ATA@ °*800

MACRO ASSEMBLER

AND PROGRAM-TEXT EDITOR"

CONTAINS ONE PROGRAM DISKETTE CX8121
WITH TWO INSTRUCTION MANUALS
AND A QUICK - REFERENCE CARD

: USE WITH ATARI 800™
Pyt A HOME COMPUTER
ATARI®A warner communications Company ACCESSORIES REQUIRED

The ATARI Macro Assembler is a/software development tool for the experienced programmer.
The editor and assembler allow yoi: to write and edit programs in 6502 assembly language for fast
efficient execution. Features include macros and conditional assemblies.

SYSTEM REQUIREMENTS

® ATARI® 800™ Home Computer
® ATARI 810™ Disk Drive
® Minimum 32K RAM

® Blank Diskette (Model CX8100 or equivalent)
OPTIONAL ACCESSORY:

® ATARI 820™ 40-Column Printer, ATARI 822™

Thermal Printer, or ATARI 825™ 80-Column
Printer

(ATARI 850™ Interface Module required to use the
ATARI 825 80-Column Printer.)

ATARI, INC., Computer Division ®* PO Box 427 ¢ Sunnyvale CA 94086
Packaging and Program Contents © 1981 Atari, Inc. Printed in U.S.A.
GD A Warner Communications Company

ATARI®
MACRO ASSEMBLER

ATARI®

o»’\ Warner Communications Company

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Home Computer Division
However, because of the ongoing improvement and update of the computer software and hardware, ATARI, INC. cannot guarantee the
accuracy of printed material after the date of publication and cannot accept responsibility for errors or omissions

Reproduction is forbidden without the specific written permission of ATARI, INC_, Sunnyvale, CA 94086. No right to reproduce this docu-
ment, nor the subject matter thereof, is granted unless by written agreement with, or written permission from the Corporation

PRINTED INU.S.A MANUAL AND PROGRAM CONTENTS ©1981 ATARI, INC

CONTENTS

INTRODUCTION

—

Features of This Package
Macros
Conditional Assembly and Code Duplication
Systext Files
Program Listing Control
Cross-Reference Tables
Standard ATARI Computer and 6502 Mnemonics

Contents of This Software Package
Procedures
Program Loading Instructions
Creating a Source Program
Assembling a Source Program

Purpose of This Manual
References

Ww WNNNN N2 =Sl

ASSEMBLER EXECUTION

9]

Command Line Syntax
Command Line Options
Command Line Examples
User Interface

NO U n

FILE USAGE

O

Source Input Files
System Text Files
Object Output File
Listing File

Source Listing Format
Sample Listing
Symbol Map Format

R P N
OO0 OO Y

LANGCUAGE STRUCTURE

15

Statements
Label Field
Operation Field
Variable Field

15
15
15
15

Contents iii

iv Contents

Statement Termination 16
Comments 16
Definitions 16
Symbols and Names 16
Numbers 17
Character Strings 17
Expressions 18
Operands 18
MACRO FACILITY 21
Macro Definition 21
Macro Call 21
Code Duplication 22
Nesting 22
PSEUDO-OPERATIONS 23
ASSERT 23
DB 24
DC 24
DS 24
DW 25
ECHO ... ENDM 25
EJECT 26
END 26
EQU or = 27
ERR 27
IF .: : ENDIF, 1F .. . ELSE .. . ENDIF 27
INCLUDE 28
LINK 29
LIST 31
LOC 32
MACRO ... ENDM 33
ORG 35
PROC.. .. EPROC 35
REAL6 36
SET 36
SPACE 36
SUBTTL 37
TITLE 37
USE 38
VED 38

7 PSEUDO-OP QUICK REFERENCE 41
8 INSTRUCTION MNEMONICS 43
9 USINC THE ATARI MACRO ASSEMBLER

WITH THE ATARI ASSEMBLER EDITOR

SOURCE FILES 49

10

ERROR CODES

51

Contents v

ATARI"800"

ATARF
MACRO ASSEMBLER

J Ik Use with ATARI 800™

AIARY o @ PERSONAL COMPUTER SYSTEM

1

INTRODUCTION

FEATURES OF
THIS PACKAGE

The ATARI® Macro Assembler is a software development tool for writing 6502
assembly language programs for the ATARI 800" Home Computer. The features of
this assembler include macros, conditional assembly, code duplication, access to
library definitions, program-listing control, and cross-reference tables. It offers fast
compilation and uses standard 6502 mnemonics.

MACROS

The macro feature allows you to define code words to represent multiple instruc-
tions. It makes it easy for you to use a sequence of code many times in a program.

CONDITIONAL ASSEMBLY AND CODE DUPLICATION

Conditional assembly allows the generation of source code based on certain condi-
tions. Combined with macros this offers a powerful and versatile way of coding
assembly language programs. An ECHO pseudo-operation enables you to repeat
sections of code (similar to the macro feature, but it does not allow parameter
passing).

SYSTEXT FILES
Often you will want to create and store symbols and macro definitions on a library

file. Once created, the symbols can be referenced by any of your source programs.
Such a library file can ease your program development effort.

PROGRAM LISTING CONTROL

The LIST pseudo-op lets you tailor and annotate programs to fit your exact needs.
The pseudo-op makes documentation easier by allowing listing control and page
headings.

CROSS-REFERENCE TABLES

The Macro Assembler also includes an optional cross-reference table so that you
can reference labels and variables in the source program quickly.

Introduction 1

CONTENTS OF
THIS SOFTWARE
PACKAGE

PROCEDURES

2

Introduction

STANDARD ATARI COMPUTER AND 6502 MNEMONICS

A file containing the ATARI Home Computer Hardware Register addresses and OS
Shadow Register addresses is included on your Macro Assembler diskette. You may
reference standard ATARI Computer mnemonics in your programs using this file.
See Systext reference in “Command Line Options” in Section 2.

Standard MOS Technology 6502 microprocessor coding format is used in this
assembler. The formation of expressions also follows the standard conventions.

The

Macro Assembler includes:

A diskette containing both the Macro Assembler and Program-Text Editor'™
software

* A reference card giving pseudo-ops, error codes, and Program-Text Editor

commands and messages
This reference manual for the ATARI Macro Assembler

An operators manual for the ATARI Program-Text Editor

PROGRAM LOADING INSTRUCTIONS

1.

8.

Connect the ATARI 800 Home Computer to a television set and to a wall
outlet as instructed in the operators manual.

Connect the ATARI 810™ Disk Drive to the computer console and to a wall
outlet as instructed in the ATARI 810 Disk Drive Operators Manual. Verify
that the disk drive is set to DRIVE CODE 1 as instructed in the operators
manual.

Open the cartridge door on the top of the computer console. Remove all
cartridges from the top front cartridge slots. Close the cartridge door.

Turn on your television set.

Turn the disk drive POWER (PWR) switch to ON. Two red lights (the BUSY
light and the PWR ON light) will come on.

When the BUSY light goes out, open the disk drive door by pressing the door
handle release lever.

Insert the diskette containing the Macro Assembler and Program-Text Editor
programs into disk drive 1.

Switch the POWER (PWR) switch on the computer console to ON.

The DOS Il Menu will now appear on your screen.

CREATING A SOURCE PROGRAM

To use the editor, refer to the ATARI Program-Text Editor Manual.

PURPOSE OF
THIS MANUAL

REFERENCES

After you create your source program, exit the Program-Text Editor using the com-
mands that will return you to DOS:

1. Press Guenn.
2. Type EXIT and press 57000, (This returns you to DOS.)

Then, to assemble your source program:

1. Type the letter L and press 500500
2. Type AMAC and press {20000

ASSEMBLING A SOURCE PROGRAM

1. Refer to “Command Line Syntax” (in Section 2) for the command line syntax
and command line options. Press {5710 after the command line.

2. After the assembly, press the (27500 key to return to DOS. Your DOS direc-
tory will now show that you have created an object file with an extension,
OBJ.

This manual is intended to show you how to use the Macro Assembler. If you plan
to use the Program-Text Editor for creating your source program, it is suggested
that you read the ATARI Program-Text Editor Manual, then practice creating files.

A knowledge of assembly language and ATARI DOS Il is also necessary. The texts
listed below will assist in your study of assembly language. If you wish to become
familiar with the special features of the ATARI Home Computer, a copy of the
ATARI Technical Users Notes will be needed.

We recommend the following books:

MOS Programming Manual by MOS Microcomputers

SY6500/MCS6500 Microcomputer Family Programming Manual by SYNERTEK
6502 Assembly Language Programming by Lance Leventhal

6502 Software Design by Leo Scanlon

6502 Software Gourmet Guide and Cookbook by Robert Findley

ATARI publications:

ATARI DOS Il Reference Manual
ATARI Technical Users Notes

Introduction 3

2

ASSEMBLER EXECUTION

COMMAND LINE

SYNTAX

COMMAND LINE

OPTIONS

The Macro Assembler is accessed by the ATARI DOS Il Menu option L. When DOS
asks for a filename to load, type:

AMAC

Once AMAC is loaded into memory, it will ask you to “Enter source filename and
options.” The source filename must always be specified. Any options you wish to
use should follow the filename, separated by either a comma or space. The com-
mand line is terminated by a carriage return. The command line cannot be edited
using the cursor control keys.

The general form of the command line is: <filespec> optl,...optn. Where
<filespec> is the source file to be assembled and is of the form
<device>:<filename > <extension>. The above command line could have
been typed with any mixture of upper- or lowercase characters. The assembler will
convert all command line characters to uppercase before interpretation.

The ‘opt1,...optn’ are optional parameters (in any order) chosen from this list:

H=Dn: Generate object output file to the specified disk drive
(Default is H=Dn: where n may be 1, 2, 3, or 4. If no filename is specified, the
where n is the object file will be named with the input source filename
same disk drive as and the extension, OBJ.

the source file)

H= <filespec> Write object code to <filespec>.

H=0 Do not generate any object code.

L=P: List output to printer.

L=Dn: List output to specified disk drive (n= 1, 2, 3, or 4). List
filename has the input source filename and the extension
PRN.

L=S: Output listing to the screen.

L =0 (Default’ Do not produce listing for this assembly.

O=n Preset the value of the run address of the object program.

Specifying “O=n" on the command line is exactly like
the statement “END n” found at the end of an assembly
program.

O =0 (Default) Set the value of the run address to zero.

Assembler Execution 5

COMMAND LINE
EXAMPLES

6 Assembler Execution

PS=n (Default is
PS=63)

PS=0

S = <filespec >

S
S=0 (Default)

R=F

)
Il
)

R=0 (Default)

SL=n

(Default is
SL=280 for P: and
SL=38 for S:)

Set page size to <n> source lines per page. Page size
must be less than 127. When page size is less than 10, no
title or subtitle lines nor page ejects are printed in the list
file, and a full cross-reference is disallowed.

Do not print title and subtitle lines and page ejects to list
file for this assembly.

Specify systext file. The S option may be repeated. The
user may specify as many systexts as desired, so long as
combined number of systexts and link files does not ex-
ceed the file limit of 40.

Use the default systext D:SYSTEXT.AST.
Specify no systext for this assembly.

Generate full reference map. List all global symbols and
their references on the file specified by the L parameter.

Generate short reference map. List all global symbols and
their values only on the file specified by the L parameter,

Do not generate reference map.

Set the line length. Maximum length of the line output to
the list file will be <n> characters; the rest of the line is
discarded if <n> is greater than the device line
length.

All numeric argument values (for O=n, PS=n, and SL=n) may be specified ac-
cording to the general syntax for numbers. In particular, an explicit radix (decimal,
binary, octal, or hexadecimal) can be used. Refer to Section 4, “Numbers,” for radix
specification.

All lowercase letters on the command line are converted to uppercase before inter-
pretation.

D:TESTIT.ASM

will read input file D1:TESTIT.ASM (D: implies D1:), no listing will be produced, and
the ATARI binary format object file will be D1:TESTIT.OBJ.

D:TESTITASM H=0R=F L=S:

will assemble D1:TESTIT.ASM, suppress object file generation, and send a listing
with full reference map to the screen.

D2:TESTITASM H=D: L=D2: R=F O=%200

The assembler will assemble the file D2:TESTIT.ASM generating the object file
D1:TESTIT.OBJ, and will produce a listing and full reference map in
D2:TESTIT.PRN. In addition, it will also set the run address to $200.

USER INTERFACE

D2:TESTIT.ASM S S=D2:MSYS.AST L=P: R=F H=D: O=%1700

The assembler will process the two systext files D1:SYSTEXT.AST and
D2:MSYS.AST, assemble the file D2:TESTIT.ASM, produce the object file
D1:TESTIT.OB) with a run address of $1700, and print a listing with full reference
map on the printer.

The assembler execution may be prematurely terminated by pressing the {1770
key. When output listing is directed to the screen, its execution can be temporarily
halted by simultaneously pressing the (5% key and the 1 key. Pressing those two
keys again will restart execution.

If a disk-write error happens (usually disk or directory full), the offending file (ob-
ject or list file) is erased, an error message is issued to the screen, and further at-
tempts to write to the file are suppressed. Assembly then continues normally.

Assembly time errors are printed to the screen as well as to the list file.

Assembler Execution 7

5

FILE USAGE

SOURCE
INPUT FILES

SYSTEM
TEXT FILES

OBJECT
OUTPUT FILE

LISTING FILE

You can specify source input files by using the:

® First command line argument

e Systext file argument (S parameter)
® LINK pseudo-instruction

* INCLUDE pseudo-instruction

All input files must be in Program-Text Editor format. They consist of a line or
lines of ATASCII characters terminated by ATASCII End-of-Lines <EOL>.

A system text file (systext) is an assembly language file of symbols and macro
definitions. The programmer can predefine symbols here for many different pro-
grams. Some examples are:

e ATASCII control characters (BS, TAB, ESC, EOL,..)
® Addresses (entry points into ClO, SIO, and channel locations)

* Macros

If an assembly error is encountered while scanning a systext file, the assembler
aborts with an error message.

The object output file generated by the assembler has a default file extension of
OBJ and is in ATARI binary format. Refer to the ATARI DOS Il Reference Manual
for detail specifications of binary format.

The output listing of the source program generated by the assembler has a
default extension of PRN.

The Macro Assembler has a flexible set of listing control pseudo-ops which allows
the user to generate only the desired program content.

Page heading (unless suppressed via PS=0) contains the assembler version and
page number as well as optional user-specified title information (see TITLE and
SUBTTL pseudo-ops).

The LIST pseudo-op (or L command line argument) controls which source lines are
listed. Each code line listed begins with 20 columns of information generated by
the assembler.

Column 1 of the listing output is reserved exclusively for errors; a listing free of

assembly errors will not have any printing in column 1. An error count is reported
at the end of the assembly. (See Section 10, ** Error Codes.”)

File Usage 9

SOURCE LISTING 1 2

FORMAT 123456789.123456789.
E addrg hhhhhhhhhh Line that generates code.
R addr = vvvv EQU, SET, IF, etc.
R - Line that is skipped.
Oaddr = vvvv # Location and origin counters are unequal.
R addr
+ hhhhhhhhhh Macro-generated line.
addr hhhh Aaddr Destination address of PC relative jumps.
Column Description
1 Error flag or blank. See Section 10 for the meaning of error flags.
2 Blank.
3-6 Address location of this instruction (value of the location counter).
6 — sign means line not assembled due to IF.. .ELSE. Line only listed if

LIST F in effect.

7 # sign means the location and origin counters are unequal.

8 + sign means assembler-generated line. Line listed if LIST M in
effect.

9-18 hhhhhhhhhh is the resultant code. Up to five bytes are listed. If LIST
G or D is in effect, multiple lines will be listed with up to five bytes
on each.

11-14 vvvv = value of expression.

19-20 Always blank.

21-80 Source statement.

SAMPLE LISTING /O EQUATES
=009B EOL = $9B
=0030 IOCB3 = $30
=0340 ICHID = $0340
=0341 ICDNO = ICHID+1
=0342 ICCOM = ICDNO+1
=0343 ICSTA = ICCOM+1
=0344 ICBAL = ICSTA +1
=0345 ICBAH = ICBAL+1
=0346 ICPTL = ICBAH+1
=0347 ICPTH = ICPTL+1
=0348 ICBLL = ICPTH +1
=0349 ICBLH = ICBLL+1
=034A ICAX1 = ICBLH +1
=034B ICAX2 = ICAX1+1

10 File Usage

0000#

5000

5009
5059
505D
505F
5061
5064
5066
5069
5068

506k
5070
5073
5076
5079
507B

507E
5080
5082
5085
5087
508A
508C
508F
5091

5094
5096
5099
509C
509F

=0003
= 0005
=0009
=000C
=0004
=0008
=0088
= E456
=0040

= 5000

44323A5445
=0050
=5009
=5059
50323A98B
A230
A900
9D4403
A950
9D4503
A900
9D4B03

A903
9D4203
2056E4
BC4303
1003 A507E
4CA250

A240
A959
9D4403
A950
9D4503
A908
9D4A03
A900
9D4B03

A903
9D4203
2056E4
BC4303
1004 A50A5

OPEN = $03
GETREC = %05
PUTREC = %09

CLOSE = $0C
OREAD = %04
OWRIT = 508
EOF = $88
ClIoV = $E456

10CB4 = $40

,;FIRST INIT THE 10CB FOR OPEN

ORG $5000
;DATA REGION
JNAME DB ‘D2:TEST1,EOL
BUF1SZ = 80
BUF1 = :
ORG *+ BUF1SZ
NAME2 DB ‘P2 EOL
START LDX #1OCB3
LDA #LOW NAME1
STA ICBAL,X
LDA #HIGH NAME1
STA ICBAH,X
LDA #0
STA ICAX2, X

;"OPEN" THE DISK

'

LDA #OPEN
STA ICCOM X
JSR ClOoV
LDY ICSTA X
BPL L1

JMP ERR2

;CHANNEL 4 1S PRINTER

’

L1 LDX #10CB4

LDA #LOW NAME?2
STA ICBAL,X

LDA #HIGH NAME2
STA ICBAH,X

LDA #OWRIT

STA ICAX1,X

LDA #O

STA ICAX2,X

;”OPEN” THE PRINTER

’

LDA #OPEN
STA ICCOM,X
JSR ClIOV
LDY ICSTA X
BPL TP10

File Usage

11

ERROR — JUST BRK

50A1 00 iERR1 BRK

50A2 00 ERR2 BRK
50A3 00 ERR3 BRK

50A4 00 ERR4 BRK

;SETUP TO READ A RECORD

50A5 A230 TP10 LDX #1OCB3
50A7 A905 LDA #GETREC
50A9 9D4203 STA ICCOM,X
50AC A909 LDA #LOW BUFR
50AE 9D4403 STA ICBAL,X
5081 A950 LDA #HIGH BUF
50B3 9D4503 STA ICBAH,X

;READ RECORDS

50B6 A950 LOOP LDA #LOW BUF1SZ
5088 904803 STA ICBLL,X

50BB A900 LDA #HICGH BUF1SZ
50BD 9D4903 STA ICBLH,X

50C0 2056E4 JSR ClIOV

50C6 1004 A50CC BPL PRNTR

'NEG STATUS ON READ — EOF

50C8 C088 TP20 CPY #EOF
50CA DOD7 A50A3 BNE ERR3

'PRINT A RECORD

50CC BD4803 PRNTR LDA ICBLL,X
50CF A240 LDX #1OCB4
50D1 9D4803 STA ICBLL,X
50D4 A230 LDX #1OCB3
50D6 BD4903 STA ICBLH,X
50D9 A240 LDX #10OCB4
50DB 9D4903 STA ICBLH,X
50DE A909 LDA #PUTREC
50E0 9D4203 STA ICCOM, X
50E3 A909 LDA #LOW BUF1
50E5 9D4403 STA ICBAL,X
50E8 A950 LDA #HICH BUF1
50EA 9D4503 STA ICBAH,X
50ED 2056E4 JSR CloV
50F0 BC4303 LDY ICSTA X
50F3 1003 A50F8 BPL L3

50F5 4CA450 JMP ERR4
50F8 A230 L3 LDX #10CB3
50FA BC4303 LDY ICSTA X
50FD Co88 CPY #EOF
50FF FOO3 A5104 BEQ L2

5101 4CA550 JMP TP10

12 File Usage

5104
5106
5109
510C
510E
5110
5113
5116
5117

A90C
9D4203
20564
A90C
A230
9D4203
2056E4
00

L2

No ERRORS, 39 labels, $A3E6h free.

BUF1
BUF1SZ
CloV
CLOSE
EOF
EOL
nERR1
ERR2
ERR3
ERR4
GETREC
ICAX1
ICAX2
ICBAH
ICBAL
ICBLH
ICBLL
ICCOM

ICDNO
ICHID
ICPTH
ICPTL
ICSTA
IOCB3
10CB4
L1
L2
L3
nLOOP
NAME1
NAME2
OPEN
nOREAD
OWRIT
PRNTR
PUTREC
nSTART
TP10
nTP20

5009
0050
E456
000C
0088
009B
50A1
50A2
50A3
50A4
0005
034A
034B
0345
0344
0349
0348
0342

0341
0340
0347
0346
0343
0030
0040
507E
5104
50F8
50B6
5000
5059
0003
0004
0008
50CC
0009
505D
50A5
50C8

1436
1#35
1#25
1#21
1#24
1#3

2#18
1/54
2#20
2821
1#19
1#15
1#16
1#10
1#9
1414
1#13
187
3/22
1# 6
1#5
1#12
1#11
1# 8
4
1#26
1/53
313
3/7

2#35
1434
1438
1#18
1422
1423
2/

1#20
1#39
214
2#45

2/28
1/37
1/51
3116
2/45
1/34

2#19
2/46
3/8
2/26
116
1/45
111
110
115
114
1/ 8

17
16
113
112
19
1/39
1/58
1#58
3#16
3#10

1/40
1/59
1/49

2/ 3
2#50
2/58

2#25

LDA
STA
JSR
LDA
LDX
STA
JSR
BRK
END

2/30
2/35
2112
3/20
312
1/38

2/ 4
2/ 6
1/43
1/41
2/38
2/36
1/50

1/52
2/25
2/51

1/61
2110

314

2/60
2/37
2/39

2/ 2
1/60
2/54
2/50
2/

2113
2/53
2/55

#CLOSE
ICCOM, X

CloV

#CLOSE
#lOCB3
ICCOM,X

CIOV

3/ 2

3/ 4

2/31
2/29
2/56
2/52
2/27

2/40
3/10

318 3/23
3/ 3
2/61
2/59 317
3/ 6 311
3/21

File Usage 13

SYMBOL When R=S is selected, the short symbol map is printed at the end of the program
MAP FORMAT listing. For each symbol name in the program, the following is printed:

sa symbol hhhh, where:

<s> is blank or “s” for a name introduced in a systext file.
<a> is either blank or

U= undefined, or

D= doubly defined, or

n = not referenced.
<symbol > is the name of the symbol.

< hhhh> is the symbol value in hexadecimal, or “mac” if the name is a macro.
Four symbols are printed on each line, using the default line length.

When R=F is selected, the full cross-reference map follows the source listing. On

each line, in addition to the R =S information above, cross-reference information is
listed. Each reference has the form:

ppp/ll

where <ppp> equals page number and <Il> equals line number. For a definition
reference, the | is replaced by #.

Names beginning with a : (local symbols) and a ? (usually macro invented) are not
included in either type of symbol map output.

Symbols defined in a systext file appear in the cross-reference only if they are used
during the assembly; they are flagged with an s.

14 File Usage

4

LANGUAGE STRUCTURE

STATEMENTS

A Macro Assembler source program consists of a sequence of statements, com-
ments, and definitions. Statements are the fundamental units of assembly. Com-
ments do not affect assembler operation or object output. Definitions may be con-
ditionally assembled, saved for later assembly, or repeated.

All characters in a statement are converted to uppercase except those in the com-
ment field.

A statement is divided into three fields: a label field, an operation field, and a
variable field.

LABEL FIELD

The label field begins with the first character of the statement and is terminated by
a blank or an end of statement. If a colon () is the last character of the label field, it
is discarded. For example:

SYMBX: ADC MEM, X ;comment
SYMBX is the defined label.

OPERATION FIELD

The operation field begins with the first nonblank character after the label field
and terminates with the next blank character. Machine op codes, pseudo-ops, and
macro calls all occur in the operation field. If this field is empty, the variable field
must be empty also. For example:

SYMBX: ADC MEM, X ;comment
ADC is the machine op code.

VARIABLE FIELD
The variable field begins with the first character after the operation field and is ter-
minated by an end of statement. Variables, expressions, and other arguments used

by the operation field appear in this field. For example:

SYMBX: ADC MEM, X ;:comment
MEM,X is the variable.

Language Structure 15

STATEMENT
TERMINATION

COMMENTS

DEFINITIONS

SYMBOLS AND

NAMES

16 Language Structure

A statement is terminated by:

Beginning of comment (;), or
End-of-Line, or
Logical end of statement mark (!).

SYMBX: ADC MEM, X ;comment
SYMBY: ADC MEM, X
SYMBZ: ASL I ASL I ASL I ASL . 4 statements

In the last example (SYMBZ), one source line contains four statements. Three of
them are terminated with an !, the last by a ;. Identical object code would be
generated if the ! were replaced by End-of-Line <EOL>. When an ! and a ; occur
inside quotation marks, they do not function as separators.

A comment begins with a ; following the variable field of a statement. A comment
affects neither the assembler operation nor the object code generated.

Comments that begin in column 1 are full-line comments; they begin with a ; or an
*_(Please note that an * signifies a comment only when found in column 1 — col-
umn 1 of input is listed at column 21 on an output listing.) A comment is ter-
minated by EOL.

LABEL: LDA 129 :This is a “comment.”

:This is a full-line comment.

*This is another full-line comment.

FROG: STA MEM, X This is not a legal comment.
(above comment needs a ;)

Definitions begin with specific types of statements (MACRO, ECHO, IF). The end of
a definition is dependent on what started the definition, for example, ENDM is
used to terminate MACRO and ECHO definitions, while ENDIF terminates an IF
range.

A symbol is a sequence of characters that identifies a value or a macro. The first
character cannot be a digit. Symbols may be any length, but they must be unique in
the first six characters. The following characters may be used in a symbol name:

A-Z The uppercase letters of the alphabet
a-z The lowercase letters of the alphabet (converted to uppercase by the

assembler
: May only be first character indicating a local symbol
? If first character, then the symbol is excluded from the reference map
@ Additional alpha extension. Cannot be first character of an identifier,
since it is also a prefix for octal numbers.
0-9 Digits

NUMBERS

CHARACTER
STRINGS

The underline character (__) may occur in a name as written but is discarded.
Lowercase letters are mapped into the corresponding uppercase. When a colon oc-
curs as the first character in a name, it denotes a name local to the current PROC
(see PROC pseudo-op in Section 6). A colon at the end of a name in the label field is
interpreted as a terminator but in any other position, it is ignored.

Examples:
ERROR__5: :the assembler ignores __, label is
ERRORS
JMP RESTART :the assembler uses first 6
characters: ‘RESTAR’
TEST LDA COUNT
BNE Error5 “Error5” converted to ERRORS
LOCAL: DEC local: is a local symbol

A number can be in any one of three forms, depending on the prefix.

Prefix Base

% 2 Binary

@ 8 Octal

$ 16 Hexadecimal

The lack of a prefix implies decimal.

Digits greater than the radix are not allowed. The underline character (__) is
ignored.

The Macro Assembler provides constant conversion formatting for 6-byte real
numbers as specified in the current ATARI BASIC. Real numbers are not valid ex-
pression arguments in variable fields. (See “REAL6,” pseudo-op in Section 6).

Examples:
BINVAL EQU %10 001 010
OCTVAL EQU @212
HEXVAL EQU $8A

The assembler accepts ATASCII characters $20-$7E as valid characters. A char-
acter string consists of any sequence of characters surrounded by single quotation
marks (‘n ... n’). Within a string, a single quotation mark character is represented by
two successive single quotation marks.

Character strings can be used in the TITLE and SUBTTL statements, as a DB or DC
subfield, or as operands of relational operators.

The LSTR operator returns the length of a character string (see “Expressions”in this
section).

Language Structure 17

EXPRESSIONS

OPERANDS

18 Language Structure

Examples:

TITLE ‘Sample Expressions’

DB ‘This is a STRING.",$9B

DB ‘Control characters are illegal in a long string’
DB $9B

;Nonprintable characters may be represented
;by using their hexadecimal values,”
;such as $9B for EOL,

DW $2766, ‘bp’, ‘BP’ ;2-byte values
LDA #43 :a decimal number

ADC #C ;an ATASCII character
CMP - ek ;an ATASCII character

An expression consists of operands combined with operators to produce a value.
Operators of equal precedence are evaluated left to right. Brackets can be used to
override the order of evaluation, since 6502 instructions use parentheses for in-
direct addressing. Expressions are evaluated using 16-bit twos complement (un-
signed) arithmetic. Overflow is ignored.

Real numbers are not valid arguments in expressions.

Examples:
DB ‘Here are some fancy expressions:’
DB 43 + 22 shl 3 mod 6
DB ‘Q" + REF1 xor [99 and REF2]
AND low ['ZZ" - ['A” xor ‘@’ + ['A” xor ‘a’] shl 8]]
DW rev [*O - *L]

An operand is either a symbol, an expression enclosed in brackets, a number, a
character string, or one of the following special elements:

*

current location counter

*- = same as *
*© = current value of origin counter
*Pp = current position counter number of defined byte

See LOC and ORG pseudo-ops for further discussion of *L and *O. Refer to the
VFD pseudo-op for details on *P.

The comparison operators return a value of zero for false and $FFFF for true.
Numeric tests treat values as unsigned, so that [-1 < 0] will produce the answer
false. Character string tests use the ATASCII collating sequence.

Operators

<>
<

< =
>
>=
SHL
SHR
HICGH
LOW
MOD
REV
DEF
LSTR

EQ
NE
LT
LE
GT
GE

Sum or positive sign
Difference or negative sign
Multiply

Divide

Bit-by-bit complement
Logical product, conjunction

Logical product, conjunction (same as AND)
Logical sum, disjunction, inclusive OR
Logical difference, inequivalence, exclusive OR

Equality

Inequality

Less than

Less than or equal to
Greater than

Greater than or equal to
Shift left n bits

Shift right n bits

Unary, high value to 8-bit field =

Unary, low value to 8-bit field
Modulus function

X [256
x MOD 256

Unary Reverse = ((LOW x) left and right SHL 8) + (HIGH x)

Test symbol previously defined

Return the length of a character string

Precedence Levels

Highest

Lowest

Brackets

HIGH

*

-+
.+_

NOT

LOW
/[MOD

DEF
SHL

REV
SHR

— unary
— binary

<> K O <KF > NE

& AND
OR XOR

LSTR

EQ LT LE GT GE

Language Structure

19

o

MACRO FACILITY

MACRO
DEFINITION

A macro is a sequence of source statements that are saved and then assembled
through a macro call. A macro call consists of a reference to a macro name in the
operation field of a statement. It often includes actual parameters to be
substituted for formal parameters in the macro code sequence, so that code
generated can vary with each assembly of the definition.

Use of a macro requires two steps: definition of the macro and reference to the

macro.

A macro definition consists of three parts: heading, body, and terminator.

Heading

Body

Terminator

A macro definition starts with the name of the macro and the
substitute parameter names in the variable field.

The body begins with the first statement after the heading that is
not a comment line. The body consists of a series of instructions.
All instructions other than END, including other macro definitions
and calls, are legal within the body. However, a definition within
a definition is not defined until the outer definition is called.
Therefore, an inner definition cannot be called directly.
Substitute parameters can occur anywhere in the body. They are
prefixed by a percent sign (%):

%71 = first parameter

%2 = second

%9 = ninth parameter

%K = 4 hex digits, representing the serial number
of this macro call

%L = the label field of the macro call

%M = the name of the macro
% % = replaced by a single percent

A macro definition is terminated by an ENDM pseudo-instruction.
The assembler counts the nesting level of MACRO/ECHO and
ENDM pairs occurring in a macro body, so that the definition is
terminated only by the corresponding ENDM.

Note: The ENDM pseudo-op must be preceded by a tab (®) character. Press [Z3
to get the tab character.

Macro Facility 21

MACRO CALL A previously defined macro is called when its name occurs in the operation field of
a statement. If actual parameters appear in the call, they are substituted for the
corresponding formal parameter in the macro body without evaluation. Only after
the entire body has been expanded does assembly resume. Thus the statements
generated by the macro may themselves contain further macro calls or definitions,
with the nesting limited only by available memory.

Note: When writing recursive macros, take care in the coding of the termination
condition(s). A macro that repeatedly calls itself will cause the assembler to ter-
minate (eventually) with the message “Memory Overflow.”

CODE The ECHO pseudo-instruction is used to repeat a code sequence. It is written
similarly to a macro definition but with the following differences: heading is ECHO,

DUPLICATION not MACRO; no parameters are involved; the variable field of the ECHO statement
specifies how many times the body is to be repeated. ENDM is also used to ter-
minate an ECHO sequence (see ECHO pseudo-op).

NESTING ECHO, MACRO, and IF blocks may be nested in completely arbitrary fashion, sub-
ject only to the constraint that it be properly nested; i.e., each block must be con-
tained within the surrounding block.

22 Macro Facility

6

PSEUDO-OPERATIONS

ASSERT

The Macro Assembler provides a comprehensive set of pseudo-operations (pseudo-
ops) that permits you to control the assembly process.

For ease of comprehension, the following notations are used in this manual:

iglab means the label field is ignored by the pseudo-op

<exp> means that an expression is required

[exp] means that an expression may appear, at your option

{exp} means that the item inside the braces { } may appear zero or

more times

CHECK ASSEMBLY CONDITION

iglab ASSERT <exp>
where: iglab = ignored label field
exp = any legal expression: Nonzero implies true

Zero implies false

ASSERT allows you to check for and flag illogical assembly conditions such as in-
correct parameter values, programs that are too large, and undefined symbols.

The expression is evaluated and a P error will be generated if the expression is false;
i.e., if the expression evaluates to zero.

The expression is not examined in Pass 1 of the assembler, so ASSERT can correctly
check any condition. Forward references in the expression are evaluated correctly.

Examples:

To check that the location counter in a given piece of code is within bounds, in this
case below $2000, add the following line at the end of the assembly:

ASSERT * < $2000;test for limit exceeded
If the location counter reaches $2000, a P error will generate.

If you are writing a utility subroutine and wish to check that a required symbolic
definition has been supplied by the user of the subroutine, you might code:

Pseudo-Operations 23

DB

DC

DS

24 Pseudo-Operations

ASSERT DEF [SYMB1]

If the required symbol SYMB1 is not defined by the user within the assembly, a P er-
ror will be generated. Note that the check for symbol definition is postponed until
after Pass 1, allowing you to define SYMB1 anywhere in the source code.

DEFINE BYTE

LABEL: DB <exp>..<exp>

where: <exp> = any legal expression, value, or string
DB allows you to directly specify the content of individual bytes of memory.
A string will generate as many bytes as it has characters; the first character will be
the first byte generated. Characters in the string generate their 7-bit ATASCII codes
without parity.
DB is used to intersperse code with text strings and for data tables.
The label field is significant; it will address the first byte generated.
Examples:
PNCHRS: DB L@@<>TH!VH#%& ()= + (tm)-[]@’,0
DB $80
DB LAB,LAB2,3,$46,50AF,'xX’ 17 + QVAL*4, coffee’
DEFINE CHARACTER

LABEL: DC <exp>.. <exp>

where: <exp> is any legal expression, value, or string

DC operates like DB, but the high-order bit (parity bit) of the last byte of each ex-
pression is set.

DC is used just like DB. The only difference is the parity bit of the last byte of each
term.

Examples:
TBLHDR DC ‘This is a table of offsets’
ADRLST DC 128, $36, $15, @21, 159
DEFINE SPACE

LABEL: DS <expl6>
where: <exp16> = any legal expression, value, or string
DS allows you to reserve large blocks of memory. The expression <exp16> will be

evaluated as an unsigned 16-bit value, and that value will be used to increment the
assembler’s internal origin and location counters.

DW

ECHO...ENDM

Memory allocated is not initialized, and will contain unknown values at program
execution time. The label field is significant; it will address the first memory byte
allocated.

DS reserves space for use at execution time; it can be used to “skip over” an ex-
isting piece of ROM or provide for uninitialized data storage.

Example:

STORG: DS 256 ;allocate 256 bytes

DEFINE WORD

LABEL: DW <explbo>.. <explo>
<explb> = any expression or value or 1 to 2
character string

where: <exp16> = any expression, value, or string
DW defines the contents of blocks of memory. Values and expressions in the
operand field are computed as unsigned 16-bit values and placed in memory as a

machine word; the assembler places the Least Significant Byte (LSB) first, followed
by the Most Significant Byte (MSB).

The label field is significant; it will address the first byte generated.

DW is intended to build tables of 16-bit values.

Examples:
; Table of Addresses
DW PWRON ;Power on
DW MSTRST :Master reset
DW SYSCAL ;System calibrate
DW RECAL :Recalibration
DW PWRDN ;Power down
DW BUTTON ;Button press
DW EMERG ;Emergency shutdown
DW ACTN1,ACTN2,ACTN3 ;Action numbers 1,2,3
DW 0 ;End of table
ECHO BLOCK
LABEL: ECHO <exp>

ENDM
where: <exp> = numeric expression

ECHO ... ENDM is a simple code-duplication facility. Code between an ECHO and
its ENDM will be assembled as many times as specified by the <exp>.

The label field is significant; it addresses the value of *O when the ECHO pseudo-
op is encountered.

Pseudo-Operations 25

EJECT

END

26 Pseudo-Operations

An ECHO . .. ENDM construct may not exceed 255 repetitions; 0 (zero) repetitions
means the ECHO . . . ENDM code is skipped. ECHO . . . ENDM is convenient for
repetitious coding problems. An ECHO . . . ENDM sequence is much easier to
create and maintain than, say, 127 repetitions of a 6-line procedure.

Note: The ENDM pseudo-op must be preceded by a tab (») character.

Example:

; The following example will create a table
; of 20 entries of 4 bytes each and
. initialize each entry to a value of

; $10 37 00 00.
TABLE: ECHO 20 20 times
DB $10, $37, $00, $00
ENDM ;End table
EJECT PAGE
iglab EJECT
iglab = ignored label field

EJECT forces a page eject in the assembly listing if the listing is currently turned on.
EJECT can be used anywhere in an assembly source program.

The TITLE pseudo-op sets the internal title string and forces an EJECT.

Example:

EJECT

END PROGRAM

LABEL: END [exp]

END tells the assembler where to stop assembly and begin the cross-reference
map. The optional address field expression specifies the run address for an object
program.

END must be the last statement of the last link file of an assembly.

The label field is significant, and addresses the value of the internal *O counter
when the END is processed.

Example:

FREESP: END ;end of program

EQU or

ERR

IF...ENDIF,
IF...ELSE...ENDIF

EQUATE VALUE TO SYMBOL

LABEL: EQU <explb>
LABEL: = <explb>

where: <exp16> = 16-bit expression or value or
1 to 2 character string

EQU defines the symbol on the left as the value of the 16-bit expression in the
operand field.

EQU creates symbols (labels) for use with other assembler instructions. Unlike SET,
EQU defines a fixed value to a symbol that cannot be changed during the
assembly.

The operand <exp16> must be an absolute value at the time of evaluation; any
symbols used in the expression must have been previously defined.

Examples:

TSTCHR EQU '§’
TS2CHR: EQU ‘@’
ZAP EQU $900
ZONK: = ZAP*2

FORCE ERROR FLAG

ERR allows you to force an assembly error. The address field is ignored. When the
assembler detects an impossible or undesirable condition at assembly time, ERR
allows this to be flagged.

Examples:
IF* > 4000h
ERR ;Program too long
ENDIF

iglab IF <exp>
< code for special situation>
iglab ENDIF

iglab IF <exp>
<assembly code >

iglab ELSE
<assembly code >
iglab ENDIF
where: <exp> = expression: nonzero = > true

zero = > false

Pseudo-Operations 27

INCLUDE

28 Pseudo-Operations

IF ... ENDIF and IF . . . ELSE . . . ENDIF control textual input to the assembler. At
assembly time, <exp> is evaluated and the result determines where the assembler
will resume assembling the input file.

Whenever a single program should be configured as two (or more) distinct versions,
IF...ENDIFand IF ... ELSE ... ENDIF can test assembly-time values and assemble
only the appropriate source lines.

Expression <exp> values for an IF must be numeric; strings greater than two
characters are not allowed.

IF ... ENDIFand IF .. ELSE ... ENDIF constructs are “nestable”; depth of nesting
is limited only by memory space available at assembly time.

Any “label” in the label field is ignored; a descriptive name can be placed here to
help associate an IF with its ELSE (if used) and ENDIF.

Examples:

IF 1 71 is nonzero, therefore true
JSR OUTM
JMP BOOT ;these two lines will be assembled
ENDIF

LABEL: IF DEF X :Condition
JSR PATH1 ;LABEL is ignored, but

LABEL: JMP ELSE ;assists readability.
JMP PATH?2
ENDIF

INCLUDE ANOTHER SOURCE FILE

LABEL: INCLUDE <filespec>

where: <filespec> = <Dn:filename.ext>, n can be 1, 2, 3, or 4

INCLUDE specifies another file to be included in the assembly as if the contents of
the referenced file appeared in place of the INCLUDE statement itself. The inclu-

ded file may contain other INCLUDE statements. The listing of code in INCLUDE
files is controlled by the | option of the LIST pseudo-op. (See INCLUDE example.)

INCLUDE allows you to divide large programs into manageable pieces for ease of
editing, common use of libraries, file manipulations, and so forth.

Example:
The command line
D:INCLDEX.ASM

combined with the following, file setup:

<INCLDEX.ASM contents >

TITLE ‘INCLUDE example’
ORG $100

INCLUDE D:L1

INCLUDE D:L2

INCLUDE D2:L3.ACD

;*** End INCLDEX.ASM

LINK

<D:L1 contents >
LDA LTVAL
%% End L1. ASM

<D:L2 contents >
LDA L2VAL
%% End L2.ASM

<D2:L3.ACD contents>

LTVAL DB o
L2VAL DB 0
END ;Stop assembly here.

;*** End L3.ACD

This would input to the assembler the following sequence of code:

TITLE ‘INCLUDE example’
ORG $100
LDA L1VAL
%% End L1.ASM
LDA L2VAL
¥** End L2.ASM
LTVAL DB o
L2VAL DB 0
END ;Stop assembly here.

;*** End L3.ACD
% End INCLDEX.ASM

LINK TO ANOTHER SOURCE FILE

iglab LINK <filespec>

where: <filespec> = <Dn:filename.ext>, ncan be 1, 2, 3, or 4

The LINK pseudo-op is similar to the INCLUDE facility, except that link files are not
assembled until the assembler reaches the end of the current input file. Whenever
a LINK pseudo-op is found, it is stored away for processing along with any other
LINK statements encountered when the current file is finished processing.

Each source file that contains links to other files will be completely processed, and
its links will then be processed in order of occurrence. Any link that contains
sublinks will be processed in an identical manner; link files may nest arbitrarily
deep, as long as the total number of files does not exceed 40.

If A, Q,S, T, U, and X are assembly-code files, and if A links to Q, S, and X, and S
links to T, and T links to U, then the order of assembly will be:

A QS T U X

If the <filespec> extension is missing, it defaults to the extension used in the cur-
rent input file; i.e., the file that contains the LINK pseudo-op.

Pseudo-Operations 29

Pseudo-Operations

Examples:
Link D2:PART1 :Assemble file ‘D2:PART1’

;using the same extension as
;the primary file
LINK D:UTILACD
BLORP: LINK D2:PART2.ASM BLORP’ is ignored

LINK allows you to divide large programs into manageable pieces for ease of
editing, common use of libraries, file manipulations, and so forth. The LINK facility
supports linking across diskettes, so the entire source program does not have to be
contained on the same diskette.
Example:
The command line

AMAC D:LINKEG.ASM

combined with the following link file setup:

< LINKEG.ASM contents >
TITLE 'LINK example’

ORG $100
LINK D:L1
LINK D:L2

LINK D2:L3.ACD
kR Endx LINKEG.asm

<D:L1 contents >
LDA LTVAL
s Endx L1.asm
<D:L2 contents>
LDA L2VAL
SRk Endx L2.asm

<D2:L3.ACD contents>
L1IVAL DB e
L2VAL DB 0
END ;Stop assembly here.
kX Endx L3.acd

would input to the assembler the following sequence of code:

TITLE ‘LINK example’
ORG $100

ek Endx LINKEG.asm
LDA LTVAL

SEKE Endx L1.asm
LDA L2VAL
i Endx L2.asm
L1TVAL DB o
L2VAL DB 0

END ;Stop assembly here.
Pudida Endx L3.acd

LIST

OUTPUT LISTING CONTROL

iglab LIST *
iglab LIST <opt>.. <opt>

where: <opt> = optional minus sign followed by one of the following.

C List listing controls: EJECT, PAGE, SPACE, SUBTTL, and TITLE lines. (Default
OFF)

D List detailed code: i.e., list every byte generated by DB, DW, VFD, multi-line
statements, and so forth.

F List code skipped by IF..ENDIF or IF.._ELSE..ENDIF. (Default ON))

G List all generated code: i.e., list every byte placed in the output object file,
regardless of origin. Overrides -L. (Default OFF.)

| List code in INCLUDE files. (Default OFF))

L Master LIST control. When -L option is in effect, nothing is listed except lines
with errors, or when -L is overridden by the G option. (Default ON.)

M List all lines generated by macro references. (Default ON))

R Accumulate cross-references. (Default ON.)

S List code referenced in a systext file. (Default OFF.)

LIST controls the listing produced during an assembly. However when an L=0
command line option is selected, LIST pseudo-op has no effect. The variable-field
argument to LIST must be an *, or a set of options.

The LIST pseudo-op operates on a stack: each element of the stack is a set of op-
tion flags. The flag on top of the stack controls the content of the listing produced.
Each call to the LIST pseudo-op will push, or pop, a flag on or from the stack.

“LIST *”” means pop the list-option stack.

“LIST M” means make a copy of the current flag, setting the M-flag to ON, and
push the new flag setting onto the stack.

LIST has obvious applications for detailed listing of newly written code, detailed
listing of untested macro expansions, and suppressing the listing of library code.

Example:

A common code library may contain a set of routines all having the following IF
block at the beginning:

IF ILIST = 0 ;if common code list turned off
LIST -L, -R :no listing, no references
ENDIF

Pseudo-Operations 31

LOC

32 Pseudo-Operations

Assume that the global symbol ILIST equals zero. A new flag setting is pushed onto
the LIST option stack; the options (-L, -R) specify no listing is to be printed, and no
cross-reference accumulation is to be done.

Each common code routine also has this IF..ENDIF at its end:

IF ILIST = 0 ;if common code listing was off
LIST * ;g0 back to original list options
ENDIF

Now that the common code routine has been assembled, the LIST option stack will
be popped. This returns the LIST option stack to its condition before the library was
assembled.

SET LOCATION COUNTER
LABEL: LOC <exple>
where: <exp16> = 16-bit expression or value

LOC sets the location counter. The expression is evaluated as an unsigned 16-bit
value and assigned to the Macro Assembler’s internal location counter (*L).

Code generated while the internal LOC counter (*L or *) does not equal the internal
ORG counter (*O) will be flagged with # in column 7 of the listing.

The label field is significant; the label defired there will be set to the value of *L
before *L is changed to <exp16>.

LOC assists you in generating self-overlaying programs. Code generated that way
can be positioned anywhere in memory (using ORG), and the code will assemble as
if it was located at the address expressed in the LOC statement. Of course, the code
must be moved at run time to the address specified in its LOC statement before it
can be executed.

Code assembled in one place for execution elsewhere can be especially handy for
ROM-resident software, when pieces of code are copied from ROM to RAM before
execution.

LOC is also useful for enhancing the readability of data tables for code conversion.
The following example is a table of external BCD codes. The location counter is set
to the ATASCII value of the first character in the table. In that way, the location
field of the assembly listing contains an ATASCII value and the generated code
field contains its asscciated external BCD value.

Examples:
;Example of using LOC to enhance readability of
:listings. The location counter will be set to
:the ATASCII value that corresponds to the first
:entry of a table of external BCD values.
0000 = 5000 ORG $5000
5000 = 0041# LOC ‘Al

MACRO...ENDM

0041 61 EBCTBL: DB $61 ;The LOC field of the listing

0042% 62 DB $62 ;contains the ATASCII value
0043% 63 DB $63 :which corresponds to the
0044 64 DB $64 ;external BCD value in the
0045 65 DB $65 ;generated code field.

END

No ERRORS, 1 labels, $2403 free.
nEBCTBL 0041 1# 8

;Example of code to be assembled at $2000

to be
stransferred to a ROM at $0F000
= 0500 COUNT EQU $0500 ;RAM working
storage
0000 = 2000 ORG %2000
2000 = FOOO# LOC $0FO00
FOOO# A907 LDA #07
FOO2# 8D0005 STA COUNT
FOO5% 4COAFO JMP L1
FOO8% EA NOP
FO09% EA NOP
FOOA# CEO005 L1 DEC COUNT
FOOD# EA NOP
FOOE# END
No ERRORS, 2 labels, $23F7 free.
COUNT 0500 1#4 1/ 8 112
L1 FOOA 19 1#12
MACRO DEFINITION
MACNAM: MACRO parm1, ..., parmn
<body >
ENDM :end of MACNAM definition

where: <body> = any desired text which may include:

%1..%9 = parameters number1 ... 9

%K = hexadecimal number of this macro call
%L = label field of macro call

% M = name of the macro

MACRO ... ENDM is the macro definition construct.

The symbols in the variable field represent substitutable parameters. The symbol
names are for documentation purposes only and may not appear in the body of the
macro.

Parameters within the macro are represented by %x, where x is replaced with a
decimal digit (1-9). %K within the body will be replaced with the serial number of
the macro call as four hexadecimal digits. %L within the body will be replaced
with the label field of the macro call. %M within the body will be replaced with the
macro call.

Pseudo-Operations 33

34 Pseudo-Operations

The label field is significant; it denotes the name of the macro during an assembly.
Note: The ENDM pseudo-op must be preceded by a tab (®) character.

Macros may generate lines which turn out to be macro calls. Thus, a macro may
directly or indirectly call itself. Care must be taken so that such a “recursive
macro’” does not call itself indefinitely.

Macros can be used to generate many copies of a procedure with different internal
constants, or in conjunction with VFD to assemble fancy machine op codes (see
VFD pseudo-op). There are many other potential uses for macros; these examples
are only intended to demonstrate some of these uses.

Example:

One way to find the number of bits needed to contain a value is to compute the
logarithm base 2 of the value. To do that at assembly time, we can use recursive
macro calls to achieve a looping effect. Note that the condition tested on VAL en-
sures that the series of nested calls must eventually terminate.

; COMPUTE SYM = Log 2
LOG2: MACRO SYM,VAL

IF [%2] > 1
LOG2 %1,[%2]/2

%1: SET %1 +1
ELSE

%1: SET 0
ENDIF
ENDM

Example:

:macro to take the high nibble from a memory location
;and the low nibble from the accumulator, storing the
:result in the accumulator

NPACK: MACRO ADDR
EOR %1
AND #0OF
EOR %1
ENDM
Example:

It is sometimes necessary to be able to create a symbol name that is different for
each call of a macro. The %K implicit parameter feature provides the means to do
this. In the following macro, a unique jump-target label is created on each call.
Note that all the labels begin with the ? character so that they will not clutter up
the symbol table map.

: Set accumulator= 0 if sign bit is set.
PARVAL: MACRO

BMI %Kk

LDA #0
1%K:

ENDM

ORG

PROC..EPROC

ORIGIN COUNTER
LABEL: ORG <expl6>

where: <exp16> = any absolute, previously defined 16-bit
value or expression

ORG sets the address of the first byte of a piece of code (or data) to a physical loca-
tion in memory.

The label field is significant; it will address the value of *L, before <exp16> is
evaluated.

The ORG command can be used in a program as often as desired. ORG cannot
change the current USE block. (See USE pseudo-op.) ORG changes the block-
relative value of the origin and location counters of the current USE block.

ORG is almost always used at the beginning of an assembly to define the starting
position in memory of the resultant code. If not explicitly set by ORG (or the O=
command-line parameter), the default value of the origin and location counters is
zero.

Example:
PROG: ORG $100 :Assemble at location $0100
SOCK: ORG O ;assign *O to *O and *L

DEFINE LOCAL SYMBOL RANGE

LABEL: PROC
<body>
EPROC

PROC tells the assembler that the following code is a procedure that may contain
local symbols. A local symbol is a symbol that begins with a colon (:). It does not
appear in the cross-reference map and cannot be referenced outside of the PROC
range.

The label field is significant; it addresses the value of the *O counter when the
PROC statement is processed.

PROC should be the first instruction of any procedure that contains local symbols.

A PROC is terminated by EPROC or the next PROC.

When assembling large programs where symbol table space is at a premium, local
symbols can be used whenever appropriate to reduce memory requirements.

Example:
INIT: PROC ;procedure
LDA #0 Jlet A=0
LDY #0 ;Y indexes through memory
:Loop: STA (BEGMEM),Y ;:Loop: is local symbol
INY -won’t appear in cross-reference
BNE LOOP ;Write 256 locations

Pseudo-Operations 35

REAL6

SET

SPACE

36 Pseudo-Operations

DEFINE REAL NUMBER VALUE

LABEL: REAL6 <fpnum>

where: <fpnum> is a floating point number

REAL6 provides constant conversion into 6-byte real numbers as supported by the
ATARI operating system.

The label is significant because it denotes the starting location of 6 bytes of the
converted number.

Example:

Pl: REAL6 3.14159

DEFINE VALUE FOR SYMBOL

LABEL: SET <exp>

where: <exp> = numeric expression

The SET pseudo-op defines a symbol to a value representing the 16-bit expression
of the operand field. SET works just like EQU, except that LABELs defined with SET

may be redefined.

The expression in the variable field must be an absolute value at the time of
evaluation. Any symbols used must have been previously defined.

Example:
TSTVAL SET 027h
DB TSTVAL
TSTVAL SET 099h
TSTVAL SET 063h

OUTPUT BLANK LINES TO LISTING

iglab SPACE <expl>
iglab SPACE <expl>,<exp2>

where: <expl>,<exp2> = unsigned, numeric expressions
SPACE places blank lines in a listing. If SPACE has one argument, it will output that

many blank lines only if doing so will not exceed the length of the current page. If
<expl1> lines will not fit on the current page, SPACE will force an EJECT.

SUBTTL

TITLE

If SPACE has two arguments, they are both evaluated and <exp1> blank lines will
be placed in the (currently on) listing only if the current page will have <exp2>
lines left afterwards. If the current page does not have that sufficient room, SPACE
will force an EJECT.

SPACE is useful when inserted just before a small procedure if X is the length of the
procedure (X lines),

SPACE 4,X
< procedure >

will output 4 lines to the listing if the procedure will still fit on the current page. If
the spacing and the procedure will not fit on the current page, SPACE will force an
EJECT.

DEFINE SECOND LINE OF OUTPUT LISTING

iglab SUBTTL <string>

where: <string> = any string up to 32 characters

SUBTTL allows you to specify secondary title information. SUBTTL without a
<string> argument is ignored. To erase the current subtitle, use an empty string.

Example:
TITLE ‘Section 8 — Pseudo-Ops’
SUBTTL ‘SUBTTL syntax and description’
SUBTTL "', erase current subtitle

DEFINE FIRST LINE OF OUTPUT LISTING

iglab TITLE <string>

where: <string> = any string up to 32 characters

TITLE allows you to set/reset the assembler’s internal page-heading string. TITLE
with a string argument will place that string in the page header (see “Sample
Listing,” Section 3). If the string contains zero characters, the page header is reset

to empty. TITLE without a string argument does not alter the current page header.

The first call to TITLE * will not eject a listing page; successive calls will always
force an EJECT after any arguments are processed.

TITLE is commonly placed at the beginning of each file used in an assembly. Each
linked file will begin assembly on a fresh page, topped with an appropriate header
to describe its general contents.

Example:

TITLE ‘XONC.asm — Interface Subroutines.’

Pseudo-Operations 37

USE

VED

38 Pseudo-Operations

DEFINE BLOCK AREA
iglab USE name

USE establishes a new “USE block” or resumes use of a previously established
block. The block in use is the block into which code is subsequently assembled. A
program may contain up to 60 different USE blocks. The assembler is responsible
for computing the length and actual origin of each block. Origins are assigned to
each block in the order they are first encountered.

Associated with each USE block are registers to maintain the last values of the
origin and position counters (*O and *P). See ORG and VFD for a description of
those counters. Initially, the values of these counters default to zero for each USE
block. The value of the location counter (*L) is not saved, but set equal to the value
of the origin counter. If a LOC had been in effect previously, resetting of the loca-
tion counter to produce the desired results is the responsibility of the programmer.

USE allows the programmer to specify consecutive pieces of code in discontiguous
source segments. It is more convenient than using ORG.

Example:
USE BTABL (at beginning of program)
BTABL: :define base of jump vector
USE - (return to normal org)
NXLAB: LDX Something
USE BTABL
DW NXLAB :add address to jump vector
USE *
STX Addr ;more
OSE BTABL (at end of program)
DW 0 :mark end of vector
USE -
END

VARIABLE FIELD DEFINITION
LABEL: VFD <Fexp>\<exp>, .., <Fexp>\<exp>

where: 1 <= <Fexp> <= 16
<exp> = any numeric expression

VFD defines variable fields. Each <Fexp> denotes a field width. Each <exp>
denotes an expression to be placed into that field; <exp> values that exceed their
associate <Fexp> field width values are truncated to match the <Fexp> value.

Negative values are evaluated with unsigned twos-complement arithmetic. For ex-
ample, -32768 is 32768 and -1 will be represented by 65535. The resultant values are
truncated to match the <Fexp> field width.

VFD manipulates the position counter (*P) to keep track of the bits remaining in a
byte at the end of a VFD pseudo-op. If the next pseudo-op encountered is another
VED, the next field generated will begin with the unused bits left in the current
byte. If the next code-generating pseudo-op is not VFD, the assembler will pad out
the unused byte field with zeros.

VED allows you to specify arbitrarily complex data fields without regard to byte or
word boundaries.

Example:
MVINST: VED 2\01,3\DDD,3\SSS

VFD can be used this way inside MACRO-ENDM constructs to assemble code for
unusual processors, special peripheral chips, and so forth.

Example:

SPEC: VED 7\@439\I'&&’
VFED 13\%429

SPEC is a label point to a 29-bit field definition. The first 7 bits contain the value 43
octal. The next 9 bits contain the truncated string &&. The next 13 bits contain the
value 429 hexadecimal. The *P counter currently points into the fourth byte after
SPEC, with 3 bits left in the current byte.

Pseudo-Operations 39

/

PSEUDO-OP QUICK REFERENCE

iglab ASSERT <exp> :Check assembly condition
LABEL: DB <exp>,<exp> :Define bytes
LABEL: DB ‘ABCDE’ ", $0D ;Define long strings
LABEL: DC ‘ABCDE’ :DB with 80h added onto the last byte
LABEL: DS <exp> :Define space
LABEL: DW <exp>,<exp> :Define words
LABEL: DW ‘Xu’, 1234y’ :Define 1- or 2-character strings
LABEL: ECHO <exp> :Duplicate code <exp> times
iglab EJECT ;Page eject
iglab ELSE :Part of conditional assembly
LABEL: END [exp] ;End of assembly
iglab ENDIF ;Terminate range of IF
iglab ENDM ;Terminate MACRO or ECHO
iglab EPROC ;Terminates local symbol range
LABEL: EQU <exp> :Define LABEL equals <exp>
iglab ERR ;Force error flag
iglab IF <exp> :Begin conditional assembly
LABEL: INCLUDE <filespec> :Include another source file
iglab LINK <filespec > ;Include another source file
at the end of this source file
iglab LIST <opt> ;<opt> = list control option
iglab LIST * ;Pop list control stack
LABEL: LOC <exp> ;Set location counter
NAME: MACRO <parms> :Begin macro definition
LABEL: ORG <exp> ;Set origin counter
LABEL: PROC :Begin local symbol range
LABEL: REAL6 <exp> :6-byte real constant conversion
LABEL: SET <exp> ;Reset LABEL to <exp>
iglab SPACE <expl>,<exp2> ;Space <expl> linesif <exp2> lines
left on this page
iglab SUBTTL ‘text’ ;Set listing subtitle
iglab TITLE ‘text’ ;Set listing title
iglab USE <name> ;Use block declaration
LABEL: VFD <exp><exp>,. ;Variable field definition
LABEL: = <exp> ;Synonym for EQU
<exp> = required expression
[exp] = optional expression
‘text’” = strings
<filespec> = <device>:<filename>.<extension>
iglab = ignored label

Pseudo-Op Quick Reference 41

8

INSTRUCTION MNEMONICS

The instruction mnemonics provided by the Macro Assembler are identical to the
standard mnemonics defined by MOS Technology, with these exceptions:

* Quotation marks denoting character strings must be properly paired. (Some

6502 assemblers allow an unterminated quote for a 1-character string.)

® In this assembler, the symbols < and > are binary operators (less than and
greater than). Some 6502 assemblers define these symbols as unary operators
(high and low). See Section 4 for operator definitions.

Examples:

AMAC

CMP

LDX

LDY
Notation
dd
mmmm
nn

rel

Y4

HEX

MOS
CMP
#high EXP LDX #>EXP
#low EXP LDY #<EXP

8-bit signed displacement:

128 <= dd <= +127

16-bit address expression

8-bit constant: 0< = nn <= 255
16-bit address within:

*126 <= rel <= *+129

Page O location: 0 <= zz <= 255

OPCODE ADDRESS REMARKS

DATA MOVEMENT

AA
A8
BA
8A
9A
98

A9
A2
A0

Register to register transfer.

TAX ;Transfer A to X
TAY ‘Transfer A to Y
TSX ;Transfer S to X
TXA :Transfer X to A
XS ;Transfer X to S
TYA :Transfer Y to A
Load constant into register.

LDA #nn

LDX #nn

LDY #nn

Instruction Mnemonics

43

Load register from memory.

A5 LDA 7z

B5 LDA zz X

Al LDA (zz,X)

B1 LDA (zz),Y

AD LDA mmmm
BD LDA mmmm, X
B9 LDA mmmm,Y
Ab LDX 77

B6 LDX zz,Y

AE LDX mmmm
BE LDX mmmm,Y
A4 LDY 77

B4 LDY 7z, X

AC LDY mmmm
BC LDY mmmm, X

Store register into memory.

85 STA 77

95 STA 72z, X

81 STA (zz,X)

91 STA (zz),Y

8D STA mmmm

9D STA mmmm,X

99 STA mmmm,Y

86 STX 77

96 STX zz,Y

8E STX mmmm

84 STY 2z

94 STY 2z, X

8C STY mmmm
Stack load/stores.

48 PHA

08 PHP

68 PLA

28 PLP

DYADIC ARITHMETIC

Add operand and carry.

69 ADC #nn

65 ADC y 7

75 ADC zz, X

61 ADC (zz,X)

71 ADC (zz)Y

6D ADC mmmm
7D ADC mmmm, X
79 ADC mmmm,Y

44 [nstruction Mnemonics

:Push accumulator
;Push processor status
;Pop accumulator
;Pop processor status

Fo
E5
F5
E1
F1
ED
FD
F9

c9
C5
D5
C1
D1
CD
DD
D9

EO
E4
EC
Co
C4
CcC

MONADIC ARITHMETIC

Cé
D6
CE
DE
CA
88

E6
F6
EE
FE
E8
Cc8

18
D8
B8
38
F8

Subtract operand and borrow.

SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC

Compare 8-bit operand with accumulator.

#nn

zz

zz, X
(zz,X)
(z2),Y
mmmm
mmmm,X
mmmm,Y

Set flags as if subtracting, but do not alter accumulator.

CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP

Compare 8-bit operand with index register.

CPX
CPX
CPX
CPY
CPY
CPY

#nn

77

zz, X
(zz,X)
(zz2)Y
mmmm
mmmm,X
mmmm,Y

#nn

zz
mmmm
#nn

74
mmmm

Decrement by 1.

DEC
DEC
DEC
DEC
DEX
DEY

77
zz, X

mmmm
mmmm,X

Increment by 1.

INC
INC
INC
INC
INX
INY

77

zz X
mmmm
mmmm,X

Arithmetic control.

CLC
CLD
CLV
SEC
SED

;Clear carry flag
;Clear decimal mode
;Set overflow flag
;Set carry flag

;Set decimal mode

Instruction Mnemonics

45

DYADIC LOGICAL/BOOLEAN OPERATIONS

8-bit logical product, conjunction.

29 AND #nn

25 AND zz

35 AND zz, X

21 AND (zz,X)

31 AND (zz)Y

2D AND mmmm

3D AND mmmm, X

39 AND mmmm,Y
Logical sum, disjunction, inclusive OR.

09 ORA #nn

05 ORA 7z

15 ORA zz X

01 ORA (zz,X)

11 ORA (zz),Y

0D ORA mmmm

1D ORA mmmm, X

19 ORA mmmm,Y
Logical difference, inequivalence, exclusive OR.

49 EOR #nn

45 EOR 77

55 EOR zz X

41 EOR (zz,X)

51 EOR (zz)Y

4D EOR mmmm

5D EOR mmmm,X

59 EOR mmmm,Y

Logical compare.
Set flags as follows:

Z=1if AAND mem = 0
Z=0if A AND mem = 1
S =bit 7 of mem
V =bit 6 of mem
(mem = mmmm or zz).
24 BIT 7z
2C BIT mmmm
ROTATE AND SHIFT
Arithmetic shift left.
0A ASL A
06 ASL 77
16 ASL zz,X
OE ASL mmmm
1E ASL mmmm,X

46 Instruction Mnemonics

Logical shift right.

4A LSR A

46 LSR zz

56 LSR ZZ:X

4F LSR mmmm

5E LSR mmmm,X
Rotate left.

2A ROL A

26 ROL 77

36 ROL zz X

2E ROL mmmm

3E ROL mmmm,X
Rotate right.

6A ROR A

66 ROR ZZ

76 ROR zz,X

6F ROR mmmm

7ZE ROR mmmm, X

JUMPS

90 BCC

BO BCS

FO BEQ

30 BMI

DO BNE

10 BPL

50 BVC

70 BVS

4C |MP mmmm

6C |MP (mmmm)

CALL SUBROUTINE

00 BRK

20 JSR mmmm

RETURN FROM SUBROUTINE
40 RTI
60 RTS

MISCELLANEOUS CPU CONTROL
58 CL1

EA NOP

78 SEI

Af carry clear

If carry set

If equal (=0)

JIf minus

J1f not equal (< >0)
1 plus

1f overflow clear
If overflow set

;Software interrupt
;Jump subroutine

;Return from interrupt

:Return from subroutine

;Clear interrupt mask (EI)

;Set interrupt mask (DI)

Instruction Mnemonics

47

9

USING THE ATARI MACRO ASSEMBLER
WITH THE ATARI ASSEMBLER EDITOR

SOURCE FILES

If you have a source program that has been developed using the ATARI Assembler
Editor cartridge, and you want to use the Macro Assembler to assemble it, you will
have to be aware of the following differences:

The Macro Assembler does not accept line numbers.

The = for EQU must be embedded between at least two blanks.
Comments must be preceded by a semicolon.

The following pseudo-ops are recognized by the Macro Assembler:

.BYTE is equivalent to DB
.END is equivalent to END
.PAGE is equivalent to TITLE
SKIP is equivalent to SPACE
WORD is equivalent to DW

The following are not recognized by the Macro Assembler:

BYTE
WORD

The Macro Assembler does not recognize * = for setting the origin counter;
use ORG instead.

All strings must be bracketed by quotation marks (”) for the Macro
Assembler to interpret them properly.

Using the ATARI Macro Assembler with the ATARI Assembler Editor Source Files 49

10

ERROR CODES

Errors are flagged by a single-letter code in column one of the output listing. Lines
containing errors are always written to the screen, regardless of the output selec-
tion.

A = Address error. Instruction specified does not support the addressing mode
specified.

D = Duplicate label error. The last one defined is used.

E = Expression error. An expression on the source line in the address field is

unrecognizable.

F = Bad nesting of control statements. Bad nesting of IF . .. ELSE . . . ENDIF
statements. When this occurs on the END line, it means an IF was not ter-
minated.

I = Instruction field not recognized. Three NOP bytes are generated.

L = Label field not recognized. Three NOP bytes are generated.

M = MACRO statement error. Improper macro definition.

N = Error in number: digit exceeds radix; value exceeds 16 bits, and so forth.

O = Stack table overflow occurred in evaluating expression; user should
simplify expression. Too many LINK files. Too many PROCs. Too many
USE blocks.

P = Programmer-forced error. See ASSERT and ERR pseudo-ops.

R = Expression in variable field not computable.

S = Syntax error in statement. Too many or too few address subfields.

U = Reference to an undefined symbol.

V = Expression overflow: resultant value is truncated.

W = Not within VFD field width (1 <= width <= 16).

Y = Misplaced instruction: extraneous ENDM. When this occurs on the END

line, it means a MACRO or ECHO was not terminated. Make sure that
ENDM is preceded by a tab (®) character.

Error Codes 51

LIMITED 90-DAY WARRANTY
ON ATARI® HOME COMPUTER PRODUCTS

ATARI, INC (“ATARI") warrants to the original consumer purchaser that this ATARI Home Computer Product (not including computer pro-
grams) shall be free from any defects in material or workmanship for a period of 90 days from the date of purchase. If any such defect is
discovered within the warranty period, ATARI's sole obligation will be to repair or replace, at its election, the Computer Product free of
charge on receipt of the unit (charges prepaid, if mailed or shipped) with proof of date of purchase satisfactory to ATARI at any authorized
ATARI Computer Service Center. For the location of an authorized ATARI Computer Service Center nearest you,

call toll-free: In California (800) 672-1430 or write to: Atari, Inc.
Continental U.S. (800) 538-8737 Customer Service/Field Support
1340 Bordeaux Drive
Sunnyvale, CA 94086

YOU MUST RETURN DEFECTIVE COMPUTER PRODUCTS TO AN AUTHORIZED ATARI COMPUTER SERVICE CENTER FOR IN-
WARRANTY REPAIR.

This warranty shall not apply if the Computer Product: (i) has been misused or shows signs of excessive wear, (i) has been damaged by be-
ing used with any products not supplied by ATARI, or (i) has been damaged by being serviced or modified by anyone other than an
authorized ATARI Computer Service Center.

ANY APPLICABLE IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, ARE HEREBY LIMITED TO NINETY DAYS FROM THE DATE OF PURCHASE. CONSEQUENTIAL OR INCIDENTAL DAMAGES
RESULTING FROM A BREACH OF ANY APPLICABLE EXPRESS OR IMPLIED WARRANTIES ARE HEREBY EXCLUDED. Some states do not
allow limitations on how long an implied warranty lasts or do not allow the exclusion or limitation of incidental or consequential damages,
so the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights and you may also have other rights which vary from state to state.

DISCLAIMER OR WARRANTY
ON ATARI COMPUTER PROGRAMS

All ATARI computer programs are distributed on an ““as is’’ basis without warranty of any kind. The entire risk as to the quality and perfor-
mance of such programs is with the purchaser. Should the programs prove defective following their purchase, the purchaser and not the
manufacturer, distributor, or retailer assumes the entire cost of all necessary servicing or repair.

ATARI shall have no liability or responsibility to a purchaser, customer, or any other person or entity with respect to any liability, loss, or

damage caused directly or indirectly by computer programs sold by ATARI. This disclaimer includes but is not limited to any interruption of
service, loss of business or anticipatory profits, or consequential damages resulting from the use or operation of such computer programs.

REPAIR SERVICE

If your ATARI Home Computer Product requires repair other than under warranty, please contact your local authorized ATARI Computer
Service Center for repair information.

IMPORTANT: If you ship your ATARI Home Computer Product, package it securely and ship it, charges prepaid and insured, by parcel post
or United Parcel Service.

N\

ATARI®

PRINTED IN U.S.A. A Warner Communications Companyo CO60028 REV.1

ATARI
PROGRAM-TEXT EDITOR"™

N\

ATARI®

A Warner Communications Company

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Computer Division. However,
because of the ongoing improvement and update of the computer software and hardware, ATARI, INC. cannot guarantee the accuracy of
printed material after the date of publication and cannot accept responsibility for errors or omissions.

Reproduction is forbidden without the specific written permission of ATARI, INC., Sunnyvale, CA 94086. No right to reproduce this docu-
ment, nor the subject matter thereof, is granted unless by written agreement with, or written permission from the Corporation.

PRINTED IN U.S.A. MANUAL AND PROGRAM CONTENTS © 1981 ATARI, INC.

PREFACE

Your Program-Text Editor is a versatile tool. You can use it to edit source programs
written in various programming languages. The addition of a printer and a pertinent
software package to your system will make the editor an effective word processor.

Introductory sections of this manual supply simple instructions for diskette opera-
tions as well as rudimentary editing functions. Advanced and specialized editing
techniques are treated factually. The error messages displayed on the back cover

and the enclosed reference card provide quick and easy fingertip access to infor-
mation.

Preface v

CONTENTS

PREFACE

1 SYSTEM REQUIREMENTS

Setup Procedures
Turning On the System

Turning Off the System 2
2 OPERATIONAL PROCEDURES FOR THE EDITOR 3
Theory of Operation 6
Starting the Edit Session 8
Familiarity With the Keyboard 9
Command Mode Operation 16
Exiting the Editor 17
Cursor Movement Commands 18
Search Commands 19
Block Commands 21
Inserting and Deleting Commands 23
Specialized Commands 25
Large File Commands 26

3 CUSTOMIZING THE EDITOR 31
A-D—Parameters 32
E—Set Tab Stops 32
F—Set Maximum Line Length 33
G—Set Minimum Growth 33
H—Set Default Margins 33
|—Set Color of Screen 33
J—Set Miscellaneous Flags 34

A —Return to Main Menu 34

B —Set Type of Tab 34

C —Set Tab Display Method 35

D—Set Carriage Return Display 35

E —Auto-Indention Feature 35

F —Set Shifting Caselock 35

Contents vii

viii Contents

ILLUSTRATIONS

1 DOS Il Menu 3
2 Filename Prompt 4
3 Normal Exit From the Editor 7
4 Abort Exit From the Editor 7
5 lllustration of Expanding Tabs 8
6 Answering the Filename Prompt 8
7 Windows 9
8 Example of Entered Text 10
9 Escape Sequence Characters 13
10 Extension Group Prompt 31
11 Customizing File Menu 32
12 Customizing File Submenu) 34
TABLES
1 Immediate Mode Reserved Keystrokes 27
2 Command Mode Instructions 28
3 The ATARI Colors and Numbers 33

ATARI 800

ATARI
PROGRAM-TEXT EDITOR"

Use With
ATARI® 800™
ATARI® 1 e conmicatons comers @ HOME COMPUTER

1
SYSTEM REQUIREMENTS

The ATARI® Program-Text Editor™ (Model No. CX8121) requires:

e ATARI 810™ Disk Drive
* ATARI Blank Diskette (CX8100)

For information on your disk drive, refer to the ATARI 810 Disk Drive Operators
Manual. Check the drive code setting to make certain that you have a disk drive
designated as Drive 1. Because the Disk Operating System (DOS) Il programs are
included on the diskette containing the Program-Text Editor, you can easily load
the editor software by inserting your diskette in Drive 1. Otherwise, you must have
a copy of the DOS Il Master Diskette, Model No. CX8101, inserted into Drive 1.

You must have at least 24K RAM in your ATARI Home Computer to operate the
disk drive and the editor software. Although the software requires 24K memory, a
total memory capacity of 32K is highly recommended and will result in increased
program efficiency. For instructions on inserting additional ATARI RAM Memory
Modules™ into the ATARI 800™ Computer, refer to the ATARI 800 Operators
Manual.

SETUP 1. Verify that all power switches (console and disk drive) are turned to OFF.
PROCEDURES
2. Check that the computer console is properly connected to the television set
and a standard wall outlet.

3. Place the disk drive at least 12 inches away from your television set and plug it
into a standard wall outlet.

4. Connect the disk drive to either the computer console or another ATARI
peripheral. Plug one end of the 1/O Data Cord into the jack labeled I/O CON-
NECTORS on the back of the disk drive. Plug the other end into either the
jack labeled PERIPHERAL on the computer console or one of the I/O CON-
NECTOR ports of another ATARI peripheral. If you connect your disk drive to
another ATARI peripheral, verify that there is an 1/O Data Cord plugged into
the computer console.

TURNING ON When you are ready to use the computer, proceed as follows:
THE SYSTEM

1. Turn on the television set. Tune to Channel 2 or Channel 3, whichever has a
weaker signal in your area. Make certain that the 2-CHAN.-3 switch on the
computer console corresponds to your channel selection.

System Requirements 1

TURNING OFF
THE SYSTEM

2 System Requirements

2. Turn on the disk drive. Notice that the BUSY and PWR ON light indicators are
activated. Wait until the motor of the disk drive stops its activity and the BUSY
light goes out before continuing to the next step.

3. Insert the diskette containing the Program-Text Editor into the disk drive
designated as Drive 1.

Note: DO NOT TOUCH THE EXPOSED PORTION OF THE DISKETTE.

4. Turn the computer console power switch to ON. This will activate the disk
drive’s loading procedure.

Note: OPTIONAL. To increase the RAM buffer size on a 48K system, before turning
on your computer, remove any language cartridge that might be installed.

Take note of the following conditions to determine if you have successfully com-
pleted the power-on procedure. If you have a language cartridge inserted into the
computer console, the screen displays the prompt applicable to that particular
language. For example, the ATARI BASIC language prompt is the READY message;
the ASSEMBLER EDITOR language prompt is the EDIT message. Otherwise, the
DOS Menu should appear immediately upon the screen.

Warning: NEVER turn off the disk drive with a diskette in it. You may damage the
information contained on the diskette and lose the ability to load your program.
When you are ready to end your editing session:

1. Use the exit command appropriate for your editing session.

2. Wait for the DOS Il Menu display or the filename prompt to appear on the
screen.

3. Remove the diskette from the disk drive and return it to the protective sleeve
that was provided with the software.

4. You may turn off the television set, the computer, or the disk drive in any
order.

2

OPERATIONAL PROCEDURES
FOR THE EDITOR

You must load the editor through the DOS Menu. If the DOS Menu is not already
displayed on your screen, type DOS and press =171 Refer to Figure 1. (The DOS
Il Reference Manual contains complete instructions for using the DOS Il Menu op-
tions.)

| CARTRID DUP

OMMOEM

DERETURNR RS

Figure 1 DOS Il Menu

Because the editor program is included on a diskette that has been factory write-

protected for software safety, you must prepare a diskette for your text files. For

identification purposes, we refer to this diskette as a “‘data’’ diskette. With the DOS

Menu displayed on the screen, remove the diskette containing the Program-Text

Editor software. Refer to the DOS |l Reference Manual. Format a blank diskette,

:jhen write new DOS files to it. Remove this diskette and reinsert the editor program
iskette.

Select the L-BINARY LOAD command. Answer the prompt, LOAD FROM WHAT
FILE, with the name of the Program-Text Editor software, MEDIT. The program will
automatically run after being loaded. Refer to Figure 2. Insert your data diskette in-
to the disk drive at this time.

Caution: You may not change your data diskette once the editing session is started.
Because the editor has built-in memory checks and free space allocation computa-
tions, a memory map of the diskette inserted at the time the editor performs its
check is always retained. Therefore, even though the editor’s workspace resides in
RAM, the block-write command can result in an overwrite situation on any but the
original diskette.

Operational Procedures
for the Editor 3

Operational Procedures
4 for the Editor

Note: Because the editor performs a free IOCB (Input/Output Control Block)
check, you may receive the error message EDITOR CANNOT RUN - NO FREE
IOCBs. PRESS to return to DOS. Refer to the ATARI Operating System
Manual (part number CO16555) for complete information on IOCBs and to the er-
ror messages on the back cover for an explanation of this condition.

PROGRAM-TEXT EDITOR

Versionl1.90
ForDos 2.9

FILENAME IS

Copyright 1981 , ATARI

Figure 2 Filename Prompt

Your Program-Text Editor is now ready to bring the file that you wish to edit into its
workspace. At this point, there are several options available:

® Press the key to end the edit session and return control to DOS.

* Enter the filename of the program that you wish to edit.

* Create a new file under the editor by naming a file that does not exist. The
editor will automatically create an empty file using the specified name.

The correct syntax for an acceptable filename is in the form:
Dn:filename.extension,optional parameters separated by commas.
Example: D4:MYFILE.MAC,3,.ASM,D

The drive number n designation corresponds to the disk drive that contains your
source program and must be between the numeric characters of one and eight.
You may use a filename of from one to eight characters, either alpha characters A
through Z or numeric characters 0 through 9.

Note: For a filename specification, an alpha character must be in the first character
position. This rule does not apply to filename extensions.

Your optional extension may be from one to three characters long, using either
alpha or numeric characters.

Remember the following specifications when answering the filename prompt.

* If no device is specified, the editor automatically assumes the use of the disk
drive designated as Drive 1.

* Lowercase file specifications automatically convert to the correct uppercase
syntax.

e If the file, its associated backup file, or its temporary file is locked (see the
“Theory of Operation’’ section for further explanation), the editor displays
the error message FILE LOCKED and reissues the filename prompt. Unlock
any of these files through use of the DOS Menu. Refer to the ATARI DOS 11
Reference Manual.

Optional parameters may be entered in any order after the file specification:

,n OVERRIDE DESTINATION DRIVE. Unless otherwise specified, the default
destination drive is the one on which the source file is located. You may move
the destination file from the default drive by using this parameter. The value n is
a numeric digit corresponding to the number of the destination disk drive.

Example: MYFILE,2

When you have more than one disk drive, use this optional parameter to edit
large files or when there is not enough free space on the source diskette to allow
you to save the edited file.

,D DELETE BACKUP FILE FLAG. If a backup file exists, this parameter tells the
editor to erase it before beginning the editing session. Use of this parameter
allocates free space at the cost of backup file protection.

Example: MYFILE,D

Note: If the source and destination drive are not the same, the editor
automatically deletes a file with the same name on the destination drive.

,-ext OVERRIDE CUSTOMIZING FILE. Use of this parameter causes the editor
to use the customizing file associated with the designated extension file. Unless
this parameter is assigned, the editor defaults to use of the extension associated
with the file specification being edited.

Example: MYFILE,.PAS
MYFILE,.ASM
MYFILE,.BAS

Operational Procedures
for the Editor 5

THEORY OF
OPERATION

Operational Procedures
6 for the Editor

Following are additional examples of valid filename prompt responses.

MYFILE

MYFILE.PAS

D3:MYFILE

D3:MYFILE,2
MYFILE.PAS,D,4
D2:MYFILE,.PAS,D,3
MYFILE, . ASM
d2:myfile,.pas,d,3
D4:MYFILE. BAS, 3,.PAS,D

After receiving the filename specification, your Program-Text Editor checks the free
space on the destination diskette and makes a comparison with the size of the file
to edit. A minimum growth factor, considering the expansion of file storage capaci-
ty requirements because of additions or modifications, of g units is ascertained.
(See the ““Customizing the Editor’’ section.) If there is not enough room on the
diskette for the edit file and the growth factor, the editor displays a warning
message. You may choose to ignore the warning and continue with the editing ses-
sion. Or you may abort the edit, exit from the editor, and return to the DOS Menu.
If the editor determines that there is enough room on the diskette for the edit file
and growth factor, the edit session begins.

Caution: If you ignore the warning message, be sure that you have as much free
space as the size of your existing file plus room for any additions you will make dur-
ing the editing session. If your calculations are not correct and you run out of free
space on the diskette, you may lose all work completed in the current editing ses-
sion.

Note: A minimum growth factor of g units is determined from the customizing file.
If default factors are used, the minimum growth factor is 100 sectors of free space.

For efficiency and optimum protection, the Program-Text Editor uses a common
two-file editing method. During the editing session, the original file remains intact
while all modifications are made to a copy of the file. Therefore, this procedure
allows for:

e Automatic backup copies of files to be edited

¢ Modification of the original file only after the editing session is terminated
with a normal exit from the editor

e Use of sequential file access

A procedural outline of the two-file method is:

* Text is copied from the file to be edited into a memory buffer.
* When the buffer becomes full, data transfers to a temporary file.

Normal exit (Figure 3) from the editor causes the following sequence:

e The .BAK file is deleted.
e The edited file is renamed as the new .BAK file.
* The temporary file is renamed as the edited file.

BEFORE
Exit | FILE. BAK FILE FILE . TMP
\ |
AFTER
EXIT FILE . BAK FILE

Figure 3 Normal Exit From the Editor

An abort exit (Figure 4) from the editor causes the following sequence:

* The temporary file is deleted.
* The original edited file and the .BAK file retain their integrity.

BEFORE
T FILE . BAK FILE FILE . TMP
\
AFTER FILE . BAK FILE
EXIT

Figure 4 Abort Exit From the Editor

Your Program-Text Editor uses two modes of operation: immediate and command.
Immediate mode operation is keyboard interactive. Command mode operation
defers to a later time execution. All three windows and both operation modes are
discussed at length in subsequent sections of this manual.

The Program-Text Editor is defined as a source file editor. A source file is a disk file
consisting of ATASCIl characters terminated by ATASCIlI EOLs (End-of-Line).
Therefore, the editor functions with files containing the source code written for
ATARI Computer programming languages. A line length default value of 114
columns can be changed to a maximum length of 200 columns by using the
customizing file feature (see section titled ‘“Customizing the Editor’’).

Operational Procedures
for the Editor 7

Two types of tabs are allowed: (1) regular tabulation as provided by the operating
system in which blanks are substituted between tab stops or (2) expanding tabs. Ex-
panding tabs only take one character in the file but are displayed as many columns
of blanks. Set the type of tab by using the customizing file.

LINE OF TEXT-35 CHARACTERS
LINE OF TEXT
LINE OF TEXT

5 character displacement = 5 bytes of memory
using default value of 5, inserting blanks like the operating system

LINE OF TEXT-35 CHARACTERS
P....LINEOF TEXT
P....LINEOF TEXT

— —
5 character displacement = 1 byte of memory
using expanding tabs

Figure 5 Illustration of Expanding Tabs

If you attempt to edit a file that does not meet source file definitions and customiz-
ing column limits, the editor truncates the lines in the file to conform to the set line
length limits. Given this situation, the editor generates the LINE TOO LONG error
message while reading the file either during initial entry to the editor or as an input
command.

STARTING THE Answer the filename prompt. For the purposes of demonstration, enter the
EDIT SESSION filename PRACTICE. Refer to Figure 6.

PROGRAM-TEXT EDITOR

Version1i.o
For Dos 2.0©

FILENAME IS PRACTICEM

Copyright 1981, ATARI

Figure 6 Answering the Filename Prompt

Operational Procedures
8 for the Editor

FAMILIARITY
WITH
THE KEYBOARD

Notice the three windows displayed on the screen:

TEXT WINDOW Appears at the top of the screen and consists of 20
lines.
ERROR WINDOW Appears in inverse video and consists of a single line.

COMMAND WINDOW Appears at the bottom of the screen and consists of
three lines.

Figure 7 Windows

A summary of the immediate keystroke commands appears at the end of this
section.

g @ cizan il wseRt
7 8 >
mﬂmﬂﬂnonﬂggﬂ
0000000000386
C
EO0000008880E3 £

From the keyboard shown above, locate the following specific keys: R
p . Note that there are keys indicating directional arrows as weII
as arithmetic operators. Some keys serve a dual purpose, for example, the
E . As the operation of the key on the computer keyboard is the
same as the shlft key of a typewriter, its use will select the function that appears on
the top of the key.

Operational Procedures
for the Editor 9

Operational Procedures
10 for the Editor

Enter the following text onto your screen:

AND HERE WE SEE THE INVISIBLE BOY
IN HIS LOVELY INVISIBLE HOUSE,
FEEDING A PIECE OF INVISIBLE CHEESE 7= 710
TO HIS LITTLE INVISIBLE MOUSE.

Figure 8 Example of Entered Text

After entering the lines, notice the following: every time you press the S0 key,
an ¥ appears on the screen. This figure indicates the carriage return action. Also,
pay particular attention to the movement of the cursor. During execution of the
keystroke entry, the cursor position indicates character placement by appearing
immediately in front of the next entry. After any keystroke, the text window is up-
dated to reflect the current state of the file, and the cursor moves accord-
ingly. Look again at the above screen diagram and note the cursor positioning.

Using the table below, manipulate the cursor within your displayed text.

Keystroke Explanation

- Moves cursor left

CTRL fad Moves cursor right

' Moves cursor down one physical line

t Moves cursor up one physical line

2 Moves cursor to beginning of logical line
3 Moves cursor to end of logical line

After you feel thoroughly acquainted with the movement produced by striking
these keys, follow the procedure outlined below:

Position the cursor on the ““A”’ of the first word in the first line of your text. Use the
« keystroke. Now use the t keystroke. Note that both of these opera-
tions result in the warning message CURSOR AT END. The same error message will
be displayed if you use a - if the cursor is in the far right position at the end of
text.

Note: When the cursor moves up and down a slight glitter of the screen may occur.
Also, on occasion, you may notice the appearance of an additional line below the
command window. These are normal operating conditions.

Notice that these cursor-movement keystrokes position the cursor but do not affect
the entered text. Within the immediate mode operation, there are essentially two
types of keystrokes: those that directly relate to cursor positioning and those that
execute a change to the text itself. You must position the cursor at a precise point
using the above key combinations. Refer to the table below for those keystrokes
that will immediately edit entered text.

Keystroke Explanation

Inserts a blank line above the current logical line
Deletes character left of cursor

Deletes character right of cursor

[SHIFT | Deletes the logical line occupied by cursor
Regular keys Insert character into text

Within the framework of this software and as a matter of convention, this manual
introduces the terms logical line and physical line. A logical line contains those
characters entered between carriage returns. A physical line encompasses those
characters contained in a straight line from the extreme left side to the extreme
right side position of your television screen. A logical line can be one or more
physical lines.

Return to your screen. You must use your cursor control keys to move your cursor
during an edit session. Position the cursor so that it is over the “'v'’ in the word “‘in-
visible.” Use the key twice. (Do not press [EIEN. Pressing the
L= key at any time will introduce a carriage return figure, ¥ into your text.)

Take note of several unique conditions that might arise from operation of the

and keys.

If the cursor is to the right of a carriage return, use either the key or
the « key to reposition the cursor. However, when the cursor is to the im-
mediate right of a carriage return, use of the key deletes the carriage
return itself. Similarly, if the cursor is to the left of a carriage return, use of the
key repositions the cursor exactly as use of the - key.
However, when the cursor is to the immediate left of a carriage return, use of the
key removes the carriage return itself. Concatenation follows
the carriage return deletion. If the maximum line length is exceeded, the editor:

e Restores the deleted carriage return

Aborts the command line
Displays the error message LINE TOO LONG
Returns to immediate mode operation

Operational Procedures
for the Editor 11

12

Operational Procedures
for the Editor

Other specific conditions that result when the cursor is positioned:

Within an expanding tab

At the beginning of the buffer

Above the text window

At the end of the buffer

Use of either keystroke deletes the en-
tire tab.

Use of the key results in
no operation and generates the error
CURSOR AT END.

Use of the key causes an
automatic scroll that pulls down the
previous line.

Use of the key

results in no operation and generates
the error CURSOR AT END.

Note: Attempted deletion of the last carriage return in the buffer is illegal and
results in the CURSOR AT END error message. Use a delete line operation to suc-
cessfully remove this last carriage return.

Follow the same procedure to acquaint yourself with the use of the other
keystrokes outlined in the table. Use cursor control keystrokes to position the cur-
sor. Select the appropriate key to accomplish the desired change. Use cursor con-
trol keystrokes to remove the cursor from the logical line.

On the ATARI Computer keyboard, locate the fZ5 key. Use this key in conjunc-
tion with control graphics keys to print specific graphics characters. Refer to Figure
9 for keystroke combinations to produce a chosen graphics display.

Press the key
and then press: e
DELETE
BACK S
SET
TAB

Press the key
and then press the

key simultaneously
with:

« 0
1] ©

, 0
7~

CLEAR

DELETE
BACK S

INSERT

ﬂ
- E
]
m
—~

AB

Press the key DELETE
and then press the BACK S

key simultaneously
with: INSERT

(2]
-
b
w
m
—

-
»
@

to get

to get

2+~ BN EIGE B

to get

£ [(4]

Figure 9 Escape Sequence Characters

Operational Procedures
for the Editor

13

14

Operational Procedures
for the Editor

If the cursor is within an expanding tab or to the right of a carriage return when a
character is inserted into text, the editor automatically repositions the tab or car-
riage return to the right of the cursor.

Additional cursor movement keystrokes:

Keystroke Explanation
8 Displays previous screen
9 Displays next screen

Use the keystrokes above to respectively display either 20 physical lines above or
below the text window. Additional reserved keystrokes include:

Keystroke Explanation

CLEAR SET TAB Tabs to next tab stop

CEII Returns and auto-indents to same level
Toggles visible-tab mode

sHIFT ll CLR SET TAB Toggles visible-carriage return mode

Use the key to position the cursor. Space tabs insert a selected number
of blanks between tab stops, and the cursor positions itself accordingly. Expanding
tabs, however, insert a character into the text that indicates the tab function. By us-
ing the customizing file, you can display the expanding tab character as either
blanks or a right triangle followed by periods. Set your default choice within the
parameters of the customizing file. If you have chosen the expanding tab option,
use the immediate mode keystroke command to display the
alternate character choice.

Carriage returns can be displayed as blanks or down-arrows. Default choice is set
within the parameters of the customizing file. Use the ECEEEDD immediate
mode keystroke to display the alternate character choice.

Auto-indention allows you to reposition the cursor to return to an automatic tab
stop on the next logical line. Press the and S8 keys simultaneously. The
indention of the logical line containing the cursor determines the position of the
automatic tab.

Keystroke Command

Erases the error window

START Executes command window

SELECT Selects the alternate command line
Changes mode

BREAK Aborts command being executed

Error messages displayed within the error window are cleared in three ways:

® Pressing the keys will clear the error.

e If a syntax error occurs, the window clears when the command is corrected.

e After four seconds of elapsed time, the error window automatically clears
with any keystroke entry.

Use the key to change operation modes. In immediate mode operation, use
of enters command mode. Switching these operation modes automatically
clears the current command window. To avoid this erasure, use the
combination keystroke. The current command line remains intact, and the cursor
positions itself at the end of the command line.

Within the command mode, all keystrokes enter text into the command window.
All immediate and reserved keystrokes, with the exception of EEESIEITENES, can
still be executed. Use of the key deletes the last character typed into
the command window. Pressing twice while in command mode deletes the
entire command line.

During execution of the command window, the editor is in command mode.
Notice that the cursor remains in the command window while the command is be-
ing executed. After successful completion of the command execution, the cursor
disappears from the command window and the editor returns to immediate mode
operation. Use the key to rotate displays of the command line and any
alternate entry. Touch the key during execution of the command line to
discontinue processing. As soon as the current command execution is completed,
a BREAK KEY ABORT message appears in the error window, and the editor returns
to immediate mode operation. Touching at any other time has no effect.

In command mode, the use of returns control to immediate mode. The
command line remains in the command window for later execution. Use the
key to execute commands within the command window. A NOT COMPLETE error
message results when a command contains a syntax error. The editor remains in
command mode so that correction can be made. Executing a blank command or
an empty display window returns control to immediate mode.

Operational Procedures
for the Editor 15

COMMAND The command window accepts and displays all keystroke entries made in com-

MODE mand mode operation. With the exception of the key, all immediate
reserved keystrokes function identically within either operation mode. The com-
OPERATION

mand window is three physical lines long and allows a single command line that is
made up of one or more commands. You may enter spaces between commands
for better readability, and use either upper- or lowercase. Within the command
window, a carriage return is displayed as the inverse LI escape sequence
character. A mini-interpreter checks each keystroke for valid syntax. The following
syntax error messages may be displayed:

e UNRECOGNIZED COMMAND
* DELIMITER ERROR

e NUMBER TOO BIG

If a syntax error occurs, the editor ignores all keystrokes until you delete the offend-
ing character from the command window. Manipulation of the command window
is as follows:

key returns the editor to immediate mode operation.

key pressed twice erases the entire command window.

. key deletes the last character entered into the command win-
dow.

key executes the command line if the syntax is correct and complete.

key swaps the command line displayed in the command window with
an alternate command line.

After execution of the command line, the editor returns to immediate mode opera-
tion. The command line is not erased and may be reexecuted by pressing EZ513.

Operational Procedures
16 for the Editor

EXITING THE EDITOR

Depending upon your desired end result, choose one of the following options to
exit from the editor:

Command Explanation

EXIT Use this command to exit from the
editor and return to DOS. All changes
made during the edit session are re-
tained.

EXIT2 Use this command to exit from and
restart the editor. In effect, this com-
mand duplicates the action of EXIT
followed by the DOS ““L” (load) com-
mand, and you will receive the editor
sign-on filename prompt.

ABORT Use this command to exit from the
editor without incorporating any
changes made during the edit session
and return control to DOS.

ABORT2 Use this command to exit without in-
corporating any changes made during
the edit session and restart the editor.
In effect, this command duplicates the
action of ABORT and DOS ““L”" (load)
commands. You will receive the editor
sign-on filename prompt.

REOPEN Use this command to exit from the
editor and automatically reenter the
same file. In effect, this command
duplicates the action of EXIT2 and
answering the filename prompt with the
specification of the file you are editing.
See ‘‘Specialized Commands’’ within
this section for specific details.

Note: The editor accepts the exiting commands in the form EXITn and ABORTn as
valid syntax. However, at execution time, the error message NUMBER TOO BIG is
generated if n is greater than 2.

Operational Procedures
for the Editor 17

18

Operational Procedures
for the Editor

CURSOR MOVEMENT COMMANDS

You may manipulate the cursor through command mode operation. This method
lets you quickly move the cursor to where you want it. To use the following table
effectively, you must be familiar with two terms: buffer and file. In this particular
software application, text is copied from the file to be edited into a memory buffer
where modification is achieved. When the memory buffer becomes full, it is writ-
ten to a temporary file. This process is repeated continuously until all text has been
copied from the edited file into a temporary file. As you can determine, the con-
tents of the edited file and the memory buffer can differ.

Note: Take care in planning your editing session. You cannot easily edit the portion
of the file that has been written out of the buffer. Make your modifications from the
beginning to the end of the file. To edit a part of the file that has already been writ-
ten out of the buffer, use the REOPEN command (see ‘‘Specialized Commands’’
contained within this section) or reenter the editor. Both of these methods require
lengthy disk access.

Command Explanation

ClLn Moves cursor left n characters

CRn Moves cursor right n characters

CUn Moves cursor up n logical lines

CDn Moves cursor down n logical lines

CBB Moves cursor to beginning of buffer

CEB Moves cursor to end of buffer

CBF Moves cursor to beginning of file

CEF Moves cursor to end of file

CBL Moves cursor to beginning of the logical
line

CEL Moves cursor to end of the logical line

CCn Moves cursor to column n (range 1-200)

Note: The notation n signifies an optional numeric argument, which usually acts as
a repeat counter, with a range of 1-65535. With the exception of margin values, if n
is omitted, the editor assumes a value of 1.

The error message CURSOR AT END is generated each time you attempt to posi-
tion the cursor:

Left, before the beginning of the buffer
Right, past the end of the buffer
e Up, before the beginning of the buffer

e Down, past the end of the buffer

Note: Each time the editor generates this error message, it aborts the command line
and enters immediate mode operation.

Use the cursor control movements to position the cursor at strategic locations to
implement the more sophisticated commands available in the editor.

SEARCH COMMANDS

In the following commands, delimiters must be used to separate the string from the
search command notation. You may either use the slash mark, /, or a set of quota-
tion marks as delimiter characters. As an example, the SB/-/n command explained
below can also be entered as SB”-"'n. You can use “‘wild cards’” as a substitution
for characters in a search string. The editor recognizes the inverse video question
mark (2) as a wild card that will match any character while searching. (To display
any inverse video characters from the ATARI 800 keyboard, use the £3 key.)

Command Explanation

SB/-/n Search for nth occurrence of string in
buffer

SF/-/n Search for nth occurrence of string in
file

SRB/-/-/n Search and replace n times in buffer

SRF/-/-/n Search and replace n times in file

SRVB/-/-/n Search and replace with verify n times
in buffer

SRVF/-/-/n Search and replace with verify n times
in file

Note: The notation n signifies an optional numeric argument, which usually acts as
a repeat counter, with a range of 1-65535. With the exception of margin values, if n
is omitted, the editor assumes a value of 1.

In general, all string searches begin after the current cursor location. In successful
file and buffer searches, the cursor is positioned after the nth occurrence of the
string. The logical line containing the cursor is displayed as the first line of the text
window.

In unsuccessful buffer searches, the editor:

Retains the cursor in its original position
Generates a SEARCH FAILED error message

Aborts the command line

Returns to immediate mode operation

In unsuccessful file searches, the editor repeatedly writes out the current buffer and
reads a new buffer. If the end-of-file is reached before finding the nth occurrence of
the string, the search fails. Then, the editor:

e Retains'the cursor in its original position if the last line in the file was already
in the buffer before the search began or

e Positions the cursor to the beginning of the last buffer read if new lines were
introduced from the file to the buffer area

e Follows the same procedure outlined above for unsuccessful buffer searches

Operational Procedures
for the Editor 19

20

Operational Procedures
for the Editor

In general, the search and replace commands, perform a search for the first string
and replace it with the designated second string for the specified n times. The
replacement string may be null or have a different amount of characters than the
search string. Care should be taken to avoid the following conditions resulting in
error messages. As with all error conditions, the editor aborts the command line
and returns to immediate mode operation.

LINE TOO LONG

LINE TOO LONG

CURSOR AT END

Could result if the insertion of a large
replacement string into a text line ex-
ceeds the maximum line length.

Result of Operation: Only the first part
of the replacement string would be in-
serted into the text.

Could result if the search string contains
carriage returns. When a carriage return
is deleted and the lines are con-
catenated, the resulting new line could
exceed the maximum line length.

Result of Operation: The cursor is
located to the right of a partial search
string and that logical line is displayed
as the first line of the text window.

Could result if the search string ter-
minates with a carriage return and is
found on the last line of the buffer.
Because the editor does not allow the
last carriage return in the buffer to be
deleted (except with a delete-line com-
mand), this search results in the given
error message.

Result of Operation: The editor will find
the string but abort the command line,
resulting in no replacement.

In unsuccessful buffer searches, the editor:

® Retains the cursor in its original position if no replacement has been made or

® Positions the cursor after the last successful replacement and

- generates a SEARCH FAILED error message

- aborts the command line

- returns to immediate mode operation

In unsuccessful file searches, the editor repeatedly writes out the current buffer and
reads in a new one. If the end-of-file is found before the nth occurrence of the
search string, the command fails. Then, the editor follows the same procedure as
outlined above for unsuccessful buffer searches.

Search and replace with verify commands for buffer and file use the same pro-
cedure as those respective commands without verification. Additionally:

* Before each replacement, the editor moves the cursor after the found search
string and displays that logical line as the first line of the text window.

* A prompt question appears in the error window

R Signifies replacement of the search string
S Signals a “skip” of this occurrence
Q Terminates or prematurely ‘‘quits’” the search and replace command.

You may type your response in upper- or lowercase letters. If the response is valid,
the editor clears the error window and completes the operation. If the response is
invalid, your typed character is displayed; the cursor appears in the error window
with a question mark.

BLOCK COMMANDS

You can manipulate a section of text lines by placing them within a defined block.
To do this, you must precede and follow the designated text with a block marker
that flags the attention of the editor and signals the beginning and end of the block.
In the case of having more than two markers, the block is defined to be the group
of text between the first encountered set of markers within the buffer.

Note: Do not use a line within your file that matches the block marker text designa-
tion.

Block markers are:

* A special text line displayed as follows

#*%3%¥BLOCK MARKE R3%% B

that must be the Only text on the line itself

* Converted to a regular text line in the file by adding, deleting, or changing
characters within the marker

e Automatically deleted from any text written out of the buffer

Although block commands offer timely execution of lengthy procedures, consider
the limitations imposed upon their function by the system, itself. For example, error
conditions can result if you attempt to move blocked text from the top of memory
through insufficient available RAM. Also, exercise caution when you assign a
filename specification within the parameters of a block-read or block-write opera-
tion so that you do not attempt to read or write to an already open file. Remember
that the .BAK and .TMP file extensions are reserved for internal use by the editor.
Also, if you wish to specify a drive number within a block-read or block-write
operation, use the drive number Dn designation within your filename string.

Operational Procedures
for the Editor 21

Command Explanation

MS Marker Set Marker Set Inserts a block-marker text
line Before the logical line containing
the cursor

MC Marker Clear Marker Clear Removes all block-marker

text lines and repositions the cursor to
the beginning of the buffer

After setting the block markers, use the following commands to perform your in-
tended operation.

Command Explanation

BC Block Copy Copies the marked text before the line
on which the cursor is positioned. The
block markers are not copied with the
text.

BM Block Move Moves a marked block of text before
the logical line containing the cursor.
The block markers are also moved.

BD Block Delete Deletes a marked block of text. The
block markers are also deleted.

BP Block Print Prints the marked block on the system
printer (P:). Expanding tabs and carriage
returns are displayed as blanks.

BW/-/ Block Write Writes the marked block to a disk file
named within the delimiters. The block
markers are not written to the file.

BR/-/ Block Read Reads the disk file named within the
delimiters and inserts that block before
the logical line containing the cursor.
Automatic paging will occur to read in
the entire file if memory becomes full.

In general, the use of these commands:

* Positions the cursor at the beginning of the current line.
e Scrolls the screen until the cursor is on the first line of the text window.

Error messages that could be generated from an attempt of the above commands
are:

MEMORY FULL Results if there is not enough free
memory to hold the entire block on a
move or copy command.

Operational Procedures
22 for the Editor

/O ERROR nnn

Procedure for recovery from this condi-
tion is to:

e Use a BW/-/ command

e Position the cursor at the desired
location for the block operation

e Use a BR/-/ command

An alternate recovery method is to:

e Use the REOPEN command

e Reposition the cursor at the
desired location for the block
operation

e Repeat the block command

May result during a print or write com-
mand. A standard ATARI operating
system error number is given to aid you
in isolating the problem.

In a print operation, the editor:
* Aborts the command line
e Returns to immediate mode opera-

tion.

In a write operation, the editor: closes
the file.

INSERTING AND DELETING COMMANDS

Command

IT/-/n

DBn
DAn

DFn

Explanation

Inserts text string at the cursor location
n times. If the cursor is past the last line
in the buffer, the editor inserts a car-
riage return to the right of the cursor
before inserting the text.

Deletes n characters before the cursor.
Deletes n characters after the cursor.

Deletes every character between the
beginning of the logical line and the
current cursor location. When the cur-
sor position is immediately past a car-
riage return, the entire logical line is
deleted except for the carriage return,
itself. After this occurrence, the cursor
moves to the beginning of this null line.

Operational Procedures
for the Editor 23

24

DLn

RL

Deletes the logical line containing the
cursor. After deletion the cursor moves
before the first character of the next
logical line.

Inserts the text stored in the “recover-
line’” buffer in front of the line contain-
ing the cursor. Use this command to
recover from accidental deletion of a
line or to achieve a simple one-line
move. You can insert text into the
recover-line buffer by using a command
or an immediate keystroke to delete a
logical line.

Note: The notation n signifies an optional numeric argument, which usually acts as
a repeat counter, with a range of 1-65535. With the exception of margin values, if n
is omitted, the editor assumes a value of 1.

Error messages that could be generated from an attempt to use the above com-

mands are:

MEMORY FULL

LINE TOO LONG

CURSOR AT END

Results if too little free memory exists to
allow for complete input of the string
argument.

Result of Operation:
* Inserts either none, or only a part,
of the string
® Aborts the command line
® Returns to immediate mode opera-
tion

Results from a deletion command if the
editor deletes a carriage return and at-
tempts to concatenate lines that will ex-
ceed the current line length limits. Also,
this error condition results from text
string insertion that causes maximum
line length limits to be exceeded.

Results from a deletion command if the
cursor is at the beginning of the buffer
when the editor attempts a deletion of
characters before the cursor or if the
cursor is at the end of the buffer when
the editor attempts a deletion of
characters after the cursor.

Note: To delete the last carriage return in the buffer, use the delete-line command.

Operational Procedures
for the Editor

SPECIALIZED COMMANDS

LMn and RMn: Left and Right Margin Set Commands. If your television set needs
adjustment to avoid cutting columns off of the display, change the left and right
margins respectively by using these commands. Both margins are set a designated
number of spaces dependent upon the value of n. If you omit the designation for n,
the editor assumes a value of 1 for the left margin and a value of 40 for the right
margin. The rule for setting the margin values is that the left margin must be greater
than or equal to 1, but less than the value of the right margin. The right margin must
be less than or equal to 40, but greater than the value of the left margin.

If you attempt a designation for n that is not in conformance with the margin rule,
the editor generates the error message MARGIN VALUE ERROR, aborts the com-
mand line, and returns to immediate mode operation. This error condition also oc-
curs if a new margin value causes existing command lines to exceed margin bound-
aries. Set automatic default values for both margins by using the customizing file.

CTSn: Convert Tabs to Spaces Command. Use this command to convert expanding
tabs into spaces for a specified n of logical lines. If you omit the designation for n,
the editor assumes a value of 1. Error conditions can occur in two instances:

MEMORY FULL This error is generated when the editor
runs out of free memory during the
conversion. A partially converted line
may appear above the line that is being
executed at the time of the error condi-

tion.

CURSOR AT END This error is generated when the editor
runs out of lines to convert in the
buffer.

Error conditions cause the editor to abort the command line and return to im-
mediate mode operation.

REOPEN: Reopen Editor With Same File. Use the REOPEN command to exit nor-
mally from the editor. The editor automatically reenters the same file, retains the
original command line, and positions the cursor to the beginning of the file.
Minimum growth factor determinations are made by the editor. The editor displays
a warning message if the recalculated disk free space shows a limitation. You can
choose to leave the editor or ignore the warning and continue with your editing
session. When you reenter, the editor ignores all commands past the REOPEN on
the current command line and empties both command line entries.

Use this command as a safety factor and backup procedure. Consistent and fre-
quent implementation of the REOPEN command assures you the retention of your
most current work in the event of an unforeseeable occurrence such as a power
failure. Fifteen-minute interval ““saves’’ are a common data processing practice.

Note: If you are using more than one disk drive, the editor switches source and
destination drives each time you execute the REOPEN command.

Operational Procedures
for the Editor 25

26

Operational Procedures
for the Editor

PLn: Print n Lines on the System Printer. Use this command to print a specified
number of lines on the system printer (P:). If n is not assigned, the editor assumes a
value of 1. If you assign a value to n that is larger than the number of lines currently
residing in the buffer, the editor automatically writes out the buffer and reads in a
new one. If the editor encounters an end-of-file before the assigned number of n
lines has been printed, the CURSOR AT END error message results. The editor
aborts the command line and returns to immediate mode operation.

Printing starts from the logical line containing the cursor. Before printing the lines,
all carriage returns and tab fields are changed to blanks.

Cursor positioning remains stationary unless the buffer is written out. The cursor
moves to the beginning of any newly read buffer.

WL/-/n: Write n Lines to Disk File. Use this command to write a specified number
of lines to the disk file designated within the delimiters. If n is not assigned, the
editor assumes a value of 1. If you assign a value to n that is larger than the number
of lines currently residing in the buffer, the editor automatically writes out the buf-
fer and reads in a new one. If the editor encounters an end-of-file before the as-
signed number of n lines has been written, the CURSOR AT END error message
results. The editor aborts the command line and returns to immediate mode opera-
tion.

Writing starts from the logical line containing the cursor. Cursor positioning re-
mains stationary unless the buffer is written out. The cursor moves to the beginning
of any newly read buffer.

Caution: Remember the editor reserves .BAK and .TMP extender designations. Do
not attempt a write or read operation to an already open file.

LARGE FILE COMMANDS

You can edit a file that is too large to fit into available free RAM space by using two
specialized commands formulated specifically for this purpose.

IH inputs half the available RAM from the file
OC outputs text up to the current position of the cursor

When the editor receives the IH command, its immediate response is to calculate
available memory and input approximately half of that amount from the file into
the buffer. After receiving the OC command, the editor outputs text from the
beginning of the buffer up to the logical line containing the cursor. Thereafter, that
logical line becomes the first line in the buffer. With combined use of these two
commands, you can obtain free memory to successfully edit files larger than will fit
into current memory. Error or warning conditions that can occur include:

INPUT EOF The editor reaches the end of the
specified input file.

I/O ERROR nnn A fatal disk or printer error occurs.

LINE TOO LONG The editor encounters a line that ex-

ceeds the maximum line length set by
the customizing file.

CANNOT-PREVIOUS The editor cannot perform an intended
DISK I/O ERROR function because of a previous error
condition.

TABLE 1 — IMMEDIATE MODE RESERVED KEYSTROKES

CTRL B Move cursor left (skip across expanding
tabs)

- Move cursor right (skip across expand-
ing tabs)

[cTrL K Move cursor down one physical line

G Move cursor up one physical line

2 Move cursor to beginning of logical line

3 Move cursor to end of logical line

8 Display previous screen of characters

9 Display next screen of characters

regular keys Insert character into text

Prepare to insert new line(s)

TAB. Tab to next tab stop

Return with auto indent to same level

Delete character left of cursor

Delete character right of cursor

Delete logical line containing cursor

Toggle visible-tab mode (if expanding
tab option selected)

[148 | Toggle visible-carriage return mode

Clear error window

Execute command window

Select alternate command line

Change mode

Abort command being executed

Operational Procedures
for the Editor 27

TABLE 2 — COMMAND MODE INSTRUCTIONS

EXIT Exit normally from edit - return to DOS

EXIT2 Exit normally from edit - restart editor

ABORT Exit without saving changes - return to
DOS

ABORT2 Exit without saving changes - restart
editor

SB/-/n Search for nth occurrence of string in
buffer

SF/-/n Search for nth occurrence of string in
file

SRB/-/-/n Search and replace n times in buffer

SRF/-/-/n Search and replace n times in file

SRVB/-/-/n Search and replace with verify n times
in buffer

SRVF/-/-/n Search and replace with verify n times
in file

MS Marker set

MC Marker clear

BC Block copy

BM Block move

BD Block delete

BP Block print

BW/-/ Block write to disk file

BR/-/ Block read from disk file

Cln Move cursor left n characters

CRn Move cursor right n characters

CUn Move cursor up n logical lines

CDn Move cursor down n logical lines

CBB Move cursor to beginning of buffer

CEB Move cursor to end of buffer

CBF Move cursor to beginning of file

CEF Move cursor to end of file

CBL Move cursor to beginning of logical line

CEL Move cursor to end of logical line

CCn Move cursor to column n

IT/-/n Input string n times at cursor position

DBn Delete n characters before cursor

DAn Delete n characters after cursor

DF Delete first part of logical line

DR Delete remainder of logical line

DLn Delete n logical lines

RL Recover last deleted line

IH Input half of available RAM from file

OC Output text to file up to line contain-
ing cursor

Operational Procedures
28 for the Editor

REOPEN Reopen editor with same file

PLn Print n lines on system printer

WL/-/n Write n lines to disk file

CTSn Convert expanding tabs to spaces for n
lines

LMn Set left margin to width n

RMn Set right margin to width n

Note: n is an optional numeric argument, which usually acts as a repeat counter,
with a range of 1-65535. With the exception of margin values, if n is omitted, the
editor assumes a value of 1.

Note: ‘//-/" is a required character string delimited by either a pair of slashes or a
pair of quotes. ““/-/-/"" is a pair of required strings delimited by either a triplet of
slashes or a triplet of quotes.

Operational Procedures
for the Editor 29

Operational Procedures
30 for the Editor

3

CUSTOMIZING THE EDITOR

You can use the editor to full advantage by establishing specific parameters to han-
dle distinct file extensions. For example, you may wish to turn off the auto-
indention feature on all file extensions except for languages similar to PASCAL.
Maximum line lengths for .ASM files are different than, for instance, .BAS and
should be altered from the default value. By setting a customizing screen color you
can visually determine the nature of your editing file.

Customizing file alterations use the BASIC programming language. You must have
an ATARI BASIC language cartridge inserted into the left slot of your computer con-
sole. Refer to the ATARI 800 Operators Manual for instruction in installing a car-
tridge.

To load the customizing file:
1. Place the diskette containing the editor program into your disk drive.

2. Turn on the computer. Wait for the READY message prompt with the cursor
to appear on the screen.

3. Type RUN “D:MEDITCM.BAS’’ and press EIE1T0.

4. Remove the program diskette and insert your data diskette.

The Customizing File Menu that appears will allow you to select the area in which
you wish to change the default values. Most of the selections are self-documented.
You can reference the instructions included in the software program or you can
type N in response to the WOULD YOU LIKE INSTRUCTIONS? (Y/N) query and
use this manual.

HWHAT EXTENSION GROUP

t8-3I charsor *2'3 R

Figure 10 Extension Group Prompt

Customizing the Editor 31

32 Customizing the Editor

Refer to Figure 11. By answering the WHAT EXTENSION GROUP query, you
establish the filename specification extension that you wish to customize. Enter the
(2)to return to the instructions for use of the file.

omxD

Figure 11 Customizing File Menu

A-D—Parameters

The Customizing File Menu appears as soon as you have answered the extension
group prompt. Depending upon your choice of parameters, all changes that you
enter into the customizing file will be retained as new values for your selected
group. Use the first four fields of the menu, A-D, to establish the changes or to
disregard them. Selection of A or C returns control to DOS for easy access into the
editor. Selection of B or D reruns the customizing file.

E—Set Tab Stops

Selection E allows you to set your tab stop values. As the software instructions in-
dicate, tab stop values cannot be changed during an editing session. The screen
displays default and current tab stop values. A (Menu, Set, Clear) Select Item
prompt appears on the screen.

M Reruns the Customizing File Menu

S Brings (2-199) What column to set onto the screen. Choose the column tab
stop by pressing the number combination followed by EIZITI8. All current tab
stop values will be redisplayed. Note the inclusion of your new value.

C Brings (2-199 or *) What column to clear onto the screen. Choose the col-
umn tab stop by pressing the number combination followed by EETEIN. All
current tab stop values will be redisplayed. Note the exclusion of your new
value.

Press the ““*"* key to clear all tab stop values. Wait for the Select-ltem prompt
to appear. Use the Set command to enter new values.

F—Set Maximum Line Length

Maximum line length defaults to 114 characters or 3 physical lines in conformance

with the ATARI Computer’s built-in operating system screen editor. The editor

allows from 2 to 200 characters per logical line. Enter your chosen value and press
T10. Control automatically returns to the Customizing File Menu.

G—Set Minimum Growth

Use this command to determine your space allocation before receiving an 1/0
ERROR 162 (disk full) error message. You can ignore the minimum growth check
warning and proceed with your editing session. However, be mindful of its
usefulness as a warning device. Enter your chosen value and press £571%. Control
automatically returns to the Customizing File Menu.

H—Set Default Margins

If display columns are being cut off at the sides of your television screen, you can
change the left and right margins.

I—Set Color of Screen

Using the customizing file, you can alter three variables that precisely determine
the color display. The first variable, indicated as COLOR, controls the background
color selection. Refer to the following table for numbers corresponding to the color
of your choice.

TABLE 3—THE ATARI COLORS AND NUMBERS

BACKGROUND CORRESPONDING
COLORS NUMBERS
GRAY 0
LIGHT ORANGE (GOLD) 1
ORANGE 2
RED-ORANGE 3
PINK 4
PURPLE 5
PURPLE-BLUE 6
AZURE BLUE 7
SKY BLUE 8
LIGHT BLUE 9
TURQUOISE 10
GREEN-BLUE 11
GREEN 12
YELLOW-GREEN 13
ORANGE-GREEN 14
LIGHT ORANGE 15

Note: Colors will vary with type and adjustment of television or monitor used.

Customizing the Editor 33

The second variable, B-lum, controls the luminance of the background color on
the screen. The third variable, C-lum, controls the character luminance.
Luminance is changed on every even number: 0, 2, 4, 6, 8, 10, 12, and 14. Follow
certain rules when assigning luminance numbers to ensure a useable combination.
To obtain the best clarity and avoid the occurrence of a blank screen:

¢ Do not equate the luminance values for the two variables, B-lum and C-lum.

* The two luminance values must be greater or less than each other by a factor
of 8.

SET MISCELLANEOUS FLAGS

RETURN TO MAIN MENU

SET SPACE TAB/EXPANDING TAB OPTION
SET TAB DISPLAY METHOD

SET CARRIAGE RETURN DISPLAY

SET AUTO-INDENTION FEATURE

+ SET UPPERCASE/LOMWERCASE OPTION

P

a.
B
c
D
E
F

Enter letter of choice (A-F)

Figure 12 Customizing File Submenu |

J—Set Miscellaneous Flags

A—Return to Main Menu

Return to the main menu after choosing your new values. You may then make a
selection to retain or disregard the parameters you have selected.

B—Set Type of Tab
Note: Not all ATARI software recognizes expanding tabs.

Space tabs insert a selected number of blanks between tab stops, and the cursor
positions accordingly. Expanding tabs, however, insert a character into the text
that indicates the tab function.

34 Customizing the Editor

C—Set Tab Display Method

Expanding tabs can be conventionally displayed as spaces or usefully displayed
as right triangles followed by periods. The value entered into this parameter can
be displaced by an immediate mode keystroke.

D—Set Carriage Return Display

A carriage return can either be displayed as a space or a down arrow. The value
entered into this parameter can be displaced by an immediate mode keystroke.
E—Auto-Indention Feature

Auto-indention allows you to reposition the cursor to an automatic tab stop on
the next logical line. To activate auto-indention, you press the and CEE
keys simultaneously. Use the customizing file to disengage this feature.

F—Set Shifting Caselock

After you answer the filename prompt and begin the edit of your specified file,
this option comes into effect. Set a shift-lock for uppercase designation or a no-

lock for upper- and lowercase. The parameter value entered may be displaced
by using the key during an editing session.

Customizing the Editor 35

LIMITED 90-DAY WARRANTY
ON ATARI® HOME COMPUTER PRODUCTS

ATARI, INC (“/ATARI"") warrants to the original consumer purchaser that this ATARI Home Computer Product (not including computer pro-
grams) shall be free from any defects in material or workmanship for a period of 90 days from the date of purchase. If any such defect is
discovered within the warranty period, ATARI's sole obligation will be to repair or replace, at its election, the Computer Product free of
charge on receipt of the unit (charges prepaid, if mailed or shipped) with proof of date of purchase satisfactory to ATARI at any authorized
ATARI Computer Service Center. For the location of an authorized ATARI Computer Service Center nearest you, call toll-free:

In California (800) 672-1430 or write to: Atari, Inc.

Continental U.S. (800) 538-8737 Customer Service/Field Support
1340 Bordeaux Drive
Sunnyvale, CA 94086

YOU MUST RETURN DEFECTIVE COMPUTER PRODUCTS TO AN AUTHORIZED ATARI COMPUTER SERVICE CENTER FOR IN-
WARRANTY REPAIR.

This warranty shall not apply if the Computer Product: (i) has been misused or shows signs of excessive wear, (i) has been damaged by be-
ing used with any products not supplied by ATARI, or (iii) has been damaged by being serviced or modified by anyone other than an
authorized ATARI Service Center.

ANY APPLICABLE IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, ARE HEREBY LIMITED TO NINETY DAYS FROM THE DATE OF PURCHASE. CONSEQUENTIAL OR INCIDENTAL DAMAGES
RESULTING FROM A BREACH OF ANY APPLICABLE EXPRESS OR IMPLIED WARRANTIES ARE HEREBY EXCLUDED. Some states do not
allow limitations on how long an implied warranty lasts or do not allow the exclusion or limitation of incidental or consequential damages,
so the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights and you may also have other rights which vary from state to state.

DISCLAIMER OR WARRANTY
ON ATARI COMPUTER PROGRAMS

All ATARI computer programs are distributed on an ““as is'’ basis without warranty of any kind. The entire risk as to the quality and perfor-
mance of such programs is with the purchaser. Should the programs prove defective following their purchase, the purchaser and not the
manufacturer, distributor, or retailer assumes the entire cost of all necessary servicing or repair.

ATARI shall have no liability or responsibility to a purchaser, customer, or any other person or entity with respect to any liability, loss, or

damage caused directly or indirectly by computer programs sold by ATARI. This disclaimer includes but is not limited to any interruption of
service, loss of business or anticipatory profits, or consequential damages resulting from the use or operation of such computer programs.

REPAIR SERVICE

If your ATARI Home Computer Product requires repair other than under warranty, please contact your local authorized ATARI Computer
Service Center for repair information.

IMPORTANT: If you ship your ATARI Home Computer Product, package it securely and ship it, charges prepaid and insured, by parcel post
or United Parcel Service,

EDITOR MESSAGES

Warnings

USING DEFAULTS

NEW FILE

INPUT EOF
CANNOT-PREVIOUS
DISK I/O ERROR
CURSOR AT END

Prompt Messages

VERIFY(REPLACE,
SKIP,QUIT)?

Error Messages
MARGIN VALUE ERROR
LINE TOO LONG

MEMORY FULL

ILLEGAL
DEV:FILE.EXT

DELIMITER ERROR

SEARCH FAILED
NOT COMPLETE

UNRECOGNIZED
COMMAND

BREAK KEY
ABORT

I/O ERROR nnn
NUMBER TOO BIG
CANNOT FIND
MARKED BLOCK

CANNOT FIND FILE
EDITOR IS CONFUSED

FILE LOCKED

EDITOR CANNOT
RUN-NO FREE I0CBs

No customizing file was found that matched the extension of the filename, so the editor uses its built-in
defaults.

The file named to be edited does not exist; therefore, the editor creates a new file using the specified
name given at the prompt.

The end of file has been reached on the input file,
Refer to a previous execution for cause of error. Use of EXIT, IH, or OC commands may be restricted.

Occurs whenever the cursor tries to move past either end of the text buffer.

Displays in the error window before each replacement while executing a search-and-replace-with-verify
command.

Occurs when a designation for n is not in conformance with the margin rule.

Occurs whenever the addition of text to the current line causes it to exceed the maximum line length set
by the customizing file.

Means that there is not enough free RAM in the buffer to carry out the operation.

Tells you that the last filename prompt was incorrectly answered.

Tells you that the command being entered into the command window requires a slash (/) or double
quotation mark (”’) for proper syntax.

Occurs when a search command was executed and the search string could not be found.

Occurs when you try to execute the command window when an incomplete command line exists there.

Occurs when you type an invalid character into the command window.
Acknowledges that you have pressed the key during execution of the command window.

Tells you that a fatal disk or printer error has occurred. nnn is an error number generated by the
operating system. Refer to the ATARI Disk Operating System Il Reference Manual.

Tells you that the argument n given in the command window is too large for the command specified or
the current line length limit.

Means that the editor could not find a marked block of text while executing a BC, BD, BM, BP, BW/-/, or
BR/-/ command.

Means that the editor could not find the file requested in a BR/~/ command.

Occurs when internal editing pointers have been damaged. Try immediate mode keystrokes 2
and < until you no longer receive this error message. (If this error should occur, it would be
helpful to us if you could find a repeatable sequence of events that reproduces it and report to ATARI
Customer Service.)

Means that the file you requested to edit is locked or theassociated .BAK or .TMP file is locked.

Occurs if you have attempted to use any other DOS but 2.0S; or if you have called the editor directly,
and at least three available IOCBs do not exist.

Note: n is an optional numeric argument, which usually acts as a repeat counter, with a range of 1-65535. With the exception of margin
values, if n is omitted, the editor assumes a value of 1.

N\

ATARF®

PRINTED IN U.S.A. € 2 wamer communications Company CO60029 REV. 1.

ATARI® MACRO ASSEMBLER REFERENCE CARD

PSEUDO-OP QUICK REFERENCE

iglab

LABEL:
LABEL:
LABEL:
LABEL:

LABEL:
LABEL:

LABEL:

iglab

iglab

LABEL:

iglab
iglab

iglab

LABEL:

iglab

iglab

LABEL:

iglab

iglab
iglab

LABEL:

NAME:

LABEL:

LABEL:

LABEL:

LABEL:

iglab
iglab
iglab

iglab

ASSERT
DB
DB
DC
DS

DW
bw

ECHO
EJECT
ELSE
END
ENDIF
ENDM
EPROC
EQU
ERR

IF
INCLUDE
LINK

LIST
LIST

LOC
MACRO
ORG
PROC
REAL6
SET
SPACE
SUBTTL
TITLE

USE

<exp> ;Check assembly condition
<exp>,<exp>
‘ABCDE’,’f",$0D
‘ABCDE’

;Define bytes

;Define long strings

;DB with 80h added onto the last byte
<exp> ;Define space

;Define words

;Define 1- or 2-character strings

<exp>,<exp>
Xu’,1234,’y’

<exp> ;:Duplicate code <exp> times
;Page eject
;Part of conditional assembly
[exp] ;End of assembly
;Terminate range of IF
;Terminate MACRO or ECHO
;Terminates local symbol range
<exp> ;Define LABEL equals <exp>
;Force error flag
<exp> ;Begin conditional assembly
< filespec> ;Include another source file
< filespec> ;Include another source file at the end of this source file
<opt> ;<opt> = list control option
. ;Pop list control stack
<exp> ;Set location counter
< parms> ;Begin macro definition
<exp> ;Set origin counter
;Begin local symbol range
<exp> ;6-byte real constant conversion
<exp> ;Reset LABEL to <exp>

<expl>, <exp2> ;Space <expl> lines if <exp2> lines left on this page

“text” ;Set listing subtitle
‘text’ ;Set listing title
<name> ;Use block declaration

LABEL: VFD <exp>\<exp> ;Variable field definition
LABEL: = <exp> ;Synonym for EQU
<exp> = required expression

[exp] = optional expression

<filespec> = <device>:<filename>.<extension>

iglab = ignored label

‘text’ = strings

ERROR CODES

c z x T
" "

-
]

s < c =
" "

<
"

Address error. Instruction specified does not support the addressing mode specified.
Duplicate label error. The last one defined is used.
Expression error. An expression on the source line in the address field is unrecognizable.

Bad nesting of control statements. Bad nesting of IF/ELSE/ENDIF statements. When this occurs on the
END line, means an IF was not terminated.

Instruction field not recognized. Three NOP bytes are generated.

Label field not recognized. Three NOP bytes are generated.

MACRO statement error. Improper macro definition.

Error in number: digit exceeds radix, value exceeds 16 bits, and so forth.

Stack table overflow occurred in evaluating expression; user should simplify expression.
Too many LINK files. Too many PROCs. Too many USE blocks.

Programmer forced error. See ASSERT and ERR pseudo-ops.
Expression in variable field not computable.

Syntax error in statement. Too many or too few address subfields.
Reference to an undefined symbol.

Expression overflow. resultant value is truncated.

Not within VFD field width (1 <= width <= 16).

Misplaced instruction, extraneous ENDM. When this occurs on the END line, means a MACRO or
ECHO was not terminated.

© 1981 ATARI, INC,
CO60027 REV.1

ATARI® PROGRAM-TEXT EDITOR" REFERENCE CARD

TABLE OF COMMAND MODE INSTRUCTIONS

?

EDITOR MESSAGES

EXIT Exit normally from edit - return to DOS USING DEFAULTS No customizing file was found that matched the extension of the
EXIT2 Exit normally from edit - restart editor filename, so the editor uses its built-in defaults.
ABORT it wi i :
EX!‘ w?lhom sav?ng Shanges =retlim/1o _DOS NEW FILE The file named to be edited does not exist; therefore, the editor creates a
ABORT2 Exit without saving changes - restart editor new file using the name specified at the prompt.
SB/-/n Search for nth occurrence of string in buffer INPUT EOF The end of file has been reached on the input file.
SF/-/n Search for nth occurrence of string in file CANNOT-PREVIOUS Refer t . o f U £ EXIT, IH oc
SRB/-/-/n Search and replace n times in buffer DISK 1/O -ERROR csni:naon;sp::;oll:: f:;f;‘lg' HECAUSE. O GITOr ;138 Of 7 0N,
SRF/-/-/n Search and replace n times in file ' " "
SRVB/-/-/n Search and replace with verify n times in buffer CURSOR AT END Occurs whenever the cursor tries to move past either end of the text
8 5 ; . buffer.
SRVF/-/-/n Search and replace with verify n times in file
MS Mark VERIFY(REPLACE, Displays in the error window before each replacement while executing a
arker set SKIP,QUIT)? search-and-replace-with-verify command.
MC Marker clear 2 n : 5 ith el
BC Block copy MARGIN VALUE ERROR A designation for n is not in conformance with the margin rule.
BM Block move LINE TOO LONG The addition of text to the current line causes it to exceed the maximum
8D Block delete line length set by the customizing file.
BP Block print MEMORY FULL There is not enough free RAM in the buffer to carry out the operation.
BW/-/ Block write to disk file ILLEGAL DEV:FILE.EXT The last filename prompt was incorrectly answered.
BR/-/ Block read from disk file : ; ; :
DELIMITER ERROR The command being entered into the command window requires a slash
CLn Move cursor left n characters (/) or double quotation (*"’) for proper syntax.
CRn Move cursor right n characters SEARCH FAILED A search command was executed and the search string could not be
CUn Move cursor up n logical lines found.
o o oulsoown " |<.)glca| fines; NOT COMPLETE Occurs when you try to execute the command window when an in-
CBB Move cursor to beginning of buffer complete command line exists there.
CEB Move cursor to end of buffer S . :
i e e UNRECOGNIZED Occurs when you type an invalid character into the command window.
CBF Move cursor to beginning of file COMMAND
CEF Move cursor to end of file BREAK KEY ABORT Ak led h h d th e din " f
CBL Move cursor to beginning of logical line (hce zgx;a?\?\:vii:ilsvu HSBIRRSTTS M TS
CEL Move cursor to end of logical line
Cn Mve tlissor:to:columnn 1/O ERROR nnn A fatal disk or printer error has occurred.
T/-/n Input string n times at cursor position NUMBER TOO BIG The argument n given in the command window is too large for the com-
mand specified or the current line length limit.
DBn Delete n characters before cursor
DAn Delete n characters after cursor CANNOT FIND The editor could not find a marked block of text while executing a BC,
o ’ " MARKED BLOCK BD, BM, BP, BW/-/, or BA/-/ command.
DF Delete first part of logical line

DR

Delete remainder of logical line

CANNOT FIND FILE

The editor could not find the file requested in a BR/-/ command.

DLn Delete n logical lines EDITOR IS CONFUSED Internal editing pointers have been damaged. Try immediate mode
RL Recover last deleted line keystrokes, 2 and EEM L3 . until you no longer receive this error
s . message.
IH Input half of available RAM from file 2
oc Output text to file up to line containing cursor FILE LOCKED ;‘I'-Ihe' v'ille yl?‘ij requested to edit is locked or the associated .BAK or .TMP
ile is locked.
REOPEN Reopen editor with same file
PLn Piifitn EDITOR CANNOT Occurs if you have attempted to use any other DOS but 2.0S; or the
rint n lines on system printer RUN-NO FREE 10CB’S editor was called directly, and at least three available I0CBs do not exist.
WL/-/n Write n lines to disk file
CTSn Convert expanding tabs to spaces for n lines Note: n is an optional numeric argument, which usually acts as a repeat counter, with a range of 1 to 65535.
" : : With the exception of margin values, if n is omitted, the editor assumes a value of 1. /-/ is a required character
Mn Set left margin to width n A e 3 1 % = A (hsak "
X 2 string delimited by either a pair of slashes or a pair of quotes. /-/~/ is a pair of required strings delimited by either
B Y. q
RMn Set right margin to width n a triplet of slashes or a triplet of quotes.

