IV. INSTALLING YOUR EDIT 6502 CARTRIDGE

The first thing you must do in order to install your EDIT
6502 cartridge is to open the compartment where they are
placed. Pull the lever that holds the 1lid down, this will
release the lid. If you have an Atari 800 you will see two
cartridge wells. IF you have an Atari 400 you will see
only one cartridge well. 1If there are any cartridges in
the machine now, take them out. Before handling the EDIT
6502 cartridge, it is wise to touch the metal part of the
cartridge well. This will discharge any static electricity
you may have on you during handling.

Hold the EDIT 6502 cartridge so that the "<- LEFT" is
pointing to the left and the title EDIT 6502 is facing you.
Press the cartridge gently into the cartridge well until it
will go no further. Close the 1id to the cartridge well(s)
until it snaps shut. There you have it, your Atari is now
ready to run the EDIT 6502 system. ’ L

< 4>

EDIT 6502

V. STARTING THE SYSTEM

If you will be disassembling, you should boot from the disk
provided with the package; otherwise, you can boot from any
disk containing the operating system. The disk with the
package will load the disassembler in memory from $1D0O
$2100 and will adjust the memory parameters of the system
accordingly. Since the disassembler resides where it does,
it is not possible to have the disassembler and the serial
driver in the system simultaneously.

Upon a successful disk boot (or on power up if you have no
disk), you will be prompted to input the current date. It
is important to enter this for YOUR reference as to when
you were working on a particular file. The format of the
input is not a concern to the system as long as you enter
something, the program will not allow you to just hit
return. The date will be truncated off after 16 characters
if you were to enter more than that. If you accidentally
enter the wrong date, it can be changed from the command
control processor at any time. '

< 5>

L

EDIT 6502

Vi. THE COMMAND CONTROL PROCESSOR

The Command Control Processor is very similar in structure to
the immediate mode in Basic. You will be prompted with a "C"
(for Command) followed by a ">". The syntax of the Command form
at this point is such that it may or may not be followed by
parameters. The use of incorrect commands or parameters will be
signaled with error messages. There are 32 EDIT 6502 commands
in addition to 22 monitor commands. Commands are broken down
into four different types, which are: Input/Output, System
management, Editing, and Mode changing. Before going through
each of the commands and command types, some syntactical ground
rules for the nomenclature used in this manual to represent them

is necessary:

1. The syntax for expressing commands in a line is represented
as COMMAND parameter, COMMAND [parameter], or COMMAND none.
When the word "parameter" is expressed without brackets, it
is a required parameter. When it is expressed with
brackets it is an optional parameter that may be entered
but is not required. The required parameter of NONE
indicates that no parameter may be entered.

2. There can be any number of spaces between the COMMAND and
the parameter as they are ignored by the system. The
spaces may be placed according to your discretion in terms
of readability.

3. All commands must be entered in upper case with no spaces
between any of the letters in the command.

< 6 >

EDIT 6502

TABLE IV
PARAMETER SYNTAX

ADRl, ADR2 - Hexadecimal addresses (no $ required),
Input may be in decimal if the number is preceded by -4
period (.) or binary if the number is preceded by @&
percentage symbol (%).

LNOl, LNO2, LNO3 - Decimal number, usually line numbers.

DEV:FNAME.EXT - A valid device specification (as in
standard Atari operation) and a filename with an
extension. If the device is a cassette or other
non-named device, no filename is needed.

STRINGl, STRING2 - ASCII strings of text.

PLTSWA" - Assembly time options (see Assembly section
for details).

* (delimiter) - delimiting character. Can usually be
any character other than space. Only when mentioned
will it have to be a " or a '.

VALUE - An assembler value. Default radix is decimal,
hex supported when preceded by a $, and binary supported
when preceded by a %. The program counter may be used
by using an asterisk *, and ASCII data can be used by
using a " or a '. Non-spaced separation of +-*/ will
perform non-precedented math functions. If the value is
called for as a zero page value (<256), an automatic mod
256 will be performed on the result. Using the greater
than symbol (>) will perform a divide by 256 on the
final result.

-

< 7>

VII.

EDIT 6502

INPUT/OUTPUT COMMANDS

The syntax and entry order of parameters for DOS type commands
follows the syntax of Atari DOS 2.0S.

1.

LOAD "DEV:FNAME.EXT" - Load the source file FNAME.EXT into
memory at the beginning of text area in memory. This
command will erase any source file currently in memory.

MERGE "DEV:FNAME.EXT" - Load a source file from disk, but
append it to the end of the file currently in memory.

SAVE "DEV:FNAME.EXT" - Save the file currently in memory to
disk under the name FNAME, EXT,

DIR [D] - Read the disk directory and display it on the
video screen. There will be 2 entries per line.

BLOAD [ADR1] "DEV:FNAME.EXT" - Load binary (or object) file
to memory. If no address is given, the file loads in to
memory where it was saved. If the address is given, the
file loads at that address.

BRUN [ADR1] "DEV:FNAME.EXT" - Load and execute a binary
file. All parameters of bload are in effect here.
BSAVE ADR1,ADR2 "DEV:FNAME.EXT“ - Save binary file to disk.

Starting address is ADRl and the ending address is ADR2.
DOS - Load the Atari DOS utilities package.

XIO ADR1,ADR2 "DEV: - This command will allow you to enter
almost any dos command straight from the Atari keyboard
without ever having to leave EDIT 6502. ADRl is the
command requested., ADR2 should be entered as a zero unless
otherwise requested. The XIO command is very simular to
the basic XIO command.

There are 5 sub-commands used in this command. They are:
1. 20 or .32 is rename

XIO 20, 0 "D:FNAMEl.EXT, FNAME2.EXT"
2. 21 or .33 is delete file XI0 .33, 0 "D:FNAME, EXT"
3. 23 or -35 iS 10Ck XIO 23,.0 .D:FNAMEQEXT"
4. 24 or .36 is unlock XI10 .36,.0 "D:FNAME.EXT"

< 8>

EDIT 650 2

VIII. SYSTEM MANAGEMENT

The methods of system management are very flexible in allowing

“ the user to be able to relocate source, object, and the symbol
table. With this flexibility, comes the responsibility of the
user to set the addresses so that there are no conflicts in
addresses., Failure to follow this procedure could result in
having the source overwrite the symbol table or some other
undesirable result.

wing

1.

NEW NONE - Clears current source file in memory and symbol
table. Will ask for verification of OK TO CLEAR (Y/N)?
typing Y will clear everything; any other character will
take no action.

CLR NONE - Clears the symbol table.

LEN NONE - Returns starting address (in hex only) and length
of the source file, free space left, and symbol table in
memory in both hex and decimal. The starting address 1is
prefixed with a AS. The hex length is prefixed with a $.

LOM [ADR1] - Resets the pointer for the beginning of text.
This command will do an implicit NEW after receiving
verification from the user. When no address is specified,
the lomem reverts to the default address of $1000 above
APMLO is used. If DOS and the disassembler are present,
this defaults to $3100. If no DOS is present the value is
$1700. If you have the disassembler present and place the
value below $2100, the disassembler will no longer be
usable. If the user decides to not verify in response to
that question, the lomem value will not change.

HIM [ADR1] - Sets the top of working memory in which the
SOURCE file can be manipulated. When no address is given,
the value of $AO0l bytes below screen memory is used (for the
default object to reside above it). When text is buffered
(as in an insert, edit, or copy) the text is moved up to
from himem down. It is important that you reserve space
above himem if you plan to place the object or the symbol

table there.

< 9>

EDIT 650 2

SYMB [ADR1) - Sets the starting location of the symbol table
in memory. This command sequence does an implicit CLR.
When no address is given, the symbol table is defaulted to
start at the value given in APMLO ($2100 with the
disassembler present).

TABS [LNOl) [,LNO2)[,LNO3] - Sets the tabs for listing and
assembly. Tab field one (LNOl) is the opcode, field two is
the operand and field three is the comment field. Any or
all parameters can be passed to this command, If the
parameters are 0's, the listing will come out unformatted.
If no parameters are given, the default values of 10, 15 and
28 are used. Please notice that tab field one actually
contains the length of the label field. When editing basic
programs, use the command TABS 0,0,0 before listing the

file.

DATE NONE - Changes system date in case of a typographical
error upon entering the date originally.

HELP NONE - displays on the video screen all of the commands
available from the command control processor..

<10 >

EDIT 650 2

IX. EDITING COMMANDS

The format of data entry is essentially free form, however ther'e
are some exceptions. The first character of a line should
either be a space for no label, an '*', or a ';'; for a line
that is an entire comment line, or an alpha character for a
label. Spaces are used to separate the fields, .and you can
insert one or more of them between fields, it doesn't matter to
the system. Insert only one space between fields with the
exception of the placing of 2 spaces between the opcode and
operand fields on opcodes with implied operands, such as INX,
PHA etc, to insure the good appearance of listing formats. When
used with implied operands, the shift opcodes ASL, LSR, ROL and
ROR, require the addition of a ; between the opcode and tlrve
comment field to tell the assembler that the addressing mode is
implied. Labels-can be any length, but it is a good idea to
keep them under 10 characters for the listing formats to look
proper. Table V shows some typical input examples.

<11 >

EDIT 6502

ASSEMBLY INPUT EXAMPLES

Note: the underscore (_) has been used in place of a space for

reader clarity.

TEST LDA_FLAG_check_to_see if flag set
_ASL__;times 2

TEST

LDY#STRING1-STRING-1 print_string_in_inverse
LOOP_LDA_TABLE, X_get_next_value

CMP(CHAR),Y

_DSS UP,LEFT,RIGHT, RTS1,DOWN cursor move_stack
CH EQU $24_cursor horizontal

TEST_INP_"MEMORY IN K -> "

OIS WN -
L] L] . L] [] L] [] L] L]

e N i P P e

<12 >

EDIT 650 2

ADD NONE - Appends source file in memory from keyboard
entry. EDIT 6502 will keep accepting input until a CR
(carriage return) is entered as the first character of the
line. The system will continually prompt with line numberg
for each line. 1If a line is aborted (SHIFT DELETE), the
prompt will now be 'A>', ”

EDIT [LNOl][,LNO2] - Edits one or more lines of text. Each
l;ne will be displayed with the cursor pointing at the
first character past the line number. To abort the edit
mode without altering that line, press CTRL-A at that
point. Alternate prompt in this mode is 'E>'.

INS [LNOl) - Inserts text in source file before LNOl.
System will keep accepting input up until a CR is entered
as the first character of the line. User will be prompted
with line numbers. All text, after the insertions, will

have their line numbers raised accordingly. Alternate
prompt in this mode is 'I>',

DEL [LNOl][,LNO2] - Deletes from the source file either a
single line (LNOl) or all lines inclusive from LNOl to

LNO2. 1If no line numbers are given, all lines of text will
be deleted.

FIND [LNO1l)[,LNO2] "STRINGl" - Allows you to find all
occurrences of the ASCII string STRING1l in the current
source file from the ranges LNOl to LNO2. If no line
number is given, FIND will search the entire file.

CEANG [LNOl] [,LNO2]) "STRING1"STRING2" - Changes all
occurrences of STRINGl to STRING2 in the range of 1line

numbers given. Note the requirement of only three
delimiters for the string separations.

SRCH [LNOl][,LNO2] "STRING1"STRING2" - Similar to change
except that the user is prompted when each occurrence of
STRING1 is found. To change STRINGl into STRING2 press any
alpha character; to not change, press any control
character. ESC is especially handy for this. This command
is a SELECTIVE change.

LIST [LNOl) [,LNO2] - Lists source file on the video screen
in the ranges of LNOl to LNO2. Listing will be formatted
according to tab settings. If no line numbers are given,
the entire file will be listed. If only one number is
given, only that line will be listed.

<13 >

10.

ll.

EDIT 6 50 2

PLIST [LNOl][,LNO2]- Same as list, but the output is sent
to the printer.

COPY LNO1,LNO2 TO LNO3 - Allows for the movement of text.
It will copy the text in the range of LNOl to LNO2 and
insert it in the lines preceding LNO3. This function uses
the symbol table as a buffer, so it does an implicit CLR.
The original text will remain in LNOl to LNO2, although the
line numbers may be changed from the insertion, as well as
being: copied.

TABLE NONE - Prints current symbol table in memory to the
video screen. 2 entries per line will be printed.

< 14 >

EDIT 6502

MODE CHANGERS

MON NONE - Enter machine language monitor. See the monitor
section for a detail of the commands and their usage.®

Command prompt for this mode is 'M>'.

DIS ADRl,ADR2 "STRING1" - Enters 2 pass disassembly mode.
ADR1 and ADR2 represent the starting and ending addresses of
the entire disassembly for the purposes of determining if
labels should have equates applied to them. These addresses
do not need to correspond with the actual area in memory
that is being disassembled. This is useful if the program
has to be loaded in the wrong area of memory. Stringl is
just a reference header that will be placed in the file.
Command prompt for this mode is 'D>'. -

ASM [PLTSWA"] - Assembles file in memoIry. If links are used
in the file, then more than just what is in memory can be
assembled. PLTSWA are assembly time toggle switches that
can be set at your convenience. The switches and their
default settings are:

P. Printer. Default is off. Listing normally goes
to the video screen; using the P option will send
the listing to the printer.

L. Listing. Default is on. Listing normally occurs.
Using the L option you turn the listing off. This
switch can be changed in the assembler as well.

T. Table. Default is off. The symbol table is
normally not printed. This option allows the
symbol table to be printed only on a successful
assembly.

S. Store. Default is on. The object code is
normally stored. By toggling this switch, the
object file will not be generated unless the "
option is used which sends the object to the disk.

W. Wait. Default is off. This is a wait on errors
flag. User will be signaled errors with a message
and a bell. If the wait flag is set, he will be
prompted to hit a key before resuming the
assembly.

A. Abort. Default is off. This is an abort on
errors switch., If set, all assemblies will abort
when an assembly time error is encountered.

" The other option of " must be used as the last
option and is the start of the object file name to

<15 >

4.

EDIT

save the object to disk under.

6 50 2

No other delimiter

to start the name other than the quote (") may be

used here.

GO ADR1 - Executes directly the program in memory starting

at address ADRI.

< 16 >

EDIT 650 2

XI. MACHINE LANGUAGE MONITOR

The machine language monitor can be entered by typing MON <CR>
from the command control processor. When the monitor is”
entered, the prompt now becomes 'M>'. The monitor is an outer
level command module in that hitting the [BREAK] to abort from
in the monitor will return you to the monitor. Entry of
commands to the monitor is different from the command control
processor in that the parameters (usually addresses) are entered
before the command, all commands are single letters and multiple
commands can be input on a single line.

All parameters are 16 bit unsigned numbers with wrap-around. On
inputs of larger than 65535 decimal, the most significant digit
is thrown out. All numbers entered as parameters can be
expressions. Mathematical operators sdﬁported are: . +-*/ for
addition, subtraction, multiplication, and division
respectively. " No precedencé.is taken with expressions, just
simple left to right evaluation. Three parameter entry is
3<¢2,1. Two parameter entry is 2,1. Single parameter entry is 1l.
Entry of extra parameters is just ignored. Default radix
(number base) is hexadecimal with decimal numbers supported by
preceding them with a period (.) and binary numbers supported by
preceding them with a percent symbol (%).

‘.
’

For the followﬁng discussion, parameters will be discussed as
3<¢2,1. The syntax of the description will be command letter
followed by the number of parameters in brackets and a
description of the command. If no parameter is entered, the
last used value will be used.

<17 5

XII.

“

<1>
<1>

<2>

<1>

<1>

<2>

<2>

<1>

<1>

<3>

-line following the colon.

EDIT 6502

COMMAND SET POR MONITOR

Hex result. Prints the result of parameter 1 (expression)
as a 16 bit hex number.

Decimal result. Prints t

-eimal he result of parameter 1 as a 16
bit decimal number (0-65535) .

Display. Display in both hex

and ASCII the memory from
pParameter 2 .up to and includin

: g parameter 1. 1If only
parameter is entered, only that memory location will be
displayed. :

Go.

Jump to routine at parameter 1.

in an RTS instruction, control will return to the monitor.
The 6502 meta registers are restored to the 6502 registers

before going to the routine. If no address is given, the
last used pC address will be used.

If the routine ends

List. Disassembly (1 pass) the next 20 instruction and
list the disassembly on the current output device.

ASCII Search. :“Search from parameter 2 to. parameter 1 for
the ASCII string following the quote and ending in (but
not including) the carriage return at the end of the input

line. With this command: multiple commands can not be
entered on the input line .unless they precede the search
commang. ‘ '

Hex Search., Search for the hex st:inngollqwing the
single quote. All hex entries are separated by commas

(,). Same rules as to multiplicity of commands. applies as
in an ASCII search.

Hex store. Change the contents of memory starting at
parameter 1 by inserting the bytes entered in the input

Again the carriage return is
the delimiter and all entries are separated by commas.. No
commands can be made after the store.

ASCII store. Store the ASCII string in memory starting at

parameter 1. Ending delimiter is the carriage return at
the end of the input line.

Fill memory. Fill memory with the 1o§ 8 bits of parameter
3 in the range of parameter 2 to parameter 1.

<18 >

<0>

<0>

<2>

<2>

<0>

<0>

<1>

<1>

<3>

<3>

EDIT 6502

Return to Edit 6502. Returns user to Edit 6502 command
control processor.

. s
Display 6502 Meta registers. Displays the 6502 stored
registers (psuedo registers that are restored to the real
registers every time a go is executed). Registers may be
modified with hex or asc store commands without an address
parameter being entered. But, to modify the Y register,
you must enter the preceding values for A and X.

Write sector. Writes sector parameter 2 (high byte is
sector, low byte is track; ie, to write track $11, sector
SF from $800 you type 'F11,800W') from data buffer at
parameter 1 to the disk in current slot and drive.

Read sector. Reads sector parameter 2 into data buffer
starting at parameter 1 from the disk in current slot and
drive. All sector buffers are 256 ($100) bytes long.

Printer. Sets the printer as the current output devices

All output to the printer will be paginated with a

heading, the date, and the page number. This mode will

remain in effect until the N command is issued. .
|
|
|
|
|
|
|

Normal video. Return output device as video screen.

Step. Execute one instruction at parameter 1 and display
the 6502 registers.

Trace. Continually steps through code. After each
instruction the 6502 registers will be displayed.
Execution will return to the monitor upon receiving the
BRK instruction (00). Outputs can be paused with the
space bar and halted (return to the monitor) by the break
key ([CTRL C]).

Move. Move the memory from parameter 2 to parameter 1 and
place it in memory starting at parameter 3. ‘

Verify. Verify that the memory from parameter 2 to
parameter 1 is the same as the memory starting at
parameter 3. All non-identical locations will be printeg
with the corresponding data. >

e

<19 >

EDIT 6502

U <0-3> User. User extension of monitor commands, This command
will jump to the user location $3F8 (where you can place
the jump command to your routine). Parameters will be
stored (low byte, high byte) as follows: parameter 3 --
$88,$89; parameter 2 -- $84,$85 and parameter 1 --
$86,$87., The user location is not initialized with
anything on bootstrap or reset, it is the user's
responsibility to £fill the location with a jump before
using the U command from the monitor. '

! <0> Dos. Executes the DOS utilities package.

< 20>

EDIT 6502

XIII. ASSEMBLY

The assembly section of the program will set the toggle switcheéb
according to the parameters passed and will assemble the source;
file in memory. It will begin by doing an implicit CLR of the
symbol table. EDIT 6502 supports all addressing modes of the
6502 and includes 20 psuedo opcodes (or assembler directives).
This facilitates making the writing of assembly landuage
programs easier.

The default number base is decimal. Hexadecimal is supported
when the number is prefixed by a 'S', and binary is supported by
prefixing the number with a '$'. The program counter can be used
by using the symbol '*', ASC characters can be-used by
prefixing them with a " or a '. The double guote (") sets the
high bit, and the ‘single quote (') clears the high bit. All
operands can also be made up of combinations of the modes.
Non-spaced separation of values by the characters +-%*/ will
perform the functions of addition, subtraction, multiplication,
‘and division respectively. There is no precedence for
operators; the field is read from left to right. For example,
if we have the label HOME assigned to $FC58 and our operand
looked like #HOME/256+$FB*$10-$100, EDIT 6502 would generate SFC
(HOME/256) , $1F7 ($FC+$FB), $3EE ($1F7*2) and finally $2EE
($3EE-$100). If the opcode were an LDA, the accumulator would
be loaded with SEE in the immediate mode (#).

The structure of addressing modes is basically standard with a
couple of exceptions. Namely, the use of the implied mode on a
shift opcode (ASL, LSR, ROL and ROR) does not require an A as an
operand, but rather a blank field. The greater than symbol (>)
will generate the high half of the value for an entire math type

<21 >

EDIT 6502

operation. It will perform a divide by 256 of the final value.
This is invaluable in loading the page of a software stack. For
example, to get the page value of the label HOME, do a LDA
$>HOME.

The syntactic structure of the operand field for each addressing
mode should look like table VI.

A label can be the only thing present on an input line. 1In that
case, the program counter will be assigned to the label and the
assembler will go on to the next line. This can be a very handy
feature when you are constantly changing the entry to the label.
You can isolate it on a line by itself and not have to edit the
label line.

The assembly is done in two passes. The first pass collects all
of the labels and places them in the symbol table. The second
pass generates the actual code. Some ©of the assembler
directives are accomplished on pass 1, and some .are accomplished
on pass 2. At the end of pass 1, the symbol table is complete.
If you are assembling just to view that, you can abort the
assembly [BREAK] at that point and use. the TABLE command to view

the symbol table.

< 22>

5.
6.
7.

12..
13.

EDIT 6502

TABLE VI
OPERANDS FOR ASSEMBLY

IMPLIED - No operand (should use two spaces before comment
for tabbing to remain formatted). =
IMMEDIATE - #VALUE where value can be any combination of
labels and numbers as described above.

ZERO-PAGE - VALUE where value represents a value less than
256. For value to represent a label only, it must have
been previously equated to zero-page (earlier in. the
assembly) to .take on the zero-page addressing mode.
ABSOLUTE - VALUE where value represents a value greater
than 255, ¢ .
ZERO-PAGE INDEXED BY X - VALUE,X where value is <256.
ZERO-PAGE INDEXED BY Y - VALUE,Y where value is <256.
ABSOLUTE INDEXED BY X - VALUE,X where value evaluates to
>255,

AgSOLUTE INDEXED BY Y - VALUE,Y where value evaluates to
>255. , i : '
INDIRECT PRE INDEXED BY X - (VALUE,X) value must evaluate
to <256 or an error message will occur. B :
INDIRECT POST INDEXED BY Y - (VALUE),Y where value must
evaluate to <256. ‘ L ,
INDIRECT - (VALUE) the only instruction using this mode 1is
the indirect jump. , . '

RELATIVE - VALUE where the difference’ from value to the
program counter (*) must be between -128 and +127. _
ACCUMULATOR - NONE. Remember to place two spaces in the
listing for formatting tabbing and to include a ; before
the comment listing.

< 23 >

XIV.

EDIT 6502

PSUEDO OPCODES

There are 20 psuedo opcodes to EDIT 6502. Nine of them are
genuine psuedo opcodes' in that they generate code. , The other 11
are assembler directives which furnish the assembler information
to assist in"the easy generation of code. The 20 psuedo opcodes
and their syntax are:

1.

BQU VALUE - Equates the label to the value VALUE. For
value to contain a label as part of it's make-up, the label
must havg' been previously defined. oy

. ORG VALUE - Sets the origin of the assembly. This is where

the object code will reside when it is to be run. If no
ORG .is given, the default value is $A00 below screen

-’ memory. On assemblies to disk, ohly one ORG directive can

be given.

OBJ VALUE - Sets the object location of where the code will
be assembleéd in memory. OBJ and ORG work totally
independently for greater flexibility. This is the
location where the code will be going right now, even if it
is not meant to run there. This allows for resolving
conflicts of addresses by not having the origin space
available at time of assembly. If no OBJ is given, the
default value is $800 below screen memory.

PAG or PAGE none - This directive will generate a form feed
to the printer on pass 2 of the assembly.

LST ON or OFF - This directive will turn the listing option
on or off depending on the parameter in the operand field.

INP ["STRING1"] - This directive, during pass 1 of the
assembly, will prompt the user with STRING1 for input to be
equated to the corresponding label on the same line. Input
radix is defaulted to hex (decimal prefixed with . and
binary with %), and no math is allowed on value. This
procedure is very convenient when asking during assembly
time for the parameters of a conditional assembly. The
delimiters on the prompt string must be quotes (").

< 24 >

10.

11.

12.

13.

14.

15.

EDIT 6502

LNK "DEV:FNAME.EXT" - This directive allows you to

assemble source files that are too large to fit in the

Atari's memory at any one time. The original file in

memory at the start of assembly will be saved under the:
name of 'D:TEMP' so be sure to not have a file of value by
that name on your disk. Any number of source files can b€
linked on any one assembly. This directive can only be~
done with a disk system.

RES VALUE - Reserve storage for value bytes of memory. The
assembler will not place anything in this space. but will
skip over it. On assembly to disk, nulls will be used in
the area. The maximum value for RES is $FF:-bytes.

DFB VALUE [,VALUE) etc. - Define byte. Will take the low
order byte of each value and store it in memory. Multiple
arguments are supported when separated by a comma.

DPW VALUE [,VALUE] etc. - Define word. Will store a 16 bit
address in standard 6502 low byte, high byte -format.
Multiple arguments are supported when separated by commas.,:

DPS VALUE [,VALUE] ete. - Define a multiple page software
stack. This diréective is similar to DFW with the exception
that 1 is subtracted from each argument for software
stacking. ~ Multiplée arguments are supported when separated
by commas. -

DSS VALUE [,VALUE] etc. - Define a single page software
stack. Similar to DFB with the exception that 1 is
subtracted from the low byte of the arqument. Multiple
arguments are supported when separated by commas,

ASC "STRING" or 'STRING' - Store ASC string in memory.
For listing formats to look proper, you should use the
double quote as often possible. If single quotes are used,
any space in the operand will force the rest of the operand
over to the comment field on listing.

DCI "STRING" or 'STRING' - Same as ASC with the exception
that the last character stored has the high order bit

inverted. o
x

DYz "STRING" or 'STRING' - Define text zero. This is am
ASC command with a null byte appended to the end of the
string. -

< 25>

‘L

16.

17.

18'.

190'

20.

EDIT 6502

IRV "STRING" or 'STRING' - Similar to ASC with the
exception that the ASC string is stored in memory in the
inverse order of how it is listed in the operand.

TLE "STRING1" - Place stringl as the page header for

assembly output., The header is placed during pass 1 of the
assembly; so, if you have more than:l tle command, the last
one will be printed on all pages of the assembly listing.
Page headers on printouts will also include the date and
the page number.

IPC VALUE - If, condition. 1If value equates to any non-zero
value, the assembly will continue until an ELS directive is
encountered. If value equates to 0, then no code will be
generated yntil. an els or an end command is reached.

- Conditional assemblies cannot be nested. So be certain to

enter—-an END directive before issuing another IFC
directive.

.ELS - Else condition. If the conditional flag was set to
.nfalse, it is now set to true and wvice versa. If an ELS

directive is encountered before an IFC directive, it will

turn off code generation up untilitan IFC or an END is
-encountered. - L N

END - End condition. Force code to be generated from now
until another IFC is encountered.

-

< 26 >

EDIT 6502

XV. DISASSEMBLY

Before ever entering the disassembly mode, we must first

determine what portions of the data to be disassembled are code“'

data, words, and stacks. This is accomplished by using memory
dumps and single pass disassembly in the monitor. A straight
shot at using all code in a two pass disassembly will generally
work, but will usually generate some meaningless labels that may
not work if the code is relocated elsewhere when reassembling.
Separating ASCII text from hex data is merely a matter _of
determining that the section in question is indeed data and
doing an ASCII dump to determine the portions, if —.any, tha_t, are
ASCII data. ' '

The disassembler never clears the text or symbol table areas of
memory. In this way, you can disassemble witbh predefined
labels. Long disassemblies that are larger in length t;han the
source area can be accomplished by disassembling a section,
returning to the CCP, and typing 'DEL 1, <CR>'. This will clear
the text but wilk leave the symbol table intact. Reentry to the
disassembly mode does not clear the symbol table to allow the
freedom of disassembling large bodies of code. ,

to enter the disassembly mode, type DIS ADR1l,ADR2 "STRING1l".
Where ADRI and ADR2 are delimiting values for where equates are
placed in the file. They do not have to correspond to the
actual area of memory being disassembled (they, generally do
unless ‘the code is not in its usual location). The STRINGl is a
name identity that you may select for your ease ,of understanding
of what the file is about. You will now be rewarded with a
prompt of 'D>'. Commas (,) is used as an address delimiter and
spaces are ignored. There are five parameters that can be

< 27 >

EDIT 6 50 2

passed to the disassembler. They are: L-6502 list (disassembly
of standard 6502 code); T - ASCII data (character strings); H -
Hex data (DFB opcodes); W - word data (DFW opcodes) and § -
Stack data (DFS:opcodes). The format offica line looks like:
. C2AD

D>ADDR1 , ADDR2 (param),ADDRB (param) ;ADDR4 :(param) etc.
) ‘ Yo Tk
Where ADDRL, ADDR2, ADDR3 and ADDR4 ‘stand. defined on page 9 and
(param) stands for L, T, Hy W or S.- For example, if there was
code from $800-$900 that we wished to disassemble and we had
already determined that from 800 to 832 was 6502 code, 833 to
858 ‘was ASCII text, 859 to 86A was hex data, 86B to 8Cl was 6502
code, 8C2 to 8F3 was Stacks, and 8F4 to 900 was 6502 code, our
entry line would look like this:

S L v .. 19va
D>800;832L, 858T, 86AH, 8CIL, 8F35,900L v Y5

AN -
» Jeta

"The foilowing.is a scenario of a long disassembly.

First we did a NEW and cleared the entire text. Then we had the
optién of entering and assembling (we must get those labels to
the table) a file made up of equates for the disassembly file.
Then we entered disassembly mode by typing DIS and its options.
We disassembled a large portion of code and;iound that we were

nearing the memory limits of the machine. We exited disassembly

:by pressing ‘'t
" back to the editor &nd saved our first portion of the text. We

\

he return key as the first character of -a line, got

“then did a DELKCR> to¢-delete all text (but kept our symbol table

iﬂtact); reentered disassembly mode (DIS) and were able to
continue without refilling our text with redundant equ's (that

also cause assembly érrors). We could then go on our merry way

continuing the disassembly where we left off before.

< 28 >

EDIT 650 2

When we hit the return key at the end, we would see two passes
of the code flashing before our eyes and the file from 800 to
900 would be disassembled. We would then be shown the length o&
our file (to determine if memory is getting full) and beg
returned to the disas:..thly mode (prompt D>). To exit the
disassembly mode at this point, we just press the: return key.
We can then go back and edit, list or assemble our newly created
source file from the disassembly.

Not all disassemblies will reassemble directly. The use of
labels in the middle of instructions and daéa is a common
occurrence. For example, the loading of a multiple page
software stack is accomplished by:

GO ASL stimes 2 . PR
TAX for indexing
LDA MSTX+),X page byte
PHA = . i: .
LDA MSTK,X low order byte
PHA '
RTS to sub via rts

The loading of A from MSTK+i,X will almost always genggéte an
assembly error because the data in MSTK will be done on an eight

wide basis.

Simple editing of the loading labels can correct this problem
before reassembling the text.

< 29 >

EDI'T 6:50 2

Another potential assembly problem of .disassembly listing is the
use of the BIT opcode '($24 and $2C) or'-other branch never type
instructions to.get the program to skip..over a load or store for
the purposes of savihg code.- . An example of this would be the
setting or resetting: of .a flag.dependirgeon. conditions met. To

illustrate: - - : Spoatnd e chon
2 : RRTIIOT s V- R
TEST CMP EQUAL the test condition -
BEQ GOOD passed test!
LDA #SFF set flag, failed
: - DEB $2C skip over next::LDA
,.. GOOD LDA #0 signal good test
') STA FLAG A
[IR]

In either instance, the value in A was;stored in the label FLAG.
If the test passed, the value stored was a 0, if it failed, the
value was SFF.

T aveq snoe X [4T2H A
To correct a problem like this, again simplyiediting the text

will do it. If the information had been ‘previously known, the
disassembly could have 'sipplied the byte before. the label GOOD
as being hex data as it was generated when disassembling

origiﬂélly. ' ‘ PP
X J - ‘s

< 30>

EDIT 6502

APPENDIX A.

EDIT 6502 MEMORY MAP

e
=

MEMORY AREA 3.4 “3E USER SPACE
$0-S7F ' -~ &.3TEM POINTERS ' NO
$80-SB6 ‘ ! EDIT 6502 POINTERS . NO
$B7-$FF ' " 'FREE ¥ES
$100-S1FF 6502 STACK NO
$200-$47F - SYSTEM POINTERS NO
$2D9-$2DA ‘BLOAD ADDRESS ‘NO
$2DB-$2DC 3LOAD LENGTH NO
$480-$57F " . INPUT BUFFER YES s
$580-APMLO ' EYSTEM POINTERS NO
APMLO-SVMSC " %M USLR SPACE 41 YES .
SVMSC-HIMEM - & 7 .4Ic2O SCREEN NO SRS
$A000-$BFFF EDIT 6502 NO
$D000-S$FFFF OPERATING SYSTEM NO

Zero page locations of particular consequence are: $2C9 text
buffered flag, $78 current output stream (0 for video), $64-$67
video screen pointers, $9C-$9D system lomem, $9E-$9F system
himem, $8A-$8B symbol table pointers, and $82-$83 end of text
pointer.

< 315

EDIT 6502

Some useful entry points for trying out routines are:

couT EQU S$BB6E . .output character in A to current
output device
RDKEY EQU $B915 obtain chimacter w/cursoriqc ;o o
- w- ----from..current. input.device._ ______ ..
GETLN EQU S$B7CY cw4start witlvacr then prompt aT .nn
GETLNO ., EQU GETLN+3 with prompg, but no cr
GETLN1 ‘BQU GETLN+SE no prompt unless cancelled
BLANK ‘EQU SB83F output a space
CROUT EQU $B843 output a carriage return
PRBYTE +EQU S$SB85B hex print byte in A to current
output devire
PRDEC " BQU SA62A output a 5-digit decimal to current
- ,-output:-dev.ice
CLs - EQU S$B6ED clear;;screen and home cursor
PUTLN EQU S$B95E Print: tegtfrom A,Y to a CR or NULL
T Lndd i T
. MATAY2 AT 0LTUER TITIT(

< 32>

"2DIT 6502

J2. APPENDIX B. -

3.
!

7JIT 6502 ERROR MESSAGES z

PAST END -- The 1::i % .7 :r or rang: ¢f line numbers extended
beyond the range of the file.

- . L2 N i = . -~ - .
- - < = 1 o

FORMAT -- Numbérs ‘wé€re out of range or the format of an operand
was not correct.

SYNTAX -- The commal.. - was unrecognized by the system. Either
the command is not .. awed, or there is a misspelling.

DUP LABEL -- There was more than one occurrence of a label
definition for the se.. ilabel. '

INVALID OPCODE -- The opcode was unrecoginized as being either
6502 or a psuedo opcode. '

LXBEL RBEQU. ._ ~- Either an equate or input psuedo op has been
used without a label associated with them.

BRANCH OUT OF RANGE -- The branch address was not within -127 or
+128 of the program counter.

ILLEGAL ADDRESS MODE -- The mode of operation for that
particular opcode is not in the 6502 opcode set. This can also
occur if a zero page label has not been equated to zero page and
an indirect instruction is used.

UNDEFINED LABEL --- A label was referenced that was not defined
by an equate or a program location.

< 33>

EDIT 6502

OUT OF MEMORY -- The systems memory could not handle the last
line entered. If the text had been buffered (as in an insertion
or edit) all will)hei.restored with thadexception of the last
line entered. The Len command may say that there are a few
bytes left; but not;engugh f£or the -eatwimdines ™ - apx T2is

9113 od3 Yo spnsr 9idl bBnzyed
RANGE -- Either a himem parameter was too high, line numbers
- weng, from high to low (e.gs 100,50) :0f 318isk-apkion_specifited a
drive outside the range allowed. . i3a~

I/0 CODE: -- An I/0 operation was atheppied -and an error was
received, The number following the,mesgsge-will be a standard
Atari error code.
y LeET1TUN90 ARC 0 P o i0m 26V 9 :
NOT A LOAD PILE -- File trying to;:be Jfiseded is not an Atari
object file.
Qi 2 NS RINYGDIIAN 2EW IDoJo 94T -- 4L B

.3bosco obausy -

00 she . JUTi. 190 o0 gaddcT - @@AIUGR @ JHEZAT
T A 333 Cadiw dxe~
Fpeorse s 3sab Ry R R o TR (-
ol
.- A
sYaan 1. - L TR R
- r. ';-‘J
o - _ AT S e , ca U
Dolasdrictear uioa e g
: oo o fgasl A o= YR WYY g
v ide I D (4 BB (A BREULER S BEN F IR

< 34>

"DIT 6502

o~ APPENDIX C.

PR

-

SOFTWARE STACLING . -
R SR S L an oo , , =
- Software stacking: S a term used to; emulate the missing jump
indirect indexed inus. uction. How this is accomplished requires
the user to understa ' exactly how the 6502 microprocessor
‘orerates an:RTS imy’e’ ction. When an RTS is encountered, ‘the
6502 will pull from .s stack two bytes and place them in-its
program counterxlow = ~te and then high. byte. Then the program
counter is INCREMEL'..D:3Y ONE and the 6502 fetches the next
instruction. By pushing onto the 6502 -stack the value minus one
of the place one wishes to go in memory. the-user can then
execute an RTS to jum® to the place..he wishes to go. These
values are usually-]_.j'.*a;,:-,,_d___of_f...of,_a‘ stack of -ajdresses indexed by
one of the indexregs; 2rs !X or Y¥);: thus-the term, software
stacking. s 542 o messc Bne dagda L s

GRS ARG S SN = T o

This stacking can be done in one of two ways. The first way
.requires.;all. routines.that are used in the. stack, reside on THE
- SAk.. ‘PAGE of memory. . In this way, the stack-only ,needs to
‘o contain sthe low order -byte, minus on«<, of the cddresses of the
2 routines to be accessed. . The page byte (common to all of these
,routines) 'is- pushed on the 6502 stack first (so it can be pulled
last) and the indexed byte is then pushed on the 6502 stack.
"The -RTS:is then executed, and the routine is carried out. 1In
.examining this procedure, one must use caution. Scrutinize the
results,; if the. routine to use starts at the beginning of the
-page (i:.e.. byte. 00). Tne stack will contain the.byte minus 1 or
$PF, and when pushed; . will :actually be on the stack as the end
-of the page. :When pulled off of the stack, by the RTS, the
«sntire word will be:incremented and the routine will not execute

< 35 >

EDIT 65 ®2

as expected but, instead,- the program counter will be one page
too high. Because of this, the range of starting addresses for
single page stacks is™fifém 01 to (%, Note that 00 is the
address of the start of the next page, but this will work for
"the very same reason“tWatoth@'60 Bytd! of hebirrent Ppagdiwill
not. C 9 st 2id woH .n1oijouz:}"ani Daxobnat :231i%5n:
v S BN A1 wnd s {ocxa brs2aiabnl Y 1,2y 203
' The >Second type of software’stack .al-loww fier: rolitines o .resd de
anywh€re in memory. - Here:the 'index regititem s multiplied by 2
-because there are.2 bytes per stack:ientrgd, woandsthe high order
‘byte, the plus$‘l entry., 'is’ loaded' by @h GEBE¥UCtion similar to
" ~LDA ‘STACK+1,X -and ‘pushed on the 6502 sibclerd Then the low order
byte is loaded’and pusheédbefore tHe: RISBIVis executed. The
advantage of th¥s“are SBvious in that’ @A®(routines can reside
anywhére “in’ fiemo¥y .1 Thé disadvantigeobetd ¥ the fact that the
stack must: be twicé€Ydd lohg for’h BINAAEIS hufber of routines,
and the code to push the stack addresses on the 6502 stack must
be longer. ‘
' 2 a v 0w XY Gl 1D 00 3¢ mss dniASsIT &L
Perhaps -<the! user 'wonders if the-results rarelwolsthsall ;the
constrairx’t7sf~requirfed toidow this kind of manipulation 2DAThEWE are
several ‘PeaBons for the .gnswer's being'yes. : One, ‘tive ispeed> of
execution “is gehérally much faster :than»doing several:.compares
and jumps. -Twd, the ‘amount of code'required for -suchran
operation+is Gsualily imuch smaller' than the comparedjdmp
techniqlue".' “ And third}-fsin‘glé page stacking is particthlrarly
effective for a short ‘numiber of routines where:comparisomns> do
not have to be made based on the code 'being-dn .erderiu.oFor
' example, to process control characterls with'each’ having-their
own particular routine, no comparisons have.ta be madenonce’ the
character is determined to be a control; character ;before a
particular control routine can be. accessed! Tovshow whatithe

< 36 >

SaDIT 6502

code would be, we might write for a single page operation:

LOX

NOCTRL
GOSUB

21

9D 0. NS BT SO A S VI SR A

CMP #sP ‘bz sp or > isaon ¢rntrol .

,BCS N¢ITRL , ., not in the -outine) -

“MAY 72 only mihus' 'valuds work -
3 ‘BPL)HNLD;TEE " fh.lpxllf dplwﬂ. S BNV
. JSR 30SPB G.. 'ndirect sub by char in A

IMP” 'ﬁEngalam and “continde I

tee senses whatever we do to non controls-

TAY get character to index

LDA #>PAGE push page byte first

PHA o205 [liuv o« “vy; 35
LDA "STACK~i$ 80', Y 'get byte\from software stack
PHA

RTS 2. werecute .our ‘routiné -for each control

N . (7T 5
R Ly T 46 " *

33yd 19

P
VRO S BRI 3

{

< 37>

-BEDIT 6 502

DuiEq dipita2 v 7 .iw 3dpt Y
Now 32 different routines have been accessed without ever having
to see which dontrol whuracternwe. had. As is often the case

with 32 routines)ufﬂiéQiét?pi’,ﬁhé:"a{d}}gessesJéf‘)%’éch;#utine could

[}

hardly be expected to fit [on ldne[ipkge. TATODUNgEIkhis routine

to a multiple pagg"gsgf‘egsé;ﬁyf;;ézgigzg mereigggh%e the gosub

routine to as follewseh 3w 135 .3sdw B T JATZOA
IS T I 1o IPT- R F TR I foib) LAL 123059
rre o adioh anan L l2ng JoAd<4 AlI
GOSUB ASL " ;control *2 will also 449
2yt owtr: oma-lyremeve mshy @8 2belDrgchighl
TAY _ 1443
LDA ; 'STACK+L Y rugeb -paga:-byte 27
PHA ‘
LDA STACK,Y and low order byte
PHA
RTS and execute

< 38 >

