


o

Patrick Mullarky

EXTENDED fig-FORTH, Rev.2
Full implementation of standard
fig-FORTH, with more definitions

Cassette: 16K (APX-10029) Diskette: 24K (APX-20029)

Edition B





..

EXTENDED

Pat.r ieI'..

PrOgraM and Manual Cont.ent.s © 1982 Part.iek

Copyright notice. On receipt of this computer program and associated documentation (the
software), the author grants you a nonexclusive license to execute the enclosed software. This
software is copyrighted. You are prohibited from reproducing, translating, or distributing
this software in any unauthorized manner•



Distributed By
The ATARI Program Exchange

P.O. Box 3705
Santa Clara. CA 95055

To request an APX Product Catalog, write to the address above. or call toll-free:

800/538-1862. (outside California)
800/672-1850 (within California)

.Or call our Sales number. 4081727-5603

Trademarks of Atari
The fOllowing are trademarks of Atari, Inc.

ATARI 400" Home Computer
ATARI 800'· Home Computer
ATARI 410" Program Recorder
ATARI 810" Disk Drive
ATARI 820" 4O-Column Printer
ATARI 822- Thermal Printer
ATARI 825" aO-Column Printer
ATARI 830" Acoustic Modem
ATARI 850" Interface ModUle

Printed In U.S.A.



•

..

CONTENTS

INTRODUCTION 1
Overview 1
Required accessories _ 1
Optional accessories _ 1
Contacting the author _ 2

GETTING STARTED 3
Diskette version 3
Cassette version 3
Notes on this. implementation _ 4

Editor and Assembler options _ 4
16K RAM limitation 4
Cold starts with SYSTEM RESET _ 4
FORTH and DOS incompatability _ 4
7-bit and a-bit output _4
ERROR screens 5
Disk blocks 5

DEFINITIONS 6
SAVE 6
CSAVE_6
(SAVE) 6
-DISK 6
ASCII 6
BEEP 6
BOOT 6
(FMT) 6
ok 7
PON 7
POFF 7
PFLAG 7
GFLAG 7
PROMPT 7
Words for using the Assembler _ 7

NOTES a
The cassette version 8
Modifying the dictionary _ a

ASSEMBLER 9
Introduction 9
Legal exits _ 10

NEXT 10
PUT 10
PUSH 10
POP 10
POPTWO 11
PUSHOA 11



BINARY 11
Calling the assembler 11

CODE 11
IP 12
W 12
N 12

..

COLORJGRAPHICS(&SOUND) 13
Introduction 13
Definitions 13

SETCOLOR 13
SEt 13
GR. 13
XGR 13
PaS 13
PLOT 13
DRAW 14
FIL 14
Gil 14
SOUND 14
FILTER! 14

15
15
15

15

15
15
16

DEBUG 15
Definitions

B? ' 15
CDUMP
DUMP
DECOMP
FREE
H.
S.

DISKCOFY 17

EDITOR 18
Introduction 18
Commands 18

L 18
T 18
E 18
D 18
P 19
I 19
F 19
B 19
C 19
M 19
S 19
X 19
CLEAR 19
COPY 20
MARK 20



FLOATING-POINT 21
• Introduction 21

Definitions 22
FCONSTANT 22
FVARIABLE 22
FDUP 22
FDROP 22
FSWAP 22
FOVER
FLOATING .-,...,....
FP "i"i.....
F@_22
F! 23
F. 23
F? 23
F+ _.:J

F- 23
F* 23
FI 23
FLOAT 23
FIX 23
FLOG 23
FLOG10 24
FEXP 24
FEXP10 24
FO= 24
F= 24
F=( 24

Comments 24

OPERATING SYSTEM ·-,co... ..J

Introduction 25
Definitions 25

CLOSE 25
PUTC 25
GETC 25
GETREC 25
PUTREC 25
STATUS 26
DEVSTAT 26
SPECIAL 26
FORMAT 26
BOOT850 26

FORTH BIBLIOGRAPHY 27

BIBLIOGRAPHY 28

" FORTH HANDY REFERENCE

SCREEN LISTINGS 31

29





..

INTRODUCTION

OVERVIEW

EXTENDED FIG-FORTH fully implements the standard FORTH, as defined in the Forth Interest
Group's (fig) Implementation Guide. It roughly follows the 6502 Rev. 1.1 FORTH sources
as supplied by the Forth Interest Group (FORTH INTEREST GROUP, P.O. Box 1105, San Carlos,
CA 94070). Many changes were incorporated in adapting the sources to the ATAP..I Home
Computer, but the definitions, operation, and user interfaces were implemented exactly as
described in the Implementation Guide. Many additional definitions have been added,
induding extended double-precision words such as 2DUP, 2SWAP, D@, and D!. Further, the
standard FORTH Editor, and a complete Assembler for the 6502 are included, as well as a
set of ATARI Color/Graphic definitions, ATARI OS definitions, and a set of ATARI
Floating-point definitions. One new definition, SAVE, (and CSAVE) allows a
self-booting image of FORTH to be made on a diskette or cassette that will indude new
definitions you add; this feature allows application packages to be produced in volume.
Definitions not implemented are DLIST, MON, and TASK. The complete set of ATARI
Screen-Editor capabilities is implemented, making editing and changing FORTH programs
simple and straightforward.

These instructions assume you are already familiar with FORTH. However, the manual does
contain two bibliographies, one for works pertaining to FORTH and a more general one.
There is also a two-page FORTH HANDY REFERENCE summary in the back.

If you're a beginning FORTH programmer, an excellent book to help you get started is
Starting FORTH, by Leo Brodie, written at FORTH, Inc., and published by Prentice-Hall.
FORTH Inc.'s "PolyForth" and fig-FORTH have some differences. However, EXTENDED
fig-FORTH contains some screens that make it compatible with the FORTH used in the book.
To use the book along with EXTENDED fig-FORTH, type in the command "85 LOAD" to load the
applicable screens into computer memory, and open the book!

REQUIRED ACCESSORIES

Cassette version

16K RAM
ATARI 410 Program Recorder

(Note. FORTH as a computer language isn't very workable in a cassette-only
environment. But applications software using FORTH can be put onto a self-booting
cassette if desired.)

Diskette version

16K RAM
ATARI E:10 Disk Drive

O:pTIONAL ACCESSOP..IES

-1-



All ATARI peripherals and accessories

<Note. Extended fig-FORTH will work with any ATARI printer using two new
definitions, PON ,and POFF which turn the printer on and off. The printer does
not print the prompts as they occur on the screen, allowing very dean prrntouts.)

CONTACTING THE AUTHOR

Users wishing to contact the author about Extended fig-FORTH may write to him at:

206 Northside Road
8ellevuet WA 98001

or call him at:

206/153-9698

-2-

•



GETTING STARTED

LOADING EXTENDED fig-FORTH INTO COMPUTER MEMORY

If you have the diskette version of EXTENDED fig-FORTH:

1. Remove any cartridge from the cartridge slot of your computer.

2. Place the Extended fig-FORTH diskette in your disk drive and turn on the drive and the
computer.

3. The program will load into memory and the prompt "fig-FORTH 1.1" will display when the
load is complete. Press the RETURN key to display the standard FORTH prompt" ok ".

4. The Editor, Assembler, Debug, OS, Color/Graphics, and Floating-point packages included
with Extended fig-FORTH must be loaded in after booting-up the disk. Instructions for
loading and using each package follow.

5. After loading in whichever packages you need (Note. You must load in the EDITOR--the
command is 27 LOAm, you can make a new copy of FORTH that includes your loaded packages
by inserting a formatted diskette into disk drive 1 and typing "SAVE". A self-booting
copy will then be written to the new diskette.

6. Now replace the original diskette, type" 14 LIST MARK 15 LIST MARK" , and press the
RETURN key. Two screens of error messages will be listed and saved internally.

7 Change diskettes once again and type" FLUSH" and the error messages will be written
to your new diskette. You now have a clean diskette for your program development.

:3. Store the original FORTH diskette in its folder and put it in a nice safe place. Note
that you may make a complete copy of your original diskette using the DISKCOPY routine
described later. This will copy the whole diskette, not just the FORTH and error
messages.

If you have the cassette version of EXTENDED fig-FORTH:

1. Remove any cartridge from the slot of your computer.

2. Turn off the computer and all other peripheral devices. Insert the cassette into the
program recorder.

3. Hold down the START key on the computer and turn on the computer. The computer should
beep.

4. Press the PLAY button on the program recorder.

5. Press the RETURN key on the computer and the cassette will load itself in. If the
program successfully loads, you will see the prompt "fig-FORTH 1.1.

6. SEE THE CASSETTE NOTES AT THE END OF THIS SECTION.



NOTES ON THIS IMPLEMENTATION

Editor and Assembler options

You have several options regarding the EDITOR and ASSEMBLER vocabularies: in addition to
the standard EDITOR, a version of the FORTH Inc. Editor has been included. It may be
loaded with a 69 LOAD command. Further, the Assembler written by Wm. Ragsdale is
supplied (use the command 75 LOAD ), which is identical to the assembler used in the
Installation Guide.

16K RAM limitation
,

If you have only 16K of RAM you will not be able to use some of the Color/Graphics
higher-level graphics modes without interfering with the screen buffers.

Cold starts with SYSTEMRESET key

The SYSTEM-RESET key calls the IICOLDII (cold-start) function directly, so any new word
definitions that have not been SAVEd will be erased. This can be a handy feature while
debugging: press the SYSTEM RESET key to erase all your old work and leave a clean copy.
There is a negative side: if your program wanders off into never-never land, and you have
to press SYSTEMRESET, you'll lose all your new definitions unless you've been editing
them into new screens. <Using the standard OS screen-editing functions excludes the use
of the BREAK key for this purpose. The BREAK key is used to inform the system to ignore
the previous input string.)

FORTH and DOS incompatability

There is no compatability between FORTH diskettes and DOS <I or II> diskettes. You may
read a DOS diskette with a FORTH program, but unless you know exactly what you're doing,
writing to a DOS diskette will, in all probability, make the diskette unworkable from a
DOS point of view. The only DOS function applicable to FORTH is that FORTH expects
DOS-formatted diskettes.

7-bit and 8-bit output

The word TYPE outputs only 7 bits to the screen or printer. If you want TYPE to
output all 8-bits (which includes inverse video characters), you can type in the
following 'sequence:

HEX FF TYPE 14 + C! DECIMAL

In fact, you can make up a couple of routines if you wish:

HEX
MODTYPE

8-BITS
7-E:ITS

, TYPE 14 + C!

FF MODTYPE
7F MODTYPE

Then, to set your system to type out 7 bits, type 7-BITS, and for 8 bits, type :::-BITS.

-4-



c

Further , you can use these routines in any other programs you wish. just as you would
any other word definition. If you type VLIST with TYPE set to 8-BITS then the last
character of each word will be in inverse video. The word EMIT always outputs all 8
bits in each byte. TYPE uses EMIT with a mask for 7 or 8 bits.

ERROR Screens

The ERROR screens are 1::: and 14 instead of the standard 3 and 4. This is because the
self-booting FORTH interpreter, if it is present on the diskette you're using. occupies
screens 0 through 7. with I;,. screens available for larger versions. If your working
diskette doesn't have a Qootable FORTH on itt you may use all screens numbered 0 through
89. Disk drive 2 screens are numbered 90 through 179. The second drive may also be
accessed by the word DRl • which sets an offset into the drive addresses for-
automatically accessing the second drive. The word DRO accesses the first drive.
Alternately. the blocks are numbered 0-719 on the first drive. and 720-1439 on the second
drive.

Disk Blocks

This is fig-FORTHt NOT FORTH-79! This means that disk blocks are 128 bytes long and not
lIC bytes long. Each screen is 8 blocks longt not 1 block long! A later version will be
made availablet someday, using the FORTH-79 standard. but Extended fig-FORTH uses the
fig-FORTH standard.

-5-



DEFINmONS

SAVE -

This word, when executed, saves a self-booting copy of the RAM-resident FORTH program to
disk drive 1, after setting up new parameters for COLD and FENCE. On booting up,
all definitions will be protected by FENCE, and the FORTH vocabulary will be the
current dictonary. This word uses (SAVEl described later.

CSAVE -

This word saves a self-booting copy of the RAM-resident FORTH program to the cassette
recorder. The computer will beep twice, indicating that you are to press both the PLAY
and the RECORD buttons on the recorder, followed by pressing the RETURN key on the
computer.

(SAVE) n-

This word writes n blocks to disk drive 1, $tarting at sector O. This word should not
be used by normal FORTH programs.

-DISK addr n2 n3 flag -- n4

This word performs the read/write on a disk, where addr is the starting RAM address,
n2 is the diskette sector number (0-719), n3 is the drive number (1-4), and flag is
1 for a read, and 0 for a write. On return, n4 will contain a zero if everything
went all right, or it will contain the DOS error number returned by DOS if an error
occurred. It is not expected that the normal FORTH program will use this word. The
usual disk I/O word used is RlW, which is documented in the Implementation Guide.

ASCII - c --) n

This word places the binary value of character c on the top of the stack.

BEEP -

This word sounds the "beep" tone on the computer's speaker.

BOOT -

When executed, this word causes a cold-boot of the computer exactly as if the power were
turned off.

(FMT) n1 -- n2

This word formats disk drive n1 and returns the DOS status byte upon completion in n2
• This word is used by the word FORMAT in the OS definitions. No error checks are made
and no warnings aregiven by this word. Those functions are performed by the FORMAT word.
For more information, see the OS section in this manual.

-6-



ok -

This word allows the Screen Editor (En to handle the standard FORTH prompt properly. The
interpreter can "eat" the previous "ok" prompt with no other effect. It allows you to
repeat the same input stream by plating the cursor anywhere in a previous line and
pressing the RETURN key.

PON -

This word enables the printer. PFLAG is set to 1, and thereafter every character put to
the screen will be echoed on the printer except the prompts.

POFF -

This word disables the printer. It sets PFLAG to zero.

PFLAG --- addr

This word is the printer-flag. See PON.

GFLAG - addr

This word is the graphics-mode, QJrsor-control flag. When GFLAG is set to non-zero,
FORTH will use the alternate QJrsor-address variables required by the Operating System to
handle the text-window at the bottom of the screen. This variable is handled
automatic:ally by the various graphic commands in the Color/Graphics package.

PROMPT -

This word was added to handle the extended complexities of excluding the prompt from the
printer when PFLAG is non-zero. Basically it types "ck".

Words for using the Assembler

A series of words are defined for the ASSEMBLER:

NEXT
F'USH
PUT
F'USHOA
F'OP
POPTWO
E:INARY
IF'
W
N
XSAVE
UP

Please refer to the ASSEMBLER dccurnentatton for their descriptions.

-7-



NOTES

THE CASSETTE VERSION

The cassette version of fig-FORTH contains the ASSEMBLER and DEBUGvocabularies already
loaded. Because no diskette is used, the EDITOR vacabulary is essentially useless.
However, printouts of the EDITOR, OS, and COLOR/GRAPHICS screens are included so that you
may type them in if you wish. The cassette version is primarily for use as an
introduction to the FORTH language, and not as a software development system.
Nevertheless, the CSAVE feature allows you to develop permanent versions of your FORTH
programs. See the following section for how to erase old definitions. Npte that error
messages in the cassette version type only a number. Refer to the printout of the error
message screens for their meaning. The error numbers start sequentially at screen 14,
line 1 (error 1) •

MODIFYING THE DICTIONARY

To erase a definition in your FORTH dictionary that is locked in (you get an "in
protected dictionary" message when you try to FORGET a definition) do the following:
using VUST, find the name of the first word that you want to keep, cail it XXX, and
type 'XXX FENCE! <RETURN). This will set the dictionary protection to your XXX word.
Then you may type FORGET name <RETURN), where "name" is the name of the word you
wish deleted. Note that all words above "name" are deleted. You can actually
instruct FORTH to forget everything, so be careful. If you make an error in a new
definition that FORTH rejects for one reason or another, you may find that you cannot
FORGET the new definition, and, in fact, only VLIST seems able to find it at all! In such
cases, type the word SMUDGE and you'll be able to FORGET the word. By the way, you can
interrupt VUST anywhere you want by pressing any key except BREAK while it is typing out
the dictionary.

"Go FORTH and conquer"

the FORTH be with

-8-



· ASSEMBLER

INTRODUCTION

The ASSEMBLER vocabulary included in Extended fig-FORTH is a full-featured 6502
assembler, capable of assembling the range of assembler cp-cedes. It is similar to W.
Ragsdale's assembler used in the fig Installation Manual. To load it, type:

39 LOAD

As is usual in any FORTH product, the notation used in this assembler is in Reverse
Polish Notation (RPN>. This brief outhne assumes you know assembly language programming'
very well, particularly in regard to the 6502. The RPN notation will seem very awkward at
first, but it allows the full power of FORTH to be brought to bear in an assembler-level
routine. The op-codes are very similar to standard 6502 op-codes, except that everyone
ends with a comma, a FORTH convention for assembler-level codes. Some examples will help
describe the assembler:

LOA 123 is written as 123 LOA,

si,.,ilarl';:$,

STA
LOA
AND
STA
LOA
LOX

3BCO is
33,X is
Uf5,X) is
(74),Y is
3374,Y is
:l=7F is

3BCO LOA,
33 ,X LOA,
45 X) AND,
74 )Y STA,
3374 ,y LOA,
7F :1= LOX, or :1= 7F

The current BASE value (radix) of FORTH determines whether the assembler creates hex,
decimal, or octal values (or any radix, for that matter).

Non-standard op-codes are the A-register shifts only, which are expressed as:

instead of the standard:

ROL A

and the op-code for an indired JMP instruction, which is:

nnnn JMF'(),

instead of:

JMF' ( nnnn ) •

Loop constructs use the words BEGIN, and END, (note the commas) and an alias for the
latter UNTIL, • The END, is preceeded by a 0= or 0= NOT construct to determine
loop termination. The termination test actually assembles as a BNE or BEQ instruction, as
in the following example:

BEGIN, INY, 0= END,

-9-

NEXT JMF',



The above routine increments the Y-Register until it is zero and exits to a routine named
NEXT. It will be assembled as:

LOY O,X
INY
E:NE )1(-1
JMF' NEXT

The Eranch instructions have been integrated into a generalized IF c:onstruct so that
they may be readily inc:orporated into an unlabeled branch capability. The syntax is:

..

or

IF:<x t

IFXXt

• • •

• • •

• • •

• • •

••• THEN,

••• ENOIF,

where xx is the last two letters of the standard 6502 branch instructions (IFEQ,
IFNE, !PMI, etc.). The test will be made on the Status Register as appropriate to the
sense of the c:onditional branch, and if the test is TRUE, the c:ode enclosed between the
IFxx, and the THEN, or ENDIF, will be executed; otherwise, the enclosed c:ode will be
skipped. The operation of the construct is almost identical to the IF ... THEN at the
higher-level FORTH definitions, except that nothing is popped off the stack by the IFxx,
words. Instead, a Eranch instruction is assembled.

LEGAL EXITS

There are only a few legal exits from assembly language FORTH routines to the main FORTH
inner interpreter. These addresses are predefined in the main FORTH dictionary and need
no further definition by the assembly language itself. These returns use a ecce
JMP, sequence, as shown in later examples. The legal exits are:

NEXT

This is the normal return. It takes no stack action.

PUT

This places the A-Register and the first item on the hardware stack on the top of
the stack. That is, it does a 1 ,X STA, PLA, O,X STA, NEXT JMP,
sequence. This action overwrites whatever was previously on the top of the stack.

PUSH

This pushes down the stack and does a PUT • This action adds one item to the
stack.

pop

This performs the DROP function.

-10-



POPTWO

This performs DROP DROP.

PUSHOA

This first pushes the A-Register. followed by a zero. Essentially, it pushes one
byte, the A-Register. onto the stack. adding a lb-bit word to the stack with the one
byte in the lower half.

BINARY

This word takes two words off the stack and replacea=s them with one word. The best
example is the add word + • This routine does a DROP followed by a PUT , which
overwrites the old top of the stack.

CALLING THE ASSEMBLER

The word CODE is used to call the assembler automatically when defining a new assembly
level routine. The character string following CODE wUl become a new FORTH word having
directly executable assembly level code. Two examples follow that do the same
thing--they multiply the top of the stack by two, using a single left shift across the
two bytes that are the top of the stack:

CODE 2lK o ,X ASL, 1 ,X ROL, NEXT JMP,

CODE lK2 O,X LOA,
PUT JMP,

ASL.A, PHA, 1 ,X LOA, ROL.A,

The first routine shifts the actual memory locations of the top of the stack. This
procedure is quite short and very fast. The second routine is the more universal
method, in that the arguments are first loaded to the A-Register and later stored.
Notice that the low order byte is pushed to the hardware stack and the high-order byte is
left in the A-Register on the return to PUT. The second example shows how words are
retrieved from the stack and how a return is made. To reach the second word down on the
stack. you would use 2 ,X LDA. to access the low byte and 3 ,X LDA, to access the
high byte, and so on. You can increment the stack pointer (push the stack) with a DEX,
DEX, sequence, and pop the stack with an INX, INX, pair. In fact, the DROP word
does a simple INX. INX, NEXT J'MP, sequence.

If your routines need the X-Register for any reason, you must save it off someplace. A
very convenient place called XSAVE is provided. Do a XSAVE STX, later followed by a
XSAVE LDX. instruction.

Several other addresses are made available as "hooks" into the FORTH system. These are
predefined words you use at your own risk (you'd better study up a bit before doing so),
but some routines, such as in the assembler itself, need these addresses.

-11-



IP

This is the Intepreter Instruction fointer, which points to the next word to be
executed.

W

This is the actual execution of the current word being executed.

N

This is a convenient eight-byte (4-word) save area where you may save your words and
bytes by storing them in N+O , N+l , N+2 ... N+7 • You can use the following
sequence to call an internal routine called SETUP, 41: 2 LOA, SETUP JSR, if you
want to copy the top two stack words into N+O ... N+3, low bytes first. Use 41: 3 for
the top three stack words, and so on. This does not change the stack itself; it only
extracts copies of however many words you want.

On entry to your routine, the Y-Register will contain a zero. This fad can be handy for
dearing out bytes or registers. For example, you can dear the A-Register with a simple
TAY, instruction.

Using the assembler, like in almost any assembly level programming, is playing with fire,
and you'll probably get burned from time to time. But, one of the delights of FORTH is
that you can simply re-boot and try again. Careful examination of your code will
probably dear up your problems.

Note. A good descripton of Wm. Ragsdale's assembler is in Dr. Dobb's Journal, Vol.
6, No.9 (Sept. '81>. This assembler is quite similar on the surface. Internally, they
are totally different approaches to solving the same problem using FORTH. Reading
Ragsdale's code and reading the code for this assembler could be very instructive in the
area of assembly level FORTH programming.

-12-



•

o

COLOR/GRAPHICS (& SOUND)

INTRODUCTION

You must have already loaded the ASSEMBLERVocabulary into your FORTH dictionary before
the COLOR/GRAPHICS definitions will LOAD properly. Once you have the ASSEMBLER Ioaded,
type:

andior
56 LOAD --) for the SOUND cOMMands

A small demo program will draw a box and FIL it in Graphics Mode 5 when you enter the
word FEOX • Type:

57
FE:OX

Type 57 LIST to examine the program itself.

NOTE. As in BASIC t a color value of zero is used to erase a point. Also t note that in
Graphics Mode 8 t there are only two color values: zero or one.

DEFUUTIONS

The following words have been defined for use with Extended fig-FORTH in programming
color graphics. Most resemble the commands used in ATARI BASIC.

SETCOLOR n1 n2 n3 ---

Color register nl (0..4) is set to color n2 (0 ..15) at luminance n:::: (0..7). This
word is very similar to ATARI BASIC's SETCOLOR command.

SEt nl n2 n3 ---

This is a synonym for SETCOLOR using an the abbreviation used in ATARI BASIC.

GR. n ---

This word selects Graphics Mode n where n is defined as in ATARI BASIC's "GRAPHICS
n" command. (plus modes 9 t l O, and lll.

XGR ---

This word allows easy exit from Graphics Modes 1-8. It essentially does a "0 GR ".

POS nl n2 ---

This word sets the X (nl ) and Y (n2) coordinates for the next point to be plotted.
It does not plot anything by itself. It is primarily used in the FIL word
definition.

-1:::-



PLOT n1 n2 n3 ---

This word uses the c:olor value given by n1 to plot the point at position X (n2)t
Y (n3).

DP..AW n1 n2 n3 ---

This word draws a line from the last plotted point, using c:olor value n1 to the
point X (n2), Y •

FIL n ---

This word fills the endosed area just drawn with c:olor value n. The ATARI BASIC
FILL c:ommand is somewhat awkward to use. Careful reading of the ATARI BASIC
Referenc:e Manual is rec:ommended.

G" --- ecce"

In Graphic:s Modes 1 or 2 this word performs the way the word ." does in text mode.
The c:haracter string .cccc will be c:ompiled if in c:ompiler mode or typed out if in
interpreter mode. The ros word may be used to position the output.

SOUND

The sound c:ommand definition is prac:tic:ally identic:al to ATARI BASIC's SOUND definition.
But another word not present in ATARI BASIC lets you alter the "filter" values described
in the HARDWAREMANUAL as AUDCTL. The word sets this c:ontrol register.

SOUND n1 n2 n3 n4 ---
This word is used as: c:han freq dist vol SOUND. n1 is the c:hannel number
(0-3>; n2 is the frequenc:y, as described in the ATARI BASIC Referenc:e Manual;
n3 is the distortion control (an even number between 0 and 14); and n4 is the
volume (0-15).

n1 ---

This word stores a value between 0 and 255 into audio c:ontrol register AUDCTL. The
default c:ondition is 0 FILTER!. Using this c:ontrol is not at all straightforward.
Please refer to the HARDWARE MANUAL if you wish to alter the c:ontents of this
c:ontrol register. Or, you c:an try a few different values and see what happens!

-14-



DEBUG

INTRODUCTION

Load the DEBUG package by typing:

21 LOAD

The package includes several very useful features for testing and debugging your FORTH
programs.

Each function is described below, in standard FORTH terminology.

DEFINITIONS

B? --

This word types out the current BASE value (radix) without changing it. It overcomes
an intrinsic difficulty in typing only BASE? , which always returns the value
10 no matter what the current radix is. ( 10 is the right answer, always.) This
word types out the value Base 10, so that if your current base is hex, B? will
type out 16.

CDUMP addr n

This word types out n bytes in character format, starting at addr, For example, to
display the characters in any disk block, say, sector 34, type 34 BLOCK 128
CDUMP •

DUMP addr n ---

This word types out n bytes in numerical format using the current value of BASE.
You can go from a decimal dump to a hex dump by typing HEX first (and vice-versa).

DECOMP ccce -

This word decompiles the previously entered, colon definition ecce for debugging
purposes. Use this word cautiously. It is defined for the purpose of decompiling
colon definitions only, and it can go off to never-never land if you try to
decompile things like dictionary headers (e.g., FORTH), words terminated by ;CODE
or words whose definitions do not end in ;, such as ABORT • Most non-colon
definitions will cause the message II Primitive II to display if you try to decompile
them. Try DECOMP VLIST and DECOMP @ to see the different results.

FREE --

This word types out the number of free bytes of dictionary space left. NOTE that
this number will vary depending on the current graphics mode.

H. n-

This word outputs the top of the stack in hexadecimal, no matter what the current
value of BASE is. It is similar to U. (unsigned type-out).



S.

This word prints out the contents of the stack in unsigned form using the current
BASE (radix). It doesn't change the c:ontents of the stack in any way. This is
easily the most useful debugging tool. During program development you will probably
use it very frequently.

•

..



Dl:SKCOPY

The diskette copying routine supplied with this package is minimal. Load it into memory
by typing

36 LOAD

To invoke the copy routine, type DISICCOPY and you will be prompted for what to do.

This routine requires 32IC of RAM to operate, and uses one drive to copy 90 sectors at a
time. You may interrupt the copy routine by pushing the SYSTEM RESET key when you·think
it has copied enough sectors for your application. Or, you may copy single FORTH
screens, two at a time, by using the LIST and MARK words as described in the introduction.

-17-



EDITOR

INTRODUCTION

The Editor in Extended fig-FORTH is the Screen Editor described in the Forth Interest
Group's Installation Manual, complete and unchanged. It isn't the most sophisticated
editor around, and it has some qUirks that take getting used to. For example, it's
difficult to insert spaces into a line of text. Eut the Editor is specifically designed
to work with FORTH screens, and it's handy for that purpose.

To load the Editor into your system, put the Extended fig-FORTH diskette into drive 1 and
type:

27 LOAD

Ignore any errors regarding duplicate names. To use the Editor, you must first type
EDITOR to set the context to the Editor vocabulary. To edit a given screen, first type
n LIST to load the screen into memory.

One new word has been added to the Editor vocabulary: MARK • This word will mark
every line in the current screen (the one you last used the LIST command with) as having
been modified, so that when a subsequent FLUSH command is given, the whole screen will
be written out. It is used primarily to update backup diskettes and to duplicate single
screens onto other diskettes.

Whenever you've finished an editing session, type the word FLUSH to save your
work. It is quite important to get into the habit of doing this. If you fail to do
so, and subsequently your program bombs out, you can lose the last screen you edited.

COMMANDS

•

WORD FORM

L L

DOES

This word bists the current screen. The current screen is changed by n
LIST which will list out screen n and make it the current screen.

TnT

This word I,ypes out line n and puts the cursor at the beginning of
that line.

n E

This word grases line n .

D n D

This word Deletes line n and moves up all following lines. Save the
contents of the line in a buffer so that you can use an I command later,
if desired.

-18-



P n P cc:a:::

This word BJts the character string cc:a::: into line n and erases the
previous contents, if any. Use this command to create new lines. The
string ecce may be any combination of characters and spaces up to b4
characters.

I n I

This word inserts the buffer from the previous D command into a line
created immediately above line n and then moves all following lines
(including n) down one line. The last line is lost.

F F ecce

This word rinds character string a:c:c in the current screen starting
from the current cursor position.

B B

This word up the cursor over the word you just found using the F
command.

C C ccec

This word inserts string ecce into the current line at the
current cursor position. This is the primary character-entry command (see
also P ).

This word Moves the cursor n characters forward or backward (backward
if n is negative).

S n S

This word the current screen at line n , creating a new line
immediately preceeding line n and moving all following lines down one.
The last line will be lost.

x X cccc

This word eXtracts the character string cccc and shortens up the line.
This is the primary find-and-delete command. The X command uses the F
command, which means that the string search will commence from the current
cursor position.

CLEAR n CLEAR

This word CLEARs screen n by completely filling it with blanks. It
destroys any previous information on that screen. Note that an unused,
unCLEARed screen will be filled with hearts, which is the ATARI null

-19-



COPY

MARK

character. CLEAR will replace the hearts with spaces.

n m COPY

This word COPYs screen n onto screen m , It destroys any old
information on screen rn •

MARK

This word MARKs the OJrrent screen as having been modified. A subsequent
FLUSH command will cause the entire screen to be written out. Use it to
copy a single screen to another diskette.

•

The best way to learn the Editor is to pick an arbitrary unused screen and use the LIST
and CLEAR commands to erase it and make it the OJrrent screen. Then use the P command
to put several lines of text into the new screen. Then, tryout the various commands,
one at a time, until they become somewhat familia.r. Use the command FLUSH if you want
to keep the results of your work handy; otherwise. use the command EMPTY-BUFFERS to
erase all traces of your screen editing.

-20-



FLOATING-POINT

INTRODUCTION

The floating-point package uses the ATARI floating-point routines in OS ROM, exactly as
ATARI BASIC does. The routines aren't very fast, but they are easily accessible and
fairly complete (there are no transcendental functions except LOG and EXP). Most of the
floating-point word definitions follow the conventions for double-precision words as far
as spelling goes, making them very easy to remember.

Before loading the floating-point package, first make sure that you have already loaded
the ASSEMBLER. Then put in the master diskette and type:

60 LOAD

The floating-point routines will be loaded into the current dictionary.

All floating-point operations assume three-word variables (fn) with few exceptions. The
only real variant from standard FORTH nomenclature occurs in the definition of
floating-point constants and variables (FCONSTANT and FVARIABLE) in that these operations
expect a floating-point number to be on the stack already. Therefore, the syntax is a bit
different from single-precision or double-precision constants and variables.

A single-precision variable would, for example, be written:

VARIABLE MYNUM

whereas a floating-point variable would be written:

FLOATING FVARIABLE MYNUM

To reduce typing, the word FLOATING has been given the synonym FP :

FP FVARIABLE MYNUM

In fact, the word FLOATING or FP should precede any floating number if you wish that
number to be placed on the stack in floating-point format.

You may enter floating-point numbers in any standard Fortran "E" format:

.00000001

9999999
5

All the above numbers are legal floating-point numbers as long as they are preceeded by
FP or FLOATING. The decimal point is optional for integer values. The package is easy to
use. Here's an example of a square-root function definition:

: FSQRT FLOG FP 2.0 F/ FEXP

The routine expects a floating-point value on the top of the stack (top three words),
takes the natural log of the value, enters the floating-point value 2.0, divides the

-21-



numbers, and raises the result to the power "e". This is the standard "slow" square-root
routine used in mathematics.

DEFINITIONS

The following definitions conform to the standard FORTH nomenclature, with the addition
of the symbol fn (e.g., fl, f2" whic:h represents a three-word floating-point number.

FCONSTANT f1 -- ecce
The character string ecce will be a new word, which will place the floating-point
constant fl on the stack. fl is normally preceeded by the word FLOATING or FP.

FVARIAELE fl -- ecce
The character string ecce will be a new word, which will return the address of the
floating-point variable whose initial value will be fl. f1 is normally preceeded by
the word FLOATING or FP.

FDUP fl -- fl fl

This word duplicates the floating-point number on the top of the stack.

FDROP fl f2 -- f1

this word drops the floating-point number on the top of the stack.

FSWAP fl f2 - f2 fl

this word reverses the order (swap) of the top two floating-point numbers on the
stack.

FOVER fl f2 - fl f2 fl

This word copies the second floating-point number and places it on the top of the
stack.

FLOATING -- ccce --) f1

This word converts the character string ecce to a floating-point number and places
it on the top of the stack. eccemust be in valid Fortran-style, floating-point
number representation, such as, 1.23 or .67E9 or -9.876E-21 or 5. There is no
error check. If the string ecce is invalid, the value of fl will be undetermined.

FP --- ecce --) fl

This is a synonym for FLOATING.

F@ addr --- fl

This word loads the floating-point number whose address is on the top of the stack.

-22-



F! fl addr -

This word stores the floating-point number at the address on the top of the stack. A
total of 4 words will be dropped from the stack at the completion of F! •

F. f1 -

This word types out the floating-point number on top of the stack. The output format
will be identical to ATARI BASIC's output format. The floating-point number will
then be dropped from the stack.

F? addr -

This word types out the floating-point number whose address is on top of the stack.

F+ f1 f2 -- f3

This word adds the top two floating-point numbers and places the result on the top
of the stack.

F- f1 f2 - f3

This word subtracts the floating-point number f2 from the floating-point number fl
and places the result on the top of the stack.

F* f1 f2 - f3

This word multiplies the top two floating-point numbers and places the result on
the top of the stack.

FI f1 f2 -- f3

This word divides the floating-point number fl by the floating-point number f2 and
places the result on the top of the stack.

FLOAT n - fl

This word converts the integer on top of the stack is to a floating-point number and
places the result on the top of the stack.

FIX fl -- n

This word fixes the floating-point number on the top of the stack (after rounding)
and places it on the top of the stack. The range of the integer result must be
between -32768 and 32767.

FLOG fl -- f2

This word replaces the floating-point number on the top of the stack with the
number's natural logarithm.

-23-



FLOG10 f1 - f2

This word replaces the floating-point number on the top of the stack with the
number's log base 10.

FEXP f1 --- f2

This word raises the floating-point number on the top of the stack to the power "e"
and replaces the top of the stack.

FEXP10 f1 -- f2

This word raises the floating-point number on the top of the stack to the power 10
and replaces the top of the stack.

FO= f1 --- flag

This word drops the floating-point num bel" from the stack and tests it. If the
number is equal to zero, a true flag (1) is placed on the stack; otherwise, a false
flag (0) is placed on the stack.

F= f1 f2 - flag

This word drops the top two floating-point numbers from the stack and compares them.
If they're equal, a true flag (1) is placed on the stack; otherwise, a false flag
(0) is placed on the stack.

F=( f1 f2 --- flag

This word drops the top two floating-point numbers from the stack and compares them.
If f1 is strictly less than f2, then a true (1) flag is placed on the stack;
otherwise, a false (0) flag is placed on the stack.

COMMENTS

This package isn't meant to be exhaustive, nor is any claim made for its level of
usefulness. However, if you need floating-point capabilities, the package works quite
well to extend the range of numbers, particularly in scientific calculations.
Trignometric: functions could be added by a clever programmer. A sufficient set is SIN,
COS, and ATN. A random-number generator could also be added. In fact, any number of
features could be added.

In summary, if you can't implement your program specifications using the double-precision
capability of FORTH, then try this floating-point package.

-24-



•

OPERATING SYSTEM

INTRODUCTION

This vocabulary package implements the full set of ATARI computer's OS I/O routines. It
also adds a FORMAT command, as well as a BOOT850 command, which downloads the RS-232 1/0
package into the system so that you may use the asynchronous 1/0 supplied in ROM in the
ATARI 850 Interface Module (devices "R1", "R2", etc:.).

Load the OS definitions package by typing:

81 LOAD

Load the BOOT850 pac:kage by typing:

83 LOAD

Be aware that the ATARI 850 1/0 routines take up nearly 2IC of RAM, and they are loaded
directly into the dictionary. i

DEFINITIONS

OPEN addr n1 n2 n3 -- n4

This word opens the device whose name is at addr on channel n1 with AUX1 value
n2 and AUX2 value n3. Upon return, it places the as STATUS byte on top of the
stack, The address of the name may be obtained by storing the character name in
PAD and then referenc:ing PAD in the OPEN command. EXAMPLE: ASCII 5 PAD C!
will set the c:haracter "5" into the PAD buffer. Then, PAD 3 12 0 OPEN will
open "5:" on channel 3, with AUX1 =12 (read-and-writeh and AUX2 =0 •

CLOSE n1 --- n2

This word closes channel n1 and returns the status byte at the top of the stack
(n2). The status byte will always be a 1 (operation complete, no errors).

PUTC char n1 -- n2

This word outputs the character char on channel n1 and returns status byte n2.

GETC n1 - c:har n2

This word gets one c:haracter from c:hannel n1 and returns it and the status byte
n2.

GETREC addr n1 n2 --- n3

This word inputs rec:ord to address addr but no more than n1 characters from
c:hannel n2. It returns status byte n3.

PUTREC addr n1 n2 -- n3

This word outputs n1 c:haracters from a buffer whose address is addr to c:hannel

-25-



n2. It returns status byte n3.

STATUS n1 - n2

This word gets the status byte from channel n1.

DEVSTAT n1 -- n2 n3 n4

This word gets the device status bytes n2 and n3 and the normal status byte n4
from channel n1.

SPECIAL n1 n2 n3 n4 n5 n6 n7 n8 -- n9

This command is the OS "Special" command that does anything any of the others can't.
n1 thru n6 are the values of AUX1 thru AUX6 t n7 is the command byte (whatever

your device wants>t and n8 is the channel number. The command returns the status
byte n9.

FORMAT -
This word formats a diskette. The command is self-prompting.

BOOT850 -
This word boots the Atari 850 Interface Module software drivers into the dictionary.
Screen 83 must be loaded to execute this command. DO NOT TRY TO EXECUTE THIS
COMMAND TWICE IN A ROW. THE SYSTEM WILL LOCK UP IF YOU DO.

-26-



FORTH BIBLIOGRAPHY

In order of technical level

1. StaYting FORTH, Leo Brodie, Prentice-Hall

The best all-around book for anyone beginning programming...and not just in FORTH. This quite new
book is everything one could want in a FORTH primer. It begins by assuming that you know absolutely
nothing about computers at all and leads you to some quite sophisticated programs at the end. Even
experienced programmers will learn a great deal from this fine work. HOWEVER, the text is not too
compatible with fig-FORTH. There are many examples that will cause trouble when using fig-FORTH.
Nevertheless ...buy this book .... and read it !!!

2. Invitation to FORTH, Harry Katzan, Jr., Petrocelli Books

This book is for the total novice, and deals primarily with intruducinq the first-time computer user
to the fundamental concepts of computer programming, and explores FORTH somewhat casually as it
moves along. Non-novice users will become impatient with the long elementary discussions and the
awkward type-face (no descenders).

3. BYTE Magazine, vei.s No.6 (Aug. '30)

The FORTH-dedicated issue which helped bring the concepts of FORTH to thousands of people who
might not otherwise have ever heard of the language. While the presentations are somewhat erratic in
their technical content, the whole issue deserves reading to acquire a taste for FORTH.

4. Dr. Dobb's Journal, VoL6 No.9 (Sept. '31)

A second "dedicated issue" on the FORTH Language. This issue approaches FO:dTH from quite a
philosophical point of view, and is excellent reading for the somewhat advanced programmer who, say,
already knows several languages. The issue is a wealth of ideas and solid FORTH programs ... the
Ragsdale Assembler, for one I

5. A FORTH PRIMER, W. Richard Stevens, Kitt Peak Nat'l Observatory

This is a "self-study" guide to FORTH from the place where it all started. The FORTH described
differs somewhat from fig-FORTH, but the book is quite good. It indudes some floating-point words
which are not too different from the package induded with this product.

1:... Systems Guide to fig-FORTH, C. H. Ting, Offete Enterprises.

A complete, in-depth analysis of every fig-FORTH word used in the entire fig-FORTH vocabulary. If
you ever wondered just exactly how a word such as 'INTERPRET' works ... it's all here !! For the
advanced FORTH programmer.

7. Threaded Interpretive Languages, R. G, Loeliger, McGraw-Hill

This is a definitive work for those who want to write their own FORTH Language processor. It uses
3030 code for its examples, but the routines are so well explained that it would be quite easy to
translate the code to any other processor. The FORTH isn't exactly fig-FORTH, but the differences are
quite minor, and are easily accomodated.

3. FORTH Dimensions, the journal of the Forth Interest Group (fig) All Vols.

These bound journals are available from the Forth Interest Group, P.O. Box 1105, San Carlos, CA
94070. The FORTH Language at its best and its worst. A highly-technical journal for the FORTH addict.

ALL OF THE ABOVE ARE AVAILABLE FROM:
Mountain View Press
P.O. Box Mountain View, CA 94040
(415)-961-4103

-:0-



GOOD BOOKS FOR LEARNING TO PROGRAM IN FORTH:

n9. f::.9-B TH
FORTH Inc.
HerMosa Beach, CA 90254

f>j,ar t i.J:!...C3. FOrnH
Leo Brodie

FORTH, Inc.
HerMosa Beach, CA 90254
Prentice-Hall, Inc. 1981

REFERENCES FOR DEVELOPING GOOD STRUCTURED PROGRAMMING TECHNIQUES:

1. D.L. l"iills, "Exec u t i ve arid sClft,ware develoPMent for Mini
cOMPuter s s " FOT' oS:...!.. IEEJ;;;., v o1. 61, p p , 1556-1562, NoveMber 1973.

2. J. Jr., "The past, present and future of MinicoMPuteT's,"
J:..1;;;.5;E, vo t , 61, p p ; 1526-1534, NoveMber 1973.

3. R. Burns and D. Savitt, "i"iicropr09raMMing and st,ack ar-ch Lt.ec t.ur e
ease the Min i COMputer p T' ogr aMMer 's bur den, II T' qn i£.2_t vo1. 46,
15 1973.

4. D •E. DJ.§. t!.r Q.f. tr 0Slr l'.tMM i rLClt vo1. I. r<ead i r'<il t
Mass.: 1968.

5. G. A. Kor- n , s foJ:. §.5; i ?j,s. and New Yo r-k t
McGraw-Hill, 1973.

THE FOLLOWING ARE AVAILABLE FROM THE FORTH INTEREST GROUP P.O.
Box 1105 SAN CARLOS, CA 94070.:

MeMbership in FORTH Interest Group
and VoluMe 2 (6 issues: 17 through t12)
of FORTH DIMENSIONS.

fig-FORTH Installation Manual, containing
the language Model of fig-FORTH, a
cOMPlete Map, and
installation instruction.

language source listing of fig-
FORTH for specific CPU's. The above
Manual is required for installation.

the desired CPU.

-2$-



FORTH HANDY REFERENCE
Stack inQuts and outputs are shown; top of stack on right.
This card lollows usage of the Forth Interest GrouP
(S.F Bay Area); usage aligned with the Forth 78
International Standard.

For more info: Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070.

Opet'8nd key. n, n1, . .. 16-bit signed numbers
d. dl .... 32·bit signed numbers
u 18-blt unsigned number
addr address
b Soblt by1e
c 70bit ascii character value
f boolean Ilag

STACK MANIPULATION
CUP ( n - n n )
DROP (n-)
SWAP ( n1 n2 - n2 nl )
OVER ( nl n2 - nl n2 nl )
ROT ( nt n2 n3 - n2 n3 nl
-CUP ( n - n ? )
>R (n - )
R> ( - n)
R ( ... n)

Duplicate top of stack.
Throw away top of stack.
Reverse lop two stack items.
Make copy of second item on top.
Rotate third item to top.
Duplicate only if non-zero.
Move top item to "return stack" lor temporary storage (use caution).
Retrieve item Irom return stack.
Copy top ot return stack onto stack.

NUMBER BASES
DECIMAL ( - )
HEX ( - )
BASE ( - addr )

set decimal baae.
set hexadecimal b....
Syste", .ariable containing number baH.

+
D+

I
MOD
IMOD
"/MOD
"I
MAX
MIN
ABS
DABS
MINUS
DMINUS
AND
OR
XOR

ARITHMETIC AND LOGICAL
( nl n2 - sum )
( dl d2 - sum)
( nl n2 - ditf )
( nl n2 - prod)
( nl n2 - quot )
( n1 n2 - rem)
( n1 n2 - rem quot )
( nl n2 n3 - rem quot )
( nl n2 n3 - quot )
( n1 n2 - max )
( nl n2 - min)
( n - atlaolute )
( d - absolute )
(n - -n)
(d - -d)
( n1 n2 - and )
( n1 n2 - or )
( nl n2 - xor)

Add.
Add numbers.
Subtract (nl-n2).
Multiply.
Divide (n1/n2).
Modulo (i.e. remainder from division).
Divide. giving remainder and quotient.
Multiply, then divide (nl"n2/n3). with intermediate.
Uke °/MOD. but give quotient only.
Maximum.
Minimum.
Absolute value.
Absolute value ot number.
Change sign.
Change sign of number.
logical AND (bitwise).
logIcal OR (bitwise).
Logical exclusive OR (bitwisel.

COMPARISON
< ( nl n2 - I )
> ( nl n2 - I)- ( nl n2 - f)
0< ( n - f)
0- (n - I)

MEMORY
@ ( addr - n )
! (naddr- )
C@ (addr-b)
C! (baddr- )
? ( addr - )
+! (naddr- )
CMOVE ( lrom to u - )
FlU. (addrub- )
ERASE ( addr u - )
BLANKS (sddru- )

True it nl less than n2.
True it n1 greater than n2.
True if top two numbers are aqual.
True il top number negative.
True if top number zero (i.e., reverses truth value).

Replace word address by contents.
Store second word at address on top.
Fetch one by1eonly.
Store one byte only.
Print contents of address.
Add second number on stack to contents of address on tOO.
Move u bytes in memory.
Fill u bytes in memory wit" b, beginning at address.
Fill u bytes in memory with zeroes, beginning at address.
Fill u bytes in memory with blanks. beginning at address.

setup loop. given index range.
Place current index value on stack.
Terminate loop at next LOOP or +LOOP.
Uke DO ... LOOP. but adds stack value (instead of always '1') to index.

If top of stack true (non-zero). execute. [Note: Fonll 78 4"S IF THEN.J
Same, but if fal... execute aSE clau... [Note: FortIt 78 uses IF ELSE ... THEN.I
Loop back to BEGIN until lrue at UNTIL [Note: Fortn 78 uaea BEGIN .. END.]
Looo while lrue at WHILE; REPEATloops unconditionally to BEGIN.
[Note: ForfIl 78 uses BEGIN ... IF ... AGAIN.)

until: ( I - )
while: ( I -

IF (true) ENDIF
IF (true) ELSE
... (false) ENDIF

BEGIN UNTIL
BEGIN WHILE
... REPEAT

CONTROL STRUCTURES
DO ... LOOP do: ( end+1 start -
I ( - index)

( - )
DO ... +LooP do: ( end+l start -

+IOOQ: ( n - )
If: ( f - )
if: (f - )

-2-9 -



( screen - )
( screen - )
( block - addr )
( n )
( addr )
( addr )
( )
( )
( )

TERMINAL INPUT-OUTPUT
(n - )

.R ( n fieldwidth
D. (d - )
D.R ( d fieldwidth
CR ( - )
SPACE ( - )
SPACES ( n - )

( - )
DUMP ( addr u -
TYPE ( addr u - )
COUNT ( addr - addr+1 u )
?TERMINAL ( - f )
KEY (-c)
EMIT ( c - )
EXPECT ( addr n -
WORD ( c - )

INPUT-OUTPUT FORMATTING
NUMBER ( addr - d )
<tt ( - )
.. (d - d)
-S ( d - 00)
SIGN ( n d - d )
_> ( d addr u )
HOLD ( c - )

DISK HANDLING
LIST
LOAD
BLOCK
B/BUF
BLK
SCR
UPDATE
FLUSH
EMPTY-BUFFERS

DEFINING WORDS
xxx ( -

( - )
VARIABLE xxx ( n - )

xxx: ( - addr )
CONSTANT xxx (n-)

xxx: ( - n )
CODE xxx ( - )
.CODE ( - )

<BUILDS. DOES> does: ( - addr )

Print number.
Print number. right-justified in field.
Print doubte-precision number.
Print double-precislon number. right-juatified in field.
Do a carriage return.
Type one space.
Type n spaces.
Print message (terminated by").
Dump u words starting at address.
Type string of u characters starting at address.
Change length-byte string to TYPE form.
True if terminal break reQuest present
Read key, put ascii value on staCk.
Type ascii value from staCk.
Read n characters (or until carriage return) from input to address.
Read one word from Input stream. using given character (usually blank) as delimiter.

Convert string at address to double-precision number.
Start output string. .
Convert next digit of double-precision number and add character to output string.
Convert all Significant digits of double-precision number to output stnng.
Insert sign of n Into output string.
Terminate output stnng (ready for TYPE).
Insert ascii character Into output string.

List a disk screen.
Load disk screen (compile or execute).
Read disk block to memory address.
System constant giving disk block size in bytes.
System variable containing current block number.
System variable containing current screen number.
Mark last buffer accessed as uPdated.
Write all updated buffers to disk.
Erase all buffers.

Begin colon definition of xxx.
End colon definition.
Create a vanable named xxx with initial value n; returns address when executed.

Create a constant named xxx with value n: returns value when executed.

Begin definition of assembly-language primitive operation named xxx .
Used to create a new defining word. With execution-time "code routine" for this data
type in assembly.

Used to create a new defining word. with execution-time routme for thiS data type in
higher-level Forth.

VOCABULARIES
CONTEXT (
CURRENT (
FORTH (
EDITOR (
ASSEMBLER (
DEFINITIONS (
VOCABULARY xxx (
VLIST (

addr)
addr )
)
)
)
)
)
)

Returns address of pcmter to context vocabulary (searched first).
Returns address of pointer to current vocabulary (where new definitions are put).
Main Forth vocabulary (execution of FORTH'sets CONTEXT vocabulary).
Editor vocabulary; sets CONTEXT.
Assembler vocabulary; sets CONTEXT.
Sets CURRENT vocabulary to CONTEXT.
Create new vocabulary named xxx.
Print names of all words in CONTEXT vocabUlary.

MISCELLANEOUS AND SYSTEM
( ( )
FORGET xxx ()
ABORT ()
xxx (addr )

HERE (addr )
PAD ( addr )
IN ( addr )
SP@ ( addr )
ALLOT ( n )

(n - )

Begin comment, terminated by right paren on same line; space after (.
Forget all definitions back to and inclUding xxx.
Error termination of operation.
Find the address of xxx in the dictionary; if used in definition. compile address.
Returns address of next unused byte in the dictionary
Returns address of scratch area (usually 68 bytes beyond HERE).
System variable contammq oHset Into input buffer; used. e.g.• by WORD.
Returns address of top stack Item.
Leave a gao of rl bytes in the dictionary.
Compile a number into the dictionary.

Forth Interest Group, P.O. Box 1105, San Carlos, CA 94070

-30-



oft: 14
o ( ERROR MESSAGES
1 Stack E)....

full
3 Wrong address Mode
.q Isn't unique
5 Value error'
6 Disk address error
7 Stack full
B Disk Error!
9
10
:1.1
12
13
14
15

15
o ( ERROR MESSAGES )
1. Use in Definitions
2 Execution
3 Conditionals not paired
.q Definition not finished
5 In protected
6 Use when loading
7 Off current screen
8 Declare VOCABULARY
o
"

:0: 16
o
1
2
3
.If
5
6
7

Screens

:11:

" 0 (

1
2
3
'of
er-
_.1

6
7

:1.7
LO;ID

l..o D S S E:L.



8 :19 LOAD
9
10
11
121 ;S..;)

14
15

SCF, :0: is
0 ( FULL
1
'?...
3
'+ DEBUG )
er- 21
c)
7 LOAD EDITOF:
B ,.,- LOAD.:../
9
10 ASSEME:LEF,
11 :19
1 r»...
13 ;s
14
15

SCR =I: 19
o
1
'?...
3

f.>
7
8
9
10
11
12
13
14
15

SCF, :0: 20
o ( ATARI FORTH DEFS
1 l!! HEX

3
4

POi\!
POF"F

1
o PFU"G

F'Fa ON )
pra OFF )

ASCII E:L. WORD HERE 1+ C@
STATE @ IF COMPIL.E CLIT C,
THEN; IMMEDIATE

BEEF' OCO
DB ODOlF
00 ODOlF
LOOF' ;

C"
6
7
El
9
10
11
1 7
13
1 AT
15 !

o DO
C! 6
C I 6

[) DO LOOP
[) DO LOOP

(I

scs or,: :?1
o ( DEBUGGER AIDS -- DUMP , CDUMP
1



2 @ HEX
3
4

6
7
8 H. BASE @ HEX OVER U. BASE ;
9
10 B? BASE @ DUP DECIMAL • BASE ! ;
11 2E5 @ - U. "b'.:l't,es"
12
13
1 t t -->
15

I :5 LJ.R I
2FE C!

CDMP

DEBUGGER AIDS -- DUMP t CDUMP )
DECIMPIL

?EXIT ?TERMINAL
IF LEAVE ENDIF

U.R 0 SWAP D.R ;
LDMP DUP 8 + SWAP DO I C@ 4 .R

LOOP ;
OVER + SWAP DO CR I 5 U.R I
LDMP ?EXIT 8 +LOOP CR
DUP 16 + SHAP DO
I C@ ErUT LOOP ;

DUMP

2
3
4
5
6
7
8
9
10
11 HEX
12 : CDUMP OVER + SHAP DO CR
13 SPACE 1 2FE CDMP 0

?EXIT 10 +LOOP CR ;
_._>

14
15

set, :II: 22
o (
1

:ft: 23
o ( STACK PRINTER
:I.
z HEX

4 DEPTH SP@ 12 +ORIGIN @ SWAP - 2 /
5 S. (PFUNTS THE ST )
6 DEPTH -DUP IF
7 0 00 ." TOP+" I
8 SP@ I Z * + @ U. LOOP
'7.> ELSE." THEN CF:
10
11
12
13 BPISE
1 tt
15 -->

:0: 24
o ( DEFINITION TRACER
1 BASE @ HEX
2 0 VARIABLE .WORD
3 ' elIT C:FA CONSTANT
4 OBRANCH CFA CONSTANT ZBRAN
5 BRANCH CFA CONSTANT BRAN
6 I ;s CFA CONSTANT SEMIS
7 I (LOOP) CFA CONSTANT PLOOP
8 I (+LOOP) CFA CONSTANT PPLOOP
9 I (.") CF{-'I CONSH:iNT PDClTQ
10 PHOFW 2+ NFA ID. ;
11 1BYTE PHORO .WORD @ C@ • 1 .HORD +! ;
12 lWORO PHDRD .WORO @ @ • 2 .WClRD +1
13 NP OUP SEMIS = IF PHORO CR CR



25
DEFINITION TRACER

OF'.:NCH PWORD ." to " •WOF'\D fr? • WOF'.:D @ @ + • 2 •WORD +!

PROMPT QUIT THEN ?TERMINAl IF
PROMPT QUIT THEN --)

DUP COUNT TYPE 22 EMITSTG PWORD 22 EMIT .WORD @
C@ .WORD @ + 1+ .WORD

14
15

SCF'.: :Jl:
0
1
2
3
4
5
6
7 lIT CFA CONSTANT .LIT
8
9 CKIT DUP ZORAN = OVER BRAN =
10 OR OVER PlOOP = OR OVER PPlOOP =
11 OR IF BRNCH ELSE DUP .lIT =
12 IF 1WORD ELSE DUP .ClIT =
1a IF 1BYTE ELSE DUP PDOTQ = IF STG
14 ELSE PWORD THEN THEN THEN THEN ;
15 --)

SCF'.: :J): 26
o DEFINITION TRACER )
1 I: 12 + CONST DOCOl
2
3 T?PFo: CR CF'': ." Pr iMi CR CF'.:
4 ?DOCOl DUP 2 - @ DOCOl - IF
5 T?PR PROMPT :
6
7 .SETUP [COMPILE] I ?DOCOl .WORD
ou

DECOMP .SETUP CR CR BEGIN NXT1 NP
CI<IT cr:: AGiUN :

•worm2
•

·Ct ,oJ

NXT1 .WORD @ U.
@ @ 2 .WORD +!

9
10
11
12
13
14
15 E:?)SE

SCF.: :D: 27
o ( •• EDITOR ••
1
2 fr? HEX
3
4 THIS EDITOR IS PATTERNED AFTER
5 THE EXAMPLE EDITOR IN THE fig
I.; "INSHillATIClN i"1f'1NUAl" 8/E3O WFR
7
8 TEXT HERE C/l 1+ BLANKS WORD
9 HERE PAD C/l 1+ CMOVE ;
10
11 lINE DUP FFFO AND 17 ?ERROR SCR
12 @ CLINE) DROP :
13
14 MARK 10 0 DO I lINE UPDATE
15 DROP lOOP --)

scr: :If 28
o ( )
1 VOCABULARY EDITOR IMMEDIATE
2 : WHI::F<E DUP / LoUl=' scr;: I ., II :r.: II DEClt1{',1...
3 SWAP ell IMOD ell * ROT BLOCK + CR C/I... -TRAILING TYPE CR HERE
4 e@ - SPACES 1 2FE C! Ie EMIT 0 2FE C! [COMPILE] EDITOR QUIT;
5
6 EDITOR DEFINITIONS
7



8 @ C/L. /MOD •j"
9 :II:L.EAD :JI:L.OCATE L.INE SWAP .t
10 :jJ:L.AG DUP >F;: + C/L. P··· -,....
11
12
13 -MO'.... E L.INE C/L. CMOVE UPDATE
l.(t
15 -->

SCF: =II: L. 1
0 ( EDITOF:
1 H LINE 1+ C/L. DUF' PAD C!
2 CMOVE .t
3 E L.INE C/L. BL.PINI<S UPDATE •t
.(t S DUF' 1 - OE DO I L.INE I 1+
c' -MOVE -1 +L.OOP E ....J t
6 D DUP H OF DUP FWT
7 DO I 1+ LINE I -MOVE L.OOP E
S
9
10 -->
11
121 ,.,
";l

1.if
15

:11: 30
0 ( EDITOF:
1,., M F,:ft: +! CF, :B:L.EAD TYPE..:.
3 17 EMIT TYPE :fi:I...OCATE
.if DROP •• ,
5 T DUP C/L. X< P:E: ! DUP H 0 M .t
6 L SCF, @ L.IST 0 M •f
-y F' 1+ SWAP -MOVE .i '. f

B F' 1 TEXT F, •,
7' I DUF' S F, .,
10 TOP 0 F::J: I .

f

11
12
13 -_.>
1.l7
15

SCF: :ll: 31
0 ( EDITOR
1
-»....,., Cl..Et-IR SCF, ! i o 0 DO FOFo:TH I..:l

.if EDITOR E LOOP
5
6
7
8
9
10 COPY B/SCF, l\: OFFSET @ +
11 X< o1,"" E:F, +.. 12 DO DUF' FORTH I1 E:L.DCIO( 2 - I 1+ UPD(HE..:l

1'1- LOOP FL.USH .,
15 ._->

SCFo: :D: ...,""'"..:i..

0 EDITOF,
1



2
3

lLINE ILAG PAD COUNT MATCH Rt
+! :

ILAG + FORTH R -
MINUS RI +! ILEAD

F(> E:Lr-INI<S

BEGIN 3FF RI @ < IF TOP
PAD HERE C/L 1+ CMOVE 0
ERROR ENDIF lLINE UNTIL

FIND

DELETE

+ SW?lF'
UPD?)TE

7
6
5

8
9
10
11
12
13
1"+
15 -->

:U: 3::'\
o (
1

N FIND 0 M
3

F 1 TEXT N
5
6
7

E: Pf-.D C@ MINUS M ;

El X
9
10
11 TILL.
12
13
14
15 -->

1 TEXT FIND PAD C@ DELETE
OM;

ILEAD + 1 TEXT 1LINE 0=
o ?ERROR ILEAD + SWAP -
DELETE 0 M ;

sen :Jl: 34
o ( END OF EDITOR )
1
2
3

co
...J

c)
7

C 1 TEXT PAD COUNT ILAG ROT
OVER MIN >R FORTH R RI +1
R - >R DUP HERE R CMOVE
HERE ILEAD + R> CMOVE R>
CMOVE UPDATE 0 M ;

8
9 FORTH DEFINITIONS DECIMAL
10
11 LATEST 12 +ORIGIN
12 HERE 28 +ORIGIN !
13 HERE 30 +ORIGIN I

1"+ I EDITOR 6 + 32 +ORIGIN
i s HEF\E F'ENCE! Df-ISE! ; S

scs :II: 35
o
1

3
"+

f) •
7
c,
CJ

9
10
11
12
13



FUW ;
o FUW

•t
GI-(EY DSETUP

1.lf
15

SCF: :1: 36
o ( DISK COpy ROUTINE 32K RAM )
1
2 BASE @ DECIMAL
3 1638.lf CONSTANT BUFHEAD
1 0 VARIABLE BlK. 0 VARIABLE ADRS
5 GET ADRS @ BlK. @ ;
6 RD GET DUP 718 = IF lEAVE THEN 1
7 WRT GET DUP 718 = IF' lEAVE THEN
8 +BlK 1 BlK. +! 128 ADRS +! ;
9 DSETUP BlK. I BUFHEAD ADRS ! ;
10 II HIT I-(EY cro: DrWp
11 fWIN CR." Inser·t SOURCE disk "
12 90 0 DO RD +BlK lOOP;
13 : WRTO CR." Insert DESTINATION disk
11 90 0 DO WRT +BlK LOOP;
15 -->

SCFo: • 37
o ( DISK COPY ROUTINE )
1
2 INSERT SOURCE DISK IN DRIVE 11
3
1 SIMF'l Y TYPE !
5
6 MSl CF: CFo:
7 .:: SINGLE-DF.:rVE DI81-( COPY" CFo:
8
9

" GI-(EY DSETUP

DIm<cOPY

%COPY10
11
12
13
1
i s
SU': :U: 38

(I

1
2
3
.it
5
6
7
B
9
10
1:1.
1z
1 r,

1 't
1

•t

o DO I 90 lK
DUP DUP RDIN WRTO
9 (I + • lOOP ;
CR MSl CR 8

SCF.: =B: 39
o ( ASSEMBLER =-
1

IN FOF:TH )

2 ( ASSEMBLER COMFORMS TO THE
3 ( f i (,.1 GUIDE" WITH
4 ( THE FOllOWING EXCEPTIONS:

6 ( SHIFTS "XX)(. FOF.:
7 ( ::;HIFTS.



8 CONDITIONAL BRANCHES ARE
9 PATTERNED AFTER THE BRANCH OP-
10 CODES: "IFEQ, II IS USED IN-
11 OF II 0= IF, II FOR
12 CLARITY. SEE SCREEN 43.
13
1"f
15 -->

41: 't 0
o (
1
2 VOCABULARY ASSEMBLER IMMEDIATE
3

r:::"

6 CODE [COMPILEJ ASSEMBLER
7 CREATE SMUDGE
8
9 ASSEM8LER DEFINITIONS
10
11 : S8 {BUILDS C, DOES> @ C, ;
12 ( SINGLE BYTE OPERATORS)
13
1 't
15 -->

:ft: 41
o ( ASSEMBLEr<
1.

..

't 4C 3E:Y
5 Z 0 3E:Y clSI':,
6

00 SE: E:I':I< , 18 SE: ClC, 08 SE: CL.D,
ss SE: CLI, 88 SE: Cll) , SE: DEX,
88 SE: OEY, E8 SE: INX, C8 SE: INY,
EA S8 NOP, "fS SE: PI··If.) , 08 SE: F'I-IF' ,
68 SE: , 28 SE: PLP, 40 SE: F:TI,
60 SE: FaS, as SE: SEC, F8 B8 SED,
78 SE: SEI, SE: rr,x , SA SE: TSX,
8A SE: rxo , <fA B8 , QC' SE: TY(.I,'

OA BE: SE: F:Ol. (.1 ,
ItA SE: LSF( • (.1 , 6A SE: •

NOT 0'-' ( L.OGICr-ll.-
0= 1. + PUSH A TFWE ) _._>,

:D: ,(t2

2
3
4
5
6
7
B
9
10
11
12
1 :l
1. ',1
15

BCR
o
1
2
3

7

3E:Y {E:UILDS C, DOES> @ C,

6C 3E:Y JMF' ( ) ,

•, ,

9 IF. {BUILDS C, DOES> C@ C, 0
10 C, HERE;
11 THEN, OUP HERE SWAP - OUP
12 7F > ?ER5 DUF -80 { ?ER5
13 SWAP -1 + C' ; IMMEDIATE
14 ENDIF, [COMFILEJ THEN, : IMMEDIATE
1

sC :n: "i. 3
o (
·1
.1.



Z 30 IF. IFF'L. ( DPL
3 10 IF. IFMI t ( DMI
"t 70 IF. IFt.,JC. (:VC
5 50 IF. IF\,..'S. E:\,..'S
6 E:O IF. IFCC. DCC
7 90 IF. IFCS t DCS
El FO IF. IFNE. E:NE

ff 9 DO IF. IFEQ.
10
11 BEGIN. HEF,E • IMMEDIATE•12 END. IF DO ELSE FO THEN C.
13 HEF,E 1+ - DUP
14 ·-80 <: ?EF,:':j C. · IMMEDIATE•1"'· UNTIL. [COMPILE] END. • IMMEDIATE ._->•
SCF, :JI: 44
o ( ASSEME:LEF,
1
2 OD VARIABLE MODE ADS. MODE)
3
4 MODE= MODE @ - ; ( CK MODE
5 256< DUP 100 ( HEX) U< ;
6 MODEFIX 256< IF -08 MODE +!
7 THEN ;
8 ( MODE=MODE-8 IF ADR<256
9 CKMODE MODE= IF MODEFIX
10 THEN ;
11 MO <DUILDS C. DOES> SWAP
12 OD CKMODE 10 CKMODE SWAP
13 C@ MODE @ OR C. 256< IF
14 C. ELSE • THEN 00 MODE !
15 DECIMAL 46 LOAD ;S

SCF, :JI: 45
o E: j T
1
2 APX-20029ig-FORTH 1.1 Rev. L. 3 J

7
B
9
10
11
12
1 r,
1/.t
1

:JI: 46
0 ( ASSEME:LEF,
1 HEX
2 X) 01 MODE [PlODF-:. X]
3 :jJ: 09 MODE IMMEDIATE
4 )y 11 MODE Y
5 .X ID r10DE ADDI::':. X
6 .y 19 MODE •Y
7
8
9 00 MO • 20 MO • 40 MO t
10 60 MO ADC. 80 MO STt'; t AO MO t
11 CO MO CMP. EO MO SDC t
12
1 . E:1T. c:- I ." IF rr a C• C. ELSE.:> • 4 • ..JO···. '-. I

1-1 2C C t THEN ·t •



15 -->

SCR • 47
o ( ASSEMBLER
1

OVER 100 < IF F7 AND
THEN ;

XYMODE MODE @ 19 = MODE @ 10
= OR ;

Ml <BUILDS Ct DOES> C@ MODE @
lD = IF 10 ELSE 0 THEN OR
ZPAGE SToREADD ;

SToREADD Ct 256< IF Ct ELSE t

THEN OD MODE !

ZPAGE5

2
3

6
7
8
9
10
11
12
13 DE Ml ASL t 2E Ml ROL t Ml LSR,
14 6E Ml RoR t CE Ml DEC t EE Ml INC,
15

AC M2 LDY, AE M2 LDX t
CC M2 CPY, EC M2 CPX,

· M3 <BUILDS Ct DOES> oPCoDE•
SToREADD

8C M3 STY, 8E M3 STX,

SCR f 48
o ( ASSEMBLER
1
2 oPCoDE C@ ZPAGE XYMoDE IF 10
3 OR THEN ;

M2 <BUILDS Ct DOES> oPCoDE
5 MODE @ 9 = IF - THEN
6 STOREADD ;
7
8
9
10
11
12
13
14
15

• 49( END OF ASSEMBLER

FORTH DEFINITIONS

LATEST DC +ORIGIN NTOP )

HERE 1C +oRIGIN FENCE

HERE 1E +oRIGIN DP )

6
7
8
9
10
11
12
13
14
15 BASE ! ;s

2
3

SCR
o
1

SCR • 50
o ( COLOR COMMANDS
1 BASE @ HEX
2 SETCoLoR 2. SWAP 10 • OR SWAP
3 02C4 ( CoLPFO ) + CI
4 SE. SETCOLOR (ALIAS)

6 REGISTERt-3 t COLoR-2, LUM-l
7
8 0-3 O-F 0-7



9
10 -- ..:.
11
12 .
13
14
15

--:>

-_.>

-->

XGR &GR 0 GR. &GR
EXIT GRAPHICS MODE

XSAVE STX, * 30 LDX,
I C LOA, IOCX 2 +
,X STA, CIO JSR,
XSAVE LOX, 0 I LOA,
GFLAG STA, NEXT JMP,

COOE CPUT 0 ,X LOA, PHA,
XSAVE STX, I 30 LDX,
t B LOA, IOCX 2 + ,X STA, TYA,
IOCX 8 + ,X STA, IOCX 9 + ,X
STA, PLA, CIO JSR, XSAVE LOX,
POF' JMP,

CODE &GR

54 CONSTANT ROWCRS
55 CONSTANT COLCRS

: POS ROWCRS C! COLCRS
: PLOT POS CPUT ;

CODE GR. 1 I LOA, GFLAG STA,
XSAl..-'E STX, 0, X

I 30 LOX, IOCX DB + ,X STA,
I 3 LOA, IOCX 2 + ,X STA,
SNAME FF AND * LOA, IOCX 4 + ,X
STA, SNAME 100 I I LOA,
IOCX 5 + ,X STA, MASK LOA,
IOCX OA + ,X STA, CIO JSR,
XSAVE LOX, 0 * LOY, POP JMP,

=II: 53
( 110 )

I 52
( GRAPHICS COMMANDS )

:JI: 51
( GRAPHICS COMMANDS
[456 CONSTANT CIO
lC VARIABLE MASK
340 CONSTANT IOCX
53 VARIABLE SNAME

• SCF,
0
:I.
"...
3
4
e-

6
7
8
9
10
11
12
13
14
15

SCF,
0
1
2
3
4
5
6
7
8
9
10
11
1 r»...
13
l.1t
1

SCF,
0
1,.,
4-

3
4
5
6
7
8
'?
10
1:1.
12
1s
ltt
15

SCFo: t 54
o GRAPHICS I/O )
1
2 GTYPE -DUP IF OVER + SWAP



3 DO I C@ CPUT LOOP ELSE
DFWP ENDIF t

5
6 (Gil) COUNT DUP 1+ F(> + >F,
7 GTYPE ;
8
9 Gil
10
11
12
13
1 it
15 --->

22 STATE @ IF COMPILE (Gil)
WORD HERE C@ 1+ ALLOT
ELSE WORD HERE COUNT GTYPE
ENDIF ; IMMEDIATE

..

scr, :D: 55
o ( DRf;W t FIL )
1
2 2FB CONSTANT ATACHR
3 2FD CONSTANT FILDAT

5 CODE GCOM
6 :ft: 30 LDX t
7 CIO JSF't

XSAVE STXt 0 tX LDA t
IClCX 2 + .x sr«,
XSAVE LDX t POP JMPt

8
9 DRAW POS ATACHR C! 11 GCOM
10
11 FIL FILDAT C! 12 GCOM
12
1
14 BASE ; S
15

SCR :JI: :;'i6
o SOUND COMMANDS )
1 BASE @ H.EX
2
3 D208 CONSTAN"r AUDCTL
q 0200 CONSTANT AUD8ASE
5
6 SOUND (CHt FREQ DIST VOL --- )
7 3 DUP OD20F CI 232 C!
8 SWAP 16 * + ROT DUP + AUDBASE +
9 FWT OVEr, C I 1+ C! ;
10
11 FILTEf:: ! AUDCTL C! ;
12 (N )
13
1 it
1 s ! ;!3

SCF: :0:
o
1
2
3
it

57
GF:M'HICS rasr s )

BOX 0 10 10 PLOT 1 50 10 DF,AW
1 50 ,?C:- 1 10 25... ...J

1 10 10
5
6 F80X XGR 5 GR. BOX
7 10 25 POS 2 FIL ;

1U
1:1. .
1 's.:
1"',
14



15

0
1
'-
3

• 4
5
6
7
8
9
10
11
12
13
14
15

SCF.:
0
1
L.

3
-4
C'
...J

6
7
8
9
10
11
12
1.:>
1Lt
i s

0
1
2
3
-4
5
6
7
8
9
10
11
12
13
14
15

SCF;:
0
1
2

Lt
C'
...!
i.

7
8

:JI: 58
( DOS 08JECT READER )

E:ASE @ HEX

o VARIABLE BLOCKt 0 VARIABLE 8YTES 0 VARIABLE 8YTPTR
o VARIA8LE ADDRSS 0 VARIABLE tBYTES
GETCOUNT 7F + C@ 7F AND BYTES 0 BYTPTR ;
FNEXTBLK 7D + DUP C@ 10e SWAP 1+ C@ + 3FF AND 1 -
LINK8LCCK FNEXTBLK
DUP BLOCK. ! DUP 0 > IF 8LOCK THEN ;
BLK-CK BYTES @ 0= IF BLOCK. @ BLOCK LINKBLOCK
GETCOUNT THEN ;
NEXTBYTE BLK-CK -1 BYTES +! BYTPTR @ 1 BYTPTR +!

BLOCK. @ 8LOCK + C@ ;
: NEXTWORD NEXTBYTE NEXTBYTE 100 * +
-->

:fI: 59
( DOS 08JECT READER

ADRCALC NEXTWORD DUP ADDRSS NEXTWORD SWAP - 1+ tBYTES

BLOCKSET DUP BLOCK. ! BLOCK GETCOUNT :

LOADOE:J BLOCI<SET NEXTWClRD 1+ IF CR • II Not an Db j ect f i 1 II

CF;: QUIT THEN
E:EGIN

ADRCALC
IBYTES @ 0 DO NEXTBYTE ADDRSS @ C! 1 ADDRSS LOOP
BLOCK. @ BLOCK FNEXTBLK

1+ 0= BYTES @ 0= AND END;

:U: 60
( FLOATING POINT WORDS )

(!! HEX
FDROP DROP DROP OROP :

: FDUP >R >R DUP R> DUP ROT
SWAP R ROT ROT R>

CODE
XSAVE STX, 6 LDY,

BEGIN, 0, X L.DA, PHA, INX, DEY,
0= END, XSAVE LOX, :JI: 6 LDY,
E:EGIN, 6 , X LOA, 0, X STA, I NX,
DEY, 0= END, XSAVE LDX, I 6 L.DY,
BEGIN, PLA, OB ,X STA, OEX, DEY,
0= END, XSAVE LDX, NEXT JMP,

XSAVE 100 * 86 + CONSTANT XSAV
XS, XSAV, --,,:'

:II: 61
( FLOATING POINT WORDS )
CODE FOVER DEX, OEX, OEX,
DEX, DEX, DEX, XSAVE STX,
:JI: 6 LOY, BEGIN, DC,X L.DA,
o ,X ST(1, INX;, DEY, 0::: END,
XSAVE LOX, NEXT JMP.

XSAVE 100 * A6 + CONSTANT XLO
: XL, XLO



9
10 CODE AFP XS t 0800 JSR, XL, NEXT JMP,
11 CODE FASC XS, D8E6 JSR, XL, NEXT JMP,
12 CODE IFP XS, D9AA JSR, XL, NEXT JMP, --}

13
14
15

SCR t 62
o FLOATING POINT WORDS )
1
2 CODE FPI XS, 0902 JSR, XL, NEXT JMP,
3 CODE FADD XS, DA66 JSR, XL, NEXT JMP,
1 CODE FSUB XS, DA60 JSR, XL, NEXT JMP,
5 CODE FMUL XS, DADB JSR, XL, NEXT JMP,
6 CODE FDIV XS, OB28 JSR, XL, NEXT JMP,
7 CODE FLG XS, DECO JSR, XL, NEXT JMP,
8 CODE FLG10 XS, DEDl JSR, XL, NEXT JMP,
9 CODE FEX XS, DDCO JSR, XL, NEXT JMP,
10 CODE FEX10 XS, DDCC JSR, XL, NEXT JMP,
11 CODE FPOLY XS, 0010 JSR, XL, NEXT JMP,

13
11
15

SCR • 63
o ( FLOATING POINT WORDS )
1
2 04 CONSTANT FRO
3 EO CONSTANT FR1
4 FC CONSTANT FLPTR
5 F3 CONSTANT INBUF
6 F2 CONSTANT CIX
7
8
9
10
11
12
13
14
15

SCR • 64
o ( FLOATING POINT
1
2 F@ >R R @ R 2+ @ R> 4 + @ ;
3 F! >R R 4 + ! R 2+ ! R> ;
4
5 F.TY BEGIN INBUF @ e@ DUP
6 7F AND EMIT 1 INBUF +1
7 80 > UNTIL
8
9
10 F. FRO F@ FSWAP FRO F! FASC
11 F.TY SPACE FRO F!
12 F? F@ F. ;
13
14 --}
15

SCR • 65
o FLOATING POINT )
1

•

<F FRl F! FRO FI



0= ;
F- FO= ;
F- DROP DROP 80 AND 0 >

3 F> FRO F@ •t
4 FS FRO F! .t
'5
6 F+ <F FADO F'".....
7 F- <F FSUJ:: F> ·t
8 . FlK <F FMUL F-'" •• . .... t

9 FI <F FDIV F> ·t10 FLOt-IT FF,O ! IFP F-",.. .....

11 FIX FS FF'I FRO @
1-» FLOG FS FLG F> •.... t1r, FLOGlO FS FLG10 r'".:> - ....
l.:'t FEXP FS FEX F> •t
15 FEXP10 FS FEX10 F'" -->....

:JI: 66
o ( FLOATING POINT )
:L
2 ASCF 0 CIX ! INBUF ! AFP F>
3
4 FLIT R> DUP 6 + >R F@ ;
5 FLITERAL STATE @ IF
6 COMPILE FLIT HERE F! 6 ALLOT
7 ENDIF;
8 FLOATING (FLOAT FOLLOWING CONSTANT
9 BL WORD HERE 1+ ASCF
10 FLITERAL; IMMEDIATE
11 (EX: FLOATING 1.2345 )
12 (OR FLOATING -1.67E-13
13
11 FP [COMPILE] FLOATING
15 IMMEDIATE -->
SCR :II: 67
o ( FLOATING POINT
1
2. FVAFUA8L.E
3 <BUILDS HERE F' 6 ALLOT DOES> ;
1
5
6 <BUILDS HERE F! 6 ALLOT DOES>
7 F@;
8
: FO=

10 : F=
11 F<
12
13
l.:'t
15 BASE

SCF;: :II: 6B
o
1
2
3
1
e-

6
7

9
10
11
12
i s
1 it

• C't ;:)



:fI: 69
o ( FORTH INC.'S EDITOR)
1
Z This editor was written S.H. Danielt in DIMENSIONS,
3 VoluMe III, nUMber 3.

5 ( The change was to Make tIle cursor a "block" for higher
6 P. 9/29/81
7
8 -->
9
10
11
12
13
1 it
15

SCf.: :0: 70
o FORTH INC.'S EDITOR)
1
2 BASE @ FORTH DEFINITIONS HEX
3
1 : TEXT HERE C/L 1+ BLANKS WORD HERE PAD C/L 1+ CMOVE ;
5 : LINE DUP FFFO AND 17 ?ERROR SCR @ (LINE) DROP ;
6 VOCABULARY EDITOR IMMEDIATE
7 : WI-IERE DUP B/SCR I DUP SCR ! ." :f: " DECIMAL • SWr;P
8 C/L IMOD C/L * ROT BLOCK + CR C/L TYPE (COMPILE] EDITOR QUIT
9 EDITOR DEFINITIONS
10 ILOCATE R:fI: @ C/L IMOD ;
11 ILEAD .LOCATE LINE SWAP
12 .LAG :fI:LEAD DUP >R + C/L R> - ;
13 -MOVE LINE C/L CMOVE UPDATE ;
11 BUF-MOVE PAD 1+ C@ IF PAD SWAP C/l 1+ CMOVE ELSE DROP THEN
15 >LINE:fI: :fI:lOCATE SWAP DROP; -->

SCF:: :11: 71
o FORTH INC.'S EDITOR
1
2 FIND-BUF PAD 50 + ;
3 : INSERT-BUF FIND-BUF 50 + ;
1 : (HOLD) LINE INSERT-BUF 1+ C/L DUP INSERT-BUF C! CMOVE
5 : (KILL) LINE C/l BLANKS UPDATE ;
6 (SPREAD) >LINEI DUP 1 - E DO I lINE I 1+ -MOVE -1
7 +LOOP OaLU ;
8 : X >LINEt DUP (HOLD) F OUP ROT DO I 1+ LINE I -MOVE
9 LOOP ;
10 : DISPLAY-CURSOR CR SPACE IlEAO TYPE AD EMIT flAG TYPE
11 :fI:LOCATE DROP
12 : T C/l • RI I 0 DISPLAY-CURSOR
13 : l SCR @ lIST
1 it :_ N 1 SCt, +! ;
15 E: --1 SCt, +! ; -->

SCF:: on: 72
o FORTH INC.'S EDITOR)
1
2 <TOP) 0 F-::ft: ! :
3 SEEK-ERROR (TOP) FIND-BUF HERE C/l 1+ CMOVE HERE COUNT TYPE
.if. None" QUIT ;
5 (R) >LINE:fI: INSERT-8UF 1+ SWAP -MOVE
6 P SE TEXT INSERT-BUF BUF-MOVE (R) ;
7 WIPE 10 0 DO I (KIll) lOOP ;
8 COpy B/SCR • OFFSET @ + SWAP B/SCR * BiSeR OVER + SWAP DO OUP



-->

This asseMbler was published in Dr. Dobbs Journal V.6 N.9
( Sept. '81 )

••• and is the asseMbler used in the ·fi<;3 "Installat,iclrI GuidE!, II

FOHTH I BLOCK 2 - ! 1+ UPDATE LOOP DROP FLUSH ;
: llINE IlAG FIND-BUF COUNT MATCH RI +! ;
: (SEan E:EGIN 3FF R:JI: @ <: IF THEN llINE UNTIL
: (DELETE) >R IlAG + R - IlAG R MINUS RI +! ILEAD + SWAP
CMOVE R> BLANKS UPDATE :
(F) 5E TEXT FIND-BUF Bur-MOVE (SEEK) :
F (F) DISPLAY-CURSOR -->

:II: 73
( FORTH INC.'S EDITOR)
(E) FIND-BUF C@ (DELETE)
E eE) DISPLAY-CURSOR ;
D (F) E ;
TILL IlEAD + 5E TEXT FIND-BUF BUF-MOVE llINE IF

SEEK-ERROR THEN ILEAD + SWAP - (DELETE) DISPLAY-CURSOR
o VARIABLE COUNTER
: BUMP 1 COUNTER 1+ COUNTER @ 38 > IF 0 COUNTER ! CR CR
F MESSAGE C EMIT THEN :
: S C EMIT 5E TEXT 0 COUNTER ! FIND-BUF BUF-MOVE SCR @ OUP
>R DO I SCR ! (TOP) BEGIN llINE IF DISPLAY-CURSOR SCR ? BUMP
THEN 3Ff Rt @ <: UNTIL lOOP R> SCR ! :
: I 5E TEXT INSERT-Bur BUF-MOVE INSERT-BUF COUNT ILAG ROT
OVER MIN >R R Rt +t R - >R DUP HERE R CMOVE HERE ILEAD + R>
CMOVE R> CMOVE UPDATE
DISPLAY-CURSOR --?

1+ C/l )l( Fa

ForaH :S

LATEST 12 +ORIGIN !
28 +or\IGIN

HERE 30 +ORIGIN I

, EDITOR 6 + 32 +ORIGIN
HH:E FENCE !
FORTH DEFINITIONS BASE

:jJ: 75
( RAGSDALE ASSEMBLER

U C/l +! P
R (E) I ;
M SCR @ >R RI @ >R >lINEI (HOLD) SWAP SCR

(SPREAD) (R) R> C/l + Ri R> SCR ! ;

:If: 7't
( FORTH INC.'S EDITOR

9
10
11
12
13
14
15

.. SCH
0
1
....
3
.q
5
6
7
8
9
10
11
12
13
1'+
15

SCF::
0
1
-»...
a
.q
5
6
7
8
<t
10
11
1Z:
13
1it
15

0
1
2
3
o;
I

c·
..J

6
7
8
9
10
11
12
13
1it
15

l 7b
o ( RAGSDALE ASSEMBLER
1 VOCABULARY ASSEMBLER IMMEDIATE ASSEMBLER DEFINITIONS BASE @ HEX
2



3 0 VARIABLE INDEX -2 ALLOT 0909 , 1505 , 0115 , 8011 , 8009 ,
4 1000 , 8019 , 8080 , 0080 , , , 8080 , 8080 ,
5 lCOC , 801C , 2C80 ,
6 2 VARIABLE MODE : .A 0 MODE ! ; : I 1 MODE ! ; : MEM 2 MODE
7 : ,X 3 MODE ! : : ,Y 4 MODE ! ; : X) 5 MODE ! ; : )Y 6 MODE
8 : ) F MODE ! ; : BOT ,X 0 ; : SEC ,X 2 ; : RP) ,X 101
9 : UPMODE IF MODE @ 8 AND 0= IF 8 MODE +! THEN THEN
10 1 MODE @ F AND -DUP IF 0 DO DUP + LOOP THEN OVER 1+ @ AND 0=
11 CPU <BUILDS C, DOES> C@ c, MEM ;
12 00 CPU BRK, 18 CPU CLC, D8 CPU CLD, 58 CPU CLI, B8 CPU CLU,
13 CA CPU DEX, 88 CPU DEY, E8 CPU INX, C8 CPU INY, EA CPU NOP,
14 48 CPU PHA, 08 CPU PHP, 68 CPU PLA, 28 CPU PLP, CPU RTI,
15 60 CPU RTS, 38 CPU SEC, F8 CPU SED, 78 CPU SEI, AA CPU TAX, -->

SCr:: :fl: 77
o ( RAGSDALE ASSEMBLER )
1 A8 CPU TAY, BA CPU TSX, 8A CPU TXA, 9A CPU TXS, 98 CPU TYA,
,2 : MCP <BUILDS C, , DOES> DUP 1+ @ 80 AND IF 10 MODE +1 THEN
3 OVER FFOO AND UPMODE UPMODE IF MEM CR LATEST ID. 3 ERROR THEN

C@ MODE C@ INDEX + C@ + C, MODE C@ 7 AND IF MODE C@ F AND 7
5 IF C, ELSE, THEN THEN MEM ;
6 lC6E 60 MCP ADC, lC6E 20 MCP AND, lC6E CO MCP CMP,
7 lC6E 40 MCP EOR, lC6E AD MCP LOA, lC6E 00 MCP ORA,
8 lC6E EO MCP SSC, lC6C 80 MCP STA, ODOD 01 MCP ASL,
9 ocoe Cl MCP DEC, oeoe El MCP INC, 0000 MCP LSR,
10 ODOD 21 MCP ROL, ODOD 61 MCP ROR, 0414 81 MCP STX,
11 EO MCP CPX, 0486 CO MCP CPY, 1496 A2 MCP LOX,
12 OC8E AD MCP LDY, 048C 80 MCP STY, 0480 14 MCP JSR,
13 8480 40 MCP JMP, 0484 20 MCP BIT,
14 BEGIN, HERE 1 ; IMMEDIATE
15 UNTIL, ?EXEC >R 1 ?PAIRS R> C, HERE 1+ - C, IMMEDIATE --)

MEM !CSP ;

I iCODE 8 + ! LATEST 12 +ORIGIN !
! HERE 30 +ORIGIN ! HERE FENCE !
32 +ORIGIN ! BASE ! FORTH ;s

2

78
RAGSDALE ASSEMBLER )
IF, C, HERE 0 C, 2 ; IMMEDIATE
THEN, ?EXEC 2 ?PAIRS HERE OVER C@ IF SWAP ! ELSE OVER 1+

3 - SWAP C! THEN; IMMEDIATE
ELSE, 2 ?PAIRS HERE 1+ 1 JMP, SWAP HERE OVER 1+ - SWAP C!

5 2; IMMEDIATE
6 NOT 20 + i
7 90 CONSTANT CS DO CONSTANT 0= 10 CONSTANT 0< 90 CONSTANT >=
8
9 : END-CODE ·CURRENT @ CONTEXT ! ?EXEC ?CSP SMUDGE ;
10 FORTH DEFINITIONS DECIMAL
11 : CODE ?EXEC CREATE [COMPILE] ASSEMBLER ASSEMBLER
12 IMMEDH-lTE
13 I ASSEMBLER CFA

HERE 28 +ORIGIN
15 I ASSEMBLER 6 +

sen :JI:
o (
1

:II: 79
0
1
"/........:>
4
C'

6
7
c·\ ..'
9
1 I)
11
1 <••
i s
1 I



15

:ft: 80
o TEST SCREEN )
1
2 123 XXX 789 123
3

6
7
8
9
10
U.
12
1
1,q
15

:II: 81
o ( DOS I/O )
1 BASE @ HEX
2 340 VARIABLE IOCB 0 VARIABLE IO.X 0 VARIABLE IO.CH
3 IOCC 10 70 MIN DUP IO.X C! 340 + IOCB
4 <10> <BUILDS t DOES> @ IOCB @ +
5 2 <10> ICCOM 3 <10> ICSTA <10> ICBAL 8 <10> ICBLL
6 A <10> ICAXl B <10> ICAX2 C <10> ICAX3 D <10> ICAX4
7 E <10> ICAX5 F <10> ICAX6
C)u

t

-->

IOCC ICAX2 C! ICAXl C! ICBAL ! 03 ICCOM C! XCIO
IOCC DC lCCOM C! XCIO
IOCC 10.CH C! DB ICCOM C! XCIO ;
Ioec 7 ICCOM C! XCIO IO.CH C@ SWAP

OPEN
CLOSE
r'UTC
CETC

9 CODE XCIO XSAVE STX t IO.X LDX t IO.CH LDA t E456
10 XSAVE LDX t IO.CH STAt TYA t PUSHOA JMP t
11
1'.">
13
1'1'
1

XCID
XCIO

ICBAL
ICBAL2

3
4

DOS I/O )
CETREC IOCC 5 ICCOM C! ICBLL
PUTREC IOCC 9 ICCOM C! ICBLL
STATUS IOCC ICSTA C@ ;
DEVSTAT IDee 00 ICCOM XCIO ZEA @ 2Ee @ R> ;
SPECIAL IOCC ICCOM C! ICAX6 C! ICAX5 C! ICAX4 C! ICAX3 C'

6 ICAX2 C! ICAXl C! XCIO ;
7 : FOR1"IAT CR ." Input Dr i ve :U: II f(EY DUP EMIT 30 _.
8 1 MAX 4 MIN
9 CR ." When hit I'l"l go i ng to II ." T Dr i VE' "
10 DUP • Cf:: ." Hit other to abort "E:EEF' I-(EY
11 98 = IF (FMT) 1 = CR ." ForMat II IF • II Of(" ELSE ."
12 THEN ELSE DROP THEN CR CR ;
13 E:ASE i s

sen :II: B2
o (
1

14
15

L.DX ;.+ t

C' 40 C'
() ::lOB C!

B

302
o 309 !

XSfWE

6
7
B CODE F:ELOCI;TE

3

:ll: 83
(ATARI-850 DOWNLOAD
Bi;SE @ HEX

2 CODE DO-SID
XSAVE STX t 0 t LDA t E459 JSR t
XSAVE LDX t NEXT JMP,
SET-DCB 50 300 C! 1 301 C!
5 306 C! 0 307 C! C 30B CI

o
1



9 NEXT JMF't OC JMF' ( ) t

10
11 : BOOTEl50
12 500 300 OC
13 2E7 @ HEFo:E
1-1 BASE ; S
15

HERE ZE7 SET-OCB
CMOVE DO-SID RELOCATE
- ALLOT HERE FENCE ! ;

DO-SID

SCF: :JI: 84
o
1
'?
L.

6
7
B
9
10
1:1.
12
:I. ::l
14
1 s

NOT 0=21 2 1
5
6
7
s

3
4

2

"STARTING FOF\TH" CHANGES )
BASE @ DECIMAL

VARIABLE 0 VARIABLE ;
'S : SO 18 +OF\IGIN @
1- 1 -; : Z·· Z -; : 2)1{ DUP + ;
I' R> R> R ROT ROT >R >R ;
J R> R> R> R Rt ! >R >R >R Rf. @ ;
PAGE :I. 25 E:MIT ;

VAFGABLE 0 t; : EXIT F(> :H OP ;
2CONSTANT <BUILDS HERE O! 4 ALLOT ODES> O@ ;

10 CREATE VARIABLE -2 ALLOT; : 2@ O@ ; : 2' O!
11 >IN IN: : ILOOP [COMPILEJ LOOP ; IMMEOIATE
12 ['J [COMPILE] , ; : WITHIN >R 1- OVER < SWAP R> < AND
13 NUMPATCH DROP 58 OVER = SWAP 44 48 WITHIN OR NOT
14 NUMFIX' NUMF'ATCH CFA ' NUMBER 52 + ! ; NUMFIX
15 -->

SCF: f. 85
o (
1

SCF;: :0: 86
o ( "STARTING FOF:TH" CHANGES )
1
2 STfHE (r1 IF COMPILE OBF.:ANCH HEF.:E 0 t

3 COMPILE (.") ASCII " WORD HEF.:E C@ 1+
4
5 ALLOT COMPILE QUIT HERE OVER - SWAP !
6 ELSE IF ASCII " WORD COUNT TYPE
7 QUIT THEN THEN ; IMMEDIATE
8
9 E:ASE! ;S
10
11.
12
13
14
i s

SCF.: 87
o ( DOISI< )
1 BASE HEX
2 0 VARIABLE CBLOCK



PFWMPT QUIT

= IF DROP BL THEN

in he:·:: "

" ALL DONE" DECIMALDI:;:OP 7D EMIT
-->
: FQUIT

6
7
8
9

3 : •HEAD 7D EMIT ." Errt e r- BLOCI< nUMber
4 BL WORD HERE NUMBER DROP CR

GBLK .HEAD CR CR CBLOCK ! ;
RBLOCK CBLOCK @ BLOCK DUP BUFF

.H 0 <* t • t> TYPE SPACE ;
DLINE 8 0 DO DUP I + C@ .H LOOP ;

10 C. ON 1 2FE C!; : C. OFF 0 2FE C! ;
11 DCHAR C.ON 8 '0 DO DUP I + C@ DUP 9B
12 EMIT LOOP C.OFF ;
13
lit
15

SCR t 88
o ( DDISI<
1 HEX D.LINE DLINE SPACE DCHAR ;
2 : D. BLOCI< 3 5.{t C!. 2 55 ! • '.' " CBLOCI< @ •
3 80 0 DO I .H DUP I + D.LINE DROP CR 8 +LOOP DROP
4 PBLK CBLOCK +! D.BLOCK
5 +BLOCK 1 PBLK ;
6 -BLOCK -1 PBLK ;
7
B
9 PICK SP@ SWAP 2 + 2+ @ ;
10 CKEY KEY DUP lB = IF FQUIT ELSE DUP 4E = IF +BLOCK ELSE
11 DUP 42 = IF -BLOCK ELSE DUP 98 = IF GBLK D.BLOCK
12 THEN THEN THEN THEN ;
13 : DDISK HEX GBLK D.BLOCK BEGIN CKEY DROP AGAIN
l.{t
15 ! :S





Limited Warranty on Media and Hardware Accessories. Atari, Inc. ("Atari'') warrants to the original
consumer purchaser that the media on which APX Computer Programs are recorded and any
hardware accessories sold by APX shall be free from defects in material or workmanship for a
period of thirty (30) days from the date of purchase. If you discover such a defect within the 3D-day
period. call APX for a return authorization number, and then return the product to APX along with
proof of purchase date. We will repair or replace the product at our option. If you ship an APX
product for in-warranty service, we suggest you package it securely with the problem indicated in
writing and insure it for value, as Atari assumes no liability for loss or damage incurred during
shipment.
This warranty shall not apply if the APX product has been damaged by accident, unreasonable

use, use with any non-ATARI products, unauthorized service, or by other causes unrelated to
defective materials or workmanship.
Any applicable implied warranties, including warranties of merchantability and fitness for a

particular purpose, are also limited to thirty (30) days from the date of purchase. Consequential or
incidental damages resulting from a breach of any applicable express or implied warranties are
hereby excluded.
The provisions of the foregoing warranty are valid in the U.S. only. This warranty gives you

specific legal rights and you may also have other rights which vary from state to state. Some states
do not allow limitations on how long an implied warranty lasts, and/or do not allow the exclusion of
incidental or consequential damages, so the above limitations and exclusions may not apply to
you.
Disclaimer of Warranty on APX Computer Programs. Most APX Computer Programs have been
written by people not employed by Atari. The programs we select for APX offer something of value
that we want to make available to ATARI Home Computer owners. In order to economically offer
these programs to the widest number of people, APX Computer Programs are not rigorously
tested by Atari and are sold on an "as is" basis without warranty of any kind. Any statements
concerning the capabilities or utility of APX Computer Programs are not to be construed as
express or implied warranties.
Atari shall have no liability or responsibility to the original consumer purchaser or any other

person or entity with respect to any claim, loss, liability, or damage caused or alleged to be caused
directly or indirectly by APX Computer Programs. This disclaimer includes, but is not limited to,
any interruption of services, loss of business or anticipatory profits, and/or incidental or
consequential damages resulting from the purchase, use, or operation of APX Computer
Programs.
Some states do not allow the limitation or exclusion of implied warranties or of incidental or

consequential damages, so the above limitations or exclusions concerning APX Computer
Programs may not apply to you.

For the complete list of current
APX programs, ask your ATARI retailer

for the APX Product Catalog



-
•



PROGRAM

po. Box 3705
Sonto Clore. CAQ50SS

Review Form

We're interested in your experiences with APX programs
and documentation. both favorable and unfavorable.
Many of our authors are eager to improve their programs
if they know what you want. And. of course. we want to
know about any bugs that slipped by us. so that the
author can fix them, We also want to know whether our

" Name and APX number of program.

instructions are meeting your needs. You are our best
source for suggesting improvementst Please help us by
taking amoment to fill in this review sheet. Fold the sheet
in thirds and seal it so that the address on the bottom of
the back becomes the envelope front. Thank you for
helping us!

2. If you have problems using the program. please describe them here.

3. What do you especially like about this program?

4. What do you think the program's weaknesses are?

S. How can the catalog description be more accurate or comprehensive?

6. On a scale of 1 to 10.1being "poor" and 10being "excellent". please rate the following aspects of this program:

___ Easy to use
___ User-oriented (e.g.. menus. prompts. clear language)
___ Enjoyable
___ Self-instructive
___ Useful (non-game programs)
____ Imaginative graphics and sound



r=rom

7. Describe any technical errors you found in the user instructions (please give page numbers).

8. What did you especially like about the user instructions?

9. What revisions or additions would improve these instructions?

10. On a scale of 1 to 10. 1 representing "poor" and 10 representing "excellent", how would you rate the user
instructions and why?

11. Other comments about the program or user instructions:

ATARI Program Exchange
P.O. Box 3705
Santa Clara. CA 95055

[seal herej


