&

ATARI" PROGRAM EXCHANGE

4

 Patrick Mullarky

EXTENDED fig-FORTH, Rev.2

Full implementation of standard
fig-FORTH, with more definitions

" Cassette: 16K (APX-10029) Diskette: 24K (APX-20029)

Edition B

- User-Written Software for ATARI Home Computers

Patrick Mullarky

EXTENDED fig-FORTH, Rev.2

Full implementation of standard
fig-FORTH, with more definitions

" Cassette: 16K (APX-10029) Diskette: 24K (APX-20029)

Edition B

EXTENDED Fiae—FORTH
by

Fatrick Mullarkyg

Froaram and Manual Contents © 1982 Partick Mullarky

Copyright notice. On receipt of this computer program and associated documentation (the

software), the author grants you a nonexclusive license to execute the enclosed software, This

software is copyrighted. You are prohibited from reproducing, translating, or distributing
this software in any unauthorized manner,

Distributed By

The ATARI! Program Exchange
P.O. Box 3705
Santa Clara, CA 95055

To request an APX Product Catalog, write to the address above, or cail toli-free:

800/538-1862 (outside California)
800/672-1850 (within California)

-Qr call our Sales number, 408/727-5603

Trademarks of Atari
The following are trademarks of Atari, Inc.

ATARI®

ATAR! 400™ Home Computer
ATARI 800™ Home Computer
ATARI| 410™ Program Recorder
ATARI 810™ Disk Drive

ATARL 820™ 40-Column Printer
ATARI 822™ Thermal Printer
ATARI 825™ 80-Column Printer
ATAR! 830™ Acoustic Modem
ATARI 850™ Interface Module

Printed in U.S.A.

CONTENTS

INTRODUCTION ___ 1

Overview __ 1
Required accessories 1
Optional accessories 1

Contacting the auvthor __ 2

GETTING STARTED __3

Diskette version ___ 3

Cassette version ___ 3

Notes on this implementation ___ 4
Editor and Assembler gptions ___ 4
16K RAM limitation ___ 4
Cold starts with SYSTEM RESET key ____ 4
FORTH and DOS incompatability __ 4
7-bit and 8-bit output __ 4
ERROR screens ___ 5
Disk blocks ___ S

DEFINITIONS __ &
SAVE __ &
CSAVE __ 6
(SAVE) ___ 6
-DISK
ASCII
BEEP
BOOT
(FMT)
ok ___ 7
PON__ 7
POFF ___ 7
FFLAG __ 7
GFLAG __ 7
PROMPT __ 7
Words for using the Assembler ____ 7

6
&
&

L.
&

NOTES __ &
The cassette version ___ &
Modifying the dictionary ___ 8

ASSEMBLER ___ 9

Introduction ____ 9
Legal exits ____ 10
NEXT __ 10
PUT ___ 10
PUSH ___ 10
POP___ 10

POPTWO ___ 11
PUSHOA __ 11

BINARY ___ 11}
Calling the assembler ___ 11

CODE ___ 1t
IP___12
W12
N___ 12

COLOR/GRAPHICS (& SOUND) ___ 13
Introduction ___ 13
Definitions ___ 13

SETCOLOR ___ 13
SE. ___ 13

GR. __ 13
XGR ___ 13
POS __ 13
PLOT ___ 13
DRAW ___ 14
FIL___ 14
G"__ 14
SOUND ___ 14
FILTER! ___ 14

DEBUG ___ IS

Definitions __ 15
B? ___ 15
CDUMP ___ 15
DUMP___ 15
DECOMP ___ 15
FREE __ 15
H.___ 15
S.___ 16

DISKCOPY ___ 17

EDITOR ___ 18
Introduction ___ 18
Commands __ 18

L___18
T___18
E_ 18
D___18
P__ 19
I___ 19
F_ 19
B__19 _
C__19
M__ 19
S___ 19
X__ 19
CLEAR ___ 19
COPY ___ 20
MARK ___ 20

FLOATING-POINT ___ 21
Introduction ____ 21
Definitions ____ 22

FCONSTANT ___ 22
FVARIABLE ___ 2Z
FDUP __ 2Z

FLOATING ___ 22
FP__ 22
FG___ 22
Fi 23

FEXP10 __ 24

Fo=___ 24

F=_ 24

F={ __ 24
Comments ___ 24

OPERATING SYSTEM ___ 25

Introduction ___ 25

Definitions ____ 25
CLOSE ___ 25
PUTC ___ 25
GETC ___ 25
GETREC ___ 25
PUTREC ___ 25
STATUS ___ 26

DEVSTAT __ 26
SPECIAL __ 26
FORMAT __ 26
BOOQTES0 ___ 26

FORTH BIBLIOGRAPHY ___ 27
BIBLIOGRAPHY ___ 28
FORTH HANDY REFERENCE ___ 29

SCREENM LISTINGS ___ 51

INTRODUCTION

OVERVIEW

EXTENDED FIG-FORTH fully implements the standard FORTH, as defined in the Forth Interest
Group’s (fig) Implementation Guide. It roughly follows the £50Z Rev. 1.1 FORTH sources

as supplied by the Forth Interest Group (FORTH INTEREST GROUF, P.O. Box 1103, San Carios,
CA 24070, Many changes were incorporated in adapting the sources to the ATARI Home
Computer, but the definitions, operation, and user interfaces were implemented exactly as
described in the Implementation Guide, Many additional definitions have been added,

including extended double-precision words such as 2DUP, 25WAP, D@, and D!. Further, the
standard FORTH Editor, and a complete Assembler for the 4302 are included, as well as a

set of ATARI Color/Graphic definitions, ATARI OS definitions, and a set of ATARI
Floating—-point definitions. One new definition, SAVE , (and CSAVE) allows a

self-booting image of FORTH to be made on a diskette or cassette that will include new
definitions you add; this feature allows application packages to be produced in volume,
Definitions not implemented are DLIST, MON, and TASK. The complete set of ATARI
Screen-Editor capabilities is implemented, making editing and changing FORTH programs
simple and straightforward,

These instructions assume you are already familiar with FORTH. However, the manual does
contain two bibliographies, one for works pertaining to FORTH and a more general one.
There is also a two-page FORTH HANDY REFERENCE summary in the back,.

If you're a beginning FORTH programmer, an excellent book to help you get started is

Starting FORTH, by Leo Brodie, written at FORTH, Inc., and published by Prentice—Hall,
FORTH Inc./’s "PolyForth" and fig-FORTH have some differences, However, EXTENDED
fig~-FORTH contains some screens that make it compatible with the FORTH used in the book.
To use the book along with EXTENDED fig-FORTH, type in the command "85 LOAD" to load the
applicable screens into computer memory, and open the book!

REQUIRED ACCESSORIES

Cassette version

164K RAM
ATARI 410 Program Recorder

{Note. FORTH as a computer language isn’t very workable in a cassette-only
environment, But applications software using FORTH can be put onto a self-booting
cassette if desired.)

Diskette version

16K RAM
ATARI 210 Disk Drive

OPTIONAL ACCESSORIES

All ATARI peripherals and accessories
(Mote, Extended fig-FORTH will work with any ATARI printer using two new
definitions, PON , and POFF which turn the printer on and off. The printer does
not print the prompts as they occur on the screen, allowing very clean printouts.)
CONTACTING THE AUTHOR
Users wiching to contact the author about Extended fig-FORTH may write to him at!

206 Northside Road
Eellevue, WA 98004

or call him at!

20674939698

-

r)

GETTING STARTED

LOADING EXTENDED fig-FORTH INTO COMPUTER MEMORY

If you have the diskette version of EXTENDED fig-FORTH!

1, Remove any cartridge from the cartridge slot of your computer,

2, Place the Extended fig-FORTH diskette in your disk drive and turn on the drive and the
camputer,

3+ The program will load into memory and the prompt "fig-FORTH 1.1" will display when the
load is complete. Press the RETURN key to display the standard FORTH prompt " ok ",

4, The Editor, Assembler, Debug, OS, Color/Graphics, and Floating—point packages included
with Extended fig-FORTH must be loaded in after booting—up the disk, Instructions far
loading and using each package follow.

. After loading in whichever packages you need (Note. You must load in the EDITOR--the
command is 27 LOAD), you can make a new copy of FORTH that includes your loaded packages
by inserting a formatted diskette into disk drive 1 and typing "SAVE". A self-booting

copy will then be written to the new diskette,

4y Now replace the original diskette, type " 14 LIST MARK 15 LIST MARK " , and press the
RETURN key. Two screens of error messages will be listed and saved internally,

7 Change diskettes once again and type " FLUSH " and the error messages will be written
to your new diskette, You now have a clean diskette for your program development.

2. Store the original FORTH diskette in its folder and put it in a nice safe place. Note
that you may make a complete copy of your original diskette using the DISKCOPY routine

described later. This will copy the whole diskette, not just the FORTH and error
messages.

If you have the cassette version of EXTENDED fig-FORTH!
1. Remove any cartridge from the slot of your computer,

2, Turn off the computer and all other peripheral devices. Insert the cassette into the
program recorder.

=+ Hold down the START key on the computer and turn on the computer, The computer should
beep.

4, Press the PLAY button on the program recorder,

5. Press the RETURN key on the computer and the cassette will load itself in, If the
program successfully loads, you will see the prompt "fig-FORTH 1.1,

. SEE THE CASSETTE NOTES AT THE END OF THIS SECTION,

NOTES ON THIS IMPLEMENTATION

Editor and Assembler options

You have several options regarding the EDITOR and ASSEMBLER vocabularies! in addition to
the standard EDITOR; a version of the FORTH Inc. Editor has been included. It may be
loaded with a 4% LOAD command. Further, the Assembler written by Wm. Ragsdale is

supplied (use the command 75 LOAD), which is identical to the assembler used in the
Installation Guide.

16K RAM limitation

If you have only 14K of RAM ybu will not be able to use some of the Color/Graphics
higher-level graphics modes without interfering with the screen buffers.

Cold starts with SYSTEM RESET key

The SYSTEM-RESET key calls the "COLD" (cold-start) function directly, so any new word
definitions that have not been SAVEd will be erased. This can be a handy feature while
debugging! press the SYSTEM RESET key to erase all your old work and leave a clean copy.
There is a negative side! if your program wanders off into never—-never land, and you have
to press SYSTEM RESET, you’ll lose all your new definitions unless you’ve been editing
them into new screens. (Using the standard OS screen—editing functions excludes the use

of the BREAK key for this purpose. The BREAK key is used to inform the system to ignore
the previous input string.)

FORTH and DOS incompatability

There is no compatability between FORTH diskettes and DOS (I or II) diskettes. You may
read a DOS diskette with a FORTH program, but unless you know exactly what you‘re doing,
writing to a DOS diskette will, in all probability, make the diskette unworkable from a

DOS point of view, The only DOS function applicable to FORTH is that FORTH expects
DOS-formatted diskettes.,

7-bit and 2-bit output

The word TYPE outputs only 7 bits to the screen or printer. If you want TYPE to

output all 8-bits {(which includes inverse video characters), you can type in the
following sequence!

HEX FF / TYFE 14 + (' DECIMAL

In Fact, you can make up a couple of routines if you wish:

HEX

t MODTYPE O TYRPE 14 + C! $
¢ B-EITS FF MODRTYFE %

t 7-BITS 7F MODTYFE 3
DECIMAL

Then, to set your system to type out 7 bits, type 7-BITS, and for & bits, type =-BITS,

———

Further, you can use these routines in any other programs you wish, just as you would
any other word definition, If you type VLIST with TYPE set to §-BITS then the last
character of each word will be in inverse video. The word EMIT always outputs all &
bits in each byte: TYPE uses EMIT with a mask for 7 or & bits.

ERROR Screens

The ERROR screens are 12 and 14 instead of the standard 3 and 4. This is because the
self-booting FORTH interpreter, if it is present on the diskette you’re using, occupies
screens O through 7, with & screens available for larger versions. If your working
diskette doesn‘t have a bootable FORTH on it, you may use all screens numbered ¢ through
29, Disk drive 2 screens are numbered 70 through 179, The second drive may also be
accessed by the word DRI , which sets an offset into the drive addresses for’
automatically accessing the second drive. The word DRO accesses the first drive,

Alternately, the blocks are numbered 0-71% on the first drive, and 720-1439 on the second
drive,

Disk Blocks

This is fig-FORTH, NOT FORTH-7?' This means that disk blocks are 128 bytes long and not
1K bytes long. Each screen is 2 blocks long, not 1 block long! A later version will be

made available, someday, using the FORTH-79 standard, but Extended fig-FORTH uses the
fig-FORTH standard. ‘

DEFINITIONS

SAVE —-

This word, when executed, saves a self-boating copy of the RAM-resident FORTH program to
disk drive 1, after setting up new parameters for COLD and FENCE . On booting up,

all definitions will be protected by FENCE, and the FORTH vocabulary will be the

current dictonary. This word uses (SAVE) described later,

'

CSAVE ~—

This word saves a self-booting copy of the RAM-resident FORTH program to the cassette
recorder. The computer will beep twice, indicating that you are to press both the FLAY
and the RECORD buttons on the recorder, followed by pressing the RETURN key on the
computer.,

(SAVE) n —-

This word writes n blocks to disk drive 1, starting at sector 0. This word should not
be used by normal FORTH programs.

-DISK addr nZ n3 flag -— n4

This word performs the read/write on a disk, where addr is the starting RAM address,
n2 is the diskette sector number (0~719), n3 is the drive number (1-4}, and flag is

1 for aread, and 0 for a write., On return, n4 will contain a zero if everything

went all right, or it will contain the DOS error number returned by DOS if an error
occurred, It is not expected that the normal FORTH program will use this word. The
usual disk I/0 word used is R/W , which is documented in the Implementation Guide.

ASCI] =—— c =-->n

This word places the binary value of character ¢ on the top of the stack.

BEEP —-

This word sounds the "beep” tone on the computer’s speaker,

BOOT ~—-

When executed, this word causés a cold-baot of the computer exactly as if the power were
turned off.

(FMT) nl === n2

This word formats disk drive n1 and returns the DOS status byte upon completion in nZ2

+ This word is used by the word FORMAT in the OS definitions, No error checks are made
and no warnings aregiven by this word, Those functions are performed by the FORMAT word,
For more information, see the OS section in this manual.

ok -=-—-

This word allows the Screen Editor (E!) to handle the standard FORTH prompt properly. The
interpreter can "eat" the previous "ok" prompt with no other effect. It allows you to
repeat the same input stream by placing the cursor anywhere in a previous line and
pressing the RETURN key.

PON —

This word enables the printer. PFLAG is set to 1, and thereafter every character put to
the screen will be echoed on the printer except the prompts.

POFF -

This word disables the printer. It sets PFLAG to zero.
PFLAG -—— addr

This word is the printer—-flag. See PON.
GFLAG — addr

This word is the graphics-mode, cursor—control flag. When GFLAG is set to non-zero,
FORTH will use the alternate cursor-address variables required by the Operating System to
handle the text-window at the bottom of the screen. This variable is handled

automatically by the various graphic commands in the Color/Graphics package.

PFROMPT -—

This word was added to handle the extended complexities of excluding the prompt from the
printer when FFLAG is non-zero, Basically it types "ok",

Words for using the Assembler
A series of words are defined for the ASSEMBLER!

NEXT
FUSH
FUT
FUSHOA
FOF
FOFTRO
EINARY
IF

W

N
XSAVE
Ur

Flease refer to the ASSEMBLER documentation for their descriptions,

NOTES

THE CASSETTE VERSION

The cassette version of fig~FORTH contains the ASSEMBLER and DEBUG vocabularies already
loaded. Because no diskette is used, the EDITOR vacabulary is essentially useless.

However, printouts of the EDITOR, 08, and COLOR/GRAPHICS screens are included so that you
may type them in if you wish. The cassette version is primarily for use as an

introduction to the FORTH language, and not as a software development system.

Nevertheless, the CSAVE feature allows you to develop permanent versions of your FORTH
programs., See the following sectian for how to erase old definitions, Note that error
messages in the cassette version type only a number. Refer to the printout of the error

message screens for their meaning., The error numbers start sequentially at screen 14,
line 1 {(error 1).

MODIFYING THE DICTIONARY

To erase a definition in your FORTH dictionary that is locked in (you get an "in

protected dictionary" message when you try to FORGET a definition) do the following!

using VLIST, find the name of the first word that you want to keep, call it XXX, and

type ‘/ XXX FENCE ! <RETURND>. This will set the dictionary protection to your XXX word,
Then you may type FORGET name CRETURN>, where "name" is the name of the word you
wish deleted. Note that all words above "name" are deleteds You can actually

instruct FORTH to forget everything, so be careful. If you make an error in a new

definition that FORTH rejects for one reason or another, you may find that you cannot
FORGET the new definition, and, in fact, only VLIST seems able to find it at all! In such
cases, type the word SMUDGE and you’ll be able to FORGET the word. By the way, you can

interrupt VLIST anywhere you want by pressing any key except BREAK while it is typing out
the dictionary.

"Go FORTH and cornquer™

"May the FORTH be with gou"

ASSEMBLER

INTRODUCTION

The ASSEMBLER vocabulary included in Extended fig—-FORTH is a full-featured 46502
assembler, capable of assembling the range of assembler op—codes. It is similar to W,
Ragsdale‘s assembler used in the fig Installation Manual. To load it, type!

39 LOAD

As is usual in any FORTH product, the notation used in this assembler is in Reverse

Polish Notation (RFN). This brief outline assumes you know assembly language programming
very well, particularly in regard to the 6502, The RPN notation will seem very awkward at
first, but it allows the full power of FORTH to be brought to bear in an assembler-level
routine. The op—codes are very similar to standard 6502 op—codes, except that every one
ends with a comma, a FORTH convention for assembler-level codes., Some examples will help
describe the assembler!

LDA 123 is writtemn a2s 123 LDA,

similarly,

STA 3ECO is 3eC0 LDaA,

LDA 33,X is 33 »X LDA,

AND (45,X) is 4% X) AND,

STA (74),Y is 74)Y 8TA,

LDA 3374,Y is 3374 ,Y LDa,

LDX $7F is 7F % LDX, or ¥ 7F LDaA,

The current BASE value {radix) of FORTH determines whether the assembler creates hex,
decamal, or octal values (or any radix, for that matter). -

Non-standard op—codes are the A-register shifts only, which are expressed as!
ROL.A,
instead of the standard!
ROL A
and the op-code for an indirect JTMP instruction, which is!
nrnn JMPCO),
instead of!
JMP (nmmin) o
Loop constructs use the words BEGIN, and END, (note the commas) and an alias for the
latter UNTIL, . The END, is preceeded by a 0= or 0= NOT construct to determine

loop termination. The termination test actually assembles as a BNE or BEQ instruction, as
in the following example!

6 ,X LDY, BEGIN, INY, 0= END, NEXT JMF,

The above routine increments the Y-Register until it is zero and exits to a routine named
NEXT. It will be assembled as!

LDY 06,X
INY

ENE x-1
JMF NEXT

The Branch instructions have been integrated into a generalized IF construct so that
they may be readily incorporated into an unlabeled branch capability. The syntax is!

IFK%, te e PN X THEN’

ar
IFHX, X ¢) ENDIF,

where xx is the last two letters of the standard 6502 branch instructions (IFEQ,
IFNE, IFMI, etc.). The test will be made on the Status Register as appropriate to the
sense of the conditional branch, and if the test is TRUE, the code enclosed between the
IFxx, and the THEN, or ENDIF, will be executed; otherwise, the enclosed code will be
skipped. The operation of the construct is almost identical to the IF .. THEN at the

higher-ievel FORTH definitions, except that nothing is popped off the stack by the IFxx,
words. Instead, a Branch instruction is assembled.

LEGAL EXITS

There are only a few legal exits from assembly language FORTH routines to the main FORTH
inner interpreter, These addresses are predefined in the main FORTH dictionary and need

no further definition by the assembly language itself, These returns use a cecee

JMP, sequence, as shown in later examples, The legal exits are !

NEXT

This is the normal return. It takes no stack action.

PUT

This places the A-Register and the first item on the hardware stack on the top of
the stack: That is, itdoesa 1 ,X STA, PLA, 0 ,X STA, NEXT JMP,
sequence. This action overwrites whatever was previously on the top of the stack.

PUSH

This pushes down the stack and does a PUT . This action adds one item to the
stack.

POP

This performs the DROP function,

10

POPTWO
Thies performs DROP DROP.

PUSHOA

This first pushes the A-Register, followed by a rero. Essentially, it pushes one

byte, the A-Register, onto the stack, adding a 16-bit word to the stack with the one
byte in the lower half.

BINARY

This word takes two words off the stack and replacea=s them with one word. The best
example is the add word + .+ This routine does a DROP followed by a PUT , which
overwrites the old top of the stack.

CALLING THE ASSEMBLER

The word CODE is used to call the assembler automatically when defining a new assembly
level routine. The character string following CODE will become a new FORTH word having
directly executable assembly level code. Two examples follow that do the same
thing——they multiply the top of the stack by two, using a single left shift across the

two bytes that are the top of the stack!

CODE 2x 6 ,X ASL, 1 X ROL, NEXT JMF,
CODE x2 0 ,X LDa, ASL . A, FHA, 1 ,X LDA, ROL . A,
PUT JMF,

The first routine shifts the actual memory locations of the top of the stack. This
procedure is quite short and very fast, The second routine is the more universal
methad, in that the arguments are first loaded to the A-Register and later stored.

Notice that the low order byte is pushed to the hardware stack and the high-order byte is
left in the A-Register on the return to PUT . The second example shows how words are
retrieved from the stack and how a return is made. To reach the second word down on the
stack, you would use 2 ,X LDA, to access the low byte and 3 ,X LDA, to access the
high byte, and so on. You can increment the stack pointer {push the stack) with a DEX,
DEX, sequence, and pap the stack with an INX, INX, pair. In fact, the DROP word
does a simple INX, INX, NEXT JMPF, sequence.

If your routines need the X-Register for any reason, you must save it off someplace, A
very convenient place called XSAVE is provided. Do a XSAVE STX, later followed by a
XSAVE LDX, instruction, '

Several other addresses are made available as "hooks" into the FORTH system. These are
predefined words you use at your own risk {you’d better study up a bit before doing so),
but some routines, such as in the assembler itself, need these addresses,

-11-~

IP

This is the Intepreter Instruction Pointer, which points to the next word to be
executed.

This is the actual execution address of the current word being executed.

This is a convenient eight-byte (4—-word) save area where you may save your words and
bytes by storing them in N+0 , N+1 , N+2 ... N+7 , You can use the following

sequence to call an internal routine called SETUP, # 2 LDA, SETUP JSR, if you
want to copy the top two stack words into N+0 ... N+3, low bytes first, Use # 3 for
the top three stack words, and so on. This does not change the stack itself} it only
extracts copies of however many words you want.

On entry to your routine, the Y-Register will contain a zero. This fact can be handy for

clearing out bytes or registers. For example, you can clear the A-Register with a simple
TAY, instruction.

Using the assembler, like in almost any assembly level programeming, is playing with fire,
and you’ll probably get burned from time to time. But, one of the delights of FORTH is
that you can simply re-boot and try again. Careful examination of your code will
probably clear up your prablems.

Note. A good descripton of Wm. Ragsdale’s assembler is in Dr, Dobb’s Journal, Vol.

by No. 9 (Sept, ‘81)s This assembler is quite similar on the surface. Internally, they
are totally different approaches to solving the same problem using FORTH, Reading
Ragsdale’s code and reading the code for this assembler could be very instructive in the
area of assembly level FORTH programming.

-12~-

COLOR/GRAFHICS (& SOUND)

INTRODUCTION

You must have already loaded the ASSEMBLER Vacabulary into your FORTH dictionary before
the COLOR/GRAFHICS definitions will LOAD properly. Once you have the ASSEMBLER loaded,
type!

S0 LOADR
and/or

56 LOAD —--3 for the SOUND commands

A small demo program will draw a box and FIL it in Graphics Mode 5 when you enter the
word FEBOX . Type!

S7 LOAD
FEQOX

Type 57 LIST to examine the program itself,
NOTE. As in BASIC, a color value of zero is used to erase a point. Also, note that in
Graphics Mode &, there are only two color values! zerc or one,

DEFIMNITIONS

The following words have been defined for use with Extended fig-FORTH in programming
color graphics, Most resemble the commands used in ATARI BASIC.

SETCOLOR nin2n2 —

Color register nl (0..4) is set to color nZ (0,.19) at luminance n2 (0..7)s Thig
word is very similar ta ATARI BASIC’s SETCOLOR command.

SE. nilnZn3-—
This is a synonym for SETCOLOR using an the abbreviation used in ATARI BASIC.

GR, n-—-

This word selects Graphics Mode n where n is defined as in ATARI BASIC’s "GRAPHICS
n" command. {(plus modes %, 10, and 11),

XGR -—-
This word allows easy exit from Graphics Modes 1-3. It essentially doesa "0 GR ",
POS nin2--—-

This word sets the X (n1) and Y (nZ) coordinates for the next point to be plotted.
It does not plot anything by itself. It is primarily used in the FIL word
definition,

~13-

PLOT nilnZn3-—-

This word uses the color value given by nl to plot the point at position X (n2),
Y (n3h

DRAW nilnZ2nd-—

This word draws a line from the last plotted point, using color value nl to the
point X (n2)y Y (n2).

FIL n---

This word fills the enclosed area just drawn with color value n. The ATARI BASIC
FILL command is somewhat awkward to use. Careful reading of the ATARI BASIC
Reference Manual is recommended.

G" —-—— ccecet

In Graphics Modes 1 or 2 this word performs the way the word " does in text mode,
The character string cccc will be compiled if in compiler mode or typed out if in
~ interpreter mode., The POS word may be used to position the output.

SOUND

The sound command definition is practically identical to ATARI BASIC‘s SOUND definition.
But another word not present in ATARI BASIC lets you alter the "filter" values described
in the HARDWARE MANUAL as AUDCTL. The ward FILTER! sets this control register,

SOUND nil nZ nZ n4 -—-
This word is used ast chan freq dist vol SOUND . nl is the channel number
{0-2); n2 is the frequency, as described in the ATARI BASIC Reference Manual;

n3 is the distartion control (an even number between 0 and 14); and nd is the
valume (0-15),

FILTER! ni —

This word stores a value between 0 and 2355 into audio control register AUDCTL. The
default condition is 0 FILTER!, Using this control is naot at all straightforward.
Please refer to the HARDWARE MANUAL if you wish to alter the contents of this
control register. Or, you can try a few different values and see what happens!

-14-

DEBUG

INTRODUCTION
Load the DEBUG package by typing!

21 LOAD

The package includes several very useful features for testing and debugging your FORTH
programs. :

Each function is described below, in standard FORTH terminology.

DEFINITIONS

B? -—

This word types aut the current BASE value (radix) without changing it. It overcomes
an intrinsic difficulty in typing only BASE ? , which always returns the value
10 no matter what the current radix is, (10 is the right answer, always.:) This

word types out the value Base 10, so that if your current base is hex, B? will
type out 16,

CDUMP addr n —-

This word types out n bytes in character format, starting at addr. For example, to

display the characters in any disk block, say, sector 34, type 34 BLOCK 128
CDUMP .

DUMP addr n -~-

This word types out n bytes in numerical format using the current value of BASE.
You can go from a decimal dump to a hex dump by typing HEX first (and vice-versa),

DECOMP ccce ——

This word decompiles the previously entered, colon definition cccc for debugging
purposes. Use this word cautiously. It is defined for the purpose of decompiling
colon definitions only, and it can go off to never-never land if yau try to

decompile things like dictionary headers (e.g., FORTH), words terminated by ;CODE
or words whose definitions do not end in }, suchas ABORT . Most non—colon
definitions will cause the message " Primitive " to display if you try to decompile
them. Try DECOMP VLIST and DECOMP (@ to see the different results.

FREE -—

This word types out the number of free bytes of dictionary space left, NOTE that
this number will vary depending on the current graphics mode.

H. n —

This word outputs the top of the stack in hexadecimal, no matter what the current
value of BASE is. It is similar to U. (unsigned type-out).

-15-

s,

This word prints out the contents of the stack in unsigned form using the current
BASE (radix). It doesn‘t change the contents of the stack in any way. This is

easily the most useful debugging tool. During program development you will probably
use it very frequently.

DISKCOPY

The diskette copying routine supplied with this package is minimal. Load it into memory
by typing

36 LOAD
To invoke the copy routine, type DISKCQPY and you will be prompted for what to do,
This routine requires 32K of RAM to operate, and uses one drive to copy 90 sectors at a
time. You may interrupt the copy routine by pushing the SYSTEM RESET key when you think

it has copied enough sectors for your application, Or, you may copy single FORTH
screens, two at a time, by using the LIST and MARK words as described in the introduction.

-i{7-

EDITOR

INTRODUCTION

The Editor in Extended fig-FORTH is the Screen Editor described in the Forth Interest
Group’s Installation Manual, complete and unchanged. It isn‘t the most sophisticated
editor around, and it has some quirks that take getting used to. For example, it's
difficult to insert spaces into a line of text. But the Editor is specifically designed

to work with FORTH screens, and it’s handy for that purpose.

To load the Editor into your system, put the Extended fig-FORTH diskette into drive 1 and
type!

27 LOAD

Ignore any errors regarﬂing duplicate names. To use the Editor, you must first type
EDITOR to set the context to the Editor vocabulary. To edit a given screen, first type
n LIST to load the screen into memory.

One new word has been added to the Editor vocabulary ! MARK . This word will mark
every line in the current screen (the one you last used the LIST command with) as having
been modified, so that when a subsequent FLUSH command is given, the whole screen will
be written out. It is used primarily to update backup diskettes and to duplicate single
screens onto other diskettes,

HWhenever you’ve finished an editing session; type the word FLUSH to save your

work, It is quite important to get into the habit of doing this. If you fail to do
so, and subsequently your program bombs out, you can lose the last screen you edited.

COMMANDS
WORD FORM DOES
L L

This word Lists the current screen. The current screen is changed by n
LIST which will list out screen n and make it the current screen,

T nT
This word Types out line n and puts the cursor at the beginning of
that line.

E n E

This word Erases line n .,

D nD

This word Deletes line n and moves up all following lines. Save the

contents of the line in a buffer so that you can use an I command later,
if desired,

-18-

CLEAR

n P ccoceo

This word Puts the character string cccc into line n and erases the
previous contents, if any. Use this command to create new lines. The
string cccc may be any combination of characters and spaces up to 64
characters.

nl

This word Inserts the buffer from the previous D command into a line
created immediately above line n and then moves all following lines
{including n) down one line, The last line is lost.

F ccoe

This word Finds character string ccce in the current screen starting
from the current cursor position.

This word Backs up the cursor over the word you just found using the F
command.

C cccc

This word inserts Character string cccc into the current line at the

current cursor position. This is the primary character-entry command (see
also P)

n M_.

This waord Moves the cursor n characters forward or backward (backward
if n is negative).

n S

This word Spreads the current screen at line n , creating a new line

immediately preceeding line n and moving all following lines down one,
The last line will be lost,

X ccco

This word eXtracts the character string cccc and shortens up the line.

This is the primary find-and-delete command. The X command uses the F
command, which means that the string search will commence from the current
cursor position.

n CLEAR

This word CLEARs screen n by completely filling it with blanks. It
destroys any previous information on that screen. Note that an unused,
unCLEARed screen will be filled with hearts, which is the ATARI null

character. CLEAR will replace the hearts with spaces.
COPY n m COPY

This word COPYs screen n onto screen m . It destroys any old
information on screen m.,

MARK MARK

This word MARKs the current screen as having been modified. A subsequent
FLUSH command will cause the entire screen to be written out, Use it to
copy a single screen to another diskette.

The best way to learn the Editor is to pick an arbitrary unused screen and use the LIST
and CLEAR commands to erase it and make it the current screen. Then use the P command
to put several lines of text into the new screen. Then, try out the various commands,

one at a time, until they become somewhat familiar. Use the command FLUSH if you want

to keep the results of your work handy; otherwise, use the command EMPTY-BUFFERS to
erase all traces of your screen editing.

~20~

FLOATING—POINT

INTRODUCTION

The floating-paint package uses the ATARI floating-point routines in OS ROM, exactly as
ATARI BASIC does. The routines aren‘t very fast, but they are easily accessible and
fairly complete (there are no transcendental functions except LOG and EXP). Most of the
floating—-point word definitions follow the conventions for double-precision words as far
as spelling goes, making them very easy to remember,

Before loading the floating-point package, first make sure that you have already loaded
the ASSEMBLER., Then put in the master diskette and type!

60 L0OAD
The floating-point routines will be loaded into the.current dictionary.

All floating-point operations assume three-word variables (fn) with few exceptions. The

only real variant from standard FORTH nomenclature occurs in the definition of

floating-point constants and variables (FCONSTANT and FVARIABLE) in that these operations
expect a floating-point number to be on the stack already. Therefore, the syntax is a bit
different from single-precision or double-precision constants and variables.

A single-precision variable would, for example, be written!
1234 VARIAELE MYNUM

whereas a floating-point variable would be written:
FLOATING 1234 FVARIABRLE MYNUM

To reduce typing, the word FLOATING has been given the synonym FP !
FF 1234 FVARIAELE MYNUM

In fact, the word FLOATING or FP should precede any floating number if you wish that
number to be placed on the stack in floating-point format,

You may enter floating-point numbers in any standard Fortran "E" format!

1.234
.00000001
-7 .8945E-31
PP99999

S

All the above numbers are legal floating-point numbers as long as they are preceeded by
FP or FLOATING . The decimal point is optional for integer values. The package is easy to
use. Here’s an example of a square-root function definition?

t FSQRT FLOG FFP 2.0 F/ FEXFP }

The routine expects a floating-point value on the top of the stack (top three words),
takes the natural log of the value, enters the floating-point value 2,0, divides the

-21-

numbers, and raises the result to the power "e". This is the standard "slow" square-root
routine used in mathematics.

DEFINITIONS

The following definitions conform to the standard FORTH nomenclature, with the addition
of the symbol fn (e.g. f1, £2), which represents a three-~word floating-point number.

FCONSTANT f1 ——- cccc)
The character string cccc will be a new word, which will place the floating-point
constant f1 on the stack. f1 is normally preceeded by the word FLOATING or FP,

FVARIABLE {1 --- ccce
The character string ccce will be a new word, which will return the address of the
floating—-point variable whose initial value will be f1, f1 is normally preceeded by
the word FLOATING or FP,

FDUP f1 -— f1 f1
This word duplicates the floating—point number on the top of the stack.

FDROP fi f2 -— f1

this word drops the floating—-point number on the top of the stack.

FSWAP 1 f2 —— fZ f1
this word reverses the order (swap) of the top two Fluating—bnint numbers on the
stack.

FOVER fl1 f2 — f1 2 f1
This word copies the second floating-point number and places it on the top of the
stack.

FLOATING -— ccec -2 f1

This word converts the character string ccce to a floating—point number and places
it on the top of the stack. ccecc must be in valid Fortran-style, floating-point
number representation, such as, 1.23 or .67E9 or -9.876E-21 or S+ There is no
error check. If the string ccce is invalid, the value of f1 will be undetermined.

FP -— cccc --> f1
This is a synonym for FLOATING.

F@ addr — f1

This word loads the floating-point number whose address is on the top of the stack.

F! f1 addr -——

This word stores the floating-paint number at the address on the top of the stack. A
total of 4 words will be dropped from the stack at the completion of F!.

Fo Fl"-

This word types out the floating—-point number on top of the stack. The output format
will be identical to ATARI BASIC’s output format. The floating-point number will
then be dropped from the stack,

F? addr -—

This word types out the floating-point number whose address is on top of the stack.

F+ f1 f2 -— 3

This word adds the top two floating-point numbers and places the result on the top
of the stack.

F- f1 f2 — 3

This word subtracts the floating—point number fZ from the floating-point number f1
and places the result on the top of the stack.

F* f1 f2 - {3

This word multiplies the top two floating-point numbers and places the result on
the top of the stack.

F/ f1 f2 — §3

This word divides the floating-point number f1 by the floating-point number f2 and
places the result on the top of the stack.

FLOAT n — f1

This word converts the integer on top of the stack is to a floating-point number and
places the result on the top of the stack.

FIX f1 ==—n

This word fixes the floating—point number on the top of the stack (after rounding)
and places it on the top of the stack. The range of the integer result must be
between -32748 and 32767.

FLOG f1 -— f2

This word replaces the floating-point number on the top of the stack with the
number’s natural logarithm.

_23...

FLOG10 f1 -——f2

This word replaces the floating-point number on the top of the stack with the
number’s log base 10,

FEXP 1 --—-f2

This word raises the floating-point number on the top of the stack to the power "e"
and replaces the top of the stack.

FEXP10 fl — f2

This word raises the floating-point number on the top of the stack to the power 10
and replaces the top of the stack.

FO= 1 -—— flag

This word drops the floating-point num ber from the stack and tests it. If the

number is equal to zero, a true flag (1) is placed on the stack; otherwise, a false
flag (0) is placed on the stack.

F= f1 f2 — flag

This word drops the top two floating-point numbers from the stack and compares them.
If they're equal, a true flag (1} is placed on the stack} otherwise, a false flag
{0) is placed on the stack.

F=< f1 f2 --- flag

This word drops the top two floating—-point numbers from the stack and compares them.
If f1 is strictly less than £2, then a true (1) flag is placed on the stack;
otherwise, a false (0) flag is placed on the stack,

COMMENTS

This package isn‘t meant to be exhaustive, nor is any claim made for its level of
usefulness. However, if you need floating-point capabilities, the package works quite
well to extend the range of numbers, particularly in scientific calculations.
Trignometric functions could be added by a clever programmer. A sufficdent set is SIN,
COS, and ATN. A random-number generator could also be added, In fact, any number of
features could be added,

In summary, if you can‘t implement your program specifications using the double-precision
capability of FORTH, then try this floating-point package.

-24~

OFPERATING SYSTEM

INTRODUCTION
This vocabulary package implements the full set of ATARI computer’s OS 170 routines. It
alsc adds a FORMAT command, as well as a BOOTS850 command, which downloads the RS-232 170
package into the system so that you may use the asynchronous 1/0 supplied in ROM in the
ATARI 850 Interface Module (devices "Ri1", "R2", etc.).
Load the OS definitions package by typing:!
81 LOAD
Load the BOOTS850 package by typing!
83 LOAD

Be aware that the ATARI 850 1/0 routines take up nearly 2K of RAM, and they are loaded
directly into the dictionary. i

DEFINITIONS

OPFEN addr nil n2 n3 -—— né4

This word opens the device whose name is at addr on channel nl with AUX! value
nZ and AUXZ value n3. Upon return, it places the OS STATUS byte on top of the
stack. The address of the name may be obtained by storing the character name in
PAD and then referencing PAD in the OPEN command, EXAMPLE! ASCII S PAD C!
will set the character "S" into the PAD buffer, Then, PAD 2 12 0 OFEN will
open "S{" on channel 3, with AUX1 =12 (read-and-write), and AUXZ2 =0,

CLOSE nl --- n2

This word closes channel ni and returns the status byte at the top of the stack
(n2), The status byte will always be a 1 (operation complete, no errors).

PUTC char n1 —— n2

This word outputs the character char on channel nl and returns status byte n2,

GETC nl -— char n2
This word gets one character from channel ni and returns it and the status byte
nZ.

GETREC addr ni n2 -—— n3

This word inputs record to address addr but no more than ni characters from
channel n2. It returns status byte n3,

PUTREC addr nl nZ --- n3

This word outputs nl characters from a buffer whose address is addr to channel

n2. It returns status byte n3.

STATUS nl - n2
This word gets the status byte from channel ni.

DEVSTAT ni1 --- n2 n3 n4

This word gets the device status bytes n2 and n3 and the normal status byte n4
from channel nl.

SPECIAL ninZn3n4n5Snén7n8 -— n?9

This command is the OS "Special" command that does anything any of the others can’t,
nl thru né are the values of AUX1 thru AUX6 4 n7 is the command byte (whatever

your device wants), and n8 is the channel number.. The command returns the status
byte n%,

FORMAT -—-
This word formats a diskette, The command is self-prompting.

BOOT8S0 -—
This word boots the Atari 850 Interface Module software drivers into the dictionary.

Screen 83 must be loaded to execute this command., DO NOT TRY TO EXECUTE THIS
COMMAND TWICE IN A ROW. THE SYSTEM WILL LOCK UP IF YOU DO.

FORTH BIBLIOGRAPHTY

In order of technical level

1, Starting FORTH, Leo Brodie, Prentice-Hall

The best all-around book for anyone beginning programming...and not just in FORTH, This quite new
book is everything one could want in a FORTH primer, It begins by assuming that you know absolutely
nothing about computers at all and leads you to some quite sophisticated programs at the end. Even
experienced programmers will learn a great deal from this fine work. HOWEVER, the text is not too
compatible with fig-FORTH. There are many examples that will cause trouble when using fig-FORTH,
Nevertheless..buy this boak !! .. and read it '

2, Invitation to FORTH, Harry Xatzan, Jr., Petrocelli Books

This book is for the total novice, and deals primarily with introducing the first-time computer user
to the fundamental concepts of computer programming, and explores FORTH somewhat casually as it

moves along, Non-novice users will become impatient with the long elementary discussions and the
awkward type-face (no descenders),

3. BYTE Magazine, Vol.5 No.& (Aug. 'S80)

The FORTH-dedicated issue which helped bring the concepts of FORTH to thousands of people who
might not otherwise have ever heard of the language, While the presentations are somewhat erratic in
their technical content, the whole issue deserves reading to acquire a taste for FORTH.

4, Dr.Dobb’s Journal, Vol.é No.? (Sept, '81)

A gsecond "dedicated issue" on the FORTH Language. This issue approaches FORTH from quite a
philosophical point of view, and is excellent reading for the somewhat advanced programmer who, say,
already knows several languages. The issue is a wealth of ideas and solid FORTH programs .. the

Ragsdale Assembler, for one !
5, A FORTH PRIMER, W. Richard Stevens, Kitt Peak Nat‘l Observatory

This is a "self-study" guide to FORTH from the place where it all starteds The FORTH described
differs somewhat from fig-FORTH, but the book is quite good. It includes some floating-point words
which are not too different from the package included with this product.

&, Systems Guide to fig-FORTH, C. H, Ting, Offete Enterprises,

A complete, in-depth analysis of every fig-FORTH word used in the entire fig-FORTH vocabulary. If

you ever wondered just exactly how a word such as ‘INTERPRET’ works . it’s all here !! For the
advanced FORTH programmer.

7, Threaded Interpretive Languages, R, G. Loeliger, McGraw-Hill

This is a definitive work for those who want to write their own FORTH Language processor, It uses
8020 code for its examples, but the routines are so well explained that it would be quite easy to
translate the code to any other processor. The FORTH isn’t exactly fig-FORTH, but the differences are
quite minor, and are easily accomodated.

=]
=

« FORTH Dimensions, the journal of the Forth Interest Group (fig) All Vols,

These bound journals are available from the Forth Interest Group, P.O., Box 1105, San Carloss CA
24070, The FORTH Language at its best and its worst. A highly-technical journal for the FORTH addict,

ALL OF THE ABOVE ARE AVAILABLE FROM!
Mountain View Press
P.0, Box 4454, Mountain View, CA 24040
(815)-2461-410%

-27-

B 0T B L T T S I e i i

GOOD EBOOKS FOR LEARNING TO FROGRAM IN FORTH?

Using FORTH Starting FORTH
FORTH Inc. by Leo Erodie
Hermosa Eeach, CA 20254 FORTH,; TIrc.

Hermosa EBeach, CA 20254
Frentice—~-Hsll, Inc. 1281
REFERENCES FOR DEVELOFING GOOD STRUCTURED PFPROGRAMMING TECHNIQUES:

1. D.le Mills, "Executive systems and softwsre development for mini
computers,'" Froc. IEEE, vol. 61, pp. 1356-15462, November 1973.

2. Je Koudelsa,; Jr., "The past, presert and future of minicomputers,"
Proc. IEEE, vol. &1, pp. 13526~-1534, November 1973.

3. R+ Burns and D. Ssvitt, “"Microprogramming and stack architecture
ease the minicomputer programmer’s burden,' Electronics, vol. 46,
1% February 1973,

4. D+Es Kristh, The Art of Computer Frogramming, vol. I. Reading,
Mass.! Addison-UWesley, 1268,

T GeAs Kornm, Mindicomputers for Scientists snd Engineers. MNew Yorhk:

McGraw-Hill, 1973,

THE FOLLOWING ARE AVAILAEBLE FROM THE FORTH INTEREST GROUF F.0.
Bo:x 1109 SAN CARLOS, CA 94070.%

Mambersthiip in FORTH Irmterest Grouwp
2rnd Volume 2 (6 issuest #7 through #12)
of FORTH DIMENSIONS.

fiq-FORTH Imnstasllation Manuwal, contasining
the language model of Tie—-FORTH, a
complete glossary, memory map, and
installstion instruction.

hAssembly lanquaqge source listing of fTig-
FORTH for specific CFU‘s. The above
manual is required for inmstallation,
Specify the desived CFU.

FORTH HANDY REFERENCE

Stack inputs and outputs are shown; top of stack on right.

This carg follows usage of the Forth interest Group
(S.F. Bay Area), usage aligned with the Forth 78 u
International Standard. addr
For more info: Forth Interest Group b
P.O. Box 1105 c

San Carlos, CA 84070. f

STACK MANIPULATION

DUP (n=—=nn) Duplicate top of stack.

DROP (n— Throw away top of stack.

SWAP (n1t n2 = n2nt) Reverse top two stack items.
OVER (nt n2 = n1 n2nt) Make copy of second item on top.
ROT (n1 n2 n3 - n2 n3 n1) Rotate third item to top.

-DUP {(n—=-n?) Duplicate only if non-zero.

>R (n~)

> (= n) Retrieve item from return stack.

R (=n) Copy top of return stack onto stack.
NUMBER BASES

DECIMAL (=) Set decimai base.

HEX (=) Set hexadecimal base.

BASE (— addr System ;ariable containing number base.

ARITHMETIC AND LOGICAL

Operand key: n, nt, ...
d,d1, ...

16-bit signed numbers
32-bit signed numbers
16-bit unsigned number
address

8-bit byte

7-bit ascii character value
boolean flag

Move top item to “return stack” for temporary storage (use caution).

+ (n1 n2 - sum) Add.

D+ (d! d2 = sum) Add double-precision numbers.

- (n1 n2 = diff) Subtract (n1-n2).

. (nt n2 - prod) Muitipty.

/ {n1 n2 - quot) Divide (n1/n2).

MQD (n1 n2 — rem) Modulo (i.e. remainder from division).

/MOD (nt n2 —= rem quot) Divide, giving remainder and quotient.

*/MOD (nt n2 n3 - rem quot) Muitiply, then divide (n1*n2/n3), with doubie-precision intermediate.
./ {n1 n2 n3 — gquot) Like */MQD, but give quotient only.

MAX (n1 n2 - max) Maximum.

MIN (n1 N2 = min) Minimum.

ABS { n — absolute) Absolute vailue.

DABS (d ~ absolute) Absolute vaiue of double-precision number.

MINUS (n—==-n) Change sign.

DMINUS (d = =d) Change sign of double-precision number.

AND (n1 n2 - and) Logical AND (bitwise).

OR (n1 n2 —- or) Logical OR (bitwise).

XOR {nt n2 - xor) Logical exclusive OR (bitwise).

COMPARISON

< (N1 n2 = f) True it n1 less than n2.

> (ntn2 — o) True it n1 greater than n2.

- (ntn2 = t) True if top two numbers are equai.

o< (n=-1*f) True if top number negative.

o= (n=1t) True if top number zero (i.e., reverses truth vaiue).
MEMORY

@ (addr - n) Repiace word address by contents. ‘

! (n addr -) Store second word at address on top.

ce (addr — b)) Fetch one byte only.

[o}] (b addr -) Store one byte onty.

? (addr -) Print contents of address.

+! (naddr -) Add second number on stack to contents of address on top.
CMOVE (fromtou -) Move u bytes in memory.

FiLL (addru b -) Fill y bytes in memory with b, beginning at address.
ERASE (addru —) Fill u bytes in memory with zeroes, beginning at address.
BLANKS (addr u —) Fill u bytes in memory with blanks, beginning at address.
CONTROL STRUCTURES

DO ... LOOP do: (end+1 start —~) Set up loop. given index range.

I (— index) Place current index valua on stack.

LEAVE (=) Terminate loop at next LOOP or +LOOP.

DO ... +LOOP do: (end+1 start —) Like DO . . . LOOP, but adds stack vaiue (inatead of always ‘1°) to index.

+oop: (n =)

IF ... ({true) ... ENDIF
iF...(true) ... ELSE
.. .(taise). . . ENOIF
BEGIN ... UNTIL
BEGIN ... WHILE
... REPEAT

(ft-)
it (f—-)

untit: (t -)
while: (f —)

it top of stack true (non-zero), executs. {Note: Forth 78 uses IF . .. THEN.]
Same, but if faise, execute ELSE ciause. [Note: Forth 78 uses IF . . . ELSE .. . THEN,|

Loop back to BEGIN until true at UNTIL [Note: Forth 78 uses BEGIN . .. END.]
Loop while true at WHILE; REPEAT loops unconditionaily to BEGIN.
[Note: Forth 78 uses BEGIN . .. IF ... AGAIN.]

-29 -

TERMINAL INPUT-OUTPUT

R

D.

OR

CR
SPACE
SPACES

DUMP
TYPE
COUNT
?TERMINAL
KEY

EMIT
EXPECT
WORD

INPUT-OUTPUT FORMATTING

NUMBER
<

*

#S

SIGN

*>
HOLD

(n—-)

(n fieldwidth —
(d ~-)

(d fieldwidth —
(=)
(N
{(n="

{ =)
(addr u —)
(addr u =)
(
(
(
(
(
(

addr — addr+1 u)

- t)
—.c)
[+

[
=

=)
ddr n —)
=)

(4]

(addr - d)

—
~

DISK HANDLING

LIST

LOAD

BLOCK

B/BUF

BLK

SCR

UPDATE

FLUSH
EMPTY-BUFFERS

(screen —)
(screen —)
{ block — addr)
- n)
- addr }
addr)

)

)

(
(
(
(
(
({)

[

DEFINING WORDS

XXX
VARIABLE xxx
CONSTANT xxx

CODE xxx
.CODE

<BUILDS . . DOES> does: {

(=)
=

(n -

xxx: (— addr)
(n'=)

xxx:(= n}

=)
(=)

VOCABULARIES

CONTEXT
CURRENT
FORTH
EDITOR
ASSEMBLER
DEFINITIONS

VOCABULARY xxx

VLIST

MISCELLANEOUS AND SYSTEM

(

FORGET xxx
ABORT

©OXXX

HERE

PAD

IN

SP@

ALLOT

addr)
addr)

| T U S I Y I

-)

)

)
addr)
addr)
addr)
addr)
addr)

[T T T I I

(
(
(
(
(
(
(
(
(n
(n

- addr)

Print number.

Print number, right-justified in fieid.

Print double-precision number.

Print double-precision number, right-justified in fieid.

Do a carriage return.

Type one space.

Type n spaces.

Print message (terminated by).

Dump u words starting at address.

Type string of u characters starting at address.

Change length-byte string to TYPE form.

True if terminal break request present.

Read key, put ascii value on stack.

Type ascii value from stack.

Read n characters (or until carriage return) from input to address.
Read one word from input stream, using given character (usually blank) as deiimiter.

Convert string at address to double-precision number.

Start gutput string.

Convert next digit of doubie-precision number and add character t0 output string.
Convert all significant digits of doubie-precision number to output string.

Insert sign of n into output string.

Terminate output string (ready for TYPE).

insert ascii character into output string.

List a disk screen.

Load disk screen (compile or execute).

Read disk block to memory address.

System constant giving disk block size in bytes.
System variabie containing current biock number.
System variabie containing current screen number.
Mark tast buffer accessed as updated.

Write all updated bufters to disk.

Erase all buffers.

Begin colon definition of xxx.
End colon defimition.
Create a varnable named xxx with initial value n; returns address when executed.

Create a constant named xxx with vaiue n; returns value when executed.

Begn definition of assembiy-language primitive operation named xxx.

Used to create a new defining word, with execution-time “code routine” for this data
type in assembly.

Used to create a new defining word, with execution-time routine for thig data type in
higher-ievel Forth.

Returns address of pointer to context vocabulary (searched first).

Returns address of pointer to current vocabulary (where new definitions are put).
Main Forth vocabulary (execution of FORTH-sets CONTEXT vocabulary).

Editor vocabuilary; sets CONTEXT.

Assembier vocabulary; sets CONTEXT.

Sets CURRENT vocabulary to CONTEXT,

Create new vocabuiary named xxx.

Print names of ail words in CONTEXT vocabulary.

Begin comment, terminated by right paren on same line; space after (.

Forget atl definitions back 1o and including xxx.

Error termination of operation.

Find the address of xxx in the dictionary; if used in definition, compile address.
Returns address of next unused byte in the dictionary.

Returns address of scratch area (usually 68 bytes beyond HERE).

System variable containing offset into input buffer; used. e.g., by WORD.
Returns address of top stack item.

Leave a gap of n bytes in the dictionary.

Compile a number into the dictionary.

Forth Interest Group, P.O. Box 1105, San Carlos, CA 94070

-2

»

Screens

oo

r
~
-t

aad -
S e bR O

4 14

{ ERROR MESSAGES)
Stack empty
RDictiomary full
Hrong sddress mode
Isn’t unique

Value error

Disk sddress error
Stack full

Disk Error!

GCR 4+ 15
0 (ERROR MESSAGES)
I Use only in Definitions
Z Execution only
3 Conditionals not paired
4 Definition not finished
S In protected dictionary
& Use only when losding
7 OfT current scoreen
8 Declare VOCAEBULARY

(]

16

14

o1
-
g
pal

y =
17
A

¢ CaAaBSETTE LOAD

1]

1

4 ¢ LOAaD DEEBRUG

= 21 LOAD

&

70 LOAD ASSEMELER O

(3

L)
Py

10
11
12

13

U3
g

10

SCR

goeNSOaOMNEFO

'HF*
) e D

RO
[3 53]

]

[
]

SCR
0
1
2
3
q

&

&

-

7
8

@
10
11
12
13
14

15

SCR
0
1

-
0

¢

,e o4

.
+

S

T

Eréy

BB
(

39 Loak

18
FULL LO&D

LOADR DERUG O
21 104D

LOAD EDITOR)
27 LOAD

LOAD ASSEMELER
39 LOAD

20
ATHRYT FORTH DEF
BAGE @ HEX

FOM 1 FFLAG
FOFF 0 FFL&G

BEEF 0C0 0 DO
08 O0DOLF C! &
00 ODOLF C© &
LOar 3

)

(631
&2

{
0

¢ PRT
¢ FRT

~r e

DO LOOF
DO LOOF

ASCITI Bl WORD HERE 1+ C@

TATE @ IF COMPILE

HEN 3 IMMEDIAT

ol P
S5 ! 18

21
DEBUGEER AIDS -

£

CLIT C,

DUMF

ON
OFF

)

COUMF

)

2 BASE @ MHEX
3
q
5
&
7
8 ! H., BASE @ HEX OVER U. BASE
®
10 ¢ B? EASE @ DUF DECIMAL + B
11 ¢ FREE 2E% @ HERE -~ U, "
1z
13
14 --—
15
SCR # 22
0 ¢ DEBUGGER AIDS -- DUMF , CDU
1 DECIMAL
2 % PEXIT 7TERMINAL
3 IF LEAVE ENDIF
4 % U.R 0 SWAF D.R
5 ¢ LDMF DUF 8 + SWAF DO I C@
& LOOF ¢
7 ¢ DUMF OVER + SWAF DO CR I
8 LDMP PEXIT 8 +LOOF C
% 3 CDMF DUF 1&6 + SWAF DO
10 I Ce EMIT LOOF 3
11 HEX
12 3 CDUMR OVER + SWAF DO CR I
13 SFACE 1 2FE C! CDMP 0 2
14 PEXIT 10 +L.OOF CR 3
1% DECIMAL -->
SCR # 23
0 ¢ STACK FPRINTER)
1
2 HEX
3
4t DEFTH SFE 12 +0ORIGCIN @ SWAF
5 3 8., (PRINTS THE STACK)
& DEFTH -DUF IF
7 g DO CR " TOR+" I .,
8 SF@ I 2 % + @ U, LODF
2 ELSE " Stsock Empty" THEN
10
14
12
13 BASE !
14
15 —-—
SCR % 24
0 ¢ DEFINITION TRACER)
1 BASE R HEX
2 VARTIARLE L WORD
3 7 CLIT CF4 CONSTAMT CLIT
4 ¢ QERANCH CFA CONSTANT ZERAN
50 BRANCH CFa& CONSTANT ERAN
& 7 38 CFA CONSTANT SEMIS
7 ¢ (LODOF)Y CFa CONSTANT FLOOP
& / (+LOOF) CF& CONSTANT FPLOOF
9 4 (L") CFa CONSTAMNT FDOTQ
10 ¢ PWORD 2+ NFA ID. ¢
11 ¢ IBYTE PWORD WORD @ CB ., 1
12 ¢ 1WORD FWORD JMORD B @, 2
13 ¢ NF DUP SEMIS = IF FHORD CR

s
AsE !
bhytes'
MF)
4 R
S UWR
K3

3 U.R
FE C!

-2
CFr 3
WORE
SHORD
CR

+
4

CR

I

I

+!

."..!

+
¢

*
¥

*
¢

43}
]

NONSALOMNE oD

[SO
Pl O

13

s
=

[
&

63
[}

SN I AR A -

e

.

¢
.

0
I

#
{

e 4o

-

-

e

B
(

~ e~

s

*
¢

(

o
ot

C

E

FROMFT QUIT THEN ?TERMINAL IF
FROMFT QUIT THEM 3 -l

o
]

DEFINITION TRACER)

BRNCH FWORLD " to " JWORD @ LWORD @

STG FHORD 22 EMIT WORD @
CE@ JWORD @ + 1+ WORD ! 3

LIT CFA CONSTANT JLIT

CRIT DUF ZBERAN = OVER EBERAN =

OR OVER FLODF = OR OVER FFLOOF =
F IF BRNCH ELSE DUF JLIT =
F1WORD ELSE DUF CLIT =

IF 1BYTE ELSE DUF FDOTR = IF STG
ELSE FHORD THEN THEN THEN THEN ;

£é
DEFINITION TRACER
f8 12 + CONSTANT DOCOL

T?FR CR CR " Primitive" CR CR
?DOCOL DUF 2 - @ DOCOL - IF
T?FR FROMFT QUIT THEN 3

LSETUF CCOMPILEZI 7 ?DOCOL .WORD ¢!

NXTL JUWORD @ U. 2 SFACES WORD
@ @ 2 JWORD +! 3§

DECOMF .SETUF CR CR BEGIN NXTIL MNP
CRIT CR AGAIN

ASE ! PR
27

¥ EDITOR xx)
BEASE @ HEX

THIS EDITOR I8 PATTERMNED AFTER
THE EX&MPLE EDITOR IN THE fig
"INETALLATION MANUAL" 8/80 WFR

TEXT HERE C/L 1+ BLAMKS WORD
HERE FaD G/l 1+ OMOVE

LINE DUF FFFO AND 17 7ERROR SOR
@ (LINE) DROF 3

MARK 10 0 DO I LINE UFDATE
DROF LOOF -l

28

EDITOR

WakULARY EDITOR IMMEDIATE

RE DUF BARCR /2 DUF SCR 0,
Wak CAL /MO G/l » ROT BLOCK + CR
g - SPACES 1 ZFE C! 10 EMIT 0 2FF

CITOR DEFIMITIONS

I3
4

@

4

o 2 JHORD +!

DECTIMAL

~TRATLING -
CCOMFILED EDITOR QUIT @

DUF COUNT TYFE 22 EMITYT

+

TYFE

13
$

Gl

23]
[}

53]
‘o]
¢

VENE GO E oD

[Py
1y b oo

o
LILES

o

U3
P

GmNECUDLIE DT

! #LOCATE R& @ C/L /MOD }
i $LEAD #LOCATE LINE SWAF }
! #LAG #LEAD DUF *R + C/L R» -

5 M

L]

¥ 29
(ED
tH
y E
18
: D
30
¢ ED
P M
]
HE
PR
S
HES
¢ TO
31
{ ED
¢ CL

OVE LINE C/L. CMOVE UFPDATE

ITOR

LINE FAD 1+ C/L DUF FaD C!
CHMQVE

LINE C/L BLANKS UFDATE
DUF 1 = DE DO I LINE I 1+
~-MOVE -1 +L00OF E

DUF H OF RUF ROT

DO I 1+ LINE I -MOVE LOOF E

ITOR 3

R& +! CR SP&CE #LEAD TYFE
17 EMIT #LAG TYPE #LOCATE
+ DROF 3
DUF C/L x RE ! DUF H 0 M §
SCR & LIBT 0 M 3
F&D 1+ SWaAP -MOVE 3
I TEXT R ¢
DUF § R i

F o RE Vg

ITOR

EAR SCR ! 10 0 DO FORTH T
EDITOR E LOOF }

¢ COoPy E/SCR % OFFSET @ + SWaRF

BSSCR x B/SCR DVER +
SWAF DO DUF FORTH T
BLOCK 2 - ' 1+ UFDATE
LOOF DROP FLUSH

Y
(EDITOR)

+
]

I3
4

«

0

[£3]

Z t ILINE #LAG FAD COUNT MATCH R#
c +1 3

q

5

6 ¢ FIND EBEGIN 3FF R# @ < IF TOF
7 FAD HERE C/L 1+ CMOVE 0
8 ERROR ENDIF 1LINE UNTIL
9 ;

10

11 ¢ DELETE »R #LAG + FORTH R -
1z #LAG R MINUS RE +! $LEAD
3 + SWAF CMOVE R ELANKS

14 UFDATE }

15 ==

CK # 33

¢ EDITOR)
¢ N FIND 0 M ;
¢ F 1 TEXT N i

HI FAD C@ MINUS M 3

P X L TEXT FIND FAD CE DELETE
0 M 3

(e
oo NOA DU o

$ TILL H#LEAD + 1 TEXT 1LINE 0=

12 0 PERROR #LEAD + SHAF -~
13 DELETE 0 ™ 3
14

1% --

CR % 34

0 ¢ END OF EDITOR

1

2 ¢ C I TEXT FAD COUNT #LAG ROT
3 DVER MIMN *R FORTH R Rd& +!
4 R o~ >R DUF HERE R CMOVE

o HERE FLEAD + R» UMOVE R
6 CMOVE UFDATE 0 M 3

-

g

? FORTH DEFINITIONS DECIMAL

11 LATEST 12 +0ORIGIN !

12 HERE 28 +0RIGIN !

13 HERE 30 +0RIGIN !

14 ¢ EDITOR 6 + 32 +0ORIGIN !
1% HERE FENCE ! BasSE ! §

93]

+ 3%

GOSN U D= SR

R
=

ot
~d

IR

ey
Ul B

[43]
[}
pra)

OO N DGR e O

F 35

¢ DISK COFY ROUTINE 32K RAM)

BASE @ DECIMAL
16384 CONSTANT BUFHEAD

0 VARIAEBLE BELKE 0 VARIAELE ADRS

¢ GET ADRS @ BLK® @ 3

¢ RD GET DUF 718 = IF LEAVE THEN
+OMRT CET DUF 718 = IF LEAVE THEN
$ O +BELK 1 BLHE +! 128 ADRS +! 3§

: DSETUF ELKE ! BUFHEAD ADRS ! 3

¢ GREY " HIT ANY KEY " KEY CR DROF
¢ RDIN CR " Imsert SOURCE disk

20 0 DO RD +BLK LOOF 3

¢ WRTD CR " Imsert DESTINATION disk

14 90 0 DD WRT +ELK LOOF ;
15—
SCR # 37

¢ DISK COFY ROUTINE)

s pe pe
B ocaONMELOMNE O

.‘.r

-
[6]

14
1%

s
S EONUH W=D

-
[

3 r)r

1
13

14

oW
~— e
n

GIpy = o A

g 1.

O
3

{ INSERT SOURCE DISK IN DRIVE #1
¢ SIMPLY TYFE "DISKCOFY' !

i M1 CrR CR

" SINGLE-DRIVE DISK COFPY" CR CR

¢ ZCOoPY 0 DOT 90 x
DUF DUF RDIN WRTO
0 + . LOOF

! DISKCOFY CR ME81 CR 8 XCOFY 3

BEASE ! S

it

T 39

¢ wx ASBEMELER %% IN FORTH)
ASSEMELER COMFORMS TO THE

(fig "INSTALLATION GUIDE" WITH

(THE FOLLOWING EXCEFTIOMNES:

SHIFTS ARED "XMX.a" FOR a-REG.
{ GHIFTS,

+
#

L3
4

GKEY DSETUR

GKEY DSETUR

433
0

A nGit)=om

30N o

[43]
9]

goNOUl QN ST

| el
—_ o

[

1

b}
3]

]

e
LN

w
3]

RN T o BRI ¢ N R O S0 R S =3

i
¢

Vo

B

+
+

As

&
¥

#
(

0o
o8
g8
EA
68
&0
78

8aA

0h

4

‘- o

&
(

.
+

4C

20

i3
(

CONDITIONAL ERANCHES ARE
THE EBERANCH OF-
"IFEQ,"” IS USED IN-
" FOR BETTER

FATTERNED

CODES:
STEAD OF
CLARITY.

40
ASSEMELER

CABULARY

SE @ HEX

"=
SEE

)

AFTER

IF,

SCREEN 43.

ASBEMELER IMMEDIATE

COopE CCOMPILED ASSEMBLER

CREATE

SMu

DCGE 3

SEMELER DEFINITIONS

SBE <EUIL

DS

cC, D

OES: @

C,

.
4

{ SINGLE EBEYTE OFERATORS)

41
ASSEMEILER

SE BRI,
SE CLI,
SBE DEY,
SE NOF,
SE FLi,
SE RTS,
SE SET,
SE Xi »

SE ASL..A

SB LSKR.WA

NOT D=
0= 1} <
42

ASSEMELER

ARY CRUTLDS

IBY JMF,
3EY JSKR,

PERS 5

IF. <RUILDS
HER

G
THEM L

SHakF -1

)

18
B8
E8
48
28
38
A8

P

b4
4

SE C
SE C
SE I
SE P
SE F
SE §
SE T
SE T

LC, D8
L. 'v' F) Clq
NX, C8
Ha, 08
LFy 40
EC, F8
A, B
X&G, 99

SE

Sk
SE
SE
Sk
SE
SE
Sk

28 8B OROLWA,

6a

REVERSE

¢
FUSH A

)

PERROR

uE

Gy

SB ROR.

TRUE)

DOES™ @

& »

CLD;,
DEX,
INY,
F"HF' [}
RTX,
SED,
TEX,
TY(“I +

LOGICAL

Cr » 3}

&GOBEY JMF),

C,
E
HERE

TERT

c!

+
¥

b
¥

DOES> ©

SuWaf -
DUF ~80
IMMEDTIA

EMDIF, L[COMFILEDI THEN,

&2
T

ASSEMELER

3

h

®
D

TE

Cy O

L

S OPERD

IMMEDRIATE

Ralas RS s S & I O3 0 8]

I
y_

=
r

13

o
10]

w
]
=

CONO R W - O

[43]
[}

10

N DIERN oD

@
10
11
1z
13

14

10 IF. IFMI,

30 IF. IFFL, (BPFL
(¢ BEMI
70 IF., IFVC, (BVC
50 IF. IFVS, . { BUS
Ed IF. IFCC, (BCC
0 IF. IFCS, (ECS
FO IF., IFNE, (EHE
DO IF. IFER, (EEQ

N NS et el el NS S s

BEGIN, HERE §; IMMEDIATE
END, IF DO ELSE FO THEN C,

. sy

MERE 1+ - DUPF

-80 < ?PERS C, ; IMMEDIATE
$ UNTIL, CCOMFILEI END, 3§ IMMEDIATE i
¥ 44

¢ ASSEMELER)
0D VARIAELE MODE ¢ ARES. MODE)

MODE= MODE @ = ; (CHK MODE)
256+ DUF 100 ¢ HEX) u< 3
MODEFIX 254&< IF -08 MODE +!
THEN 3§
{ MODE=MODE-8 IF ADR256 ?
CKMODE MODE= IF MODEFIX
THEN 3}
M0 <BUILDS C, DOESH SWAF
0D CKMODE 1D CKMODE SWaF
Ce MODE @ OR C, 256+ IF
C, ELSE , THEN 0D MODE ! ¢
DECIMaL 46 LOAD y 9

e re 4y

..

*e

¥ 45
EJDISKNAMEDAT

AFX-Z2002%9i@~-FORTH 1.1 Rev, Zil0atrick L. Mullarkyl/15/82

46
(ASSEMELER
HEX

P X 01 MORE ! i ¢ CADDR,X1)
L 09 MODE ! (IMMEDIATE »
XY 11 MOpE ! ¢ CARDRI,Y O
¢ X 1D MODE ' g ¢ ADRDR,X)
DY 19 MODE ! g { ADDR,Y)

60 M0 ORA, 20 MO AND, 40 MO EOR,
60 M6 aDC, B0 MO STa, A0 MO LDA,
Lo Mo CMF, EO0 MO SEC,

¢ BIT, 236+ IF 24 C, C, ELSE
20 C, , THEN 3

3

|

furs
83

4]
P

CENDG DGy S

13
14
15

oy
—

GONCLEUNEOR

[$3]
a

Noo(R oD

Fex]
3

¥ 47
(ASSEMELER)

STOREADD C, 236« IF C, ELSE ,
THEN 0D MODE ! 3

o

v ZPAGE OVER 100 < IF F7 aND
THEN
¢ XYMODE MODRE @ 19 = MODE @ 1D
= OR 3}
¢ M1 <BUILDS C, DOESH> CR MODE @

1D = IF 10 ELSE 0 THEN OR
ZFAGE STOREADD 3

DE +l1 ASL, Z2E M1 ROL, 4E M1 LSR,
&6E M1 ROR, CE M1 DEC, EE M1 INC,

% 48
(ASSEMELER

OFCODE C@ ZFAGE XYMODE IF 10
OrR THEN 3
M2 <BUILDS C, DOES:> OFCODE
MODE @ 9 = IF 4 - THEN
STOREA&DD 3

£3

P2

aC M2 LDY, AE M2 LDX,
CC MZ CFY, EC M2 CFX,

! M3 “BUILDS C, DOES» OFCODE
STOREADD

8C M3 STY, 8E M3 STX,

E 49

¢ END OF ASSEMELER)

FORTH DEFINITIONS

LATEST 0C +0ORIGIN ! ¢ NTOF)
MERE 10 +ORIGIN ' (FENCE)
HERE 1E +ORIGIN ' (DF)
EASE ! 15

* 50

¢ COLOR COMM&NDE)

BEACE @ HEX

¢ SETCOLOR 2 % SuWaP 10 ® OR SWAF
0204 ¢ COLFFO » + C! ¢

$ SBE. SETCOLOR 3 ¢ ALIAS)

(REGISTER®-3, COLOR-2Z, LUM-1

¢ 0-3 0-F 0-7

]
0

SCR

N bR E S

[

=
AR N

14
15

.
E)

0
NG E o@D

[)
=]

[

1
13

[,
.

&)

SCR &

[N

¥ 51
(GRAFHICS COMMANDS)
E456 CONSTANT CIO

1C VARIAELE MASK
340 CONSTANT IOCX

53 VARIAELE SNAME

CODE GR. 1 # LDa&, CGFLAG STA,
XSAVE STX, 0 ,X LDA&,

¥+ 30 LDX, I0CX o + ,X 8Th,
+ 3 LDA, JOCX 2 + ,X 8TA,

SNAME FF AND £ LDA, TI0OCX 4 + ,X
5Th, SNAME 100 / & LDA,

IOCX & + ;X 8Ta, MASK LD#,

I0CX A + ,X 8TaA, CI0 JSR,

XSAVE LDX, 0 & LRDY, FOF JMF,

52

(GRAFHICS COMMANDS)

CODE &GR XSAVE STX, # 30 LDX,
C LDA, IOCX 2 +
s+ X STH, CIO JSR,
XEAVE LDX, 0 # LDa,
GFLAG STA, NEXT JMF,

¢ XGR &GR 0 GBR. &GR 3

{ EXIT GRAFHICS MODE)

53

¢ GRAFHICS I/0 0

CODE CRUT 0 X LDA, FHa,
XSAVE STX, # 30 LDX,
B LDA, TOCX Z + ,X 8TA, TYh,
Iocx 8 + ,X 8Ta, TOCX 9 + X
8Ta, FLA; CIO JSR, XSAVE LDX,
FOF JMF,

G4 CONSTANT ROWCRS

G5 CONSTANT COLCRS

¢ FOS ROWCRS C! COLCRS ! 3
¢ FLOT FOS CRUT

¢ GRAFHICS I/0)

PLTYRE -DUF IF OVER + SWAF

DO I Ce CFUT LOOF ELSE
DROF ENDIF §

S IO &) R S 3

! (G") R COUNT DUF 1+ R> + =R
GTYFE $
8
¢ ¢ G" 22 STATE @ IF COMFPILE (G">
10 WORD HERE C& 1+ aALLOT
11 ELSE WORD HERE COUNT GTYFE
2 ENDIF § IMMEDIATE
13
14
15 —--
SCR # 35
0 ¢ DRaW, FIL D
1
2 ZFE CONSTANT ATACHR
3 2FD CONSTANT FILDAT
aq.
I CODE GCOM XSAVE STX, 0 ,X LDA,
b ¥ 30 LDX, IOCX 2 + ,X 8T,
7 CIO JSR, XSAVE LDX, FOF JMF,
8
? ¢ DRAMW FOS ATACHR C! 11 GCOM ;
10
11 ¢ FIL FILDAT C! 12 GCOM
12
13
14 EBASE ! 38
15
S ¥ 56

0
R RN L AR SRS

11
12
13
14
15

g
O

GENeGUIRME oD

(SOUND
BEASE @ HEX

D208
D200

t SOUND
3 DUF
SWalk 146 x + ROT DUR

ROT OVER

¢ FILTER!

(

EASE

§ 7

{ GRAFHICS

$BROX 0 10 10 FLOT 1 S0 10 DRAW
1 350 25 DRaAW 1 10 2% DRAW
1 10 10 DRAW 3
¢ FEOX XGR o GR. EOX
10 25 POS 2 FIL §

COMMANDS O

CONSTANT AUDCTL
CONSTANT AUDEASE

¢ CH¥
0DZOF C! 232 C!
+ AUDEASE
C! 1+ C! 3
AUDCTL C! 3
N ==)

TESTS

FREQ DIST VOL ---

AR e A N B G U I N 5 O O B Ry

[EPRy
Lo~ s B s S B s SIE S I N €3 AN I gl =)

3

12

[
;W

0
[
)

—
caeNOG UL O

U3
0

¥ 58
(DOS OBJECT READER)

BASE @ HEX

GETCOUNT 7F + C@ 7F AND BYTES

P e

LIMKELOCK FNEXTELK

VARIABLE BLOCKE: 0 VARIAEBLE EYTES
VARIABLE ADDRSS 0 VARIABLE #BEYTES

FNEXTELK 7D + DUF C@ 100 x SWaAF

0 OBYTRTR ! S
1+ 0@ + 3FF AND 1 - 3§

DUF BLOCKE ! DUF 0 » IF BLOCK THEN ;

*e

ELK-CK EYTES @ 0= IF ELOCK#¥ @
GETCOUNT THEN 3

¢ NEXTEYTE BLH-CK -1 BYTES +! EBYTPFTR

BLOCKE @ BLOCK + C@

59
(DOS OBJECT READER)

ADRCALC NEXTWORD DUF ADDRSS !

.e .

e

CrR QUIT THEN
BEGIN
ADRCALC

FEYTES @ 0 DO NEXTEYTE ADDRSS @ C!

BLOCK® @ BLOCK FNEXTEBELK
1+ 0= EYTES @ 0= AND END

BASE ! 398

¢k &0

¢ FLOATING FOINT WORDS)
BASE @ HEX
P FDROF DROF DROP DROF 3§
! FDUF =ROFR ODUP RX DUF ROT
SWAF R ROT ROT R 7
CODE FSWaF
XSHVE 8TX, $ 6 LDY,
BEGIN, 0 ,X LDA, FH&, INX, DEY,
0= END, XSAVE LDX, & & LDY,
BEGIM, & ,X LDA, 0 ,X STA, INX,
DEY, 0= END, XSAVE LDX, & 6 LDY,
EEGIN, FLA, OB ;X 8TA, DEX, DEY,
0= END, XBAVE LDX, NEXT JMF,

XSAVE 100 % B4 + CONSTANT XSAV
POXS, XSAV , -

F &1

¢ FLOATIMG FOINT WORDS)

CODE FOVER DEX, DEX, DEX,
DEX, DEX, DEX, XSAVE S5TX.
& LDY, BEGIN, 0T X LDb,
0 ¥ 8Ta, INX, DREY, 0= END,
XEAVE LDX, NEXT JMF.

XSHVE 100 x A& + CONSTANT XLD
s XL, XL, 3

BLOCK

$ONEXTHORD NEXTEYTE NEXTEYTE 100 x + 3

ELOCKSET DUF ELOCK# ! BLOCK GETCOUNT 3

LOADOEJ ELOCKSET NEXTWORD 1+ IF CR "

LINKELOCK

@ 1 BYTFTR

NEXTWORD SWaAF -~

Not an

0 VARIABLE EYTFTR

1+ $BYTES !

Object file"

1 ADDRSS +! LOOP

-

i3]
[p]

Mo

P
NG 0N O

ey
3

1 g

—
bW

-
&)

[5).
(3]

Fial v Tt I e 01 N0 3 £ B <8 Y g i3

=
3 o

[y
3}

i

CODE &FF X8, DBOO JSR, XL,
CODE FaSC X8, DBES JBR, XbL,

CODE IFP x5, DPa& JEBR, XL,
¥ 62

¢ FLOATING FOINT WORDS)
CODE FFI XS, DODZ JSR, XL,
CODE FaADD X8, DA&S JBR, X,
CODE FSUE XS, DAG0 JSR, XL,
CODE FMUL X8, DaDE JBR, XL,

CODE FDIV X8, DE2Z8 J8R, XL,

NEXT
NEXT

NEXT

NEXT

NEXT
NEXT
NEXT
NEXT

CODE FLG XS, DECD JSR, XL, MEXT

CODE FLEL1O0 XS, DED1 JSR, XL

MNEXT

JMF,
JMF,
JMF ¢ -

JMF,
JMF,
JMF,
JMF
JMF,

JMF,

JMF,

CODE FEX XS, DDCO JSR, XL, NEXT JMF,

CODE FEX10 XS, DDCC JSR, XL,
CODE FFOLY X8, DD40 JSR, XL,

¥ 63
(FLOATING FOINT WORDS)

D4 CONSTANT FRO
EQ0 CONSTANT FR1
FC CONSTANT FLFTR
F3 CONSTANT INEBUF
FZ CONSTANT CIX

£ 64
(FLOATING FOINT)

$FR R R B R 2+ @ Rx 4 + @
PFY SRR 4 4+ ! R 24! RE !

M e

tFLTY. BEGIN IMBUF @ Ce DUF
JFOaND EMIT 1 INEUF +!
80 = UNTIL 3}

s F. FRO FB FSWAF FRO F! FASC

FoTY GPACE FRO F!
PR Fe F. 3

F 6T
(FLOATING FOINT)

3 aF FRL F! FRO F! 3

NEXT
NEXT

JME,
JMF,

s ey BRSO 4 SN

631
]

A NP

0 2 N D

‘s *e

*e S0 G5 29 T 4p 6 48 4 4o

. o~ g5k

e o4

’e

¢
{

+*
*

FRO F@ §
§ FRO F!

F+ <F FADD Fix
F- <F FSUE Fx
Fx <F FMUL F
F/ <F FDIV Fx
FLOAT FRO ! IFF Fx
FIX FS FFI FRO @ }
FLOG FS FLG F 3
FLOG10 FS FLGLO Fx 3
FEXF FS FEX Fx }
FEXF10 FS FEX10 Fr § —=>

e e P wa

~>e

b6
FLOATING FOINT

ASCF 0 CIX ! INEUF ! AFF Fi j

FLIT R» DUF & + =R F@ 3§

FLITERAL STATE @ IF

COMFILE FLIT HERE F! & ALLOT

ENDIF 3 .

FLOATING ¢ FLOAT FOLLOWING CONSTANT
Bl WORD HERE 1+ ASCF

FLITERAL 3 IMMEDIATE

EX: FLOATING 1.234%)

OR FLOATING -1.67E-13)

FF CCOMPILED FLOATING

IMMEDIATE -

¥
(

¢
*

.

s 0 40

67
FLOATING FOINT)

FUARIAEBLE

“BEUILDS HERE F! &6 ALLOT DOES: 3

FCONSTANT
“RUILDS HERE F! & ALLOT DOESH
Fe 3

R
o
it

OR OR 0= 3
F= Fe FO0= 3}
Fe F~ DROF DROF 80 AND 0 =

SCR & 69
FORTH INC. S EDITOR)

—
=
—~

(This editor was written by S.H. Daniel, in FORTH DIMENSIONSG.
(Volume III;, rumber 3.

The only chamge was to make the cursor a "block" for higher
(visibility, F. Mullarky 9729781

SO RGP

0
3]
i
f

g

03
]

¥ 70
{ FORTH INC.’S EDITOR 3

BASE @ FORTH DEFINITIONS HEX

$ TEXT HERE C/L 1+ ELANKS WORD HERE FaAD C/L 1+ CMOVE 3

{ LINE DUF FFFO0 AND 17 ?ERROR SCR € (LINE) DROF 3}

VOCAEULARY EDITOR IMMEDIATE

i WHERE DUF B/7SCR / DUP SCR ! " SCR # " DECIMAL . SWaAF

C/L /MOD C/L % ROT ELOCK + CR C/L TYFE CCOMPILE] EDRITOR QUIT i
EDITOR DEFINITIONS

10 ¢ #LOCATE R¥ @ C/L /7MOD 3

FLEAD #LOCATE LINE SWAFP 3

#L.A6G #LEAD DUF =R + C/L R - 3

~MOVE LIME C/L CMOVE UFDATE 3 .
BUF-MOVE FAD 1+ C@ IF FaAD SWAF C/L 1+ CHMOVE ELSE DROP THEN i
FPLINES $#LOCATE SWAF DROF 3 —->

fory
£
or 4 ¥ 28 e

13

23]
2
b4
Y

N W o@D
Ct +w e ** s

71
FORTH INC.’S EDITOR)

P

FIND-EUF FAD 30 + 3

INSERT-EUF FIND-BUF S0 + 3

(HOLD?) LINE INSERT--BUF 1+ C/L DUF INSERT-BUF C! CMOVE
(KILL) LINE C/L BLANKS UFDATE 3}

(BFREAD) HLINE® DUF 1 - E DO T LINE I 1+ -MOVE -1

+LO0OF (KILL)Y 3

8 ¢ X HLINE# DUP (HOLD) F DUF ROT DO I 1+ LINE I -MOVE
? LOOF (KILL) 3§
10 ¢ DISPLAY-CURSOR CR SFACE #LEAD TYFE A0 EMIT #LAG TYFE
11 #LOCATE . DROF 3
12 3 T C/L = RE ' 0 DISPLAY-CURSOR ¢
13 ¢ L SCR @ LIST ¢
14 N 1 8CR +! 3}
15 ¢ B ~1 8CR +! 3 -
SCR # 72
0 (FORTH INC.’S EDITOR 3
1
2 ¢ (TOF 0 R#% ! 3
3 ¢ SEER-ERROR (TOF> FIND-RUF HERE C/L 1+ CMOVE MERE COUNT TYPE
4 " Nonme' QUIT ¢
908 (R FLINEE INSERT--BUF 1+ SWAP -MOVE 2
6 ¢ F SE TEXT INSERT-BUF BUF-MOVE (R) 3
7o« WIFE 10 0 DO I (KILL) LOOF 3
g ¢ CoRY B/7SCR x OFFSET @ + SWAF B/SCR x B/SCR OVER + SWAF DO DUPR

® FORTH I EBLOCK Z - ! 1+ UFDATE LOOF DROF FLUSH

10 ¢ 1LINE #LAG FIND~BUF COUNT MATCH R# +! 3
11 ¢ (SEEK) EBEGIN 3FF R4 @ < IF SEEK-ERROR THEN 1LINE UNTIL
12 ¢ (DELETE) R #LAG + R - #LAG R MINUS RE +! FLEAD + SKAF
3 CMOVE R> ELANKS UFDATE 3
14 3 (F) SE TEXT FIND-BUF BUF-MOVE (SEEK) 3}
15 ¢+ F (F) DISPLAY-CURSOR —
SCR ¥ 73
0 ¢ FORTH INC.’S EDITOR ?
1 ¢ (E) FIND-EUF C (DELETE) i
2 ¢ E (E) DISPLAY-CURSOR 3}
3 + D (F) E i
4 ¢ TILL #LEAD + SE TEXT FIND-BUF BUF-MOVE 1LINE 0= IF .
9 SEEK-ERROR THEN #LEAD + SWAPF - (DELETE) DISFLAY-CURSOR §
& 0 VARIAELE COUNTER
7 ¢ BUMP 1 COUNTER 1+ COUNTER @ 38 » IF 0 COUNTER ! CR CR
g F MESSACGE C EMIT THEN 3
¢ ¢ 8 C EMIT 3E TEXT 0 COUNTER ! FIND-BUF EUF-MOVE SCR @ DUF
10 R DO I SCR ! (TOP) EBEGIN 1LINE IF DISFLAY-CURSOR SCR 7 EUMP

11 THEN 3FF RE @ < UNTIL LOOF R> SCR ! 3}
12 ¢ I SE TEXT INSERT-EUF BUF-MOVE INSERT-EUF COUNT #L.AG ROT

13 OVER MIN *R R R¥ +! R - *R DUP HERE K CMOVE HERE #LEAD + R
CMOVE R CMOVE UFDATE
DISFLAY~CURSOR } ——

Lo
r.
-

=
w

SCR # 74
¢ FORTH INC.’S EDITOR)

U C/L RE +!' (SFREAD)Y F 3}

R O(E) I 3

M SCR @ >R R& @ =R HLINEH# (HOLD) SWAFP SCR ! 1+ C/L % R#$
SFREAD) (R)Y Rx C/L + R# R SCR ! 3

DECIMAL

LATEST 12 +0ORIGIN !

HERE 29 +0RIGIN !

11 HERE 20 +0RIGIN !

12 7 ERDITOR 6 + 32 +0QRIGIN !

13 HERE FENCE !

14 FORTH DEFINITIONS ~BASE ! FORTH

MoNocUdur R o

[y
o

-
53]

75
{ RAGSDALE ASSEMBLER)

&3
]

(This zssembler was published in Dr. Dobbs Jdournal V.6 N.9
{ Sept. 81)
{ v and is the assembler used in the fig "Imstallation Guide."

SCR # 746
0 ¢ RAGSDALE ASSEMELER)
1 VOCARULARY ASSEMELER IMMEDIATE ASSEMBLER DEFINITIONS RASE @ HEX

“
ol . g
cLgNrUaIPRNE oD

ol ol
3 e

-
cOONOCMPLNREOD

—
s

12

14

13

143]
)
N DR oD

Ry
[I

»r3
=2

13

14

0 VARIAERLE INDEX -2 ALLOT 0909 , 1305 , 011% , g01l , 8009 ,
ipob , &O1% , gogo , o0OBO , 1404 , BOL14 , 8O08BO , 8080 ,

itcoc , sO01C , 2080 , _
VARIABLE MODE ¢ .A 0 MODE ! # 1 MODE ' § ¢ MEM 2 MODE !
X 3 MODE ! ;¢ .Y 4 MODE ! X) 9 MODE ! § ¢)Y & MODE !
) F MODE ' 3 ¢ BOT ,x 0 3 ¢ SEC ,X 2 3 ¢ RF) X 101 3

UFMODE IF MODE @ 8 AND 0= IF 8 MODE +! THEN THEN

MODE @ F AND -DUF IF 0 DO DUF + LOOF THEN DVER 1+ @ AND 0= ;
CFU <BUILDS C, DOES:> CE C, MEM i

00 CFU BRK, 18 CFU CLC, D8 CFU CLD, 38 CFU CLX, EBE CPU CLY,

Ca CPU DEX, 88 CFU DEY, E8 CFU IMX, C8 CFU INY, Ea&a CFU NOF,

48 CFU FHa, 08 CFU FHF, 68 CFU FLA, 28 CFU FPLF, 40 CPU RTI,

&40 CRU RTS, 38 CFU SEC, F8 CFU SED, 78 CFU SEI, a6 CFU TAX, --=&

we wo

ot - 42 4+ 45)

77

(RAGSDALE ASSEMELER 2

A8 CrU TAY, BA CFU T8X, 8A CFU TXA, 94 CPU TXS, 98 CFPU TYA,

+ MCP <BUILDS C, , DOESH DUF 1+ @ 80 AND IF 10 MODE +! THEN
QVER FFOO0 AND UFMODE UFMODE IF MEM CR LATEST ID. 3 ERROR THEN
Ce MODE C@ INDEX + C@ + C, MODE C@ 7 AND IF MODE C@ F AND 7 =
IF €, ELSE , THEN THEN MEM 3

1C6E 60 MCF ADC, 1C6E Z0 MCH AND, 1C4E CO MCF CMF,

1C4E 40 MCP EOR, 1C&E A0 MCF LDA, 1C&6E 00 MCFP ORfA,

1CSE EO0 MCF SEC, 1C&6C 80 MCF STaA, O0DOD 01 MCF ASL,

gcoc C1 mMCr DEC, 0COC E1 MCP INC, 0DOD 41 MCF LS8R,

0DOD 21 MCF ROL, 0DOD &1 MCOCF ROR, 0414 81 MCF STX,

0486 EQ MCF CPX, 0486 CO0 MCF CPY, 14946 A2 MCF LDX,

0C8E A0 MCF LDY, 048C 80 MCF STY, 0480 14 MCF JSRH,

8480 40 MCF JMF, 0484 20 MCF EIT,

! BEGIN, HERE 1 ; IMMEDIATE

UNTIL, ?EXEC >R 1 ?PAIRS R> C, HERE 1+ - C, §{ IMMEDIATE -—->

e o

¥ 78

¢ RAGSDALE ASSEMELER

$ IF, Cy, HERE 0 C, 2 § IMMEDIATE

§ THEN, ?PEXEC 2 7FATRS HERE QVER CE IF SWAF ! ELSE OVER 1+
= SWar C! THEM 3 IMMEDIATE

! ELSE, 2 ?PFAIRS HERE 1+ 1 JHMF, SWaAF HERE QUER 1+ - SWap C!
Z 3 IMMEDIATE

§ONOT 20 +

0 CONSTANT CS DO CONSTANT 0= 10 CONSTANT 0< 20 CONSTANT &=

¢ END-CODE CURRENT @ CONTEXT ! 7EXEC ?CSF SMUDGE § IMMEDIATE
FORTH DEFINITIONS DECIMAL

¢ CODE 7EXEC CREATE L[COMFILED ASSEMELER ASSEMBLER MEM !'CSF
IMMEDIATE

¢ ASBEMELER CFaA ’ jCODE 8 + ! LATEST 12 +0RIGIN !

HERE 28 +DRIGIN ! HERE 30 +0RIGIN ! HERE FENCE !

7 OASSEMBLER & + 32 +0ORIGIM ! BASE ! FORTH 38

§ 79

C

[43]

SPENefibE X

[N
r) oo

13

B
6

3]
0

TwNRroYONOCGPRNE oD

P S S

(&3]
t&H

521
]

MoNoecUmARNE oD

SCH

N QNS

&0
(TEST SCREEN)

123 456 XXX 789 143

* 21

¢ DOS 170

BASE @ HEX

340 VARIAEBLE IOCE 0 VARIABLE I0.X 0 VARIAELE IO.CH
TocC 10 x 70 MIMN DUF I0.X C! 340 + IDCE ' %

<TI0 <BUILDS , DOES> @ I0OCE @ + 3

<I0> TICCOM 3 <I0>x ICSTA 4 <I0x ICEAL 8 <I0> ICELL
«I0x ICAXLT B <I0x ICAXZ2 C <I0x ICAX3 D <I0x ICAX4
“I0x ICAXS F <I0> ICAXS

1D 13 ee oo

CODE XCIO XSAVE STX, I0.X LDX, I0.CH LDaA, E454 JSR,
KEAVE LDX, IO0.CH 8Tha, TYA, FUSHOA JMF,

¢ DFEN I0CC ICAX2 C!' ICAX1 C! ICEAL ! 03 ICCOM C! XCIO 3

$ CLOSE IDCC 0C ICCOM C! XCIo

$ PUTC IOCC I0LCH CY ok ICCOM C! XCIO 3

$ GETC IoCcC 7 ICCOM C! XCIO I0.CH Ce SWaF 3 —ln

¥ 82

¢ DOS I/70

¢ GETREC I0oCC S ICCOM C! ICELL ! ICEAL ' XCIO 3

$ FUTREC IOCC @ rIccoM C! ICELL ' ICEAL ! XCIO 3

$ 8TATUS I0CC ICSTA C@

¢ DEVSTAT IOCC 0D ICCOM C! XCIO0 >R ZEA @ Z2EC @ R>X> 3

$ SFECIaL IOCC ICCOM C! ICAXS C! ICAXS C! ICAX4 C' ICAX3 C!
ICaX2 C! ICAX1 C! XCIO

¢! FORMAT CR CR " Imput Drive # " KEY DUF EMIT 30 -

1 MaX 4 MIN

CR CR " When wou hit RETURN I’ going to'" CR " FORMAT Drive

DUF + CR CR +" Hit army other key to asbort " BEEF KEY
PE = IF (FMT) 1 = CR CR +" Format " IF " OK" ELSE " ERROR"
THEN ELSE DROF THEN CR CR !

BASE ' 18

83

¢ ATARI-B50 DOWNLOAD 2

BEASE @ HEX :

CODE DO-5I0

CSAVE STX, 0 % LDA, E4%59 JBR,

KSAVE LDX, MEXT JMF,

SET--DCR S0 300 CY 1 201 C! 3F 302 C!Y 40 303 C! 500 304
3 306 CY 0 3TOZ7 CY C 308 C! 0 209 ! 0 308 C 3

v

CODE RELOCATE XESAVE STX, S0& JBR, HERE 8 + JSR, XSAVE LDX,

? NEXT JmMF, 0C JMF() .

11 ¢ BEOOTES0 HERE ZE7 ! SET-DCE DO-SI0
12 S00 300 0OC CMOVE DO-SID RELOCATE

13 ZE7 @ HERE -~ ALLOT HERE FENCE ! 3

14 BASBE ' 18

&3]
)

N B oD

+ 84

H
oo

63
)

oNed2RNeEo®

895
"STARTING FORTH" CHANGES)
BEASE @ DECIMAL

~

VARTIABLE 0 VARIABLE 3
‘8 8P 3 3 S0 18 +0ORIGIN @ ¢
-1 -3 2~ 2 - % 32X DUFP + 3 2 27 2 / ¢ § NOT 0=

I7 R» R» R ROT ROT =R =R 3}

J RE R R R RE VR PR R ORE @ O}

FAGE 129 EMIT

ZUARIABLE VARIAEBLE 0 , tOEXTIT R 2 T H DF
ZCOMNSTANT <BUILDS HERE D! 4 ALLOT DOES: D@ 3

[¢6 42 4o 42 $2 o 4% 49 40 o4 o w3 OO

10 ¢ CREATE VARIAELE -2 ALLOT § ¢ 20 DR § ¢ 2! D' 3
11 ¢ »IN IN § ¢ /LDOF CCOMPILE] LOOF § IMMEDIATE
12 ¢ C1 LCOMPILED 7 3 ¢ WITHIN =R 1- OVER + SWAF R < AND $
15 ¢ NUMFATCH DROF 58 OVER = SWAF 44 42 WITHIN OR NOT 3
14 ¢ MUMFIX ‘ NUMFATCH CFA ¢ NUMEER 52 + ! § NUMFIX
15—

SCR # 86

0 ¢ "STARTING FORTH" CHANGES)
1
2 ¢ AEORT" STATE @ IF COMFILE OERANCH HERE 0 ,
3 COMFILE (.") ASCII " WORD HERE CE@ 1+
‘q
5 ALLOT COMFILE QUIT HERE OVER - SWAF !
6 ELSE IF ASCII " WORD HERE COUNT TYFE
7 QUIT THEN THEN § IMMEDIATE
8
9 EBASE ! 18

10

11

1z
3

14
5

SCR # 87

¢ DDISK D

BAGE @ HEX

0 VARIAEBLE CRLOCK 0 VARIABLE BUFF

)
)

[el

&3]

= [
FoNONCCOAI2ONRC D

1z

14

13

¢ JHEAD 7D EMIT +" Ernter BLOCK number in hext " QUERY
BEL WORD HERE NUMEER DROF CR {

CELK JHEAD CR CR CREBLOCK ' ¢

RELOCK CERLOCK @ BLOCK DUF BUFF ' 3

o4

$oeH 0 < ¥ F 4 TYFE SFACE 3

P DLINE 8 0 DODUR I + CE H LOOF 3

! C.ON L 2FE CY ¢ 2 CLOFF 0 2ZFE C! ¢

t DCHAR CL.ON 8 0 DO DUF I + CR DUF 9B = IF DROF BEL THEN
EMIT LOOF C.OFF 3

$ FQUIT DROFP 7D EMIT ." ALL DONE" CKR DECIMA&L FROMFT QUIT

¥ 88

¢ DRISK)

HEX ¢ DLLINE DLINE SFaACE DCHAR 3

¢! DJELOCK 3 54 C!. 2 35 ! v BLOCK " CELOCK @ . CR RELOCK
g0 0 DO I H DUF I + D.LINE DROFP CR 8 +LO0OOF DROFP 3

FELK CELOCK +! DJ.ELOCK 3

+BLOCK 1 PELK ;

~BELOCK -1 FELK 3

s 24+

! FICK SFR SWAF 2 x + 2+ @ 3
! CHKEY KEY DUF 1B = IF FQUIT ELSE DUF 4E = IF +ELOCK ELSE
DUF 42 = IF -BLOCK ELSE DUF 9B = IF GELK D.BLOCK
THEN THEN THEN THEN 3
{ DDISK HEX GELK D.BELOCK BEGIN CKEY DROF AGAIN

m

BASE ! §S

e

Limited Warranty on Media and Hardware Accessories. Atari, Inc. (“Atari”) warrants to the original
consumer purchaser that the media on which APX Computer Programs are recorded and any
hardware accessories sold by APX shall be free from defects in material or workmanship for a
period of thirty (30) days from the date of purchase. If you discover such a defect within the 30-day
period, call APX for areturn authorization number, and then return the product to APX aiong with
proof of purchase date. We will repair or replace the product at our option. if you ship an APX
product for in-warranty service, we suggest you package it securely with the problem indicated in
writing and insure it for value, as Atari assumes no liability for loss or damage incurred during
shipment.

This warranty shall not apply if the APX product has been damaged by accident, unreasonable
use, use with any non-ATARI products, unauthorized service, or by other causes unrelated to
defective materials or workmanship.

Any applicable implied warranties, including warranties of merchantability and fitness for a
particular purpose, are also limited to thirty (30) days from the date of purchase. Consequential or
incidental damages resulting from a breach of any applicabie express or implied warranties are
hereby excluded.

The provisions of the foregoing warranty are valid in the U.S. only. This warranty gives you
specific legal rights and you may also have other rights which vary from state to state. Some states
do not allow limitations on how long an implied warranty lasts, and/or do not ailow the exclusion of
incidental or conseguential damages, so the above limitations and exclusions may not apply to
you.

Disclaimer of Warranty on APX Computer Programs. Most APX Computer Programs have been
written by people not employed by Atari. The programs we select for APX offer something of value
that we want to make available to ATARI Home Computer owners. In order to economicaily offer
these programs to the widest number of people, APX Computer Programs are not rigorously
tested by Atari and are sold on an “as is” basis without warranty of any kind. Any statements
concerning the capabilities or utility of APX Computer Programs are not to be construed as
express or implied warranties.

Atari shall have no liability or responsibiiity to the original consumer purchaser or any other
person or entity with respect to any claim, loss, liability, or damage caused or alleged to be caused
directly or indirectly by APX Computer Programs. This disclaimer includes, but is not limited to,
any interruption of services, loss of business or anticipatory profits, and/or incidental or
consequential damages resulting from the purchase, use, or operation of APX Computer
Programs.

Some states do not aliow the limitation or exclusion of implied warranties or of incidental or
consequential damages, so the above limitations or exclusions concerning APX Computer
Programs may not apply to you.

For the compilete list of current
APX programs, ask your ATARI retailer
for the APX Product Catalog

N ATARS

PROGRAM
EXCHANGE
PO. Box 3705

Senta Clora, CA 95055

Review Form

We're interested in your experiences with APX programs instructions are meeting your needs. You are our best
and documentation, both favorable and unfavorabie. source for suggesting improvements! Please help us by
Many of our authors are eager to improve their programs taking a moment to fill in this review sheet. Fold the sheet
it they know what you want. And, of course. we want to in thirds and seal it so that the address on the bottom of

know about any bugs that slipped by us, so that the the back becomes the envelope front. Thank you for
author can fix them. We also want to know whether our helping us!

1. Name and APX number of program.

2. If you have problems using the program, please describe them here.

3. What do you especially like about this program?

4. What do you think the program's weaknesses are?

5. How can the catalog description be more accurate or comprehensive?

8. Onascaleof 1to 10. 1 being “poor” and 10 being “excelient”. please rate the foliowing aspects of this program:

Easy to use

User-oriented (e.g.. menus. prompts, clear language)
Enjoyabie

Seif-instructive

Useful (non-game programs)

Imaginative graphics and sound

7. Describe any technical errors you found in the user instructions (please give page numbers).

8. What did you especiaily like about the user instructions?

3. What revisions or additions would improve these instructions?

10. On a scale of 1 to 10, 1 representing “poor” and 10 representing “exceilent”, how would you rate the user

instructions and why?

11. Other comments about the program or user instructions:

From

ATARI Program Exchange
P.O. Box 3705
Santa Clara. CA 95055

[seal herej

STAMP

»

