a reference manual for

MAC/ 65

a Macro Agsembler and FEditor program for
use with 6502-based computers built by
Atari, Incorporated

The programs, disks, and manuals compriaing
MAC/65 are Copyright {c) 1982, 1983 by
Optimized Systems Software, Inc.
and
Stephen D. Lawrow

This manual is Copyright {c) 1982, 1984 by
optimized Systems Software, Iac.,, of
1173-D Saratoga Sunnyvale Rd.

San Jose, California, 95129
Telephone (468) 446-3099

-

Rev 1. 2

rights reserved. Reproduction or translation of

any part of this work beyond that permitted by sections
187 and 108 of the United States Copyright Act without

the permission of the copyright owner {s unlawful.

e

_PREFACE

MAC/65 is a loglcal upgrade from the 0SS product EASMD

(Edit/ASseMble/Debug) which was itself an outgrowth of
the Atari Assembler/Editor cartridge. Users of either of
these latter two products will find that MAC/6S5S has a
very famillar "feel®. Those who have never experienced
previous 0SS products in this line should nevertheless
find MAC/65 to be an easy-to-use, powerful, and adaptable
progranming environment. While speed was not necessarily
the primary goal in the production of this product, we
nevertheless feel .that the user will be hard pressed to
find a faster assembler asystem in any home computer
market. MAC/65 1is an excellent match for the size and
features of the machines it is intended for.

MAC/65 was conceived by and completely executed by
Stephen D. Lawrow. The current version of MAC/65 is
only the lateat in a serles of increcasingly more complex
and faster assemblers written by Mr. Lawrow following
the lead and atyle of EASMD. As 13 measure of our
confidence {in this assembler, it {is entrusted with
assembling itself, probably a more difficult task than
that to which most users will put {t.

TRADEHARKS

The following trademarked names are used in various
places within this manual, and credit is hereby given:

DOS XL, BASIC XL, MAC/65, and C/65 are trademarks of
Optimized Systems Software, Inc.

Atari, Atari 408, Atari 880, Atar{ Home Computers, and
Atari 850 Interface Module are trademarks of
Atari, Inc., Sunnyvale, CA.

TABLE OF CONTENTS

Introduction
Start Up
Warm Start
Syntax

Chapter 1 -- The Editor
1.1 General Editor Usage
1.2 TEXT Mode
1.3 EDIT Mode

Chapter 2 ~- Editor Commands
2.1 ASM Agssemble
2,2 BLOAD Binary Load
2.3 BSAVE Binary Save

\ 2.4 BYE.

2.5% jolok Use DDT Debug Program
2.6 DEL Delete lines
2.7 DOS exit to DOS
2,8 ENTER Enter an ATASCIT file
2.9 FIND Find a Text String
2,10 LIST List program in memory
2.11 LOAD Load a SAVEd program
2,12 LOMEM establish new LOMEM
2.13 NEW Clear All Text
2.14 NUM Automatic Line Numbering
2,15 PRINT (without line numbers)
2.16 REN Renumber lines
2.17 REP Replace Text String
2.18 SAVE save MAC/65 Source
2.19 SI1ZE Ask About Memory Usage
2,28 TEXT Use TEXTMODE
2.21 ? Hex/Decimal Convert

CHAPTER 3 -~ The Macro Assembler
3.1 Asscmbler Input
3.2 Instruction Format
3.3 Labels
3.4 Operands
3.5 Operators
3.6 Aasembler Expressions
3.7 Operator Precedence
3.8 Numeric Constants
3.9 Strings

Sonwn WNN -

Chapter 4 -~ Directives

H;W@HO‘U"UNF‘

LR R I N G G
® % 4 & ¢ a a s ® o o

-

4.12

4.16

Chapter

DOV N r

.
"

Chapter

Chapter

5
5
5
5
5
5
]
5
L]
Chapter 6 -- Compatibility
6
7
7
7
7
8
[:]
8
8

tu (and .ORG)

= (and .EQU)
-

«BYTE {(and .SBYTE)
+CBYTE :
+DBYTE

+DS

+ELSE

+«END

+ENDIP R

+«ERROR

« FLOAT

«IP

+« INCLUDE

+« LOCAL

.OPT

«PAGE

+SBYTE (see also .BYTE)
+8ET

«TAB

+TITLE

+«WORD

-=- Macro Facility

« ENDM

«MACRO

Macro Expansion, part 1}
Hacro Parameters

Macro Expansion, part 2
Macro Strings

Some Macro Hints

A Complex Macro Example

Atari's Cartridge

-= 65C82 Instructions

Major Added Addressing Mode
Variations on 6502 Instructions
New 65C02 Instructions

- Programming Techniques

Memory Usage by MAC/65 and DDT
Assembling With Offset: .SET 6
Making MAC/65 Even Paster

Appendix A -- System Equates Listing

Appendix B -~ Sample Macro Listings

Appendix C ==~ Error Descriptions

Fan

INTRODUCTION

This manual assumee the user is familiar with assembly
language. It is not {ntended to teach assembly
language., This manual is a reference for commands,
statements, functions, and ayntax conventions of MAC6S
It is also assumed that the user is familiar with the
acreen editor of the Atari computer. Consult Atari's
Reference Manuals if you are not familiar with the
screen editor.,

If you need a tutorial level manual, we would recommend
that you ask your local dealer or bookstore for
suggestions.

Although we are hesitant to suggest ANY of the books
currently avallable (because they do not addreas Atari
Computers properly), two books that have worked well
for many of our customers are "Machine Language for
Beginners” by Richard Mansfield from COMPUTE} books
and "Programming the 6562" by Rodney Zaks.

This manual. {s divided into two major sections. The
first two chapters cover the Editor commands and
syntax, source line entry, and executing source program
assembly. The next three chapters then cover
instruction format, assembler directives, functions and
expressions, Macros, and conditional assembly.

Note that DDT~-the Dunion Debugging Tool--is described
in a separate manual section, which follows this MAC/65
manual,

MAC6S is a fast and powerful machine 1language
development tool. Programs larger than memory can be
assembled, MAC65S also contains directives specifically
designed for screen format development. With MAC6ES's
line entry syntax feature, less time is spent
re~assembling programs due to assembly syntax errors,
allowing more time for actual program development.

-n)en

;“)

o o [“‘M«l H" Nl” 'l' |

START UP

Simply turn off the power to your computer and insert
your MAC/65 cartridge (in the left cartridge slot {f
using an Atari 800 Computer).

If you are uasing a disk drive, insert an appropriate
DOS boot disk (e.g., DOS XL or Atari DOS) into drive 1
and be sure the drive's power is on.

Turn on your computer, If you have a drive with a
proper diskette inserted, DOS will boot, Depending
upon the version and kxind of DOS you have, you may find
that you need to give a command to DOS in order to
enter the MAC/65 cartridge, If so, enter the command.

You should be presented with MAC/65's name and
copyright 1lines and an “EDIT" prompt. If not consult
your hardwara and/or DOS manuals and try again.

You are now ready to begin using MAC/65.

WARM START

The user can exit to DOS XL by entering the MAC/6S
command DOS (followed bYby [RETURN]}, of course). To
return to MAC/65, the user can use the DOS XL command
CAR [RETURN] (or menu command ‘T'}).

Unless you have used certain extrinsic commands, DOS XL
will return to MAC/65 via a "warm start™ (i.e., without
clearing out any source lines in memory). Consult your
DOS XL manual for details.

Generally, when using Atari DOS, MAC/65 works much like

any other cartridge, The MAC/65 "DOS" command will
exit to Atari DOS, and the Atari DOS "B" command will
return to MAC/6S. If you use a MEM,SAV file, your
MAC/65 program should stay intact. See your Atari DOS
manual for details.

L .

C N

SYNTAX

The following conventions are used in the syntax
descriptions in this manual:

1. Capital lettera designate commands, instructions,
functions, etc., which must be entered exactly as shown
(e.g., ENTER, .INCLUDE, .NOT). (But see NOTE below.)

2. Lower case letters specify items which may be used.
The varioues types are as followa:

ino - Line number between 6-65535, inclusive.

hxnum = A hex number. It can be address or
data. Hex numbers are treated as
unsigned integers.

denum ~ A positive number. Decimal numbers
are rounded to the nearest two byte
unsigned integer; 3.5 is
rounded to 4 and 1066.1 to 100.

exp - An assembler expression.

string - A string of ASCII characters
enclosed by double quotes (eg.
"THIS 1S A STRING").

strvar -~ A string representation. Can be a
string, as above, or a string variable
within a Macro call (eg. 1$1).

filespec ~ A string of ASCII characters that

OR refers to a particular device. See

file device reference manual for more
specific explanation.

3. 1Items in square brackets denote an optional part of
syntax (eq. (,1n0l). When an optional item is
followed by (...) the item(s) may be repsated as many
times as needed.

- Example: .WORD exp [,exp ...)

4. Items in parentheses indicate that any one of the
items may be used , eg. (,0) (,A).

NOTE: MAC65 in EDIT mode is NOT case sensitive.
Inverse video characters are uninverted. Lower case
letters are converted to upper case, EXCEPTIONS:
characters between double quotes, following a single
quote, or in the comment fileld of a MAC6S source line
will remain unchanged.Text entered in TEXT mode,
though, will not be changed.

S Y

--=this page intentionally left blank--

o

@

CHAPTER 1: THE EDITOR

The Editor allows the user to enter and edit MAC/6S
source code or ordinary ASCII text files.

To the Editor, there {s 2 real distinction between the
two types of files; so much s0 that there are actually
two modes accessible to the user, EDIT mode and
TEXTMODE. However, for either mode, source code/text
must begin with a 1line number between & and 65535
inclusive, followed by one space.

Exampless 1€ LABEL LDA §$32 .
3020 This is valid in TEXT MODE

The first example would be valid in either EDIT or
TEXTMODE, while the second example would only be valid
in TEXTMODE.

The user chooses which mode he/she wishes to use for
editing by selecting NEW (which chooses the MAC/65 EDIT
mode) or TEXT (which allows genersl text entry). There
is more diacussion of the impact of these two modes
below; but, first, there are several points {n common
to the two modes.

1.1 GENERAL ED1TOR USAGE

The source file is manipulated by Editor commands.
Since the Editor recognizes a command by the absence of
a line number, a line beginning with a line number is
assumed to be a valid source/text line., As such, it is
merged with, added to, or inserted into the source/text
lines already in memory in accordance with its line
number. An entered line which has the same line number
as one already {in memory will replace the line in
memory.

.

2

Also, as a special case of the above, a source line can
be deleted from memory by entering its 1line number
only. (And 2lso see DEL command for deleting a group
of lines.)

Any line that does not start with a 1line number {is
assumed to be command line. The Editor will examine
the line to determine what function is to be performed,

If the line is a valid command, the Editor will execute

the command. The Editor will prompt the user each time
a command has been executed or terminated by printing:

EDIT for syntax (MAC/65 source) mode
TEXTMODE for text mode

The cursor will appear on the following 1line. Since
some commands may take a while to execute, the prompt
signals the user that more input is allowed. The user
can terminate a command before completion by hitting
the break key (escape key on Apple II).

And one last point: If the line is neither a source
line or a valid command. The Editor will print:

.

WHAT?

1.2 TEXT MODE

The £Erditor supports a text mode. The text mode is
entered with the command TEXT. This mode will NOT
syntax check lines entered, allowing the user to enter
and edit non-assembly languaga files. All Editor
commands funtion in text mode.

Remember, though, that all text lines must begin with a
line number; and, even in TEXTMODE, the space following
the line number is necessary.

-

¢

1.3 EDIT MODE

- o - - o

MAC/65 {e nearly unique among assembler/editor systems
in that it allows the assembly language user to enter
source code and have it IMMEDIATELY checked for syntax
validity. Of course, since assembly language syntax is
fairly flexible {especially when macros are allowable,
as they are with MAC/65), syntax checking will by no
means catch all errors in user source code. For
example, the existence of and validity of labels and/or
zero page locations is not and can not be checked until
asgembly time. However, we still fecl that this syntax
checking will be a boon to the beginner and experienced
programmer alike.

Again, remember that source lines must begin with a
line number which must, in turn, be followed by one
space. -Then, the sccond space ufter the line number is
the label column. The label must start in this column.
The third space after the 1line number is the
instruction column. Instructions may either start {n
at least the third column after the line number or at
least one space after the label. The operand may begin
anywhere after the instruction, and comments may begin
anywhere after the operand or instruction. Refer to
Assembler Section for specific instruction syntax.

As noted, the Editor syntax checks each source line at
entry. If the syntax of a line is in error, the Editor
will 1liet the 1line with a cursor turned on (i.e., by
using an inverse or blinking character) at the point of
error.

The source lines are tokenized and stored in memory,
starting at an addremss in low memory and building
towards high memory. The resultant tokenized file is
60% to 00t smaller than {ts ASCII counterpart, thus
allowing larger programs to be entered and edited in
memory.

SPECIAL NOTE: If, upon entry, a source line contajins a
syntax error and is so flagged by the Edltor, the 1line
is entered into Editor memory anyway. This feature
allows raw ASCII text files {(possibly from other
assemblers and posaibly containing one or several
syntax errors as far as MAC/65 {is concerned}) to be
ENTERed into the Editor without losing any lines. The
user can note the lines with errors and then edit them
later.

A

~-=this page intentionally left blank==-

N

CHAPTER 23 EDITOR COMMANDS

This chapter lists all the valid Editor-level commands,
in alphabetical order, along with a short description
of the purpose and function of each.

Again, remember that when the "TEXTMODE® or "EDIT®
prompt is present any input line not preceded by a line
number is presumed to be an Editor command.

If in the process of executing a command any error is
encountered, the Ed{tor will abort execution and return
to the user, displaying the error number and
descriptive message of the error before re-prompting

the user. Refer to Appendix for possible causes of
errors,

~eQem

e

Section 2,1 ' : S
edit command: ASM

purpose 1 ASseMble MAC/65 source files

usages AsM [0£i1e1],[#£41e2),[#£12e3), P£11e4]

ASM will assemble the specified source file and
will produce a listing and object code output; the
listing may include a full cross reference of all
non~local labels., Filel is the source device,
file2 {s the list device, filel s the object
device, and filed4 {s a temporary file used to help
generate the cross reference listing.

Any or all of the four filespec's may be omitted,
in which case MAC/6S assumes the following default
filespec(s) are to be used:

filel - user source memory.

file2 - mcreen editor,

file3 - memory (CAUTION: see below)

file4 - none, therefore no cross reference

A filespec (#filel, ifile3, etc.) can be omitted
by substituting a comma {in which case the N\
respective default will be used, !

Por the listing file ONLY, you ﬁay use the special

form "§-" to {indicate that ou 4o NOT t
listing !iie at all. Y vant e

Some Examples:

- s > o

Example: ASM #D2:1SOURCE, §D3LIST, $D210BJECT

In this example, the aource will come from
D21S0URCE, the assembler will 1list to D:LIST, and
the object code will be written to D2:1OBJECT.

Example:t ASM #D:1SOURCE , , #DiOBJECT

In this example, the source will be read from
DiSOURCE and the object will be written to

D:OBJECT. The assembly listing will be written to
the screen.

Examples " ASM , #P: , , IDITEMP

In this example, the source will be read from

memory, the object will be written to memory (bit

ONLY if the *".OPT OBJ" directive is in tha /’\\
source), and the assembly listing will be written

to the printer along with the complete label cross

reference. The file TEMP on disk drive 1 will be

created and used as a temporary file for the cross

reference.

[Y. .

o

Example: ASM #D:SOURCE , #P:

In this example, the source will be resd from
D31SOURCE and the assembly listing will be written
to the printer. If the ".OPT OBJ" directive has
been selected in the source, the object code will
be placed in memory.

Example: ASM ,#-

This produces what is probably the fastest
possible MAC/65 assembly, Source code is read
from memory and no listing is produced (because of
the “§-*). If your program does not contain a *
.OPT OBJ" 1line, thls becomes what is essentially
simply an error checking assembly. {Though even
if you ARE producing object code, the assembly
speed is extremely fast.)

SPECIAL NOTES

Notes 1If assembling from a "filespec", the source
MUST have been a SEAVEd file.

Note: Refer to the .OPT directive for apecific
information on assembler 1listing and object
output.

Note: The object code file will have the format of
compound files created by the DOS XL SAVE command.
See the DOS XL manual for a discussfon of LOAD and
SAVE file formats.

Note: You may use #C: as a device for the listing
or object files. You may NOT use #Ct for the
source or cross reference files (thus implying
that you may not get a cross reference unless you
have a disk drive). HOWEVER, we do not recommend
using the cassette 2as the object file device,
since you may get sn excessively long leader tone
(which will be difficult to re-BLOAD later).
Instead, we suggest using BSAVE {after assembling
directly to memory) whenever practicable.

ce]le=

@ | @

VRN N
Section 2.2 Section 2.4
edit command: BLOAD edit command: BYE
purposes allows user to LOAD Binary (memory image) purposes exit to system monitor level
files from disk into memory
usaget BYE
usages BLOAD #filespec
BYE will send you to the Atari Memo Pad or your
The BLOAD command will load a previously BSAVEd computer's buflt 4in diagnoatics, depending on
binary file, an assembled object file, or a binary which model of computer you have.
file created with 0S/A+ SAVe command,
Example: BLOAD #DyOBJECT
This example will load the binary file "OBJECT" to
memory at the address where it was previously
saved from or assembler for. Section 2.5
Example: BLOAD #C: edit command: DDT
This example will load a binary file from casmette. purpose; enter the DDT debug package which is
part of the MAC/65 cartridge.
CAUTION: it ie suggested that the user only BLOAD])
files which were assembled into MAC/65's free area ™ —~~ usages . pDT
(as shown by the SIZE command) or which will load . ! *
into known safe areas of memorys. Once you have entered this command, DDT is entered
and as has control of the system.
However, DDT saves enough of MAC/65's vital memory
that, if you follow certain simple rules, you may
Section 2.3 . return to MAC/65 from DDT with your source program
——————————— still intact.
edit command: BSAVE :
4 The DDT manual gives more information on this
purposet SAVE a Binary image of a portion of subject, but as a general guide you must avoid
memory. Same as OS/A+ SAVE command. locations $88 through $AF {in zero page) and the
- memory locations located within the bounds
usages BSAVE {filespec ¢ hxnuml ,hxnum2 ‘ displayed by the SIZE command.
The BSAVE command will save the memory addresses See the DDT manual (which is bound with but after
from hxnuml through hxnum2 to the specified this MAC/65 manual) for many, many more details.
device. The binary file created is compatible
with the OS/A+ SAVe command.
rxample: BSAVE #Di10BJECT<5200,5180 .
This example will save the memory addresses from
$5808 through $5188 to the file “OBJECT".
Example: BSAVE #Ci < 5009,5108 N ~
This example saves the same memory to cassette. . ww]e=

-n]2ee

i

N
Section 2.6
———————— . Section 2.8
edit command: DEL Tomese e
edit command: ENTER
purpose: DELetes a line or group of lines from
the source/text in memory. purpose;: allow entry of ASCII {(or ATASCII)
: text files into MAC/65 editor memory
usage: DEL 1nol 1no2
9 C.] ; usaget ENTER #filespec [(,M) (,A)]
DEL deletes source lines from memory. If only one !
1no is entered, only the line will be deleted. 1If 1 ENTER will cause the Editor to get ASCII text from
two 1lnos are entered, all 1lf{nes between and the specified device. ENTER will clear the text
including 1nol and 1no2 will be deleted, . area before entering from the filespec. That s
. any user program is memory at the time the ENTER
Note: 1lnol must be present in memory for DEL to ‘ command is given will be erased. ‘
execute,
The parameter *M" {MPRGE) will cause MAC/65 to NOT
Exampless clear the text area before entering from the file,
DEL 108 deletes only line 108 text entered will be merged with the text in
DEL . 208, 1300 deletes lines 280 thru memory. If a line {e entered which has the same
1300, inclusive line number of a2 line in memory, the line from the
device will overwrite the line in memory.
The parameter "A" allcws the user to enter
. un-numbered text from the specified device. The
Section 2.7 ' e N Editor will number the incoming text starting at
cememn————— . . line 108, in {increments of 10.
edit commands DOS or, equivalently, CP
! (o1 Y] CAUTION: The "A" optfion will always clear the text
purposet exit from MAC/65 to DOS. . area before entering from the filespec. You may
NOT use "M" in conjunction with the "A"™ option.
usages bos
or .
cp i

Either DOS or CP returns you to DOS. If you .
booted an Atari DOS disk, you will be returned to

the Atari DOS menu, If you booted DOS XL, you

will be returned to either the DOS XL menu or CP |
{Command Processor), depending upon which was
active when you entered MAC/6S.

See also the Introduction to tﬁi- manual for more
information on Cold Start and Warm Start as it
applies to MAC/65 and the DOS command.

—14-- ——15en

— s g

Lo

Jir

".
Section 2.9
edit command: FIND
se to FIND a string of characters somewhere
parposet in MAC/65's editor buffer.
usages ' FPIND /string/ [inol [,1no2 3 1 [,A)
he
The PIND command will search all lines in memorz or t
specified 1line(s) (1nol through lno2) for the string”
given between the matching delimiter. The delimiter
may be any character except a space. Xf a match is
found, the line containing the match will be listed to
the screen.
Note: do NOT enclose a string in double quotes.
Exampler FIND/LDX/
Thi-.example will search for the first occurance
of "LDX". N
7

Example: FIND\Label\25,88 '

This example will search for the first occurance
of "Label” in lines 25 through 88.

' fthin
If the option "A" is specified, sll matches w
the spacified line range will be listed to the
screen. Remember, if no line numbers are given,
the range is the entire program, f

w—lfe-

Section 2.10

edit command: LIST

purposet to LIST the contents of all or part of

MAC/65's editor buffer in ASCII (ATASCII)
form to a diskx or device.

usage: LIST [#filespec, J [inol [,ino2 Q)]

LIST 1listas the source file to the screen, or
device when “#filespec” is specified. If no lnos
are apecified, 1listing will begin at the first
line in memory and end with the last 1line {n
memory.

If only 1nol s oepecified, that 1line will be
listed if it is in memory. 1If 1lnol and Jno2 are
specified, all 1linea between and including lnol
and Ino2 will be listed. When lnol and 1no2 are
specified, neither onoe has to be in memory as LIST
will search for the firat line in memory greater
than or equal to lnol, and will stop listing when
the line in memory is greater than lno2.

EXAMPLE s L1ST #P:
will 1ist the current contents
of the editor memory to the P:
{printer) device.

EXAMPLE: LIST ¥D2:TEMP, 1830, 18908
lists only those lines lying
in the line number range from
1630 to 1800, inclusive, to the
disk file named "TEMP" on disk
arive 2.

NOTE: The second example points ocut a method of
moving or duplicating large portions of text or
source via the use of temporary disk files. By
suitably RENumbering the in-memory text before and
after the LIST, and by then using ENTER with the
Merge option, quite complex movements are
possible.

—e]Tm-

@ ®

./\ "
Section 2.11 Section 2,13
edit command: LOAD edit command: NEW
purposes to reLOAD a previously SAVEA MAC/65 token purpose: clears out all editor memory, setm syntax
file from disk to editor memory. : checking mode.
usage: LOAD #filespec [,A]) . usages NEW
LOAD will reload a previously SAVEA tokenized file NEW will clear all user source code from memory -
into memory. LOAD will clear the user memory and reset the Editor to syntax mode. The “EDIT"
before loading from the specified device unless . prompt appears, reminding the user that syntax
the ",A" parameter is appended..: checking (s now active, If the user needs to
defoat the syntax checking, he/she must use the
The parameter “A" (for APPEND) causes the Editor TEXT command.
to NOT clear the text area before loading from the
file, Instead, the load file will be appended
with the current file in memory. Section 2.14
Note: The Append option will NOT renumber the file . edit command: HNUM
after loading. It {s possible to have DUPLICATE
LINE NUMBERS. Use the REN command if there are * purposet initiates a2utomatic line NUMbering mode
duplicate line numbers.
usaget NuM [denuml [,depum2])
f\ VG
: NUM will cause the Editor to auto-number the
incoming text from the Screen Editor (Bi). A
space is automatically printed after the 1line
. , number, If no dconums are specified, NUM will
Section 2.12 start at the last line number plus 19. NUM dcnuml
—renena—- - will atart at the last line number plus “"dcnuml®
edit command: LOMEM in increments of “dcnuml™, NUM dcnuml, denum2
will start at “denuml™ i{n increments of “dcnum2*.
purpose: change the lower bound of editor memory
usable by MAC/65S, , EXAMPLE: NUM 1008, 20
i will cause the Editor to prompt the user with
usage: LOMEM hxnum ! the number *1080* followed by a space. When

the user has entered a line, the next prompt
LOMEM allows the user to select the address where will be "1020", etc.
the source program begins.
- The NUM mode will terminate if the line number
CAUTIONI Executing LOMEM clears out any source ; which would be next in sequence is present in
surrently in memory; as if the user had typed memory.
NEW",
You may terminate NUM mode by pressing the BREAK
key or by typing a CONTROL-3. Optionally, you may
press CONTROL-C followed by a [RETURNI,

an]Ben S X Yo

+

\
Section 2.15
edit command: PRINT
purpose: to PRINT all or part of the Editor text

or source to a disk file or a device.
usage; PRINT [#filespec,] [1nol [,1no2 J)

Print is exactly like LIST except that the 1line
numbers are not listed, If a file is PRINTed to a
disk, it may be reENTERed into the MAC/65 memory
using the ENTER command with the Append 1line
number option.

Section 2.16

edit commands REN

purpose: RENumber all lines in Editor memory.
usage: REN [dcnumllf ,denum2])

REN renumbers the source linea in memory. If no
denums are specified, REN will renumber the
program starting at line 12 in increments of 180.
REN dcnuml will renumber the lines starting at
line 12 in increments of dcnuml. REN dcnuml,
dcnum2 will renumber atarting at dcnuml in
incrementa of dcnum2,

Y,

Section 2.17
edit command: REP

purpose: REPlaces occurrence(s) of a given string
with another given string.

usage:
REP /old string/new string/ [lnol [,1no2 1 3 C(,A)(.0))

The REP command will search the specified lines
(all or lnol through 1no2) for the "old string"”.

The "A" option will cause all occurrences of “old
string™ to be replaced with "new string®. The "Q°
option will 1ist the line containing the match and
prompt the user for the change (Y followed by
‘RETURN for change, RETURN for -skip this
occurrance.) I1f nelther “A" or "Q" is specified,
only the firat occurrence of "old string” will be
replaced with "new string®™. Each time a change is
made, the line is listed.

Examples REP/LDY/LDA/288,258,Q

This example will search for the string "LDY"
between the lines 200 and 258, inclusive, and
prompt the user at each occurrence to change or
skip.

Notey Hitting BREAK (ESCape on Apple II) wil}l
terminate the REP mode and return to the Editor.

Note: If a change causes a syntax error in the
line, the REP mode will be terminated and control
will return to the Editor. Of coursze, if TEXTMODE
is selected, there can be no syntax errors.

-—2lee

Y W 2

Section 2.18

edit command:s SAVE

purpose: SAVEs the internal (tokenized) form of
. the user's in-memory text/source to a
disk file.
usages SAVE #filespec

SAVE will save the tokenized user source file to
the specified device. The format of a tokenized
file {s as follows:

Pile Header
Two byte number (LEB,MSB) specifies the
size of the file in bytes.

Por each line in the filae:
Two byte line number (LSB,MSB)
followed by
One byte length of line (actually offset
to next line)
followed by
The tokenized line

Section 2.19

edit command: SIZE

purpose determines and displays the SIZE of
various portions of memory used by
the MAC/65 Editor.

usages SI2E

5122 wil) print the user LOMEM address, the
highest used memory address, and the highest
usable memory address, in that order, using
hexadecimal notation for the addresses.

These memory addresses are especially helpful in
determining what areas of memory to avoid when
assembling programs directly to memory. Remember,
though, that MAC/65 needs a cartain amount of room
above tha middle address shown for the symbol
table (when an assembly is made). See also the
DDT manual for hints on memory usage. .

~—22e-

s~

Sectjion 2.28
edit command: TEXT

purposect allow entry of arbitrary ASCII (ATASCII)
text without syntax checking.

usage; TEXT

TEXT will clear all user source code from memory
and put the Editor in the text mode. After thie
command is used, the Editor will prompt the user
for new commands and text with the word "TEXTMODE®
(inatead of "EDIT"), indicating that no syntax
checking is taking place.

TEXTMODE may be terminated by the NKEW command.
,CAUTIONt there is no way to go back and forth
between syntax (EDIT) mode and TEXTMODE without
clearing the Editor's memory each time.

Section 2.21

Dy o

edit command: ?

purposes makes hexadecimal/decimal conversions
usage: ? (Shxnum) (dcnum)
? is the resident hex/decimal decimal/hex

converter. Numbers in the range & « 65535 decimal
(8038 to FFFF hex) may be converted.

Example: ? $1208 will print =4608
? 8198 will print =$1FFE

an2Iem

=--=this page intentionally left blank--

I, Yy

; CHAPTER 31 THE MACRO ASSEMBLER

The Assembler is entered from MAC/65 with the command
ASM. For ASM command syntax, refer to section 2,1 (in
the Editor commands). Assembly may be terminated by
hitting the BREAK key. MAC/65 properly closes files
and "cleans up" before terminating the assembly.

3.1 ASSEMBLER INPUT

The Assembler will get a line at a time from the
specified device or from memory. If assembling from a
device, the file muast have been previously SAVEA by the
Editor, All discussions of source lines and syntax
will be at the Editor line entry level. The tokenized
(SAVEA) form {8 discussed in general terms under the
SAVE command, section 2.19.

Source lines are in the form:
line number + mandatory space + source statement

Tﬁe source statement may be in one of the following
forma:

(1abel] [(6582 instruction) (directive)) (comment])
The following examples are valid source lines:

108 LABEL

120 jComment line

148 LDA #5 and then any comment at all
158 DEY

168 ASL A double number in accumulator
178 GETNUM LDA (ADDRESS),Y

186 .PAGE “directives are legal, too"

In general, the format 1s as specified in the MOS
Technology 65282 Programing Manual. We recommend that
the user unfamiliar with 6502 assembly language
programming should purchansaes

“Machine Language for Beginners” by R. Mansfield
or
"Programing the 6582" by Rodney Zaks
or

any other book which seems compatible with the
users curreant knowledge of assembly language.

SPECIAL NOTE: The assembler of MAC/65 understands only
upper case labels, op codes, etc. HOWEVER, the editor
(sea expecially section 1.3) will convert all lower
case to upper case (except in comments and quoted
strings), 8o the user may feel free to type and edit in
whichever case he/she feels most comfortable with.

~e25aa

e

Instruction mnemonics are as described in the MOS
Technology Programing Manual.

Immediate operands begin with “#".
“{operand,X)” and "(operand),Y" designate indexed
indirect and indirect indexed addressing, respec-

"operand, X" and "operand,Y" designate indexed

Zero page operands cannot be forward referenced.
Attempting to do so will wusually result in a

Forward equates are evaluated within the limits of

“** desfignates the current location counter.

‘Comment lines may begin with *i™ or "**,

A semicolon (":") anywhere in a line indicates the
beginning of the comment field for that line.

The "A" operand is reserved for accumulator

3.2 INSTRUCTION FORMAT
A)
B)
c)
tively,
D)
addressing.
E)
" “PHASE ERROR" message.
P)
a two pass assembler.
G)
H)
1)
J) Hex constants begin with "§".
X)
addressing.
L)

The addressing formail avajilable are extended to

allow the new addressing modes avsilable with thae

NCR 65C@2 microprocessor. See Chapter 7 for the
descriptions of 65C02 fnstructions not included in
the standard 6502 set. The extensions include:

1. “(operand)”, indicating indlract addressing, is
now legal with ADC, AND, CMP, EOR, LDA, ORA,
§BC, and STA. The operand must be in gero paga.

2. "(operand,X)® is now legal when used with JMP.
The operand here may be any absolute address.

3. The BIT instruction is allowed the addressing
wode "operand,x", The operand may be either a
zero page or absolute address.

4, The mnemonics BRA, DEA,. INA, PHX, PHY, PLX,
PLY, BTZ, TRB, and TSB are now recognized.

—e26me

Labels muat begin with an Alpha character, "8%, or "“7".
The remaining characters may be as the first or may be
"9" to “9*" or ".". The characters must be uppercase
{(but remember that the editor always converts lowercase
for you) and cannot be broken by a space, The maximum
number of characters in a label {s 127, and ALL are
significant.

Labels beginning with a question mark ("2?") are
assumed to be “LOCAL" 1labels. Such labels are
"visible” only to code encountered within the current
local region, Local regions are delimited by
succegssive cccurrences of the L.LOCAL directive, with
the "first region assumed to start at the beginning of
the asaembly source, whether or not a .LOCAL is coded
there or not. There are a maximum of 62 local regions
in any one assembly. Of course, if a .LOCAL is not
encountered anywhere in the assembly, then all labels
are accessi{ble at all times. In any case, labels
beginning with a question mark will NOT be 1listed in
the symbol table.,

The following are exampleas of valid labels:

TEST1 @.INC LOCATION LOC22A WHAT?
ADDRESS1.1 EXP.. SINE4STAB.

3.4 OPERANDS

An operand can be a label, a Macro parameter, a numeric
constant, the current program counter (*), "A® for
accumulator addressing, an expression, or an ASCII
character preceded by a single quote (e.g., '?). The
following are examples of the various types of operands:

10 LDA $VALUE 3 label

15 ROR A t accumulator addressing
20 .BYTE 123,848 t numeric constanta

25 .IF 20 t Macro parameter

30 cMP A 1t ASCl1 character

35 THISLOC = ¢ t current PC

49 +WORD PMBASE+[PLNO+4]*256 : expression

wa2Tm=

VY Wl

3.5 OPERATORS

The following are the operators currently supported by
MAC/65:

[| pseudo parentheses

+ addition

- subtraction

/ division

A\ modulo (remainder after integer division)

* multiplication :

[binary AND

[} binary OR

- binary EOR

- equality, logical

> - greater than, logical

< less than, logical

<> inequality, logical

= greater or equal, logical

<= less or equal, loglical

+.OR logical OR

+AND logical AND

- unary minus

Kot unary logical. Returns true (1) {f ex-
pression 1is zero. Returns false (0) if
expression is non-zero.

*+DEP unary logical label definition. Returns
true 1if label is defined.

+REP unary logical lsbel reference. Returns
true if label has been referenced.

> unary. Returns the high byte of the
expression.

< unary. Returns the low byte of the
expression.)

Logical operators will always return either TRUE (1) or
FALSE (9©). However, any non~zero value is considered
true when making a conditional test. Also, undefined
labels are given a value of zero (False).

Some of these operators perhaps need some explanation

as to their usage and purpose. The oparators are thus
described in groups in the following subsections.

——2Bew

o,

3.5.1 Operators: + - /\

o - -

These are the familiar arithmetic operators, though "*
may be new to you, even if the modulus operation ias
not. Remember, though, that they perform 16~bit signed
arithmetic and ignore any overflows. Thus, for
example, the value of $PF2B8+4096 is SOF@d, and no error
is generated.

COMMENT: “"opl \ op2" is exactly equivalent to
"opl = [op2 * [opl / op2 } J*
and is the remainder after integer division
is performed. Example: 11\4 is 3,

3.5.2 Cperators: 3 I

Theee are the binary or “bitwise” operators. They
operate on values as 16 bit words, performing
bit-by-bit ANDs, ORs, or EXCLUSIVE ORs. They are 16
bit equivalents of the 6502 opcodes AND, GRA, and EOR.

EXAMPLES 3 $FFE0 & SOBFF is $000@
$63 | $PA is $epOD
$BO3IF * $O1IF is $@120

3.5.3 Operators:

- 3> ¢ <> >w <Cm

These are the familiar comparison operators. They
perform 16 bit unsigned compares on pairs of operands
and return a TRUE (1) or FALSE (@) value.

EXAMPLESt 3¢S returna 1
5 ¢S5 returns ¢
5 <= 5 returps 1

CAUTION: Remember, these operators always work on PAIRS
of operands. The operators "> and "¢" have gquite
different meanings when used as unary operators.

3.5.4 Operators: «OR ' .AND .NOT

These operators also perform logical operations and
should not be confused with their bitwise companions.
Remamber, these operators always return only TRUE or
FALSE.

EXAMPLES: lJ .OR @ returns 1
J JAND 2 returns 1
6 .AND @ returns 0
«NOT 7 returns &

-e29ea

3.5.5 Operator: - {unary)

The minus sign may be used as a unary operator. Its
effect is the same as if a minus sign had been used in
a binary operation where the first operator is zero.

EXAMPLE s -2 il $FFFE (same as 8-2)

3.5.6 Operators: < > {unary)

These UNARY operators sre extremely useful when it {s
desired to extract just the high order or low order
byte of an expression or label. Probably their most
common use will be that of supplying the high and low
order bytes of an address to be used in a "LDA #" or
similar immediate instruction.

EXAMPLE : FLEEP = §$3456

LDA §<FLEEP (msame as LDA #556)
LDA #>FLEEP (same as LDA #$34)

3.5.7 Operator: +DEP

This unary operator tests whether the following label
has been defined yet, returning TRUE or FALSE asa
appropriate. .

CAUTION: Defining a 1abel AFTER the use a .DEF which
references it can be dangerous, particularly if the
+DEP is used in a .JF directive.

EXAMPLE s «IF .DEP ZILK
+BYTE "generate some bytes®
+ENDIP
ZILK = $38p0

In this example, the .BYTE string will NOT be generated
in the first pass but WILL be genersted in the second
pass. Thus, any following code will almost undoubtedly
gensrate a PHASE ERROR.

O . T

3.5.8 Operator: +REP

This unary operator tests whether the following label
has been referenced by any instruction or directive in
the assembly yet; and, in conjunction with the .IF
directive, produces the effect of returning a TRUE or
FALSE value.

Obviounly, the same cautions about ,DEP being used
before the label definition apply to .REF also, but
here we can obtain some advantage from the situation.

EXAMPLE: «IF .REP PRINTMSG
PRINTMSG
see (Ccode to implement
N the PRINTMSG
routine)
«ENDIP

In this example, the code implementing PRINTMSG will
ONLY be assembled if something preceding this point {n
the assembly has referred to the label PRINTMSG! This
is a very powerful way to build an assembly language
library and assemble only the -needed routines. Of
course, this implies that the library must be ,INCLUDEd
as the last part of the assembly, but this seems like a
not too onerous restriction. In fact, 0SS has used
this technique 4n writing the libraries for the C/65
compiler.

CAUTION: note that 4in the description above it was
implied that .REP only worked properly with a LIF
directive. Not only is this restriction imposed, but
attempta to use ,REF in any other way can produce
bizarre results. ALSQ, .REF cannot effectively be used
in combination with any other operators. Thus, for
example,

«IF .REF ZAM .OR .REF BLOOP is ILLEGAL!

ww3low

The only operator which can legally combined with .REF
is .NOT, as in .IF .NOT .REF LABEL.

Note that the illegal line above could be simulated
thus:

EXAMPLE ¢ DOIT .= @

«IF .REP ZAM
DOIT .= 1

-ENDIP

«IF .REF BLOOP
DOIT .=)

+ENDIP

«IF DOIT

3.5.9 Operator: [)

MAC/6S supports the use of the square brackets as
“"pseudo parentheses™. Ordinary round parentheses may
NOT be used for grouping expressions, etc., as they
must retain their specfal meanings with regards to the
various addressing modes. In general, the square
brackets may be used anywhere in a MAC/65 expression to
clarify or change the order of evaluation of the
expression, :

EXAMPLES:

LDA GEORGE+5*3 t This is legal, but
it multiplies 3*5
and adds the 15 to
GEORGE., . ,probably
not what you wanted.

LDA (GEORGE+5)*3 ; Syntax Errorlll

LDA [GEORGE+5]*3) OK...the addition

' is parformed before
the multiplication

LDA ([GEORGE+5]*1),Y ; See the need

. for both kinds of
"parentheses”?

REMEMBER; Operatore in MAC/65 expressions follow

precedence rules. The square brackets may be used to
override these rules.

J. Y, J

)

3.6 ASSEMBLER EXPRESSIONS

- -

An expreasion is any valid combination of operandi and
operators which the assembler will evaluate to a 16-bit
unasigned number with any overflow ignored. Expressions
can be arithmetric or logical. The following are
examples of valid expressions:

10 +WORD TABLEBRASE+LINE*COLUNM

55 «1F ,DEF INTEGER .AND [VER=1 ,OR VER >=3]
2088 .BYTE >EXPLOT-1, >EXDRAW~1, S>EXFILL-1
308 LDA # < [< ADDRESS*~1] + 1

385 cMP 3 -1

408 CPX 1 'A

440 INC t11+1

3.7 OPERATOR PRECEDENCE

The following are the precedence levels {high to low)
used in evaluating assembler expressions:

[) (pseudo parenthesis)
> (high byte), ¢ (low byte), .DEF, .REF, - (unary)
oT

.

.o N

+, -

& 4, 0 °

-, >, ¢, <=, >m, <> (comparison operators)
+AND

+OR

Operators grouped on the esame line have equal
precedence and will be executed in left-to-right order
unless higher precedence operator(a) intervene.

Generally, the operator precedences are what you would
expect on a mathematical basis. Care muet be taken,
however, with the °<¢' and '>*' unary operators.
For Example:
TABLE = $45FE
LDA # > TABLE + 3 1 A receives $48
LOA # > [(TABLE43) 1 A recelves $46

. 5, o

3.8 NUMERIC CONSTANTS

MAC/65 accepts three types of numeric constants:
decimal, hexadecimal, and characters.

A decimal constant is simply a decimal number 4n the
range & throngh 65535y an attempt to use a decimal
number beyond these bounds may or may not work and will
certainly produce unexpected and undesired results.

EXAMPLES: 1 234 65200 32767
(as useds) .BYTE 2,4,8,16,32,64
LDA #1

A hexadecimal constant consists of a dollar sign
followed by one to four 1legal hexadecimal digits

(6,1,2,3,4.5.5.7,8.9,A,B,C,D,E,F). Aglﬂn. usage Of.

more than four digits may produce unwanted results.

EXAMPLES: $1 $EA SFFO@ SIFFF
(as used;) .NORD §$10@,$200,$408,$800, $1000
AND {#$7F

A character constant is an apostrophe followed by any
printable or displayable character. The value of a
character constant 1s the ASCIT (or ATASCI!) value of
the character following the apostrophe.
EXAMPLES ; 'A ‘. o '
{(as used:) CHMP {'w
CHP {4'Z41 1 asame as #$5SE
CMP - #'J+3 ; sama as #'M

3.9 STRINGS

Strings are of two types. String literals (examples
"This 4is a string literal”), and string variables for
Macros (example: 1§5).

Examples 190 «BYTE “A STRING OF CHARACTERS"
or
Examples 2¢ - «6BYTE 1§1

NOTE that there are really only six places where a
string ies legal in MAC/E5: as a parameter to a called
macro or as the operand to JBYTE, .CBYTE, .SBYTE,
«TITLE, or .PAGE, .

N

CHAPTER 4: DIRECTIVES

As noted in Section 3.1, the instruction field of an
apsembled line may contain an assembler directive
(instead of a wvalld 6502 instruction). This chapter
will list and describe, in roughly alphabetical order,
all the directives legal under MAC/65 (excepting
directives specific to macros, which will be discussed
separately in Chapter S5).

Directives may be classified into three types: (1)
those which produce object’ code for use by the
assembled program (e.q., .BYTE, ,WORD, etc.); (2) thome
which direct the assembler to perform some task, such
as changing where in memory the object code should go
or giving a value to a lahel (e.g., *=, =, etc.); and
(3) those which are provided for the convenience of the
programmer, giving -him/her control over iisting format,
location of source, etc. (e.q., «TITLE, +.OPT,
« INCLUDE) .

Obviously, we could iIn theory do without the type 3
directives; but, as you read the descriptions that
follow, you will soon diecover that in practice these
directives are most useful in helping your 6502
assembly language production. Incidentally, all the
macro-specific directives could presumably be
classified as type 3.

Three of the directives which follow (.PAGE, .TITLE,
and .ERROR) allow the user to specify a string
(encloeed in quotes) which will be printed out. For
these three directives, the user s limited to a
maximum string length of 78 characters. Strings longer
than 70 characters will be truncated,

Y

A
Section 4.1
directive: *u and ,ORG
purpose: change current origin of the assembler's

location counter

usage: {label] #*= expression
[(label] .ORG expression

The *= (or, equivalently, .ORG) directive will assign
the value of the expression to the location counter.
The expression cannot be foward referenced. (*= must
be written with no intervening spaces.)

Example: 50 *= $1234 ; sets the location
counter to $1234
135 +ORG $1234 ditto

Another common usage of *= is to reserve space for data
to be filled in or used at run time. Since the single
character "*" may be treated as a label referencing the
current location counter value, the form “*= *texp” is
thus the most common way to reserve "exp" bytes for
later use.

Example: 78 LOC *= *41 ; assigns the current
value of the location
counter to LOC and
then advances the
counter by one.

70 LOC .ORG *+1 ; ditto

(Thus LOC may be thought of as a one byte
reserved memory cell.)

CAUTION: Because any label associated with this
directive is amsigned the value of the location counter
BEFORE the directive is executed, it is NOT advisable
to give a label to “*a®™ or ".O0RG" unless, indeed, it is
being used as in the second example (i.e., as a memory
reserver).

NOTE: Some assemblers treat the label on an "ORG" or
" .ORG" directive differently. That is, they asaign the
Label to the location counter AFTER it haa been changed
by the directive. Use caution when converting from and
to such assemblers: pay special attention to 1label
usage, When in doubt, move the label to the naxt
preceding or next following line, as appropriate.

SPECIAL NOTE: Although the form “label *= ‘iexp® {s

standard 6502 usage, you may find MAC/65's ".DS"
directive (section 4.7) easler to read and undarstand.

—e3Gem

o
3

Section 4.2

- . e e g

directive: = and LEQU
purpose; assigns a value to a label
usagets label = expression

label .EQU expression

The "=" directive will equate "label™ with the value of
the expression. A "label™ can he equated via “=" only
once within a program.

. Example: 10 PLAYERS = PMBASE + $208
20 PLAYER1l .EQU PMBASE + $2889

Note: If a “label” is equated more than once, "label”
will contain the value of the most recent equate, This
process will, however, result in an assembly error.

Section 4.3

directive: P

purpose:; asaign a possibly transitory value to
a label

uuage:b label .= expression

The .= directive will SET ®"label” with the value of the
expression. Using this directive, a "label”™ may be set
to one or more values aa many times as needed in the
same program.

EXAMPLE s

19 LBL .= 5

20 LDA #LBL 3 same as LDA §5
30 LBL .= 3+°A

40 LDA {LBL t same as LDA #68

CAUTION: A label which has been equated (via the "="
directive) or assighned a value through usage as an
instruction label may not then be set to another value
by ".m™,

L

o

Section 4.4

o = o

directive: .BYTE {and .SBYTE]

purposes - specifies the contents of individual
bytes in the output object

?::gzil .BYTE [+exp,]) (exp){strvar) [,{exp)(strvar) ...]
(label] .SBYTE {+exp,) (exp)(strvar) [,(exp)(strvar) ...]

The .BYTE and ,SBYTE directives allow the user to
generate individual bytes of memory image in the output
object. Expressions must evaluate to an 8~bit
arithmetic result. A strvar will generate as many
bytes as the length of the string. «BYTE simply
assembles the bytes as entered, while .SBYTE will
convert the bytes to Atarl screen codes.

rxample: 180 +BYTE "aBC* , 3, -1

This example will produce the following output bytes:
41 42 43 83 FF.

Note that the negative expression was truncated to a

single byte value.

Example: 50 +SBYTE "Hellol™

On the Atari, this example will produce the following
screen codest
. 28 65 6C 6C 6P 91,

SPECTAL NOTE: Both .BYTE and .SBYTE allow an additive
Modifier. A Modifier is an expresaion which will be
added to all of bytes assembled. The assembler
recognizes the Modifer expression by the presence of
the "+" character. The Modifier expression will not
itself be generated as part of the output.

Example: 5 +BYTE 4§88 ,” "aApcC* , -1

This example will produce the following bytes:
Cl €2 C3 7F.

a=3f8~=

Example: 109 .BYTE +$80,"DEF", 'G+$680
This example will produce: C4 C5 C6 47.

(Note especially the effect of adding $80 via the
modifier and also adding it to the particular byte.
The result is an unchanged byte, since we have added a
total of 256 ($160), which does not change the lower
byte of a 16 bit result.)

Example: S5 «SBYTE +$40 , "Al12"

This example will produces 61 S1 52

Examples 88 «SBYTE +$C8,'G-$C@, "REEN"

This example will produce: 27 F2 ES ES EE

Notes .SBYTE performs its conversions according to a
numerical algorithm and does NOT special case any
control characters, including BFLL, TAB, etc.--~these
characters ARE converted.

Section 4.5

dlrective: +CBYTE

purpose: same as .BYTE except that the most
significant bit of the last byte of a
string argument is inverted

usage:
{label) .CBYTE (+exp,] (exp)(strvar) [,{exp)(atrvar)...)

The .CBYTE directive may often be used to advantage
when building tables of strings, etc., where {t is
desirable to {indicate the end of a string by some
method other than, for éxample, storing a following
zero byte. By inverting the sense of the upper bit of
that last character of the string, a routine reading
the strings from the table could easily do a BMI! or BPL
as it reads each character.

Examples ERRORS .CBYTE 1, "SYSTEM"

The line shown would produce these object bytes:
91 53 59 53 54 45 CE

(continued on next page)

O Y- Y

(.CBYTE, continued)
And a subroutine might access the charactera thus:
LDY §1

Loop LDA ERRORS,Y
BMI ENDOFSTRING

INY
BNE LOOP
tNDOFSTRié&
Section 4.6
;I;;ZZI;;:' +DBYTE [see also .WORD]
purposes specifies Dual BYTE values to be

placed in the output object,
usages [1abel]) .DBYTE exp [,exp «..]

Both the .WORD and .DBYTE directi{ves will put the value
of each expression into the object code as two bytes,
However, while .WORD will assemble the expression(s) in
6582 address order (least significant byte, most
significant byte), .DBYTE will assembla the
expression(s) in the reverse order (1.e., most
significant byte, least significant byte).

-DBYTE has limited usage in a 6502 environment, and it
would most probably be used in building tables where
its reversed order might be more desirable.

EXAMPLE: .DBYTE §$1234,1,-1
produces: 12 34 09 g1 FF FP
$

«WORD 1234,1,-1
produces: 34 12 @1 @0 FF FF
Section 4.7 '
dlrectiver .S
purposet reserves space for data without initializing

the space to any particular value(s).
usage: {iabel] .DS expression

Using ® .DS expression” is exactly equivalent to using
" *a *jexpression”. That 4is, the 1label (if it is
given) is set equal to the current value of the
location counter. Then tha value of the expression is
added to the location counter.

Example: BUFFERLEN .DS 1 ; reserve a single byte

BUFFER «DS 256 ; reserve 256 bytes

ST, -

-

M

cereme e wm ey

[o e e e s e+ o+

Section 4.8

directive: +ELSE

purpose; SEE description of .IF for purpose and usage.

Section 4.9

directives +END
purpose: terminate an in-memory assembly
usage: [1abel] .END

The .END directive will terminate the assembly ONLY {f

the source ia being read from memory. Otherwise, .END
will have no effect on assembly,

This “no effect” is handy i{n that you may thus ,INCLUDE
file(s) without having to edit out any .END statements
they might contain. 1n truth, .END is generally not
needed at all with MAC/6S.

Section 4.10
directive: +«ENDIP
purpose: terminate a conditional assembly block

SEE description of .IP for usage and details.

Section 4.11

directive; « ERROR
purpose: force an assembler error and message
usages [label) .ERROR [string]}

The .ERROR directive allows the user to gensrate a
pseudo error. The string specified by .ERROR will be
sent to the screen as if it were an assembler-generated
error. The error will be included in the count of
errors given at the end of the assembly,

Examples 108 «ERROR “MISSING PARAMETERL*®

emdlew

Section 4.12

directive:s « PLOAT

purposes specifies floating point constant values
to be placed in the output object.

usage;
[1abel] .FLOAT floating-constant [,floating-constant...]

This directive would normally only be used by the
programmer wishing to access the built-in floating
point routines of the Atari Operating System ROM's.

rach floating point constant following the .FLOAT
directive will produce 6 bytes of output object code,
in a format consistent with the sabove~pentioned
floating point routines. In particular, the firast byte
contains the exponent portion of the number, in
excess-64 notation representing powers of 188. The
upper bit of the exponent byte designates the sign of
the mantissa portion. The following $5 bytes are the
mantissa, in packed BCD form, normalized on a b¥te
boundary (consistent with the powers-of-100 exponent).

EXAMPLES:
+PLOAT 3.14156295,-2.71828182

The above example would produce the following bytes in
the output object coder.

49 03 14 15 62 95

CcO 27 18 28 18 28

NOTE; Only floating point constants, NOT expressions,
are legal as operands to .FLOAT. Generally, this is
not a problem, since the user may perform any constant
arithmetic on & calculator {or in BASIC) before placing
the result in his/her MAC/65 program.

V'Y, P

[N

Section 4.13

- - 2t o .

directive:s «IF

purposet chooses to perform or not perform some
portion of an assembly based on the
“truth®” of an expression.

usagets <IF exp
[.ELSE]
+ENDIP
usage note there may be any‘number of lines of

assembly language code or directives
between .IF and .ELSE or .ENDIF and
similarly between .ELSE and .ENDIF.

The LIF, +ELSE, and <ENDIF directives control
cond{tional assembly.

When a .IF is encountered, the following expression is
evaluated, If it is non-zero (TRUE), the source lines
following .IF will be assembled, continuing wuntil an
+ELSE or L.ENDIF is encountered. If an L.ELSE {is
encountered before an .ENDIF, then all the source lines
between the .ELSE and the corresponding .ENDIF will not
be assembled. If the expression evaluates to zero
(false), the source 1lines following .IF will not be
assembled. Assembly will resume when a corresponding
«ENDIF or an .ELSE {s encountared.

The .IF~.ENDIF and .1F-.ELSE~.ENDIF constructs may be
nested to a depth of 14 1levels. When neated, the
"search” for the "corresponding” .ELSE or .ENDIF skips
over complete ,IF-.ENDIF constructs if necessary.

Examples:

19 IP 1 1 non-zero, therefore true
29 LDA ¢ '? t these two lines will

3 JSR CHAROUT ! be assembled

40 +ENDIP

(Y, Yo

Section 4.13 { .IP continued)

EXAMPLE:

10 AP B 3 expreasion ia false
11 LDX {§ >ADDRESS s these two lines will
12 LDY ¢ <ADDRESS ¢t not be assembled

13 JIF 1 . -

14 «ERROR "can't get here”

15 j likewise, this can't be assembled because it
16 ; {8 "nested” within the .IF @ structure

17 3

18 .ELSE)

19

20 LDX § <ADDRESS 3 these lines will

21 LDA # >ADDRESS 1 be assembled

22 +ENDIF _

23 JSR PRINTSTRING y go print the string

Note: The assembler resets the conditional atack at the
begining of each pass. Missing .ENDIF(s) will NOT be
flagged. .

amffe=

¢

Section 4.14

directive: « INCLUDE

purpose: allows one assembly language program to
request that another program be {ncluded
and assembled in-line

ussget « INCLUDE #filespec

usage notet this directive should NOT have a label

The «INCLUDE directive causes the assembler to ‘begln

reading source 1lines from the mpecified “filespec”,

When the end of “filespec" is reached, the assembler

will resume reading source from the previous file (or
memory) .

CAUTION; The .INCLUDE4 file MUST be a properly SAVEQ
MAC/65 tokenized program. It can NOT be an ASCII file.

Notes A .INCLUDED file cannot itself contain a .INCLUDE
directive.

EXAMPLE: +INCLUDE #D:SYSEQU.M65

This example line will include the aystem equates f£ile
supplied by 0SS.

Y -

‘!!!f'

Section 4.15

-

directive: +LOCAL

purpose; delimits a lscal label region

usages; +LOCAL . .

usage note: this directive should not be associated

with a label.

This directive serves to end the previous local region
and begin a new local region. It is assumed that the
first local region begins at the beginning of the
assembly, ' and the last local region snds at the end of
the assembly.

Within each 1local region, any label beginning with a
colon (":1") or question mark ("?") is assumed to be a

" "local label”, As such, it 4is . invisible to code,

equates, references, etc., outside of {its own 1local
region.

This feature is especially handy when using automatic
code generators or when several people are working on a
single project. In both these cases, the coder may use
labels beginning with ":* or "?" and be sure that
there will be no duplicate label errors produced.

EXAMPLE: 18 *= $4000
11 DX #3 » establish a counter
12 ?L00P
13 LDA FROM,X i get a byte
14 STA TO,X ! put a byte

15 DEX t more to do?

16 BPL ?LOOP 3 goes to label on line 12
17

18 .LOCAL 1 another local regiont
19

20 7LO0P = 6 s

21 ;

22 LDY 4?L00P 1 sames as LDY #6

23 (etc.)

FEATURE:s Local labels MAY be forward referenced, just

lixe any other label.

NOTE: Local labels do not appear in the symbol table
listing. Except see Chapter 9.

——d o=

Section 4.16

directive: <OPT
purposes selects various assembly control OPTions
usages .OPT option [, [NO) option ...])

(or)

+OPT NO option [, [NO] option ...]

usage notes: the valid options are as follows:
LIsT ERR EJECT 08J
MLIST CLIST NUM XREP

The .OPT directive allows the user to control certain
functions of the assembly. Generally, coding ".OPT
option” will invoke a feature or option, while *.0PT NO
option® will "turn off" that same feature.

You may use any number of options (or NO options) on a
single source line., For example, it {s legal to use:
«OPT NO LIST, NO XREF, OBJ, EKR

The following are the deacriptions of the individual
optionss

LIST controls the entire assembly listing.
NO LIST turns off all listing except error lines.

ERR will determine {f errors are returned to the
user in the listing and/or the screen.
NO ERR 1s thus dangerous.

EJECT controls the title and page listing.
NO EJECT only turns off the automstic page
generationy it has no effect on .PAGE requests.

0OBJ determines {f the object code is written to the
device/memory.
HO 0BJ is useful during trial assemblies.
0BJ is NECESSARY when the object code is to
placed in memory.

NUM will auto number the assembly listing instead of
using the user line numbers. HNUM will begin at 100
and increment by 1.
NUM {8 generally not useful except for final,
“pretty” assemblies. .

'

—nd T

Section 4.16 (.OPT continued)

MLIST controls the listing of Macro expansions.
NO MLIST will list only the 1lines within a Macro
expansion which generate object code, MLIST
will expand the entire Macro.

Note that NO MLIST is extraordinarly useful
in producing readable listings.

CLIST controls the listing of conditional assembly.
NO CLIST will not list source lines which are
not assembled. CLIST will list all lines within
the conditional construct.

XREF allows the user, when a cross reference has been
specifiad in the ASM command line, to control
which portions of the source program will be
cross referenced during the assembly.

Any 1lines of source code betwsen a .OPT NO XREF
and the next suceeding .OPT XRKEP will not be
cross referenced.

By combining NO XREF and NO LIST, you can 1ist
and cross referance even extremely large
programs in plieces. Or you might use NO XREF to
avoid indexing entries out of an INCLUDEd file.
XREF and NO XREF are useless and inoperative
{but do not generate errors) I1f you have not
specified a cross reference file name in the ASM
command line,

NOTE: Unless specified otherwise by the user, all of
the options will assume their default settings. The
default scttings for .OPT are:

LIST listing 1S produced

ERR errors are reported

EJECT pages are numbered and ejected
NO NUM use programmer's line numbers
MLIST all macro lines are listed
CLIST all failed conditionals list
XREF . continous cross reference

RO oBJ SEE CAUTION 1113}

CAUTION: The OBJ option {s handled in a apecial way:
IF asaembling to memory the object default is NO OBJ.
1F assembling to a device the object option is 0BJ.

NOTE: Macro expansions with the NO NUM option will not
be listed with line numbers.

Y, pa

Section 4.17

- - -

directives +PAGE

. purpose: provides page headings and/or moves
to top of next page of listing

usages +PAGE [string)

usage notes no label should be used with .PAGE

The .PAGE directive allows the user to specify a paée
heading. The page heading will be printed below the
page number and title heading. -

+PAGE wlill eject the next page, and prints the most
recent title and page headings.

Example: 309 +PAGE “EXECUTE LABEL SEARCH*®
Note: The assembler will automatically eject and print

the current title and page headings after 61 lines have
been listed.

Section 4.18

- 0 o o e

directive: +«SBYTE
purposet produces “screen” bytes in output object
usages see .BYTE description, section 4.4

ead9um

‘¢

Section 4.19

directive: +SET
purpose: controls various assembler functions
usage: .SET denuml , dcnum?

The .SET directive allows the user to change specific
varfable parameters of the assembler. The dcnuml
specifys the parameter to change, and dcnum2 is the
changed wvalue, The following table summarizes the
various .SET parameters. Defaults for each parameter
are given {n parentheses, followed by the allowable
range of values.

denuml denum? ~ function

sets the .BYTE and .SBYTE
1isting format. 1 to 4
bytes can be printed in
the object code field of
the listing.

8 (4) 1-4

sets the assembly listing
left margin. The speci-
fied number is the number
of spaces which will be
printed before the assem-
bled source line.

1 4 {(8) @-31

2 (82) 48-132 set width for listing,
adjust for your printer.

3 (12) 8,12
multiple line feeds. Any

other used as form feed char,

4 (66) 208-255 number of lines per page for

liltlnq.

5 (8) 0-255 number of spaces from semi-
colon in comment field to
where remainder of comment
is printed.

6 (8) B~SFFFP an offeset, which is added to

the location counter when
an object byte is stored or
written to disk. You can
thus assemble code for one
address while storing or
loading it another address.

toese SPECIAL NOTE: See Chapter 8 for a complete sasee

discussion of the capabilities of .8ET 6
P 7 .

form feed select. 0@ implies
no form feed on printer--use

Section 4.20

directive: +TAB
purpose;: sets listing "tab stops” for readability
usages «TAB dcnuml ,dcnum? ,dcnum3

The .TAB directive allows the user to specify the
starting column for the 1listing of the Instruction
field, the operand field, and the comment field
respectively. The defaults are 8,12, 28,

Examples 209 .TAB 16,32,5¢0

128@ «TAB 8,12,20 ; restores defaults
Section 4.21

directive: +TITLE
purpose: speclfy assembly listing heading
usage: ' +TITLE string

The .TITLE directive allows the user to specify a
assembly title heading. The title satring will be

printed at the top of every page following the page
number.

Section 4.22

directive: +«WORD [see also .DBYTE]
purpose: Place 16 bit word values in output object
usage: [label) .WORD exp [,exp ...)

The .WORD and .DBYTE directives both put the value of
each following expression into the object code as two
bytes. But where .WORD will assemble the expression(s)
in 6502 address order (least significant byte, most
significant byte), .DBYTE will assemble the
expression{s) in reverse order (most significant byte,
least significant byte).

Generally, for 6502 programs, .WORD is the more useful
of the two, and is more compatible with the code
produced by assembled 6502 instructions.

EXAMPLE: .DBYTE $1234,1,-1
produces: 12 34 03 Pl PP PP

« WORD $1234,1,-1
produces:s 34 12 p) €0 FP FP

—-—5lem

T

==--this page intentionally left blank--=-

an§2ma

CHAPTER 53 MACRO FACILITY

A MACRO DEFINITION is a series of source lines grouped
together, given a name, and stored in memory. When the
assembler encounters the corresponding name 1in the
instruction (opcode, directive) column, the saved lines
will be substituted for the Macro name and assembled.

Effectively, this allows the user to define and then.

use new assembler instructions. Depending upon the
code stored in its definition, a macro might be thought
of as either an “extra” directive or a "new” opcode.

The process of finding a macro in the table when {its
name is used, and then assembling the code it was
defined with, is called a MACRO EXPANSION. The unique
facility of Macro Expansions 4is that they may have
PARAMETERS passed to them. These parameters will be
substituted for the “formal parameters™ during the
expanaion of the Macro.

The use (expansion) of a Macro in a program requires
that the Macro first be defined. To the set of
directives already discussed in chapter 4, then, must
be added two new directives used for defining new
macros:

+MACRO

«ENDM

This chapter will first dliscuss these two directives,
show how to invoke a macro {cause 1its expansion) and
then examine the use of formal and calling parameters,
including string parameters.

Section 5.1

directive: «ENDM

purpose: end the definition of a macro

usage: ' « ENDM

usage note: generally, the .ENDM directive should

not be labelled,

This directive 1is used solely to terminate the
definition of a macro. When invoking a macro, do NOT
use this directive. Basically, the concept of macros
requires that all source 1lines between the .MACRO
directive and the .ENDM directive be stored in a
apecial wsection of memory (the macro table). Thus,
encountering an improperly paired .ENDM directive {=s
considered a severe assembly error, See the
description of .MACRO for further information.

oy 3 Yoo

AT

Section 5.2

directive: +«MACRO
purpose: initiates a macro definition
usage: +MACRO macroname

"macroname®™ may be any valid MAC/65
label. It MAY be the same name as
a program label (without conflict).

usage note:

The .MACRO directive will cause the lines following to
be read and stored under the Macro name of "macroname”.
The definition {s terminated with the .ENDM directive.

All instructions except another .MACRO dfirective are
valid Macro source lines. A Macro definition can NOT
contain another Macro definition.

A simple example of a MACRO DEFPINITION:

18 +MACRO PUSHXY ; The name of thies Macro is "PUSHXY"
11 ;3 When this Macro is used (expanded), the following
12 ; instructions will be substituted for "PUSHXY"

13 ; and then assembled.

14 TXA
15 PHA
16 TYA
18 PHA
19 + ENDM 31 The terminator for "PUSHXY"

SPECIAL NOTE: ALL 1labels used within a macro are
assumed to be local to that macro. MAC/65 accomplishes
this by performing a “third pass” of the assembly
during macro expansions. Thus, a label defined within
a macro expansion i{s available to code which follows
the macro: but another expansion of the same macro with
the same label will reset the labels value. The action
is similar to the ".=" directive, except that forward
references to internal macro labals ARE legal.

An sxample follows, on the next page.

—eShmm

Section 5.2 { .MACRO continued)

EXAMPLE s
280 . MACRO MOVES
21 LDX #5
22 Loop

23 LDA FROM,X
24 STA TO,X

25 DEX
26 BPL LOOP
27 .ENDM

The label “LOOP” is local to this macro usage, and yet
it may (if nceded) be referenced outside the macro
expansion (although not in another macro expansion).
(Note that if a macro label is only defined once by a
single macro usage, the effect is the same as if the
label were defined ocutside any macro.) Although the
«LOCAL-produced local regions may be used by and with
macros, the user is limited to a maximum of 62 local
regions. No such restriction applies to the number of
possible local usages of a label in a macro expansion.

~e55m-

5.3 MACRO EXPANSION, PART 1

As stated above, a macro is expanded when it is used.
And the "use® of a macro is simplicity itself.

To invokxe (use, expand—-all'equivnlent words) a macro,
simply place its name in the opcode/directive field of
an assembler line. Remember, though, that macros MUST
be defined before they can ba used.

Por example, to invoke the two macros defined in
examples in the previous section (5.2), one could
simply type them in as shown and then enter and
assembles

EXAMPLE:
20060 ALABEL PUSHXY
2810 5 and pushxy generates the code
2020 TXA PHA TYA PHA
291368 .
2049 MOVES
2850 3 similarly, MOVE6 ia used
2860 JMP LOOP
20878 and LOOP refers to the label
2080 defined in the MOVE6 macro

Note that the use of a label on the macro invocation is
optional. The label is assigned the current value of
the location counter and is not dependent upon the
contents of the macro at all.

There are many more "tricks™ and features usable with
macros, but we will continue this discussion after an
examination of macro parameters as used in a macro
definition.

Y S

5.4 MACRO PARAMETERS

Macro parameters can be of two types: expressions
(which are evaluated as 16 bit words) or strings. The
parameters are passed via the macro expansion
(invocation, use, etc.) and are stacked in memory in
the order of occurance. A maximum of 6] parameters can
be stacked by a macro expansion, including expansions
within expanaions,

However, before a parameter can be used in an
expansion, there must be a way of accessing it in the
MACRO DEFINITION. Parameters are referenced in a macro
definition by the character "%" for expressions and the
characters "1§" for strings. The value following the
character refers to the actual parameter number,

SPECIAL NOTE: The parameter number can be represented
by a decimal number (e.g., ¥2) or may be a label
enclosed by parentheses (e.g., 3S(LABEL)). Of course,
strings may be similarly referenced, as in t$(INDEX) or
131,

Examples:

190 LDA $ >%1 ; get the high byte of parameter 1.
15 cMP (311 ,X) 5 yes, that really is number 1l.
20 +BYTE 32-~1 3 value of parameter 2 less 1.

NOTE: the above is NOT equivalent to using
parameter 11. Parameter substitution
has highest precedence!

25 SYMBOL .= SYMBOL + 1
3 LDX # -3(SYMBOL) ; see the power available?

48 «BYTE 1$1,1$2,0 ; string parameters, ending 6.

Remember, in theory the parameters are numbered from 1
to 63. In reality, the TOTAL number of parameters in
use by all active (nested) macro expansions cannot
exceed 63, This does NOT mean that you can have only
63 parameter referencea in your macro DEFINITIONS. The
limit only applies at invocation time, and even then
only to nested (not sequential) macro usages.

'S FN

o

SPECIAL NOTE: In addition to the “conventional”

parameters,

Parameter

referred to by number, parameter zaro (i0)

has a special meaning to MAC/65. zero

allows the user to access the actual NUMBER of real
parameters passed to a macro EXPANSION.

This

feature allowa the user to set default parameters

within the Macro expansion, or test for the proper
number of parameters in an expansion, or more,
following example fllustrates a possible use of 16
shows usage of ordinary parameters as well.

EXAMPLE:
i¢ «MACRO BUMP
11 3
12 ; This macro will increment the specified word
13 .
14 ; The calling format 1is:
15 BUMP address [,increment J.
16 3 If increment is not given, 1 is assumed
17 1 . .
18 +IP $f=00 ,OR 18>2 oo
19 . .ERROR "BUMP: Wrong number of parameters™
20 +ELSE
21
22 5 this is only done if 1 or 2 parameters
23
24 .IP 34>1 ; Aid user specify “increment” ?
25 3 this ie assembled {f user gave two parameters
26 LDA 1 1 add "increment” to "address”.
27 CLC
28 ADC § <32 ; low byte of the increment
29 STA A1 t+ low byte of rssult
38 LDA %) +1 ; high byte of location
31 ADC § %2 ; 244 in -high byte of increment
32 STA §1 +1 ; and store reat of result
3) , .
34 JELSE
35 1 this is assembled if only one parameter given
36 INC %) 7 just increment by 1.
37 BNE SKIPHI implicitly local label
38 INC 81 41 ; must also increment high byte
39 S8KIPHI
40 JENDIF 7 matches the .IF 0>1 (line 24)
41 «ENDIP t matches the .IF of line 18
42 « ENDM 1 terminator.
we§Be=

The

and

5.5 MACRO EXPANSION, PART 2

He have shown how macro dafinitions may {include
specifications of particular parameters (the
specifications might also be called “formal
parameteres™). This section will show how to pass
actual parameters (equivalently “value parameters”,
"calling parameters”, etc.) to the definition.

The concept is simple: on the same line as the macro
invocation (by use of {ts name, of course) and
following the macro's name, the user may - place
expressions (or strings, see section 5.6). MAC/65
simply assigns each of these values a2 number, from 1 to
63, and then, during the macro expansion, replacees the
formal parameters (%1, %2, %$(label), etc.) with the
corresponding values.

Doea that sound too complicated? Internally, it {s.
Externally, it is as easy as this:

EXAMPLE

Assume that the BUMP macro has been defined (as above,
section 5.4), then the user may invoke it as needed,
thusi '

109 ALABEL BUMP A.LOCATION
119 INCR .= 7
120 BUMP A.LOCATION,]
13e BUMP A,LOCATION, INCR-2
149 BUMP
150 BUMP A.LOCATION, INCR,?7
160 A.LOCATION .WORD @
note: linea 142 and 158 wi{ll each cause the
BUMP error to be invoked and printed

Of course, you can aleo do silly things, which will no
doubt produce some pretty horrible (and hard to debug)
codes

179 BUMP INCR,A.LOCATION
will try to increment address 7 by something
189 BUMP PORTS
assuming that PORTS is some hardware port,
strange and wonderful things could happen

Y, Yo

5.6 MACRO STRINGS

String parameters are represented in a macro definition
by the characters "%$". All numeric parameters have a
string counterpart, not all of which are useful, All
string parameters have a numeric counterpart (their
length). .

As a special case, 1$0 always raturns the macro NAME,

The following table shows the various string and
numeric values returned for a given parameter:

- string returned numeric value
{in quotaes): returneds

As appears in
Macro call:

“A String 1 2 3" "A String 1°2 3" length of string

NUMERICSYMBOL “NUMERICSYMBOL" value of label
SYMBOL+1 *SYMBOL" value of expr
154 the string of parameter 4 value of orginal
(above would be used by a macro calling another macro)
-LABEL "LABEL"™ value of expr
GEORGE *“HARRY+PETE undefined value of expr
LDEF CIO *c1o*® value of expr
2 +2*65 undefined value of expr
Y'Y,

e am e

A Macro string example:

18 +MACRO PRINT

11

12 3 This Macro will print the specified atring,
13 ; parameter 1, but if no parameter string is
14 ; passed, only an EOL will be printed.

15

16 3 The calling format is: PRINT [string)
17

18 +IF %0 = 1 ; ia there a string to print?
19 JMP PASTSTR ;1 yes, jump over string storage
200 STRING .BYTE 1§1,EOL 5 put string here. .

b
22 PASTSTR
23 LDX #>STRING ; get string address into X&Y
24 LDY #<¢STRING ; for JSR to ‘print string'
25 JSR STRINGOUT
26 L.ELSE
27 no string...just print an EOL
28 LDA $EOL
29 JSR CHAROUT .

30
31 +ENDIP
32 « ENDM : terminator,

To invoke this macro, then, the following calls would
be appropriate:

100 PRINT "this is a string“
110 PRINT
120 PRINT MESSAGE

Line 128 4s strange: The macro facility assumes that
"MESSAGE" is a string (because of {ts usage), and o
will print it exactly as if {t had been placed in
quotes. llowever, if the label MESSAGE is not defined
elsewhere, the 1ine will also generate an *Undefined
Label®™ error. Generally, we do not suggest using this
form. Use the quoted string instead.

weblow

5.7 SOME MACRO HINTS

Each person will soon develop his/her own style of
writing macros, but there are certain common asense
rules that we all should heed.

A. When a macro is defined, its entire definition must
be stored 1in memory {(in a macro table). Since memory
space is obviously finite, it is a good {dea to keep
macros as short as possible. One way to do this {s to
avoid putting comments (remarks) within the body of the
macro. If you do document your macros {and we hope you
do), place the comments in the file BEFORE the .MACRO
directive. The assembler will then do nothing at all
with them and they will occupy no additional space.

B. Don't use a caller's macro parameter unless you are
sure that it is there. Using a parameter that the
caller left out will produce a MACRO PARAMETER error.
Depending upon the macro definition, thia may or may
not also produce undesired results, An example of
unsafe coding: :

«IP 1021 ,OR 12=0
<WORD %1
+ENDIP

The danger here occurs {f the caller i{nvokes the macro
with only one parameter. Since V2 is non-existent {and
hence undefined), the sub-expression "%2«0" is indeed
true and the sffect of “t0>1" i{s nullified. Of course,
the lack of parameter 2 will produce a "PARAMETER
ERROR", but f{t will already be too late. A hetter
coding of the above would be:

+IF 18>}
«IF 12080
+WORD %1
-ENDIP
«ENDIFP

C. Even though labels defined within macros are 1local
to each Invocation, they are still "visible™ outside
the macro{s)., Thus, it might be a good idea to have a
special form for labels defined in macros and avoid
that form outside macros. The macro library supplied
with MAC/65 uses 1labels beginning with "@° as local
labels to macros.)

CAUTION: You should NOT define a label beginning with
a question mark inside » macro. Neither should you use
a .LOCAL directive within a macro. {(You may USE labels
that start with question marks, 80 long as you don‘t
DEFIRE them within the macro.)

web2mw

5.8 A COMPLEX MACRO EXAMPLE

The following set of macros is designed to demonstrate
several of the points made in the preceding sections.
Aside from that, though, it is a good, usable macro
set. Study it carefully, please, (The 1line numbers
are omitted for the sake of brevity. Any numbers will
do, of course.)

the first macro, "@CH", is designed to load an
I0CB pointer into the X register. 1If passed a
value from 0 to 7, it asmumes {t to he a constant
(immediate) channel number. 1f passed any other
value, {t assumes it to be a memory location which
contains the channel number.

NOTE that these comments are outside the hody of
the macro, thus saving valuable table space.

e % s me % % S te % e e

+MACRO €cH

+IF 1137 ; where is channel number?
LDA 31 : channel § is in memory cell
ASLA t 80 load {t and

ASLA 1 multiply 4t

ASLA 2 16 via

ASLA ;s these shifts

TAX 3 then move it to X register
<ELSE

LDX 111%16 5 channel § times 16 goes in X
LENDIF

+ENDM

this next macro, "@CV", is designed to load a
Constant or Value into the A regiaster., If
passed a value from 0 to 255, it assumes it

to be a conatant (immediate) value. 1If passed
any other value, it assumes it to be a memory
location {(non-zero page).

s %o e e % N e o

+MACRO écv

+IF %1¢256 ; is this a constant value?
LDA M1l 3 yes...s80 load it immedfiately
<ELSE :

LDA A1 ? NO...80 get it from memory
+ENDIP

« ENDM

—efIme

The third macro is “@FL", designed to establish
a filespec. 1If pamsed a literal string, €FL
will generate the string in line, jumping arcund
it, and place its address in the IOCB pointed to
by the X register. 1f passed a non-zero page
label, @FL assumes it to be the label of a valld
filespec string and uses it instead.

R e e % w e g e

«MACRO @FL '

JIF %1¢256 p is this a literal string?

JMP *+1144 ; yes...s0 jump around the string
er .BYTE %$1,8 3 ...and store the atring here

LDA #<@F 1 then get address of the string

STA ICBADR,X ; put in IOCB's addreug field

LDA P>€F 1t aleo high byte of address

STA ICBADR+1,X

.ELSE ,

LDA #<%1 1 not a literal string

STA ICBADR,X ; but still get its address

LDA #2131 1 (both bytes)

STA ICBADR+1,X r to IOCB's address field

<ENDIP

« ENDM

Bl

e G0 w0 e ms me W %o %3 S we % e S W ay we

The main macro here is "X10", a macro to

implement a simulation of BASIC's X10 command.

The general asyntax of the usage of this macro is:
XI0 command,channel [,auvxl,aux2) (,filespec)

where channel may be a constant from 8 to 7
or a memory location.
where command, auxl, and aux2 may be a constant
from @ to 255 or a non-zero page location
where filespec may be a literal string or
a non-zero page location
if auxl and aux2 are omitted, they are assumed
to be zero (you may not omit aux2 only)
{f the filespec is omitted, it is asaumed to
bes "S:"

«MACRO XIO
«1F 38<2 ,0R 18>5 ; just checking
<ERROR "XIO:t wrong number of parameters”
+ELSE
€CH 32 1t process the channel number
ecv 1 1t and the XI10 command number
STA ICCOM,X ; ...putting command # in IOCB
+JF 0>=4 ; 4 or 5 arquments given?
ecv 3] Yyes...s80 process
STA ICAUX1,X 1 aux 1l

acv 24
STA ICAUX2,X 1 and aux 2
+ELSE 1 2 or 3 arguments given

LDA #0 3 so assume value of zero
STA ICAUX1,X 1 for aux 1
STA ICAUX2,X r and aux 2
+ENDIF
«IF tA=2 ,OR 16=4 ; was filename given?
8FL “S:") no...assume name is "S:"

<ELSE ; but {f yes...
@FPTR .= 10 get parameter number of name
eFL \$(@FPTR) 1 and process it
+ERDIF
JSR CIO 3 call the 0OS
+ENDIP .
« ENDM
g J

o

Pid Zou follow all that? The trick is that, the way

XI10 is specified, it fa legal to pass it 2, 3, 4, or
53 arguments; but each of those numbers represents a
unique combination of parameters, to wits

X10 command, channel

X10 command, channel, filespec

X10 command, channel,auxl, aux2

XI1I0 command, channel, auxl,aux2, filespsc

This ia not a trivial macro example. Perhaps you will
not have occasfon to write something so complex. But

::C/GS provides the tools to do many things if you need
em.

SPECIAL NOTE: Appendix B contains a fairly complete set
of 1/0 macros which you may type in and use.

ALSO: You may inquire about the avallability of the 0SS

MAC/65 Programmers® Aid Disk, which should include all
the macros in Appendix B and many more.

a=fGum

CHAPTER 63 COMPATIBILITY

There are many different 65062 assemblers available, and
it seems that each has a few foibles, bugs, or whatever
that are uniquely {ts own (and, of course, they are
called "features™ by their promotera). Well, MAC/65 is
no different,

This chapter is devoted to telling you of some of the
things to watch out for when converting from another
6502 asscembler to MAC/65. We will restrict ourselves
to such things as directives and operators. We will
NOT go into a discussion of how to convert the actual
6502 opcodes (equivalently: d{nstructions, mnemonics,
etc.)., We consider it mandatory that any good 6502
assembler will follow the MOS Technology standard in
this regard.

Example: We know of some antique 6582 assemblers that
specify the various addressing modes via special
opcodes. Thus the conventional "LDA #23" becomes
"LDAIMM 3" and “LDA (21IP),Y" Dbecomes “LDAIY 21P",
Unfortunately, there was never any standard established
for such distortions, #so we shall ignore them as
antique and outmoded. In any case, unless you are
entering a program out of an older magazine, you are
unlikely to run into one of these strange beasts.

The rest of this chapter pays homage to our birthright.
MAC/65 is a direct descendant of the Atari

assembler/editor cartridge {(via EASMD), As much as
possible, we have tried to keep MAC/65 compatible with
the cartridge. Unfortunately, in the {ntereat of

providing a more powerful tool, a few things had to be
changed. The next section of this chapter, then,
enumerates these changes.

6.1 ATARI'S ASSEMBLER/EDITOR CARTRIDGE

This section presents all known functional differences
hetween the Atari cartidge and MAC/65. Obviously,
MAC/65 also has many more features not enumerated here,
but they will not impact the transferrance of code
originally designed for the cartridge (or, for that
matter, EASMD).

S I

6.1,1 ,OPT O0BJ / NOOBJY

By default, ¢the Atari cartridge produces object code,
even when the destination of the object is RAM memory.
Thie is a dangerous practice, at bests it is too easy
to make a mistake in a program and write over DOS, the
user's source, the screen memory, or even (horror of
horrora) some of the hardware registers.

MAC/65 makes a special case of object in memory: you
don't get 1t unless you ask for it. You MUST have a
®.OPT OBJ" directive before the code to be gencrated or
the code will not be produced.,

6.1.2 OPERATOR PRECEDENCE

The Atari cartridge assigns no precedence to arithmetic
operators. MAC/65 uses 3 precedence similar to
BASIC's. Most of the time, this causes no problemsy
but watch out for mixed expressions.

Example: LDA #LABEL-3/256

seen as LDA #{LABEL-3) / 256 by the cartridge
seen as LDA #LABEL - (3/256) by MAC/6S5

6.1.3 THE .IF DIRECTIVE

The {implementation of .IF in the cartridge is clumsy

and unusable. MAC/65's implementation in more
conventional and much more powsrful. Rather than try
to offer a long example here, we will simply refer you
to the appropriate sections of the two manuals.

6.1.4 ZERO PAGE FORWARD REFERENCES

MAC/65 can not properly assemble a forward refarence to
a tero page label {uuually, you will get a PHASE
ERROR), The Atari cartridge generally can, but it has
other limitations on addressing modes which MAC/65 does
not suffer under.

You can usually avoid phase errors simply by moving

your equates for zero page locations to the head of
your assembled coda.

CHAPTER 7: ADDED 65CB82 INSTRUCTIONS

- -

MAC/65, as originally produced, supported the
“standard” 6502 {nstruction set as well as the
directives and addressing mode designators recommended
by MOS Technology (the originators of the 6582 chip).

This version of MAC/65 supports all features of the
original version along with added support for one of
the more popular enhanced versions of the 6582 chip.
In particular, MAC/65 supports all new instructions and
addressing modes avajlable on the 65C02 chip as
produced by NCR Corporation.

We describe here the primary added addressing mode, the
instructions with variants added, and‘ the completely
new instructions.

But before we start, we should note that these
instructions will only work properly on your computer
if you have {nstalled an NCR 65C82 in place of the 6582
wvhich came in the machine aa purchased. Almo, remember
that a program using these instructions may work great
in your machine. It will not work properly in your
friend's machine unless he/she also installs a 65C02.

Y Y.

7.1 A Major Added Addressing Mode

The standard 6562 chip supports two forms of indirect
addressing for what might be considered {ts primary
instructions. The forms appear in assembly listings as

1da {indirect,X)

and

1da (indirect),Y
(wvhere "1da" is only one of several valid mnemonics
that can be used with these addrassing modes).

The latter of these modes, often referred to as the
“indirect-Y" mode, is perhaps the most wuseful and
flexible of all 6582 addressing modes. And, vyet, it
suffers from one flaw: it ties up two registers (A and
Y). And, as importantly, probably a full 58% or more
of the time the Y~register is loaded with zero before
instructions in this mode are executed.

The NCR 65CP2 instruction set as supported by HMHAC/6S
provides a help here: you may code instructions
allowing Indirect-Y addressing in *Indirect® mode as
well. With 1Indirect mode, the assembler format is
simply :
1da (indirect) -

where, as with Indirect-~Y, the indirect 1location must
be in zero page.

Generally, the effect of using this instruction will be
the same as coding the aequences

LDY [14

1da {indirect),Y
EXCEPTING that the Y-register remains {ntact and
untouched and may be used for other purposes, .

The following, then, are ALL of the 65C02 {instructions
which allow and support this new addreseing mode:s
ADC (indirect) ADd with Carry
AND (indirect) bitwise AND
CMP (indirect) compare with A-reg
EOR (indirect) Exclusive OR
LDA (indirect) LoaD the A-register
ORA (indirect) inclusive OR
S$BC (indirect) SuBtract with Carry
STA {indirect) STore the A-register

P R R

- REMINDERs while the “indirect” location may be any zero

page location, you should probably restrict yourself to
the available locations documented in the DDT manual,

R 7 .

7.2 Minor Variations on 6582 Instructions

The "BIT" instruction has added two new addreasing
modes, and “JMP" has added one new mode. They are
described here individually:

Original allowed forms of 6502 BIT instruction were:
BIT absolute
BIT =zeropage
New 65C02 forms available are:
BIT absolute,X
BIT zeropage,X
The ability to use the X register as in index with the
BIT instruction greatly enhances {ts power for testing
tables, etc. The "indexed-x" address modes function as
they do for other 6502 inatructions (e.qg.,LDA and CMP),

Original allowed forma of 6502 JMP instruction were:
JMP absolaute
IMP (indirect)

New 65C082 form avallable is:
JMP. (indirect,X)

Note that the JMP instruction alone in both the 6582
and 63CP2?2 instructions sets uses an absolute {(i.e., 16
bit, 2 byte) address for its indirect value. The new
"indirect-x" form is no different: the location
specified as the indirect addrees may be anywhere in
memory.

This “indirect-X" address mode {s urlque and new. Its
effect 4ia as follows: add the contents of the
X-register to the ADDRESS (not the contents) apecified
by the given indirect addresas; use the result as the
address of the true operand for this instruction; JuMP
to the address contained {n the word-sized location
accesscd via the true operand.

An example is in order:

TABLE ,WDRD SUB1,SUB2,SUD3
LDA valne ; assume that “value®
3 contains 8,1, or 2
ASL A 1 double the value
ThX 3 +eeto X~register
JMP (TABLE,X) 1 and go to SUHl, SuB2,
i SUB] depending on “value"

—n?la~

®

7.3 ALL-NEW 65C82 Instructions

We detail here, in what we hope are logical groupings,
the 65CP2 instructions which are ¢truly “"new® to the
6582 world.

Mnemonic: BRA
Read as: BRAnch

Format: BRA addr
where addr must be in the range *-126
to *+129 (* is the current value of
the location counter)

Commentss BRA joins the Branch family (BNE, BEQ, BMI,
etc.) and adds the powerful capability of
ALWAYS branching. It thus becomes
equivalent to a JMP i{instruction with the
advantage that it occupies one leas byte in
memory and is inherently relocatable, Its
address range s restricted in a fashion
identical with the other members of the
"branch® family.

7.3.2 DEA and INA

Mnemonics: DEA

R INA

Read as: DEcrement Accumulator
INcrement Accumulator

Formats: DEA
INA

Comments: These saimple instructions add a capability
long lacking in the 6502, Until now, 1if
you wished to change the contents of the
accumulator by onu, you had to either use
TAX/INX/TXA {or something similar) or
cLc/aoe (or seEC/SBC), three byte
substitutes for what should {and now is) a
single byte instruction.

Processor status flags (l.e., N and 2),
timings, etc., are all identical to the
very similar INX/INY/DEX/DEY set of
instructions.

-e72em

7.3.3 PHX, PHY, PLX, and PLY

Mnemonics: PHX
PHY
PLX
PLY

Read as: PusH X onto CPU stack
PusH Y onto CPU stack
Pull, X from CPU stack
PullL Y from CPU stack

Formatst PHX
PHY
PLX
PLY

Commentst Again, these instructions are provided as
short cuts for the cumbersome sequences
hecessary on the standard 6502. As an
example, PHX can replace a sequence of
instructions as complex as this:

STA temp
TXA
PHA
LDA temp

By giving you direct access to the stack
from the X and Y registers, it is possible
and desirable to right more compact and
more relocatable code. Processor status
flag usage, timings, etc., are identical to
the very similar PHA and PLA instructions.

RO, X Y

7.3.4 sT12

L T

Mnemonic:
Read As:

Formats:

Comments

STZ
STore Zero

STZ absolute
STZ absolute,X
STZ =zeropage
STZ <zeropage,X

Yet another short cut, 6TZ simply replaces
the sequence

LDA #0

STA address
with the difference that it does not affect
the contents of the A register. 1In fact,
to properly simulate this instruction on an
ordinary 65082, the following code would be
needed in the general case:

PHA

LDA #@

STA address

PLA

7.3.5 TRB and TSB

Mnemonics:

Read As:

FPormate:

Commentss

TRB
TSB

‘Test and Reset Bits

Test and Set Bits

TRB absolute .
TRB zeropage
TSB absolute
TSB zeropage

These 1instructions have many uses, not the
least of which would be synchronization of
background and foreground
({nterrupt-driven) routines. In boolean
terms, the instructions might be thought of
thus:

TRBt Memory 1= (Not A) and Memory
TSBt Memory 1= A or Memory

In words, we might describe the operation
of these instructions as follows:

. Y

For TRB: The complement of the contenta of
the Accumulator is bit-wise AND-ed with the
contents of the memory cell addresgsed by
this instruction (either an absolute or
zero-page location). The result of this
AND-ing is placed back in the addressed
memory cell,

For TSB: The contenta of the Accumulator is
bit-wise OR~ed with the contents of the
memory cell addressed by thie instruction.
The result of this OR-ing is placed back in
the addresscd memory cell.

If the result of the AND-ing or OR-ing is
rero, the Zero processor status flag {is
set., The N and V flags are set to the

rcontents of bits 6 and 7 (aimilar to the

usage and results of the BIT instruction)
of the addressed memory cell as those
contents were BEFORE the bit-wise operation
took place.

.Examplesl
FLAG .BYTE 3
TEST .BYTE $FF
LDA #SFP
TRB FLAG ; resets all bitsl
LDA #0
TSB TEST 1 just tests value

P T J.

===this page intentionally left blank--

S 7.

e an.

CHAPTER 8: PROGRAMMING TECHNIQUES WITH MAC/65

- - v o e 0

This chapter will present you with a couple of hints
about how to use MAC/6S to more advantage.

8.1 Memory Usage by MAC/65 and DDT

The following memory locations are used by MAC/65
and/or DDT for the purposes showni

range of used by

addrosses MAC/65 DDT used for

$80-$Ar yos yes pointers and temporaries
$80-$D3 yes no pointers and temporaries
$D4-SFP yes no floating point regiaters, etc.

$109-$1FF yesn yes normal 6582 CPU stack
$3IFD-$47F no yes buffers and display area
$480-857F yes vyes buffers and work area
$580~$67F yes no input buffers, etc.
"size" yes hd program text, etc.

Note that “size® refers to the memory area delineated
by the lowest and middle numbers displayed when the
“SIZE" command {8 used from the MAC/65 editor. The *
in DDT's column indicutes that DDT saves MAC/65's zero
page memory (and other, related, locations) in the area
actually shown to be part of the "sirze®™ memory.

The worst implication of the memory map above
(especially for Atari BASIC usera) is that page & is
NOT completely available to you. Since many magarine
articles assume that page 6 is avallable, they will not
run AS 1S under MAC/65 and DDT. But see the next
section for methods to use if you MUST use page 6,

R 1 2

8,2 Assembling With An Offset: .SET 6

In Section 4.19, we noted that the assembler directive

".SET 6,value” could be used

offset

counter address,

to specify an additive

for the storage address vis-a~-vis the location

In this section, we present a method

for using this capability in a practical sense.

Let us assume that we wish to assemble a small program
which will reside in page 6 ($688 through $6FF). The
program which we will assemble is presented here:

10 *= $600
20 COLOR4 = $2¢C8
38 .
40 START
59 PLA
[1:] CMP 10
78 BEQ *

[:1] LDA COLOR4
LT} cIc
100 ADC #§18
110 STA COLOR4
129 INC COUNT
130 RTS
148 COUNT +BYTE 8
150 +END

If you assemble

free assembly.
recognize this as a routine callable from Atari
thanks

will
BASIC,

But it f{s
do? Answer: simply add the following two lines to the
listings

12
14

Now,

assembler
addresses shown.

if you

the object
$3612 i3 being incrementedl

affected,

START
§612,

is

§ remove count of parameters
3 any parameters?
1 1f yes, loop forever

!

!
!

get current background color
change to next hue

++.by changing shadow reg

and count the number of times

just a simple counter

this routine, you shoud get an error

{And those of you who are BASIC users

to the PLA and check on number of
parameters at the beginning.)

+OPT OBJ

designed to reside in page 6, What can we

1 we 4o want object code
+SET 6,$3009 ; and we will offset

assemble this code, you will notice that
the addressea shown start at $3688, And, {indeed, the

placing

is shown to bhe

the
But look at line 120. Notice that
code generated does NOT show that location

code in memory at the

Instead, location $0612 i=a

Aleo note that in the symbol table 1listing

at location $608@ and COUNT at

'

wmT8aw

Now use the "DDT" command to enter DD?T. From DDT,
enter the command

M 369036000880 [RETURN)
which will move $80 {128) bytes from location $3602 to
location $600. Use the command

* 9600 [RETURN]
to view the contents of locations $608 and beyond. Use
the up and down arrows (remember, WITHOUT pushing CTRL)
to view the code. Lo and behold, your code has been
successfully deposited where you wanted it, waiting for
You to debug.

Some final notes on this subject: MAC/65 will generate
this “offset”™ kind of code either directly to memory
(as we dAid here) or to an object file (on disk,
presumably). When the file is reloaded {via MAC'a
BLOAD command or via some 10ad command from the DOS you
are using), it will be loaded at the address shown in
the listing. It ia your responsibility to then somehow
move it to the desired location. The technique is not
necessarily easy, but using these methods you can
overwrite DOS or even produce code designed to run in
the cartridge space. In the latter case, you may wish
to use a negative offset with .SET 6. This -is
perfectly legal and reasonable.

R, 7- Y

8.3 Making MAC/65 Even Faster

If you LINCLUDE a file consisting ONLY of equates
and/or macro definitions (NOT macro callal), there is a
technique you can use which will speed up assembly
somewhat.,

In particular, since equates need be made only once and
macros need be only defined once, there is no reason to
read such .INCLUDED files on pass two. The following
code shows a workable technique:

L 2™ [}
PASS .= PASS+l) do this only once per assembly
«IFP PASS=]
+INCLUDE #Dsequatesfile
+ENDIP

*= beginning

Why this works: Normally, an undefined label has a
value of zero, The ",=" directive, however, causes a
mildly strange thing to happen: an undefined label used
on the right side of ".w=" takes on the current value of
the location counter. Hence the need for the " *= g"
line at the beginning of the above example.

In any case, thanks to this mechanism, the first time
the mecond line is assembled (in pass 1), PASS takes on
a value of 1 (of course, the line also generates an
“undefined label™ error, but such errors are not
printed in pass 1). The next time it is assembled,
PASS receives a value of 2, Simple and neat.

Note that if the “.=" used in the second line above s
placed ahead of any "*=" (or ".ORG") lines, then the
first line shown {s not needed, eince the location
counter is assumed to start at zero unless told
otherwise.

Y. T

7

Appendix At System Equates

We present here a listing of certain system locations
which we find useful and necessary when programming on
the Atari Computer.

Many of the equates shown here are noted as applying to
DOS XL. Generally, {if you are working with system
resources (such as IOCB's and CIO and such), the equates
will be identical for Atarl DOS. We have tried to
specially mark the locations which apply only to DOS XL
(especially batch execution and the command line).

Some of the labels on these equates may vary slightly
from those used by Atari (in the operating system
listings) or in published books (such as “Mapping The
Atari®, from Computel books) . The dAifferences are
minimal (e.g., TCAX1 inatead of I1CAUX1).

You may type in this entire listing and SAVE the result
to disk or tape., If you save it to disk, you may later
+INCLUDE it for use by your program{s). If you save it
to disk, you will have to merge it with (or append it
to) your programs.

You may also saimply use this listing as a reference,
typing in only the equated 1labels that your program
actually uses.

(The listing begins on the next page.)

weBlea

léssa +PAGE “0SS SYSTEM EQUATES FOR ATARI"
-]

1820 3 Recommended File Nama: SYSEQU.M6S
1030 4

1049 ;

1650 I/0 CONTROL BLOCK EQUATES

1669

issg SAVEPC = ¥ 1 SAVE CURRENT ORG

867

1870 *= $8348 ;START OF SYSTEM 10OCBS
1875 I0CB

1860

1099 ICHID .DS 1 ;DEVICP, HANDLER 1S (SET BY 0S)
11860 ICDNO .DS 1 JDEVICE NUMBER (SET BY OS)
1118 ICCOM .DS 1 11/0 COMMAND

1128 ICSTA .DS 1 11/0 STATUS

1139 ICBADR .DS 2 1BUFFER ADDRESS

1148 ICPUT .DS 2 1DH PUT ROUTINE (ADR-1)
1158 ICBLEN .DS 2 1BUFFER LENGTH

1168 ICAUX1 ,DS 1 $AUX)

1178 ICAUX2 .DS 1 TAUX 2

1188 ICAUX3 .DS 1 JAUX 3

1198 ICAUX4 .DS 1 1AUX 4

128” ICAUXS .DS 1 IAUX 5

1216 ICAUX6 .DS 1 T1AUX 6

1229

1238 IOCBLEN = *-IOCB ;LENGTH OF ONE 10OCB
1240 ;

1250 1 10CB COMMAND VALUE EQUATES

1268

1276 COPN = 3 1OPEN

1280 CGBINR = 7 $1GET BINARY RECORD
1298 CGTXTR = § 1GET TEXT RECORD

1389 CPBINR = 11 1 PUT BINARY RECORD
1318 CPTXTR = 9 1 PUT TEXT RECORD

1328 CCLOSE = 12 1CLOSE

1330 CSTAT = 13 1GET STATUS

1340 ;

1350 ; DEVICE DEPENDENT COMMAND EQUATES FOR FILE MANAGER
1369

1378 CREN = 32 1 RENAME

1380 CERA = 33 1ERASE

1398 CPRO = 35 1 PROTECT

1488 CUNP = 36 . 1UNPROTECT

1416 CPOINT » 37 tPOINT

1428 CNOTE = 38 JNOTE

1439

1440) AUX1 VALUES REQD FOR OPEN

1450

1468 OPIN = 4 JOPEN INPUT

1478 OPOUT = 8 $OPEN OUTPUT

1488 OPUPD = 12 JOPEN UPDATE

1490 OPAPND = 9 1OPEN APPEND

1568 OPDIR = 6 1OPEN DIRECTORY

1518 :

L .

L 2
!

%,

1680
1690

INITADR = $02E2

DEFINES

EXECUTE IN PROGRESS

ECHO EXCUTE INPUT TO SCREEN
EXECUTE START UP MODE

COLD START EXEC FLAG

POINTER TO CP’

WAR, START {O=COLD)

AVAIL MEM (LOW) PTR

AVAIL MEM (HIGH) PTR

UPPER LIMIT OF APPLICATION MEMORY
ATARI LOAD/INIT ADR

1520 «PAGE

1530 ;

1549 4 EXECUTE FLAG

1550 ;

1560 EXCYES = $Bg)

1578 EXCSCR = $48 H

1588 EXCNEW = $18 t

1599 EXCSUP = $28 ?

1600 4

1619 ; MISC ADDRESS EQUATES

1620

1630 CPALOC = $@A]

1640 WARMST = $08)

1658 MEMLO = $P2E7 1]

1660 MEMTOP = $Q2ES

1670 APPMHI = $QE y
1
1)

17e6
1710
1720
1739
1740
1750
1760
1778
17608
1799
1000
1819
le2a
1830
1840
1850
1864
18743
1880
1893
1980

GOADR = $G2EQ
CARTLOC = $BFFA)

CIO m
EQL =
1

$E456
$9B

$

ATARI LOAD/GO ADR
CARTRYIDGE RUN LOCATION

7CIO ENTRY ADR

END OF LINE CHAR

t CP.FUNCTION AND VALUE DISPLACEMSNT
(INDIRECT THROUGH CPALOC)
IE. (CPALOC),Y

H
H
H
CPGNFN = 3 '
CPDFDV = $87 '
CPBUFP = SBA :
CPEXFL = $08 '
CPEXFN = $0C t
CPEXNP = $1C :
CPFNAM = $2) '
RUNLOC = $3D !
CPCMDB = $3F 1
CPCMDGO = $P3
H

*= SAVEPC

H

GET NEXT FILE HAME

DEFAULT DRIVE (3 BYTES)

CMD BUFF NEXT CHAR POINTR (1 BYTE)
EXECUTE FLAG

EXECUTE FILE NAME (16 BYTES)
EXECUTE NOTE/POINT VALUES
FILENAME BUFFER

CP/A LOAD/RUN ADR

COMMAND BUFFER (62 BYTES)

RESTORE PC

——B3ea

-==this page intentionally left blank=--

.V p—-

4 >

Appendix B: Some Useful Macros

In the pages which follow, we present the listings of
several macroasa. These macros are deasigned to make {t
easy for you to perform Input/Output operations. If you
type all of them in exactly as shown, you will have a
useful macro library.

We suggest that you type them in and then SAVE them (to
diskx or tape). If you save them to disk, you can later
use INCLUDE to allow your program access to their ease
and power. Jf you save them to tape, you will have to
merge them with your program in memory in order to use
them.

CAUTION: These macros use many of the equates given {n
the SYSTEM EQUATES 1listing of Appendix A. You may
either .INCLUDE the entire set of equates as presented
or simply type in the ones which these macros need.
(You can find out which labels they need by assembling
your -program without the equates. The undefined labels
will causes errors during the assembly.)

Before we present the 1listings, we present here a
summary of each macro along with notations on how to use
it. Remember, using a macro requires simply cnoding its
name in the operator (mnemonic) field of a line along
with any parameters in the operand field(s).

The macros are presented here Iin expected order of
usage:

OPEN chan,auxl,aux?, f{lename
Opens the given filename on the gliven
channel using auxl and aux2 as per OS/A+
specifications.

PRINT chan [,buffer [,length)]
I1f no buffer given, prints just a CR on
chan. If no length given, 1length assumed
to be 255 or position of CR, whichever is
smaller. Buffer may be literal string, in
which case length is ignored if given.

INPUT chan,buffer [,length]
If no length given, defaults to 255 bytes.

BGET chan,buffer,length
Binary read, a la BASIC XL, of length
number of bytes {nto the given buffer
address.

Y S

BPUT chan,buffer,length .
Binary write of length number of bytes from
the given buffer address.,

CLOSE chan
Closes the given file.

XIO0 command,chan [,auxl,aux2]{,f{lename)
As described in chapter 5.

NOTES:
"chan®” may be a literal channel number (@ through
7) or a memory location containing a channel
number (8 through 7).

“auxl®™, "aux2", "length®, and “"command“ may all be
efther 1literal numbers (8 to 255) or memory
locations.

“filename™ may be either a literal string (e.g.,
"DiFILE1.DAT") or a memory location, the latter
assumed to be the address of the start of the
filename string.

Where memory locations are glven instead of
literals, they must be non-zero page locations
which are defined BEFORE their wusage 4in the
macro{s). The following example will NOT work
properly !

PRINT 3,MESSAGELl y WRONGI!

MESSAGE]l .BYTE "This WON'T WORK .It) *

" These macros are useful instruments, but they really

are meant only as examples, to show you what you can do
with MAC/65, Please feel free to study them and change
them as you need.

(The listings start on the next page.)

eeBf=-

[N

1000
1010
1020
1030
1048
1050
1060
1070
1088
1298
1100
1118
1120
1130
1140
1150
1160
1170
11688
1198
1200
1219
1228
1230
1240
1250
1269
1270
1280
1290
l1ioe
1310
1320
132a
13490
1350
1360
1370
13R0
1390
1400
1410
14290

1430

1440
1450
1469
147¢
1480
1490
1503
1510
1520
1530
1549
1558

-~ o v

«TITLE "ICMAC.LID ~- OSS system 1/0 macros”

+PAGE " Support Macros"
.1f .NOT .DEF I0CB
+ERROR "You must include SYSEQU.M65 ahead of thisli®
<ENDIP

These macros are called by the actual 1/0 macros
to perform the rudimentary register load functions.

MACRO:t E@CH
Loads 10CB number (parameter 1) into X register.

If parameter value {ieg 0 to 7, immediate channel number
is assumed.

1f parameter value is8 > 7 then a memory location
is nassumed to contain the channel number.

«MACRO RCH
JIF t1>7
LDA 81
ASL A
ASL A
ASL A
ASL A
TAX
+ELSE
LDX #t1*16
+ENDIF

« ENDM

MACRO: @cv
Loads Conatant or Value {into accumultor (A-register)

1f value of parameter 1 is £-255, 2cCv
assumes it'e an {immediate) constant.

Otherwise the value {g assumed to
be a memory location (non-zero page).

«MACRO @cCV
LIF 11<256
LDA %1
<ELSE
LDA 1
.ENDIF

+ ENDM

- J

P
1569
1578 3 MACRO: @FL
1584
1590 ; @PL is used to establish a fllespec {(file name)
1608
1612 7 If a literal string is passed, @FL will
1628 ; generate the string in line, jump
1638 ; around {t, and place {ts addreas
1648 ; in the IOCB pointed to by the X-register.
1650
1660 ; Yf a non-zero page label is passed
1670 ; the MACRO assumes it to be the label
1680 ; of a valid fllespec and uses it instead,
1690
1769
1719 ;
1728 +«MACRO €PL
1738 +IP 11<¢256
1749 JMP *4+1144
1750 &F -BYTE 1$1,0
1768 LDA # <@F
177e STA 1CBADR,X
1788 LDA t >€F
179@ STA ICBADR+],X
1808 +ELSE ' /’-\3
1810 LDA # <%}
1820 STA ICDADR,X
1830 LDA 1 »%)
1848 STA ICBADR+1,X
1858 «ENDIP
1860 +ENDM
1865

aaBB-e

1870
1888
1890
1900
1919
1920
1930
1948
1958
1969
1979
1980
1999
2009
2910
2020
2036
2040
2850
2060
2870
2088
2090
2169
2119
212¢
2138
2140
2159
2160
217a
2180
2198
2208
2210
2220
2230
2249
2250
2260
2278
2280
2285

. S e e tE W S e e e e m e b e

+PAGE * X10 macro"
MACRO: XIO
FORM: X110 cmd.ch[,auxl.nux?][,fllegpec]

ch is given as in the &CH macro
cmd, auxl, aux2 are given as in the @CV macro
filespec is given as in the 8FL macro

performs familiar XIO operations with/for 0S/a+

If auxl {a given, aux2 must also be given
If auxl and aux2 are omitted, they are set to zero
If the filespec is omitted, "S:" is assumed

»MACRO XIO
.IF 49¢2 .OR %055
+ERROR "X10: wrong number of arguments®
«ELSE
ecH %2
gcv 11
STA ICCOM,X s COMMAND
«IF I>=4
ecv a3
STA ICAUX1,X
gcv w4
STA ICAUX2,X
. ELSE
LDA §0
STA ICAUX1,X
STA ICAUX2,X
«ENDIF
+IF %0822 ,OR t0=4
8FL *s:"
+ELSE

eero .= 0

eFrL $(eero)
+ENDIF
JSR CYO
+ENDIF
« ENDM

«=89m=

2298
2308 3
2310
23208
2330 ;
2348 ;
21350
2369
2378 ;
21388
2398 ;
2490
2410 ;
2420
2439
2440
2450
2460
2479
2480
2490
2508
2519
2520
2530
2535 3

+PAGE " OPEN macro®
MACROs OPEN '
FORM: OPEN ch,auxl,aux2, filespec

ch is given as in the €CH macro
auxl and aux2 are given as in the &CV macro
filespec {s given as in the @FL macro

will attempt to open the given file name on
the given channel, using the open "modes”
specified by auxl and aux2

+MACRO OPEN
+IF 1g¢>4
«ERROR "OPEN: wrong number of arguments”
+ELSE .
+IF 34<256
XI0O COPNH,3%1,1%2,4%3,1%54
«ELSE
XIO COPN,$1,1%2,1%3,%4
+ENDIFP
« ENDIF
+ENDM

Y -

o

25409
2550
2560
257¢
25080
2590
2600
2610
2620
2630
2640
2659
2660
267¢@
2680
2690
2788
2719
2720
2730
2740
2750
2760
o~ 2770
2700
2796
2800
2819
2820
2818
2840
2850
2869
2878
2889
289¢
2999
29190
2920
2930
2940
2958
2960
2979
2980
2990
3008
3019
3020
3039

e ms % we e mE e e %e e e a4k e e we ay e e

+PAGE " BGET and BPUT macros”

MACROS: BGET and DPUT

FORM: - BGET ch,buf,len
BPUT ch,buf,len

ch is given as in the @CH macro
len 1s ALWAYS assumed to be an immediate

and actual value...never a memory address

buf must be the address of an appropriate

buffer in memory

puts or gets length bytes to/from the

epecified buffer, uses binary read/write

first: a common macro

«MACRO €GP

ecn 31
LDA 1%4
STA 1CCOM,X
LDA § <12
STA ICBADR,X
LDA § >%2
STA ICBADR+1,X
LDA § <13
STA ICBLEN,X
LDA § >33

STA ICBLEN+1,X
JSR CIO

- ENDM

+MACRO RGET
«IF 18¢>»3
«ERROR "RGET: wrong number of parameters"™
«FLSE
eGP %1,12,%3,CGBINR
.ENDIF
« ENDM

. +HACRO BPUT

«IF %8¢>)
+ERROR "BPUT: wrong number of parameters”
+ELSE
eGP %1,%2,%3,CPBINR
+ENDIF
« ENDM

wn9)mw

3048 +PAGE " PRINT macro”

3850

3060 ; MACRO: PRINT

3078

3088 ;7 FORM: -PRINT chl,buffer(,lengthl]

3890

3189 ; ch is as given in €CH macro

3118 if no buffer, prints just a RETURN

31286 ; if no length given, 255 assumed

3139

J146 ; used to print text. To print-text without RETURN,
J150 ; length must be given. See 0S/A+ manual
3168

3178 ; EXCEPTION: second parameter may be a literal
3180 ;3 string (e.q., PRINT O,"test"), in which
3199 3 case the length (if given) is ignored.
3289 .
3218 +MACRO PRINT .

3220 +IP 208<¢1 .OR 19>3

3230 «ERROR "PRINT: wrong number of parameters”’
324¢ +ELSE

3258 «IF 39>1

3260 +IF %2¢128

3279 JIMP *+4412

3280 @10 «BYTE 3§$2,$9B

3299 eGP 11,0810,%2+1,CPTXTR

Jice «ELSE

33le +IF 3B=2

3320 eGP %1,%2,255,CPTXTR

333e +ELSE

J340 eGP %1,12,1%3,CPTXTR

335¢ <ENDIP

3368 +ENDIF

337a «ELSE ¢

3l80 IMP *+4

3396 @10 «BYTE $9B

d4e0 ecp 11,010,1,CPTXTR

3410 +ENDIF

3420 «ENDIP

3439 +« ENDM

3440 3

~—92en

3450
3460
3470
3480
3498
1500
3518
3520
3530
3540
3558
3560
3578
3580
1590
3600
3610
3628
3638
3646
3650
3560
3678
3698
3699
3780
3710
31720
3739
3740
3758
3760
1716
3780
3790
1800
Islg
3820
3830
Inae
3850
3g6H
a87p
2880
3800
31980
3910

+PAGE " INPUT macro"
MACRO: INPUT
FORM: INPUT ch,buf,len
ch is given as in the €CH macro
buf MUST be a proper buffer address
len may be omitted, in which case 25% is assumed

gets a line of text input to the given
buffer, maximum of length bytes

. e ne e o S v e e w e we

+MACRO 1INPUT
«IF 1A<2 .OR %6>3
«ERROR “"INPUT: wrong number of parameters™
+ELSE
«IF 10=2
€GP %1, %2,255,CGTXTR
-ELSE
eGP 11,1%2,13,COTXTR
« ENDIP
«ENDIF
«ENDM
«PAGE * CLOSE macro”

MACRO: CLOSE
FORM: CLOSE ch
ch is given as in the @CH mucro

closes channel ch

e e te %o ve s e e w

.MACRO CLOSE
»IF 13¢>)
+ERROR “"CLOSE: wrong number of parameters”
ELSE
ocny 11
LDA #CCLOSE
STA ICCOM,X
JSR CI0
ENDIF
» ENDM
'
J1rrissrrry END OF IOMAC.LIB 217335333123
: .

-3, Y

===this

s e

N

page intentionally left blank---

—e9d o=

Appendix C: ERROR DESCRIPTIONS

When an error occurs, the system will print

*¢¢ ERROR ~
followed by the error number (unleas the error was
generated with the .ERROR assembler directive) and, for
most errors, a dercriptive message about the error.

Note: The Assembler will print up to 3 errors per line.

The format wused in the listing of descriptions which
follows {s simply FERROR KUMRBER, ERRQOR MESSAGE,
description and possible causes.

1 = MEMORY FULL

All user memory has been used, If issued by the

Editor, no more source lines can he entered. If

issued by the Asscmbler, no more lahels or macros

can be defined.
HOTEt If memory full occurs during assembly and
the source code is locatred {n memory, SAVE the
source to disk, type HNEW, and assemble from the
Aisk instead, low the assembler can use all of
the space formerly occupled by your source for
macro and symbol tablea, etc.

2 «~ INVALID DELETE
Either the first 3ine number is not present in
memory, or the second line number {a less than the
first line number,

3 = BRANCH RANGE
A relative {instruction references an address
displacement qreater than 129 or less than 126
from the current address.

4 = NOT Z-PAGE / IMMEDIATE MODE
An expression for indirect addressing or immediate
addreseing has resolved to a value greater than
255 (srF).

$ = UNDEFINED

The Agsembler has encountered a undefined label.
6 =~ EXPRESSION TOO COMPLEX .
The Assembler's operator stack has overflowed. If
you must use an expreasion as complex as the one
which generated the error, try brecaking. it down
using temporary SET lebels (f.e., using ".=°},

Y

7

8

9

18

11

12

13

14

15

16

17

DUPLICATE LABEL
The Assembler has encountered a label in the label
column which has already been defined.

BUPFEZR OVERPLOW
The [Iditor syntax buffer has overflowed. Shorten
the input line.

CONDITIONALS NESTING

The .IF-.EZLSE-,.INDIP construct {s not properly
nested. Since MAC/6S cannot detect excess
.ENDIFs, the problem must be an EXTRA ELSE or
<ENDI? instead.

‘= VALUEZ > 255

The result of an expression exceeded 255 when only
one byte was needed and allowaed.

- CONDITIONAL STACK

The .I!F~.ELSE~-.ENDIF nesting has gone past the
number allowed. Conditionals may be nested a
maximum ©f 14 lavels.

- NESTED MACRO DEFPINITION

The Assembler encountered. a second «MACRO
directive before the .ENDM diractive. This error
will abort assembly.

- OQOUT OF PHASY

The address generated in pass 2 for a label does
not match the zddress generated in pass 1. A
common cause of this error are foward referenced
addresses. If using conditional assemdbly {with or
without macros), this error can result from a .IF
evaluating true during one pass and false during
the other.

= *= EXPRESSION UNDEFINED
The program counter was forward referenced.

= SYNTAX OVERFLOW
The tditor {s wunable to syntax the source line.
Simplify complex expressions or break the 1line
into multiple lines.

= DUPLICATE MACRO NAME

An attempt was made to define more than one Macro
with the same name. Only the first definition
will be valid,

- LINRE § > 63538
The Editor cannot accept line numbers greater than
65535,

[Y 3.

18

19

20

21

22

23

24

25

27

Je

3

- MISSING ,EWDM
In a Macro definition, an EOF was reached before
the corresponding « ENDM terminator. Macro
definitions cannot cross file boundrys. This
error will abort assembly,

~ HNO ORIGIN
The *= directive is missing from the program.
Notes This error will only occur if the assembler
is writing object code.

- NUM/REN OVERFL.OW
On the REN or NUM command, the line number
generated was greater than 65535. 1f REN {ssued
the error, entering a valid REN will correct the
problenm. Ie HUM issued the error, the
auto-numbering will be aborted.

-~ NESTED ,INCLUDE
An {ncluded file cannot itself contain an .INCLUDE
directive.

- LIST OVERFLOW

The 1ise output buffer hae exceeded 255
characters. Use smaller numbers in the .TAB
directive, :

= ROT SAVE FILE
An attempt was made to load or assemble a file not
created with the SAVE command.

- LOAD TOO BIG
The load file cannot fit into memory.

~ KOT BINARY SAVE
The file 1s not in s valid binary (memory image,
assembler object, ctec.) format.

- INVALID .SET
The first denum in a .SET specified a non-existant
Assembler eystem parameter.

~ UNDEFINED MACRO

The Assembler encountered a reference toc a Macro
wvhich s not defined. vacros must first De
dofined before they can be sxpanded.

= MACRO NESTING.
The maximum level of Macro nesting has exceeded 14
levels.

—egTlme

32 <« BAD PARAMETER
In a Macro expansion, a reference was made to a

nonexistent parameter, or the parameter number
specified was greater than 63.

128 ~ 255 [operating system errors)
Error numbers over 127 are generated in the
operating system. Refer to the OS/A+ manual for

detalled descriptions of such errors and thelir
causes.

Y -

®

