
'BQQ™

ATARI MICROSOFT BASIC

,'„jfg laui!f!

j';jjjf

t
j



ATARI® Microsoft BASIC Instructions

ABS 55 LINE INPUT 47 STACK 35
AFTER 35 LIST 20 STATUS 50
ASC 60 LOAD 23 STOP 30
AT 48 LOCK 26 STR$ 61
ATN 56 LOG 56 STRING$ (N,A$) 61
AUTO 21 MERCE 24 ST RING $ (N,M) 61
CHR$ 60 MID$ 59 TAB 42
CLEAR 36 MOVE 30 TAN 56
CLEAR STACK 35 NAME... TO 26 T IME 58
CLOAD 24 NEW 19 T IME$ 62
C LOSE 50 NEXT 32 TROFF 27
CLS 69 NOTE 50 TRON 26
COLOR 66 ON ERROR 34 UNLOCK 26
COMMON 36 ON...GOSUB 34 USR 58
CONT 30 ON...COTO 33 VAL 60
COS 56 OPEN 49 VARPTR 39
CSAVE 24 OPTION BASE 36 VE RI FY 24
DATA 48 OPTION CHR 38 WAIT 31
DEF 63 OPTION PLM 38 + (Concatenation) 5 9
DEL 22 OPTION RESERVE 39
DIM 53 PEEK 56
DOS 20 PLOT 68
END 30 POKE 57
EOF 51 PRINT 42
ERL 35 PRINT USING 43
ERR 35 PUT/CET 50
ERROR 34 RANDOMIZE 37
EXP 56 READ 48
F ILL 68 REM 29
FOR... TO...STEP 32 RENUM 25
FRE (0) 57 RESTORE 48
CET 50 RESUME 36
COSUB 33 RETURN 33
COTO 30 RIGHT$ 60
CRAPHICS 65 RND 55
IF... THEN 31 RUN 19
I F... THE N... E LS E 31 SAVE 23
INKEY$ 61 SAVE...LOCK 23
INPUT 47 SCRN$ 62
INSTR 61 SETCOLOR 67
INT 55 SGN 55
KILL 26 S IN 56
LEFT$ 59 SOUND 85
LEN 60 SPC 43
LET 29 SQR 55



ATARI MICROSOFT BASIC
INSTRUCTION MANUAL

ATARI'
© A Warner Comrnunications Company

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Home Computer Division.
However, because of the ongoing improvement and update of the computer software and hardware, ATARI, INC. cannot guarantee the
accuracy of printed material after the date of publication and cannot accept responsibility for errors or omissions.

Reproduction is forbidden without the specific written permission of ATARI, INC., Sunnyvale, CA 94086. No right to reproduce this docu
ment, nor the subject matter thereof, is granted unless by written agreement with, or written permission from the Corporation.

MANUAL © 1981 ATARI, INC.
PRINTED IN U.S.A. PROGRAM © 1981 MICROSOFT





PREFACE

In this manual you wil l f ind al l the commands and statements used by AT ARI®
Microsoft BASIC. The INSTRUCTION list on the inside front cover is in alphabetical
order with page numbers for your convenience,

BASIC was developed at Dartmouth College by John Kemeny and Thomas Kurtz. It
was designed to be an easy computer language to learn and use. Many additions in re
cent years have made BASIC a complete and useful language for skilled programmers.

This reference manual does not teach BASIC. Those who wish to learn BASIC should
read an introductory book. Helpful books are: Computer Programming in BASIC for
Everyone by Dwyer and Kaufman, and Basic BAS/C by James S. Coan.

Preface i i i





CONTE NTS

PREFACE

LOAD I NC I NSTRUCT IONS

1 M IC ROSOFT OVERVIEW

What Is a Program?
Keywords
Line Construction

Quotation Marks
The Comma
Use of Semicolon in PRINT Statement
The Colon

2 ED I T INC

Keyboard Operation
Spee ial Function Keys
Cursor Control Keys

3 CO N STANTS, VARIABLES, AND NAMES

S ing le-Precis ion Real Constants
Single-Precision Real Variables 9 9

DEFSNC 10
Double-Precision Real Constants 10
Double-Precision Real Variables 11
DEFDBL 11
Integer Constants 11
Integer Variables 11
DEF INT 12
String Constants 12
String Variables 12
DEFSTR 13
Hexadecirnal Constants 13

Contents v



4 NUM ERIC AND STRINC EXPRESSIONS 15

Numeric Expressions 15
Rel ational Operators 15
Relational and Logical Symbols 15
Arithmetic Symbols 16

String Expressions 16
Relational Operators in Strings 16

5 CO M M ANDS 19

NEW 19
RUN 19
DOS 20
LIST 20
AUTO 21
DEL 22
SAVE 23
SAVE...LOCK 23
LOAD 23
CLOAD 24
CSAVE 24
VE RIFY 24
MERCE 24
RENUM 25
LOCK 26
UNLOCK 26
KILL 26
NAME ... TO 26
TRON 26
TROFF 27

6 ST ATEMENTS 29

REM or! or' 29
LET 29
MOVE 30
STOP 30
CONT 30
END 30
COTO 30
IF... THEN 31
I F... TH EN...E LSE 31
WAIT 31
FOR... TO...STE P 32



NEXT 32
GOSUB 33
RETURN 33
ON...COTO 33

ON...COSUB 34

ON ERROR 34
ERROR 34
ERL 35
ERR 35
AFTER 35
CLEAR STACK 35
STACK 35
RESUME 36
OPTION BASE 36
CLEAR 36
COMMON 36
RANDOMI Z E 37
OPTION PLM1, OPTION PLM2, OPTION PLMO 38
OPTION CHR1, OPTION CHR2, OPTION CHRO 38
OPT ION R E S ER VE 39
VARPTR 39

7 INP UT/OUTPUT STATEMENTS 41

PRINT 42
TAB 42
SPC 43
PR INT US INC 43
INPUT 47
LINE INPUT 47
DATA 48
READ 48

RESTORE 48
AT 48

OPEN 49

CLOSE 50
NOTE 50
PUT/C ET 50
STATUS 50
EOF 51

8 AR RAYS 53

About Arrays 53
DIM 53



9 FU NCT ION LI BRARY 55

ABS 55
INT 55
SGN 55

SQR 55
RND 55
LOG 56
EXP 56
S IN 56
COS 56
ATN 56
TAN 56
PEEK 56
POKE 57
FRE (0) 57
USR 58
TIME 58

10 STRINCS 59

+ (Concatenation Operator) 59
MID$ 59
LEFT$ 59
RIGHT$ 60
LEN 60
ASC
VAL 60
CHR$
INSTR 61
STR$ 61
STRING$ (N,A$) 61
STRING$ (N,M) 61
INKEY$ 61
TIME$ 62
SCRN$ 62

11 USER-DEFINED FUNCTION 63

DEF 63



GRAPHICS 65

Craphics Overview 65
C RAPHICS 65
COLOR 66
SETCOLOR 67
PLOT 68
FILL 68
CLS 69

Point-Plotting Modes 72

PLAYE R-MISS I LE C RAPH ICS 75

Players and Missiles 75
Making a Player Out of Paper 75
How ATARI Microsoft BASIC Instructions Assist

P I ayer-Missile C raphics 76
Color Control 78
Size Control 78
Position and Movement 79

Vertical 79
Horizontal 79
Diagonal 79

Priority Control 80
Priority Select 80
Enable Fifth Player 80

Collision Control 80
Clearing Collision Registers 81

Player-Missile Craphics Demonstration Program 81
Annotation 82

SOUND 85

CAME CONTROLLERS 89

Paddle Controllers 89
J oystick Control lers 90
Console Keys 91

Contents



APPENDICES

A SAMPLE PROGRAMS. 93
B GRAPHICS MODES PROGRAMS 101
C A LTERNATE CHARACTER SETS 103
D D ERIVED FUNCTIONS 107
E M EMORY LOCATIONS 107
F PROGRAM CONVERSIONS 123
G CONVERSION FROM COMMODORE (PET)

BASIC VERSION 4.0 125
H CONVERTING RADIO SHACK TRS-80 PROGRAMS TO

ATARI MICROSOFT BASIC 129
I C O NVERTING APPLESOFT PROGRAMS TO

ATARI MICROSOFT BASIC 131
J C O NVERTING ATARI 8K BASIC

TO ATARI MICROSOFT BASIC 133
K A TASCII CHARACTER SET 135
L A LPHABETICAL DIRECTORY

OF BASIC RESERVED WORDS 143
M ERROR CODES 153
N USE OF THE CIO CALLING USR ROUTINES 157
O ACTIONS TAKEN WHEN PROGRAM ENDS 161

INDEX 163

I LLUSTRAT IONS

3-1 Machine Representation of Single-Precision Real 10
3-2 Machine Representation of Double-Precision Variable 11
3-3 Machine Representation of Integer Variable 12

13-1 Player-Missile Graphics RAM Configuration 77
13-2 Mapping the Player 77
13-3 Joystick Controller Positions 84
15-1 Garne Controllers 89
15-2 Joystick Triggers 90
C-1 Amount of Memory per Character 104
C-2 Redefining a Character 104



TABLES

3-1 Decimal, Hexadecimal, and Binary Equivalents 13
7-1 List of Status Codes 51

12-1 The ATARI Hue (SETCOLOR Command)
Numbers and Colors 67

12-2 Craphics Modes and Screen Formats 69
12-3 Characters in Craphics Mode 1 and 2 70
12-4 Default Colors, Mode Setcolor, and Color 73
13-1 SETCOLOR Register Assignments 78
13-2 Registers Controlling Width of Player-Missiles 78
13-3 Player-Missile Horizontal Position Registers 79
13-4 Col l ision Control Registers for Player-Missiles 80
14-1 Frequency Chart of Pitch Values 86

E-1 Useful OS Data Base Addresses 110
E-2 Hardware Addresses 117

t ontents x i





LOADING INSTRUCTIONS

Important The disk-based release of ATARI® Microsoft BASIC requires that all car
tridges (ATARI BASIC, Assembler Editor, garnes, and the like) be removed from the
front cartridge slots of your computer. You will need a blank diskette in addition to the
ATARI Microsoft BASIC diskette on which to stare programs.

Warning: The ATARI Microsoft BASIC diskette is write-protected. Do not attempt to
punch a notch in the corner in order to write on it. Attempting to make a read/write
diskette out of your ATARI Microsoft BASIC diskette could destroy BASIC and void all
warranties.

Use the following setup procedure to load ATARI Microsoft BASIC, format a blank
diskette, write DOS files, create MEM.SAV, and transfer CIOUSR and DIR files (see
Quick-Reference Guide for a list of timesaving steps).

1. Connect the ATARI 800 Home Computer to a television set and to a wal l
outlet as instructed in the operators manual.

Note: ATARI Microsoft BASIC requires a minimum of 32K of RAM.

2. Connect the ATARI 810™ Disk Drive to the ATARI 800 Home Computer and
to a wall outlet as instructed in the ATARI 810 Disk Drive Operators Manual.

3. T urn on your television set.

4. T urn the POWER(PWR) switch to ON for Disk Drive1. Disk drive numbers are
set by switches located in the back of your disk drive. Consult your ATAR/ 810
Disk Drive Operators Manual for dr ive numbers. Turn the POWER (PWR)
switch to ON for any other disk drives you wish to use. Two red lights (the
BUSY light and the PWR ON light) will come on.

5. W hen the BUSY light goes out on Disk Drive 1, open the drive door by press
ing the door handle release lever.

6. H o ld the ATARI Microsoft BASIC diskette with the label in the lower right cor
ner and the arrow pointing towards the disk drive. Insert the diskette into the
disk drive and close the disk drive door.

7. Swi tch the computer console POWER (PWR) to ON. ATARI Microsoft BASIC
will load into the computer's memory automatically.

8. T ype DOS ~. The Dis k Operating System II version 2.0S will load into
your computer's memory.

9. Remove your ATARI Microsoft BASIC Diskette from the disk drive and insert
a blank diskette (CX8202).

10. Use the I DOS option to format the blank diskette.

11. Use the H DOS option to write DOS files onto the diskette,

Loading Instructions xi i i



12. Use the N DOS option to create MEM.SAVE. The MEM.SAV file is used to
save the ATARI Microsoft BASIC program in memory when you use the DOS
command. See the ATARI Disk Operating System II Reference Manual for
more information on MEM.SAVE.

13. I f you have two disk drives you can use the C DOS option to copy files from
the ATARI Microsoft BASIC diskette. If you have one disk drive you must use
the O DOS option.

Copying files with two disk drives:

· P ut A TARI Microsoft BASIC i nDrive2 .

· P ut f ormattedd iskette i nD rive1,

· R espond t oC OPY — FROM,T O>b y t ypingD 2:*.",D1:*.*

· T urno ff t hec omputera ndr eloadA TARI Microsoft B ASIC.M EM.SAV i s
now at work.

Copying files with one disk drive:

· P ut A TARI M icrosoft B ASIC i nd iskd rive.

' Typ« K * !Ã A

· R espond t oN AMEO FF II E T OM OVE>

· P ress~ '*,,l,:g3s inces ourced isk i s i np lace.

· I nsert b lanka sD ESTINATIOND ISKa ndp ressF t:--'-".i'

· R epeat t heO p rocedurew ith t he f ileD IR.

· T urno ff c omputera ndr eload.A TARI M icrosoft B ASIC.M EM.SAV i s
now at work.

14. R emove your newly created program storage diskette and insert the ATARI
Microsoft BASIC diskette. Turn your computer console off and then back on
again to reload and reinitialize BASIC. To activate the MEM.SAV file you
rnust remove BASIC and insert a program storage diskette. Put your program
storage diskette back into the disk drive and press g - . By pre ssing

with your p rogram storage diskette in the d isk d r ive, the
MEM.SAV diskette file will save the correct return locations for future returns
to BASIC.

15, I f you wish to have duplicate program storage diskettes, now is the time to
make them since you have not yet stored any programs. Use DOS option I to
format the duplicate storage diskette. Then use the H option to write DOS
files. Now use the J option to duplicate the program storage diskette.

You should now remove the ATARI Microsoft BASIC diskette and hereafter use the
new program storage diskette(sl you have created. With a program diskette you can
save and load the programs you write, and return to BASIC.

Pressing . -' -' . ~ w i t h a program storage diskette in the disk drive brings you back
to BASIC with a "warmstart," which means that the variables and your program will be
just as you left it before you typed DOS . *@ .

xisr Loading tnstructions



QUICK-REFERENCE GUIDE

1. Boot* system with ATARI Microsoft BASIC Master Diskette.

2. Type DOS g

3. Remove BASIC Master Diskette.

4. Format blank diskette. (DOS 2.0S)

5. W r i te DOS files to the new diskette.

6. Create MEM.SAV on the diskette.

7. Copy from BASIC Master Diskette to your new diskette, CIOUSR and
DIR.

8. Turn off your system and reboot* with ATARI Microsoft BASIC.

9. I nsert newly created diskette into Drive 1.

10. Type DOS g

11. A f ter DUP file is loaded, press ~ ~ @.

12. Use your newly created program storage diskette to make duplicate
program storage diskettes (DOS option )).

Note: Steps 10, 11, and 12 write the correct Microsoft memory images into
the MEM.SAV files on your Microsoft BASIC program storage diskette.

*BASIC loads into RAM automatically (boots) when you turn on the com
puter.

Loading Instructions x v



MICROSOFT OVERVIEW

ATARI® Microsoft BASIC is a c u s tomized and e nhanced BASIC programming
language. It was developed by Microsoft for the ATARI 800™ Horne Computer, which
uses the 6502 microprocessor and customized graphics and sound-integrated circuits.

In the development of ATARI Microsoft BASIC, the two primary considerations were
processing speed and compatibility with other microcomputer BASIC languages. The
fast ATARI 800 Computer clock rate of 1.8 MHz combines with the state-of-the-art
Microsoft design to give high microprocessor throughput speed. ATARI Microsoft
BASIC is a superset of the existing microcomputer languages. That is, ATARI Microsoft
BASIC combines the capabilities of other microcomputer BASIC languages with some
unique features. New graphics features have been added to take advantage of the
hardware-supported player-missile graphics. Sound capabilities now include the ability
to set the length of time a sound is heard. You can renumber and rnerge programs easi
ly with Microsoft BASIC. This is a powerful language with software tools to fit a variety
of needs.

WHAT IS A A program is a list of steps (statements) that you wish the computer to perform. Every
PROCRAM> statement stored in memory must have a line number. The lowest line number is 0 and

the highest allowable line number is 63999. Statements are performed in line number
order starting with the lowest numbered line. You can change the order in which the
statements are performed by branching or jumping to other line numbers.

Line numbers always precede statements that you want stored in memory. Because the
statements that have line numbers wait in memory until the command RUN is given,
they are written in what is called the deferred mode.

To be exact, execution of a program waits until you type the word RUN and press the
key. When ATARI Microsoft BASIC is first loaded, it is ready for you to write

programs (deferred mode) or execute statements immediately (direct mode).

When the computer is ready to accept input, a prompt ) a p pears on your television
screen. When you see the ) , you can enter statements with line numbers (deferred
mode) or statements without line numbers for immediate execution.

Let's write a BASIC program in the deferred mode:

100 PRINT 7 * 7

RUN
49

This single-line program does not execute immediately. The program waits to perform
the statement until you type RUN and press * - . T h e word RUN typed without a
l ine number, executes the program immediately after you press the ~ * key .

Microsoft Overview 1



KEYWORDS Keywords must be spelled out, Abbreviations are not legal syntax in ATARI Microsoft
BASIC.

Keywords are words the computer recognizes. Each keyword teils the computer what

you want done. The words IF, GOSUB, INPUT, and GOTO are keywords. Keywords
can be thought of as the verbs in the vocabulary of your computer. If you write a state
ment that uses a keyword the computer does not recognize, BASIC will give you an
ERROR statement when you run the program. ATARI Microsoft BASIC does not allow
you to use keywords as variables, but does allow you to embed keywords in the
variable names. That is, IF and COSUB cannot be variables, but LIFE and RCOSUB are
allowed. A complete list of keywords is given in Appendix L.

LINE The form of the BASIC statement looks like this:
CONSTRUCT ION

Line
Number Statem ent

100 IF A ( ) B THEN 630 ELSE 210

Just as there are punctuation marks in the English language, so there are quotes, com
mas, semicolons, and colons in BASIC. The rules of punctuation are listed in this
manual with the keywords that require them or have them as options. Following is a
summary of punctuation use.

QUOTATION MARKS

The quotation marks are used to indicate where typed characters begin and end. Just
as we use quotes in English to mark the beginning and end of a speaker's words, so it is
with BASIC. The quote mark means that the material quoted constitutes a string
variable or string constant; strings will be covered later in the text. For now it is enough
to know that quotes teil the computer where to begin and end a string. The string in
this example program will be told when to start and stop printing on the screen by
quotes:

Example Program:

100 PRINT "START PRINTINC ON SCREEN — — — — — -NOW STOP"

RUN gggg

START PRINTING ON SCREEN — — — — — -NOW STOP

THE COMMA

The comma has three uses.
Use the comma to separate required items after a keyword. The keyword
SOUND has five different functions in ATARI Microsoft BASIC. Each parameter
is separated by commas. For example, SOUND 2,579,10,8,60 means voice 2,
pitch hexadecimal 79 (middle C), noise10, volume 8, and duration in jiffies (1/60
of a second) 60. Another example of the comma is the statement SETCOLOR
4,4,10 which means register 4, pink, bright luminance. The comma teils where
one piece of information ends and the next begins. BASIC expects to find an ex
act order separated by commas.

2 Microsoft Overview



· U se t hec omma t os eparateo ptional v aluesa ndv ariablen ames.Y ouc an i nput
any number of variable names on a single line with an INPUT statement. The
variable names are of your own invention. You can have as many of them as
you like as long as you separate them with a comma. For example, INPUT
A,B,C,D,E teils the computer to expect five values from the keyboard.

· U se t hec omma t os pacea dvance t o t hen ext o utput f ield i na P RINTs tatement.
When used in a PRINT statement at the end of a quoted string or between ex
pressions, the comma will advance printing to the next column which is a multi
ple of 14. For example, if X is assigned the value of 25 then the statement 10
PRINT "YOU ARE", X, "YEARS OLD" will have the following spacing when you
run it:

~14 columns~ « 14 c o lumns~

YOU ARE 25
YEARS OLD

USE OF SEMICOLON IN PRINT STATEMENT

The semicolon is used for PRINT statement output. The semicolon leaves one space
after variables and constants separated by semicolons. A positive number printed with
semicolons will have a leading blank space. Negative numbers will have a minus sign
and no preceding blank space. For example, if X is assigned the value of 25, then the
statement 10 PRINT "YOU ARE";X;"YEARS OLD" will have the following spacing when
the program is run:

YOU ARE 25 YEARS OLD

If X is assigned the value of -25, then the statement 10 PRINT "YOU ARE";X;"YEARS
OLD" will have the following spacing when the program is run.

YOU ARE-25 YEARS OLD

If you want more than one space left before and after the 25 you must leave the space
in the string within the quotes. Thus,

10 PRINT "YOU ARE " ;25;" Y EARS OLD"

will give the following spacing when the program is run:

YOU ARE 2 5 YE ARS OLD

The semicolon can also be used to bring two PRINT statements, string constants, or
variables together on the same line of the television screen. For example:

100 PRINT "THE AMOUNT IS $";
120 AMOUNT=20
125 REM BOTH STRING CONSTANT AND VARIABLE
126 REM WILL PRINT ON THE SAME LINE
130 PRINT AMOUNT

Microsoft Overview 3



THE COLON

The colon is used to join more than one statement on a line with a single line number.
Thus, many statements can execute under the same line number. By joining more than
one statement on a single line, the program requires less memory.

For example:

10 X=5:Y=3 Z = X + Y :PRINT Z:END

Many times this also helps the programmer organize the program steps. The same pro
gram with line numbers instead of colons uses more bytes of memory:

10 X=5
20 Y=3
3 0 Z=X+ Y
40 PRINT Z
50 END

4 Mi c rosoft Overvievv



EDITINC

KEYBOARD The ATAR( 800 Computer keyboard has features that differ from those of an ordinary
OPE RATION typewriter. To print lowercase letters on your television screen, press the ~ ~e

key. The keyboard will now operate like a typewriter, with the Q ke y g iv ing upper
case letters. Since most l3ASIC programs are written in uppercase, you will normally
want to return to the uppercase mode. Press the ~ key and hold it down while you
press the „ . · k ey t o r eturn t ou ppercase I etters.

SPECIAL Inverse (Reverse) Video Key or ATARI logo key. Press this key to
FUNCTION reverse the text on the screen (dark text on light background).

KEYS Press key a second time to return to normal text.

Lowercase Key. Press this key to shift the screen characters
f rom uppercase (capitals) to l o w ercase. To r e store t he
c haracters to uppercase, press the g key and the ' .
key simultaneously.

Escape Key. Press this key to enter a command to be entered in
to a program for later execution.

Example: To clear the screen, enter:

10 PRINT "~ ~

and press g- . The n , whenever line 10 is executed the screen
will be cleared.

~ is a lso used in conjunction with other keys to print special
graphics control characters. See the graphics in Appendix K for
specific keys and their screen-character representations.

Break Key. Press this key to s top your p rogram. You may
resume execution by typing CONT and pressing ~*

System Reset Key. This key is similar to ~ in t hat i t a l so
stops program execution. Use this key to return the screen
display to graphics mode 0, and to clear the screen.

Editing 5



Tab Key. Press ~ a nd t he ~ ~ *-- key s simultaneously to
set a tab. To clear a tab, press the ~ a n d ~ ~ $ keys
simultaneously. Used alone, . ~ - ~ adva nces the cursor to
the next tab position. In deferred mode, set and clear tabs by
adding a line number, the command PRINT, and a quotation
mark, and pressing the ~i j key.

Examples:

100 PRINT "~ ~
200 PRINT"

If tabs are not set, they default to columns 7, 15, 23, 31, and 39.

Insert Key. Press the ~ a nd ~ keys si m u l taneously to
insert a line. To insert a single character, press the ~ and

keys simultaneously.

CURSOR In addition to the special function keys, there are cursor control keys that allow im

CONTROL KEYS mediate editing capabilities. These keys are used in conjunction with the ~ or ~
keys. The keys that of fer special editing features are described in the fo l lowing
paragraphs.

Hold the control key down while pressing the arrow keys to
p roduce the cursor cont ro l f unct ions that a l low you t o
move the cursor anywhere on the screen without changing
any characters aiready on the screen. Other key combina
tions set and clear tabs, halt and restart program lists, and
control the graphics symbols. Striking a key while pressing
the ~ ~~ key w i l l produce the upper left symbol on those
keys that have three funct ions.

Moves cursor up one line without changing the program or
display.

Moves cursor one space to the right without disturbing the
program or display.

Moves cursor down one line without changing the program
or display.

Yß~S M Moves cursor one space to the left w i thout disturbing the
prograrn or display.

Inserts one character space.

Deletes one character or space.

Temporarily stops and restarts screen display. You can use
1 while listing a program or while running a program.

Rings buzzer.

6 Editing



Hold the ~ key d own while pressing the numeric keys to display the symbols
shown on the upper half of those keys.

g Q Insert s o n e l i ne.

~ ggg f g ~ ) Del e tes one line.
gg · · R e t urns s cr eendis play tou pp ercasealp habeticcha racters.

S tops program execution or program list, prints a ) o n t he
screen, and displays the cursor ( · l un derneath.

Editing 7



CONSTANTS, VARIABLES,
AND NAMES

There are five types of constants in Microsoft BASIC: single-precision real, double
precision real, integer, string, and hexadecimal.

FORMING A VARIABLE NAME

In ATARI Microsoft BASIC a variable name can be up to 127 characters long. The
allowable characters include the a lphabet ABCDEFGHIJKLMNOPQRSTUVWXYZ,
numbers 1234567890, and underscore ( ) . The underscore character ( ) i s a legal
character in ATARI Microsoft BASIC. Numbers are allowed in variable names as long
as the variable name starts with an alphabetic character. The variable name X9 is
allowed, while 9X is not allowed.

SPECIFYING PRECISION OF NUMERIC VARIABLES

After you create a variable name, you can specify the precision of the variable in one
of two ways. The variable name itself can have a variable-type identifier (none, ff, %, $)
as the last character or you can predefine the starting letter as a variable type using
DEFSNG, DEFDBL, DEFINT, or DEFSTR.

PREDEFINING VARIABLE PRECISION

The advantage of predefining the variable type is that you can change all the variables
from one type to another without having to go through your program changing all
variable names, Changing DEFINT A to DEFDBL A, for example, changes all variables
beginning with the letter A from integer type to double-precision type. Your other op
tion is to use a type tag identifier: ff (double precision), % (integer), and $ (string). Tag
identifiers are attached to the end of the variable name itself. If variables should have
both DEF identification of type and a tag identifier (ff, %, $), the tag identifier has
precedence.

Although DEFSNG, DEFDBL, DEFINT, and DEFSTR can be placed anywhere in a pro
gram, they are usually placed near the beginning. In all cases the DEF statement must
precede the variable whose type it defines.

SING LE- E xamples : 65E12, 333335, .45E8, .33E-6
PRECIS ION REAL
CO N S T A N T S If you do n o t otherwise specify a constant (and it is outside the range-32768 to 32767),

it is single-precision real.

SINCLE Examples: AMT, LENGTH, BUFFER
PRECISION REAL
VARIABLES If you do not declare the precision of a variable, it becomes single-precision real by

default. Numbers stored as single precision have an accuracy of six significant figures.
The exponential range is -38 to +38.

Constants, Vanabtes
and Names 9



DEFSNG Format: DEFSNG letter, beginning l e t ter-ending l e t ter~
Examples: 100 DEFSNC K, S, A-F

120 DEFSNC Y

Variable names beginning with the first letters identified in DEFSNG will be single
precision real variables. In DEFSNG K, S, A-F, the letter range A-F means ABCDEF will
be single precision. Variable names starting with K and S will also be single precision in
this example. Single letters and ranges of letters must be separated by commas.

Example Program:

10 DEFSNC A-F
20 COUNTER=COUNTER+1
30 PRINT COUNTER
40 GOTO 20

In the DEFSNC example program, all variable names beginning with the letter C will be
single precision. Thus, COUNTER is single precision in this example because it starts
with C. If counter were COUNTERS (ff means double precision), it would have double
precision even though it is defined as single precision. Keep in mind that the tag iden
tifier in a variable name takes precedence.

Figure 3-1 illustrates how single-precision real numbers are represented in memory.

I
~ EX MA NTISSA

BYTE 0 BYTE 1 BYTE 2 BYTE 3

mantissa sign bit
exponent sign bit imp l icit radix point

Figure 3-7 Machine Representation of Single-Precision Real

DOUSLE Examples: 45D5, 23D-6, 8888888D-11
PRECIS ION REAL
CON STA NTS You can specify double-precision real in the constant by putting the letter D before the

exponential part. Double-precision real numbers are stored in 8 bytes. Numbers are ac
curate to 16 decimal digits.

Constants, Variables
10 and Names



DOUBLE- Exampl es: DBL¹, X¹, LGNO¹
PRECISION REAL
VAR I ABL E S The pou n d sign (¹) is the identifier for double-precision real variables. A double

precision real variable has 8 bytes. The exponent and sign are stored in the first byte.
The range is the same as single precision -38 to +38. The accuracy is 16 significant
figures in double-precision real. The pound sign (¹) identifier is placed after the variable
name.

DEFDBL Format: DEFDBL letter,Ibeginning l e t ter-ending l e t ter(
Examples: 10 DE F DBL C-E, Z

20 DEFDBL R

Variable names starting with letters identified by the DEFDBL statement are double
precision real. In the example above CDE, Z, and R are al l declared as double
precision. The variable name E1 would be a double-precision variable because the
variable name begins with E.

Figure 3-2 illustrates how double-precision real numbers are represented in memory.

~ E X ~ MANTISSA

BYTE 0 BYTE 1 BY T E 2 BYTE 3 BYTE 4 BYTE 5 BYT E 6 BYTE 7

mantissa sign bitexponent
sign bit implicit radix point

Figure 3-2 Machine Representation of Double-Precision Variable

INTEGER Examples: 23, -9999, 709, 32000
CONSTANTS

All numbers in ATARI Microsoft BASIC within the range -32768 to 32767 are stored as
two bytes of binary. If an integer constant is multiplied with a single-precision real
number, the product of the multiplication will be a single-precision real number. The
results of mathematical operations are always stored in the higher level precision type.

INTEGER Examples: SMALLNO%, )%, COUNT9o
VARIABLES

An integer can be identified by having a percent sign (%) as the last character in the
variable name. An example of an integer identified by name is NO%. The16-bit integer
is stored as twos complement binary.

Constants, Variables
and Names 11



DE F INT Format: DEFINT letter,Ibeginning l e t terwnding l e t te r
Examples:10 DEFINT N, J, K-M

20 DEFINT I

The starting letters of variable names identified by the DEFINT statement are integers.
Integer variables increase the speed of processing but can only accurately hold values
between -32768 and +32767. Remember that tag identifiers have precedence. Even
though N is defined by DEFINT as being an integer type, the pound sign appearing
after the N identifies it as double precision. N¹, N1¹, NUMB¹ are all double precision.

Figure 3-3 illustrates how integers are represented in memory.

BYTE 0 BYTE 1

sign bit
0 is positive
1 is negative

Figure 3-3 Machine Representation of Integer Variable

Negative integers are stored as twos complement binary.

ST RING Examples: "AMOUNTS", " F I LL IN NAME
CONSTANTS

String constants are always enclosed in quotes. The string constant can be any length
up to the maximum I ine length (127l. Strings are composed of ANY keyboard
characters: "!¹$%RR"(lgOKJ HGGFDS." A double-quote character ("") is also allowed.
The double quote ('"'l will give you a single quote when the string is printed.

Example of a string constant used in a print statement:

10 PRINT "Strings and %K'$ ""things"'"'
20 A$="STRING CONSTANTS ASSIGNED TO VARIABLE NAME"
30 PRINT A$

STRINC Examples: A$, NINT$, ADDRESS$
VARIABLES

String-variable names end with a dollar sign $. A string variable can be assigned a string
up to 255 characters. The double-quote (""l character is a legal ATARI Microsoft
BASIC way of getting a single quote (") within a string.

Examples of strings assigned to A$:

10 A$ = "a string"
20 A$ = "another ""string"""

Constants, Variables
12 and Names



DEFSTR Format: DEFSTR letter,Ibeginning letter-ending letterI
Examples: 10 DEFSTR A, K-M, Z

20 DEFSTR F, J, I, O

A variable name can be defined as a string by declaring its starting letter in the DEFSTR
statement. Strings can be up to the length of 255 characters. As in all variable name
declarations, the tag identifier has precedence. All or A% are their tag types even if
their first letter is defined by DEFSTR.

Example Program:

10 DEFSTR A, M, Z
2 0 A ="Employee Name AMO UN T "
30 PRINT A

The example program will print the heading Employee Name AMOUNT.

HEXADEC IMAL Examples: &76, &F3, 87B, &F3EB
CONSTANTS

It is often easier to specify locations and machine language code in hexadecimal (base
16) rather than decimal notation. By preceding a number with &, you declare it to be
hexadecimal.

To jump to the machine language routine starting at hexadecimal location C305, you
specify A= USR(&C305,0). A= PEEK (&5A61) will assign the contents of memory loca
tion 5A61 hex to the variable named A. Hexadecimal is useful in representing screen
graphics — especially player-missile graphics.

Following is an equivalency table for decimal, hexadecirna, and binary numbers.

TABLE 3-1
DECIMAL, HEXADECIMAL, AND BINARY EQUIVALENTS

Decimal H exadecima I Binary

1 2 3 1 2 3
0001
0010
0011

4 5 4 5 ül00
0101

6 7 8
6 0110

7 8 0111
1000

9 9 1001
10 1010
11 A B 1011
12 C 1100
13 1101
14 1110
15

D E F
1111

Constants, Variables
and Names 13



NUMERIC
AND STRINC
EXPRESSIONS

NUME RIC RELATIONAL OPERATORS
EXPR E S S IONS

There is no real order of precedence for the relational operators =, < » , , < = ,
> =. They are evaluated from left to right.

RELATIONAL AND LOGICAL SYMBOLS

Because the relational symbols are evaluated from left to right, you could say that
their order of precedence is from left to right. The relational symbols =, < > , < , > ,
< =, > = have precedence over the logical operators NOT, AND, OR, and XOR. NOT
has the highest precedence, AND ranks next, OR ranks next, and XOR ranks last.

The relational operators are combined to form expressions. For example: A>B AND
C < D is an expression. The greater than (>) and Iess than (<) symbols are considered
first, then the AND is evaluated. If the relationship is true, a nonzero number wil l
result. If the relationship is not true, then zero will be the result. Nonzero is true and
zero is false. In an IF statement this evaluation determines what happens next. The
ELSE or the next line number is taken when an the expression formed with operators is
false.

OPERATOR MEANING

Equals. This is a true use of the equal sign. It asks if
A= B. The B is not assigned to A.

<> or > < Not Equal. Evaluates whether two expressions are
not equal.

ls less than. A is less than B is represented by A < B.

Greater than. A is greater than B is represented by
A>B.

> = o r = > Greater than or equal to. A is greater than or equal
to B is represented by A > = B.

< = o r = < Less than or equal to. A is less than or equal to B is
r epresented by < = .

Numeric and
String Expressions 15



ARITHMETIC SYMBOLS

The arithmetic symbols are: l), =, —, A, *, /, +, — lthe first dash - means negation, the last
dash means subtraction). The arithmetic symbols can be mixed with the logical
operators in creating expressions, The expression A/C ) D* A is legal, The arithmetic
expressions represent mathematical symbols. The ' symbol represents multiplication.
The A is used in ATARI Microsoft BASIC to mean exponent. The order of precedence
Is:

SYMBOL MEANING

Arithmetic within parenthesis is evaluated f irst.

Equals sign.

Negative number. This is not subtraction but a
negative sign in front of a number. Example: -3,
-A, -6.

Exponent.

Multipl ication.

Division.

Addition.

Subtraction.

STRING RELATIONAL OPERATORS IN STRINGS
EXPRESS IONS

Relational operators in strings l= , < ) , < , ) , < = , ) = ) ca n accomplish useful
tasks. Alphabetical order can quickly be achieved by an algorithm using the expression
A$<B$. A match between names can be found by asking that A$= B$. The string
variables are evaluated as numbers in ATASCII code and since the ATASCI I is ordered
alphabetically, the evaluation of string expressions is useful.

SYMBOL MEAN IN G

A$<B$ True (nonzero) if A$ has a lower ATASCII code
number than B$.

Sort Example:

100 INPUT A$,B$
120 IF A$ <B$ THEN 160
130 C$=A$
140 A$ = B$
150 B$=C$
160 PRINT A$, 8$
170 END

Numeric and
16 and String Expressions



To experiment, type any two word combinations and separate them by commas. The
words will be sorted into alphabetical order using the example above. Thus, you will
see that BILL comes before BILLY, and CAT comes before DOG.

The logical operators have the following order of precedence:

OPERATOR MEANI NG

NOT Not. The 8 bits of the number are complemented. If
it is a b inary 1 i t becomes a 0 af ter this logical
operation.

AND The bits of the number are logically ANDed. Exam
ple: A AND B. If A is 1 and B is 1 the result is 1. If A
is 1 and B is 0 the result is 0. If A is 0 and B is 1 the
result is 0. If A is 0 and B is 0 the result is 0.

OR The bits of the number are logically ORed. Exam
ple: A OR B. If A is1 and B is 1 the result is1. If A is
1 and B is 0 the result is 1. If A is 0 and B is 1 the
result is 1. If A is 0 and B is 0 the result is 0.

XOR The bits of the n umber are logically eXclusive
ORed. Example: A XOR B. If A is 1 and B is 1 the
result is 0. If A is 1 and B is 0 the result is 1. If A is 0
and B is 1 then the result is 1. If A is 0 and B is 0 then
the result is 0.

The logical operators can be used with string (A$l variables. Read Section 10 on string
expressions.

Numeric and
String Expressions 17



COMMANDS

In ATARI Microsoft BASIC, statements are not evaluated for syntax errors until you
type RUN and press the ~ key.

NEW Format: NEW
Examples: NEW

100 IF CODE( ) 6 4 2 THEN NEW

NEW clears your program to allow you to enter a new program. The NEW command
does not destroy TIME$. All variables are cleared to zero and all strings are nulled
when NEW is executed.

RUN Format: RUN ["device:program n a me" ~ optional s t a r t ing l i ne num b er ]
Examples: RUN

RUN 120
200 RUN "D:TEST.BAS"
110 RUN 200

RUN without a l ine number starts executing your program with the lowest l ine
numbered statement. RUN initializes all numeric variables to zero and nulls string
variables before executing the first statement in the program.

RUN can be used in the deferred mode (with a line number). Refer to the program on
the next page. It can also be used to enter a program from diskette or cassette.
However, when RUN is used to run a program on diskette or cassette (i.e., RUN
"D:SHAPES"), it cannot be used with ~optional s tart ing l i n e nu m ber), which can
only be used to run programs that are already in memory.

Example: 200 RUN "D:TEST

When statement line number 200 is executed, it will run the program called TEST.

RUN can be used to run tokenized (saved with the SAVE instruction) programs only.

RUN can be used to start executing a program at a particular line number,

Example: RUN 250

When RUN is executed in a program, as meritioned earlier, all numeric variables are
set to zero and all strings are nulled.

Commands 19



Example Program:

100 X=55
110 Y=77
120 A$="A TEST"

130 PRINT X,Y,A$
14ü RUN 150
150 PRINT X,Y,A$,"Variables are 0 and String is null"
160 END

DOS Format: DOS
Example: DOS

The DOS command lets you leave BASIC and enter the DOS Menu. This makes
available all of the DOS Menu items on programs and data stored on diskette. To
return to ATARI Microsoft BASIC, press the ~ ~ key. Th i s method of exiting
DOS will keep your program exactly as it was before you entered DOS.

LIST Format: L IST j "device:program n ame" m- n j
Examples: 100 LIST

150 LIST "C:
120 LIST "P:" 10-40
100 LIST "D:GRAFX. BAS
110 LIST 100-200
100 LIST -300

LIST writes program statements currently in memory onto the television screen or
another device. If "device:program name" is present, the program statement current
ly in memory is written onto the specified device.

Legal device names include: D: (for Disk), C; (for Cassette), P: (for Printer). If you do not
follow LIST with a device name, the screen (S:) is assumed.

When you list programs on the screen, it is often convenient to freeze the list while it is
scrolling. To freeze a listing, press both the ~ and 1 key at the same time. To con
t inue the listing, again press - and 1 at the same time.

With the LIST command you can list just one statement or as many as you wish. A
(hyphen) is used to specify the range of statements:

LIST Lists the whole program from lowest line number to the
highest.

LIST n Lists only the statement n (where n i s a s t a tement
number).

LIST -m Listing starts with the first statement in the program and
stops listing with statement m. Statement m is listed.

LIST n Listing starts with statement number n and continues to
the last statement number in the program.

LIST n-m Listing starts with n and ends with m. Both statements n
and m are included in the listing.

20 Commands



Example:

100 REM Example of the list
110 REM Command
120 PRINT "SHOWS WHICH STATEMENTS"
130 PRINT "OR GROUP OF STATEMENTS"
140 PRINT "GET LISTED"

LIST 11D1 30

110 REM Command
120 PRINT "SHOWS WHICH STATEMENTS"
130 PRINT "OR GROUP OF STATEMENTS"

Example of LIST used in deferred mode:

10 COUNT=1
20 COUNT=COUNT+ 1
30 PRINT COUNT
40 IF COUNT ( ) 30 T HEN 20
50 LIST

Use LIST to list a program on a printer. This is done in direct mode.

LI ST" P:

Use LIST to list a program in untokenized ASCII form onto a diskette. To list to diskette
use:

LI ST" D:name.ext

Use LOAD when you are entering untokenized (listed) programs into your computer.
LOAD can be used to enter programs that have been listed or saved to cassette or
diskette.

AUTO Format: AUTO n,(~
Exarnples: AUTO 200,20

AU TO

AUTO numbers your lines automatically. If you do not specify n,i (starting number, in
crement) you will get line numbers starting at100 with an increment of 10. Use AUTO
when you start writing a program. Type AUTO, then type a starting line number. (See
the example on the following page.) Then type the amount you want the numbers to in
crease. After you start the AUTO numbering, you will automatically have a new line
number every time you type a statement and press ~ ~ To sto p A U TO, press

by itself without typing a statement. AUTO can also be stopped by pressing the
~ key.

Commands 21



Example Program:

AUTO 300,20 ~ Starts numbering at 300 and increments by
20

300 PRINT "THIS SHOWS HOW"
320 PRINT "AUTO NUMBERING"
340 PRINT "WORKS"
360 ~

AUTO numbering ends when you press . · g r ight a ftera I inen umber. I f t here i sa n
existing line at that number, the line will be displayed on your television screen.

DEL Format: DEL n-m
Examples: DEL 450

DEL 250 — 350
DEL - 250

DEL deletes program statements currently in memory. With the DEL command you
can delete just one statement or as many as you wish. A - (hyphen) is used to specify
the range of statements:

DEL n Deletes only the statement n (where n is a statement
number).

DEL -m Deletion starts with the first statement in the program and
stops with statement m. Statement m is deleted.

DEL n Deletion starts with statement number n and continues to
the last statement number in the program.

DEL n-m Deletion starts with n and ends with m. Both statements n
and m are deleted,

Example Program:

100 PRINT "AN EXAMPLE OF"
120 PRINT "HOW THE DELETE"
130 PRINT "COMMAND WORKS"

DEL 120- gßg+

Only statement 100 is left in memory.

LIST ~

100 PRINT "AN EXAMPLE OF"

22 Commands



lf you want to delete a single statement from a program, simply type the statement
number and press gang/.

Example Program:

110 FOR X=1 TO 5000:NEXT

110 gßgQ

SAVE Format: SAVE "device:program n a me"
Example: SAVE "D:CAME.BAS"

SAVE copies the program in memory onto the file named by program name. Legal
devices are D: ( fo r d isk), C: ( for cassette). For example, the command SAVE
"D:TEMP.BAS" will save the program currently in memory onto diskette. The program
is recorded in "tokenized" form onto tape or diskette.

Example:

SAVE "D:PROCRAM"

Saves PROCRAM on diskette.

SAVE "C:

Saves the program on cassette.

SAVE... LOCK Format: SAVE "device:program n a me" LOCK
Example: SAVE "D:PROCRAM.EXA" LOCK

SAVE "device:program n ame" LOCK saves a program onto tape or diskette and en
codes it so that it cannot be edited, listed, merged, examined, or modified. LOCK is
used to prevent program tampering and theft.

LOAD Format: LOAD "device:program n a me"
Examples: LOAD "D:EXAMPLE"

110 LOAD "C:"

LOAD "device:program n ame" replaces the program in memory w ith the one
located on device:. Disk drive or cassette can be specified for device:. Use LOAD "C:"
to load data or listed cassette files. For programs that have been previously saved use
CLOAD to increase loading speed. For diskette files, use "D:program n ame" for listed
programs or saved programs.

Commands 23



CLOAD Format: CLOAD
Examples: CLOAD

440 CLOAD

Use CLOAD to load a program from cassette tape into RAM for execution. When you
enter CLOAO and press (ii,=-;,",;.„'l, the in-cabinet buzzer sounds. Position the tape to the
beginning of the program, using the tape counter as a guide, and press PLAY on the
ATARI 410™ Program Recorder. Then press the ',,','.",.'',",i-;g~ key again. Specific instructions
to CLOAD a program are contained in the ATARI 410 Program Recorder Operators
Manual,

CSAVE Format: CSAVE
Examples: CSAVE

330 CSAVE

CSAVE saves a RAM-resident program onto cassette tape. CSAVE saves the tokenized
(compactedl version of the program. As you enter CSAVE and press ~; ; , ' "-',: the in
cabinet buzzer sounds twice signaling you to press PLAY and RECORD on the Program
Recorder. Then press =.—:,'--.,''ri.i::l,' again. Do not, however, press these buttons until the tape
has been positioned. Saving a program with this command is speedier than with
SAVE"C:" because short inter-record gaps are used. Use SAVE"C:" with LOAD"C:" or
CSAVE with CLOAD but do not mix these paired statements — SAVE"C:" with CLOAD
will give you an error message.

VE RI FY Format: VERIFY "device:program n a me"
Examples: VERIFY "D:BIO.BAS"

VERIFY "C:

VERIFY compares the program in memory with the one named by "device:pro
gram n ame". If the two programs are not identical, you get a TYPE MISMATCH ER
ROR.

MERCE Format: MERCE "device:program n a me"
Examples: ME RG E "D:STOCK. BA S"

MERCE "C:

Use MERCE to merge the program stored at "device:program n ame" with the pro
gram in memory. Only programs that have been saved using the LIST instruction to put
them on diskette or cassette can be merged. If dupl icate l ine numbers are en
countered, the line on "device:program n ame" wil l replace the one in memory. On
the following page, you can see an example of merging programs.

Example Program:

100 REM THIS IS A PROGRAM
120 REM STORED ON DISKETTE
130 PRINT "MERGE TEST"

24 Commands



LIST "D:STOCK.BAS"

110 REM THIS PROGRAM IS
I25 REM IN COMPUTER MEMORY
140 PRINT "RESULT"

MERGE "D:STOCK.BAS"

LIST

100 REM THIS IS A PROGRAM
110 REM THIS PROGRAM IS
120 REM STORED ON DISKETTE
1 25 RE M IN COMPUTE R MEMORY
130 PRINT "MERGE TEST"
140 PRINT "RESULT"

RENUM
Format: RENUM ~m, n, i~
Exarnple: RE NUM 10,100,10

m = The l ine number to be applied to the first renumbered statement.

n = The first line number to be renumbered.

i = The increment between generated line numbers.

RENUM gives new line numbers to specified lines of a program. The line number to
be applied to the first renumbered statement is the first parameter. The first line
number to be renumbered is the next parameter. The increment or amount of in
crease between numbers is the last parameter.

The default of RENUM is 10, 0, 10.

Renumber changes all references following GOTO, GOSUB, THEN, ON...GOTO,
ON...GOSUB, and ERROR statements to reflect the new line numbers.

Note: RENUM cannot be used to change the order of program lines. For example,
RENUM 15, 30 would not be allowed when the program has three lines numbered
10, 20, and 30. Numbers cannot be created higher than 63999.

RENUM Renumbers the entire program. The first new line number
will be 10. Lines will increment by 10.

RENUM 10,100 The old program line number 100 will be renumbered 10.
Lines increment by 10 (the default is 10).

RENUM 800,900,20 Renum b e rs lines from 900 to the end of the program. Line
900 now is 800. The increment is 20.

Commands 25



RENUM 300, 140, 20 gives number 300 to line 140 when it is encountered . The incre
ment is 20.

BEFORE AFTER
100 100
110 110
120 120
130 130
140 300
150 320
160 340
170 360

LOCK Format: LOCK "device:file n a me"
Exarnple: LOCK "D:CHECKBK"

LOCK is the same LOCK that exists in the DOS Menu. LOCK ensures that you do not
write over a program without first unlocking it. As a BASIC command, LOCK offers a
measure of protection against accidental erasure.

UNLOCK Format: UNLOCK "device:program name"
Example: UNLOCK "D:GAME1.BAS"

The UNLOCK statement restores a file so that you can write to, delete, or rename it.

KILL Format: KILL "device:program n a me"
Exarnple: KILL "D:PROG1.BAS"

KILL deletes the named program from a device.

NAME... TO Format: NAME "device:program n a me 1 " T O " p rogram n a m e ~"
Exarnple: NAME "D:BALANCE" TO "CHECKBK"

NAME gives a new name to "device:program n ame 1 . " The device lD1: through
D8:) must be given for the old program, but the new program name enclosed in quotes
is the only thing following the word TO.

TRON Format: TRON
Exarnples: TRON

550 TRON

This command turns on the trace mechanism. When TRON is on, the number of each
line encountered is displayed on your television screen before it is executed. Use
TRON in direct or deferred mode.

26 Commands



TROFF Format: TROFF
Example: 770 TROFF

This command turns off the trace mechanism. Use TROFF in direct or deferred mode.

Commands 27



STATE ME NTS

REM or! or ' Format: REM
Example:10 REM THIS PROGRAM CQMPUTES THE AREA QF A SPHERE

20 LET R=25 !Sets an initial value
30 GOSUB 225 'GO TO COMPUTATION SUBROUTINE
65 PRINT R:REM PRINTS RADIUS

Format: ! and '
Example: 10 PRINT "EXAMPLE" !TAIL COMMENTS

20 GOTO10 ! USE ! and '

The exclamation point (! l and the accent (') are used after a statement for comments.
REM must start right after the line number or colon, while ! and ' do not require a
preceding colon.

REM,!, and ' are used to make remarks and comments about a program. REM does not
actually execute. Although REM does use RAM memory, it is a valuable aid to reading
and documenting a program.

LET Formats: LET! variable n a me = ! ari thmetic e x p ression or )string e xpression!
variable n ame = ! arithmetic e xpression or ! string expression

Example: 100 LET CQUNTER = 55
120 D=598

LET assigns a number to a variable name. The equal sign in the LET statement means
"assign," not "equal to" in the mathematical sense, For example, LET V=9, assigns a
value of 9 to a variable named V. The number on the right side of the equal sign can be
an expression composed of many mathematical symbols and variable names. Thus,
LET V=(X+ Y-9)/(W*Z) is a legal statement.

The word LET is optional in assignment. AII that is necessary for assignment is the
equal sign. Thus,

100 LET THIS = NUMBER * 5

is the same as:

100 THIS = NU/vIBER * 5

Statements 29



MOVE Format: M OVE from a d d ress, to a d d ress, no. o f byte s
Example: 20 MOVE MADDR1, MADDR2, 9

The MOVE statement moves bytes of memory from the area of memory whose lowest
address is given by the first numeric expression (from address) to the area whose
lowest address is given by the second numeric expression (to a d dress). The third
numeric expression specifies how many bytes are to be moved. The order of move
ment is such that the contents of the block of data are not changed by the move.
MOVE's primary use is in player-missile graphics.

Example: MOVE 55,222,5

Five bytes with a starting low address at 55 (i.e., 55-60) will be moved to location
222-226.

STOP Format: STOP
Example: 190 STOP

STOP is used to halt execution of a program at a place that is not the highest line
number in the program. The STOP command prints the line number where execution
of the program is broken. STOP is a useful debugging aid because you can use PRINT
in the direct mode to show the value of variables at the point where execution halts.
Also, you know that your program got as far as the STOP command.

CONT Format: CONT
Example: CONT

CONT resumes program execution from the point at which it was interrupted by either
STOP, the; · · ke y, ora pr o gramerr or.Thi s ins truction iso ft enuse ful indeb ugginga
program. A breakpoint can be set using the STOP statement. You can check variables
at the point where execution stops by using PRINT variable na me in the direct mode
(without a line number). Then resume the program by using the CONT statement.

END Format: END
Example: 990 END

END halts the execution of a program and is usually the last statement in a program.
When END terminates a program, the prompt character appears on the screen. In
ATARI Microsoft SASIC, it is not necessary to end a program with the END statement.

COTO Format: COTO line n u m ber
Example: 10 GOTO 110

COTO teils which line number is executed next. Normally, statements are executed in
order from the lowest to highest number, but GOTO changes this order. COTO causes
a branch in the program to the line number following COTO.

Example: COTO 55

30 Statements



Since this statement does not have a line number, it starts immediate execution of the
program in memory starting at line number 55.

100 PRINT "THIS IS A COMPUTER"
120 GOTO 100

RUN *

This program will cause endless branching to line number 100. Thus, the television
screen quickly fills up with THIS IS A COMPUTER.

IF...THEN Format: IF test c ondi t ion THEN goto l i n e num b er or a s t a tement
Examples: 10 IF A= B THEN 290

20 IF J )Y AND J <V THEN PRINT "OUT OF STATE TAX"

I f the result of an IF... THEN test is true, the next statement executed is goto / i ne
number. A test is made with the relational or mathematical operators. The test can

be made on numbers or strings. The words GOTO after THE N are optional. If the state
ment test, test condit ion, is false, the execution goes to the next numbered line in the
program.

160 IF A N U M BER ) A N O THER N U M BER THEN 300
200 PR IN T "ANOTHE RNUMBE R I S LARG ER"
250 STOP
300 PRINT "ANUMBER IS LARGER"
450 END

IF... THEN . . . E LSE Format : IF test c o n d i t ion THEN goto l i n e num b er or statement ELSE
goto l i n e nu m ber or statement

Example: 250 IF R<Y THEN 450 ELSE 200

This is the same as IF...THEN except that execution passes to the E LSE clause when the
relational or mathematical test is untrue.

WAIT Format: WAIT address, AND m a sk by t e , compare t o byt e
Example: 330 8 D40B,8 FF,110 ! WAIT FOR VBLANK

WAIT stops the program until certain conditions are met. Execution waits until the
compare t o byt e , when ANDed with the AND m ask b y te, equals the byte con
tained in memory location address.

WAIT is ideal if you need to halt execution until VBLANK occurs. VBLANK occurs
every1/60 of a second. It consists of a number of lines below the visible scan area.You
can make sure that your screen will not be interrupted halfway through its scan lines
(causing the screen to blip) if you WAIT until a VBLANK occurs. This technique is used
to animate characters as shown in Appendix C, Alternate Character Sets. See Appendix
A for an example of the WAIT statement used to control the timing of vertical fine
scrolling.

Statements 3 1



FOR... TO... ST E P Format: FOR starting va r iable = s tarting v a l ue TO ending-value STEP increment
Examples: 10 FOR X=1 TO 500 STEP 3

30 FOR Y=20 TO 12 STEP -2
20 FOR COUNTE R =1 TO 250

The FOR/NEXT statement starts incrementing numbers by increment until end
ing nu m ber is reached. When the ending number is counted, execution goes to the
statement number after the NEXT statement.

FOR/NEXT determines how many times statements between the line numbers of the
FOR... TO...STEP and the NEXT are executed repeatedly. If STEP is omitted, it is as
sumed to be 1. STEP can be a negative number or decimal fraction.

Example Program:

100 FOR X=1 TO 30
110 PRINT X, SQR(X)
120 NEXT

NEXT Format: NEXT )variable n ame
Examples: 30 NEXT J,l

40 NEXT VB
120 NEXT

NEXT transfers execution back to the FOR..TO line number until the TO count is up.
NEXT does not need to be followed by a variable name in Microsoft SASIC. When
NEXT is not followed by a variable name, the execution is transferred back to the
nearest FOR...TO statement.

Example Program;

100 FOR X=10 TO 100 STEP 10
1'IO PRINT X
'l20 NEXT
130 END

RUN " · * E

10
20
30
40
50
60
70
80
90
'I 00

Two or more starting-variables can be combined on the same NEXT line with commas.

32 Statements



Example Program:

100 FOR X =1 TO 20
110 FOR Y=1 TO 20
120 FOR Z=1 TO 20
130 NEXT Z,Y,X

SUBROUTINES

A subroutine is a group of statements that you wish to use repeatedly in a program.
The GOSUB statement gives execution to the group of statements. RETURN marks the
end of the subroutine and returns execution to the statement after the COSUB state
ment.

COSUB Format: GOSU B line number
Example: 330 COSUB 150

COSUB causes line nu m ber to be e xecuted next. The statement starting with
line nu mber is the start of a group of statements you wish to use a number of times in
a program.

RETURN Format: RETURN
Example: 550 RETURN

RETURN returns the program to the line number after the GOSUB statement which
switched execution to this group of statements.

Example Program:

110 GOSUB 140
120 PRINT "THIS IS THE END"
130 STOP
140 PRINT "THIS IS THE START"
150 PRINT "OF CODE WHICH"
160 PRINT "IS EASY TO CALL"
170 PRINT "(EXECUTEl A NUMBER"
180 PRINT "OF TIMES IN A"
190 PRINT "PROC RAM"
200 RETURN ! EXECUTION CONTROL GOES TO LINE NUMBER 120

ON...GOTO Format: ON arithmetic e xpression GOTO line n u m ber 1 , I ine n u m ber~,
l ine number 3

Example: 400 ON X COTO 550, 750, 990

ON...GOTO determines which line is executed next. It does this by finding the number
represented by the arithmetic expression and if the number is a 1, control passes to
iine nu mber I . If t h e n umber is a 2, control passes to Jine n u m ber~. If t h e
n umber is a 3, control passes to line n umber~ , e t c .

Statements 33



ON...COSUB Format: ON arithmetic expression COSUB line number 1, l ine number~,
l ine number 3

Example: 220 ON X COSU B 440, 500, 700

ON...COSU B determines which line is executed next. It does this by finding the number
represented by the arithmetic expression. If the number is a1 then execution passes
to l ine n u mber 7 . If the number is a 2, execution passes to l ine n u mber~, o r I f
the number is a 3, execution passes to l ine n u mber~, e t c .

RETURN is used to transfer execution back to the statement directly after the COSUB.

Example Program:

110 ON X COSU B 333, 440, 512, 620

3 33 B=B+ C
340 RETURN

ON ERROR Format: ON ERROR line n umber
Example: ON ERROR 550

Program execution normally halts when an error is found and an error message prints
on the television screen. ON ERROR traps the error and forces execution of the pro
gram to go to a specific line number,

The ON ERROR line number statement must be placed before the error actually oc
curs in order to transfer execution to the specified l ine~u m b e r .

To recover normal execution of the program, you must use the RESUME statement.
The RESUME statement transfers execution back into the prograrn.

When RUN, STOP, or END is executed, the ON ERROR statement is terminated.

Example Program:

10 ON ERROR 1000
20 PRINT g3, "LINE"
30 STOP
1000 PRINT "DEVICE NOT OPENED YET"
1010 STOP
1020 R E S UME

The ON ERROR line n u mber statement can be disabled by the statement: ON ER
ROR COTO 0. If you disable the effect of ON ERRQR within the error-handling routine
itself, the current error will be processed in the normal way.

ERROR Format: ERROR error code
Example: 640 ERROR 162

ERROR followed by an error code forces BASIC to evaluate an error of the specified
error code type, Forcing an error to occur is a technique used to test how the pro
gram behaves when you make a mistake. A complete listing of error codes is given in
Appendix M. You can force both system errors and BASIC errors.

34 Statements



ERL Format: ERL
Example: 100 PRINT ERL

ERL returns the!ine number of the last encountered error.

ERR Format: ERR
Example: 120 PRINT ERR

150 IF ERR = 135 THEN GOTO 350

ERR returns the error number of the last encountered error.

AFTER Format: AFTER (time in 1 /60 o f a see ) IGOTOI /in cumber
Example: 100 AFTER (266) GOTO 220

When AFTER (...) is executed, a time count starts from 0 up to the number of 1/60 of a
second (called j i f f ies). When the t im e i s u p , p r ogram execution t ransfers to
line number. AFTER can be placed anywhere in a program but it must be executed in
order to start its count. A time period up to 24 hours is a!!owed.

When RUN, STOP, or END is executed the AFTER statement jiffie count is reset.

CLEAR STACK Format: CLEAR STACK
Example: 100 CLEAR STACK

CLEAR STACK clears a!! current time entries. CLEAR STACK is a way to abort the
AFTER statement. If certain conditions are met in a program, you may wish to cancel
the AFTER statement.

Example Program:

100 AFTER (1 333) GOTO 900
150 IF A= B THEN CLEAR STACK
900 PRINT "YOUR TURN IS OVER"
910 RESUME

STACK Format: STACK
Examples: 120 PRINT STACK ! Prints no. of stack entries availab!e

310 IF STACK = 0 THEN PRINT "STACK FULL"

The STACK function gives the number of entries available on the time stack. The time
stack can hold 20 jiffie entries. The STACK is used to hold the SOUND and AFTER jiffie
times. This is a random stack since when a jiffie is up, time expires regardless of when
the jiffies were put in the STACK.

RESUME Formats: RESUME Iline numberI
RESUME INEXT I
RESUME

Examples: 300 RESUME 55
440 RESUME NEXT
450 RESUME

Statements 35



RESUME is the last statement of the ON ERROR line number error-handling routine.
RESUME transfers control to the line n umber.

RESUME NEXT transfers execution to the statement following the occurrence of the
error.

RESUME transfers execution back to the originating (error causing) line number if you
do not follow RESUME with NEXT or line n u mber.

OPTION eASE Formats: OPTION BASE 0
OPTION BASE 1

Example: 150 OPTION BASE 1
200 DIM Z (25,25,25)!array element subscripts no. 1-25

OPTION BASE 1 declares that list and array subscript numbering will start with 1. The
OPTION RASE (0/1) statement should be the first executable statement in a program. It
states that you want the subscripted variables to begin with 0 or 1. If the OPTION
BASE statement is omitted, lists' and arrays' subscript numbering starts at 0.

Example Program:

100 REM DEMONSTRATES OPTION BASE 1 STATEMENT
110 OPTION BASE 1
120 DIM ARRAY (15,15)
150 READ ARRAY (1,1), ARRAY (2,2), ARRAY (15,15)
165 DATA 32,33,34
180 PRINT ARRAY (1,1), ARRAY (2,2), ARRAY (1 5,15)
190 END

CLEAR Format: CLEAR
Examples: CLEAR

550 CLEAR

CLEAR zeros all variables and arrays, and nulls all strings. If an array is needed after a
CLEAR command, it must be redimensioned.

COMMON Formats: COMMON variable n a me,(variable n a mej
COMMON ALL

Examples: 110 COMMON I, J, A$, H%, DEC, F()
100 COMMON ALL

Use COMMON to keep variable values the same across program runs. COMMON
makes variables in two programs the same variable in fact as weil as in name. If you
name a variable COUNT in one short program and join that program with another pro
gram that has COUNT as a variable, the program will consider the COUNTs to be dif
ferent variables. The COMMON statement says that you want both COUNTs to be
considered the same variable. COMMON ALL keeps all previous variable values the
same across the new program run.

36 Statements



Example Program:

100 COMMON X
110 X=4
120 RUN "D:PROG2"

PRINT X ~

The value of X=4 after line120 calls the new program is 4. If there is already a variable
named X in the second program, then X gets its value from the new program.

RANDOMIZE Format: RANDOMIZE Iseed
Examples: 10 RANDOMIZE

10 RANDOMIZE 55 !Sets a certain repeatable sequence

RANDOMIZE assures that a different random sequence of numbers will occur each
time a program with the RND arithmetic function is run. RANDOMIZE gives a random
seed to the starting point of the RND sequence.

Example Program:

IOO RANDOMIZE
110 PRINT RND
120 END

E ach time you run the above program, a unique number prints on the television screen.

The RND arithmetic function will repeat the same pseudo-random number each time a
program is run without RANDOMIZE. In testing a program it is sometimes ideal to
have an RND sequence that you know will be the same each time. In this case, use the
RND function by itself without RANDOMIZE. Another way to produce a long se
quence that will be the same each time, is to use RANDOMIZE ) seed (where ( seedI is
an arbitrary number). But if you wish to see a different set of cards each time you play
the garne, just use RANDOMIZE by itself somewhere near the start of your program.

Example of RND without RANDOMIZE:

100 PRINT RND
110 END

Each time you run this program, it prints the same number on the television screen.

OPTION PLM1, Format: OPTION PLM1
OPTION PLM2, OPTION PLM2

OPTION PLMO OPTION PLMO
Example: 100 OPTION PLM1

100 OPTION PLM2
700 OPTION PLMO

Statements 37



OPTION PLM1 reserves 12SO bytes in memory for player-missiles (single-line resolu
tion). OPTION PLM2 reserves 640 bytes in memory for player-missiles (double-line
resolution). OPTION PLMO releases all OPTION PLM reservations.

The GRAPHICS instruction (see Section 12) must always precede the OPTION PLMn
statement. This is because the computer must first know the graphics mode before you
reserve space.

Use OPTION PLM1 or OPTION PLM2 to reserve player-missile memory, clear the
memory, and set PMBASE. You do not need to worry about the proper memory area to
place player-missiles when you use the OPTION PLM statements. To find the exact
memory location of t h e s tarting byte o f y ou r m issiles, use VARPTR(PLM1) or
VARPTR(PLM2).

You must poke decimal location 53277 with decimal 3 in order to enable player-missile
graphics. You must also poke decimal location 559 with decimal 62 for single-line
resolution or decimal 46 for double-line resolution. See Section 13 for an example of
player-missile graphics.

OPTION CHR1, Format: OPTION CHR1
OPTION CHR2, OPTION CHR2

OPTION CHRO OPTION CHRO
Examples: 110 OPTION CHR1

120 OPTION CHR2
130 OPTION CHRO

OPTION CHR1 reserves 1024 bytes in memory for character data. OPTION CHR2
reserves 512 bytes in memory for character data. OPTION CHRO releases all OPTION
CHR reservations.

Use OPTION CHR1 or OPTION CHR2 to reserve memory for a RAM character set. You
can MOVE the ROM character set into the new RAM area you have reserved or you
can define a totally new character set. VARPTR(CHR1) orVARPTR(CHR2) will point to
the starting address of the zeroth character. It is necessary to POKE a new starting ad
dress into CH BAS. This can be done by determining the page to which VARPTR(CHR1)
or VARPTR(CHR2) is pointing. One way to determine and POKE a new CH BAS is:

300 CHBAS=gt2F4
310 ADDR% = VARPTR(CHR1)
320 POKE CH BAS,((ADDR%/256) AND RFF)

The GRAPHICS instruction (see Section 12) must always precede the OPTION CHRn
statement. This is because the computer must first know the graphics mode before you
reserve space.

This procedure will mask for the Most Significant Byte (MSB) of the VARPTR memory
address and POKE that MSB into CHBAS so you will switch to the new character set.
See Appendix C for an example of redefining the character set.

38 Statements



OPTION Format: OPTION RE SE RVE n
RESERVE Example: 300 OPTION RESERVE 24

In the OPTION RESERVE n statement, n is a number representing the number of bytes
reserved. For example, OPTION RESERVE 24 reserves 24 bytes. VARPTR(RESERVE)
can be used to teil you the starting address of the 24 bytes in OPTION RESERVE 24.
This statement allows you to reserve bytes for machine code or for another purpose.

VARPTR Formats: VARPTR(variable n ame)
VARPTR(PLM1)
VARPTR(P LM2)
VARPTR(CHR1)
VARPTR(CHR2)
VARPTR(RE SE RVE)

Examples: I IO A= VARPTR(A$)
'I00 PRINT VARPTR(A$+1)
120 J = VARPTR(TOTAL)
120 T = VARPTR(CHR2)
155 POKE VARPTR(RESERVE),8 FE

If the argument to this function is a variable name, the function returns the address of
the variable's symbol table entry. When the variable is arithmetic,VARPTR returns the
variable's 2-byte starting address (Most Significant Byte, Least Significant Byte) in
memory. When the variable is a string, VARPTR returns the number of bytes in the
string. Then the starting location of the string is given in VARPTR(A$)+1 Least Signifi
cant Byte and VARPTR(A$)+2 Most Significant Byte. Notice that only in the case of
strings is the address given in the 6502 notation of low-memory byte before the high
memory byte. Except in the case of strings the whole address in high byte; low-byte for
mat is returned with VARPTR. The following keywords can be used with VARPTR.

VARPTR(PLMn) Returns the address (MSB, LSB) of the first byte allocated
for PLMn.

VARPTR(CHRn) Returns the address (MSB, LSB) of the first byte allocated
for CHRn.

VARPTR(RESERVE) Ret urn s the address (MSB, LSB) of the first byte allocated
for assembly language programs.

Use OPTION PLMI, OPTION PLM2, OPTION CHR'I, OPTION CHR2, and OPTION
RESERVE n to al locate space. Once OPTION has been used to set aside space,
VARPTR can be used to point to the starting byte of that space.

Statements 3 9



INPUT/OUTPUT STATEMENTS

The keyboard, disk drive, program recorder, and modem are ways your computer gets
information — Input. The ATARI Home Computer also gives information by writing it
on the television screen, cassette tape, printer, or diskette — Output.

ATARI input and output devices have identifying codes:

K: Keyboard. Input-only device. The keyboard allows the computer to get information
directly from the typewriter keys.

P: Line Printer. Output-only device. The line printer prints ATASCI I characters, a line at
a time.

C: Program Recorder. Input and output device. The'recorder is a read/write device that
can be used as either, but never as both simultaneously. The cassette has two tracks
for sound and program recording purposes. The audio track cannot be recorded from
the ATARI Computer system, but may be played back through the television speaker.

D1:,D2:,D3:,D4: Disk Drives. Input and output devices. If 32K of RAM is installed, the
ATARI Computer can use four ATARI 810™ Disk Drives. The default is D1: if no drive is
designated.

E: Screen Editor. Input and output device. This device uses the keyboard and television
screen (see S: TV Monitor! to simulate a screen editing terminal. Writing to this device
causes data to appear on the display starting at the current cursor position. Reading
from this device activates the screen-editing process and allows the user to enter and
edit data. Whenever the ~ ~ ' k e y is pressed, the entire line is selected as the current
record to be transferred by Central Input/Output (CIO) to the user program.

S: TV Monitor. Input and output device. This device allows the user to read characters
from and write characters to the display, using the cursor as the screen-addressing
rnechanism. !3oth text and graphics operations are supported.

R: Interface, RS-232. The ATARI 850™ Interface Module enables the ATARI Computer
system to interface with RS-232 compatible devices such as printers, terminals, and
plotters.

PRINT Formats: PRINT "string c o nstant"
? "string constant", variable n a me
P RINT variable n ame 1 , var iable n am e~ , v a r iable n am e et c
PRINT¹iocb, AT(s,bl;X,Y
PRINT¹6, AT(x,yl;"string constant";variable n a me

Examples: 100 PRINT "SORTING PROGRAM";A$,X
500?¹6, "ENTERING DUNGEON" !Print for GRAPHICS 1 and 2

Input/Output Statements 41



PRINT puts string constants, string variables, or numeric variables on the television
screen when executed. The PRINT statement will leave a blank line when executed
alone. The question mark symbol (?) means the same thing as the word PRINT,

Example Program:

100 PRINT "SKIP A LINE"
120 PRINT
125 REM NOTE USE OF "" TO PRINT A QUOTE
130 ANOTHER LINE$= "PRINT ""ANOTHER"" LINE"
140? ANOTHER L INE$
150 END

Line 120 leaves a blank line when this program is run:

SKIP A LINE

PRINT "ANOTHER" LINE

String constants, string variables, and numeric variables will all print on the same line
when the line construction includes a comma or semicolon.

It is not necessary to use a closing quote if you wish to print a string constant on your
television screen:

100 PRINT "NO CLOSINC QUOTE HERE

RUN

NO C LOS IN C QUOTE HE R E

PRINT¹iocb wil l pr int at a part icular sector and byte i f the d isk drive has been
opened as OUTPUT (see OPEN statement). The AT clause is quite versatile. If the
device being addressed is a disk drive, AT(s,b) refers to the sector, byte. However, if the
device being addressed is the screen, as in PRINT or PRINT¹6, then the AT(x,y) refers to
the x,y screen position.

An example of printing to a disk drive;

100 OPEN¹3, "D:TEST.DAT" OUTPUT
110 X=5
120 PRINT¹3, AT(7,1);"TEST";X
130 CLOSE¹3

An example of printing to a screen location:

100 CRAPHICS 1
110 PRINT¹6, AT(3,3);"PRINTS ON SCREEN"

TAB Format: TAB(n)
Example: 120 PRINT TAB(5);"PRINT STARTS 5 SPACES IN"

42 InputjOutput Statements



TAB moves the cursor over the number of positions specilied within the parentheses,
This statement is used with PRINT to move characters over a number of tabbed
spaces.

Example Program:

100 PRINT TAB (5);"THIS LINE IS TABBED RIGHT FIVE"
120 END

SPC Format: SPC(n)
Example: 10 PRINT TAB (5);"XYZ";SPC (7);"SEVEN SPACES RIGHT OF XYZ"

SPC puts spaces between variables and constants in a l ine to be printed. The TAB
always sets tabs from the left-hand margin. SPC counts spaces from where the last
variable or constant ends.

PRINT USINC PRINT USING lets you format your output in many ways:

· N umericv ariabled igitsc anb ep lacede xactlyw herey ouw ant t hem.

· Y ouc an i nsert a d ecimal p oint i nd ollara mounts.

· Y ouc anp lacea d ollars ign( $) i mmediately i n f ront o f t he f irst d igit o f a d ollar
amount.

You can print a dollar sign ahead of an amount.

· A mountsc anb ep added t o t he I eft w itha sterisks( **$4 5.00) f orc heckp rotec
tion purposes.

· N umbersc anb e f orced i ntoe xponential ( E)o rd ouble-precision( D) f ormat.

· A p luss ign( +)c auseso utput t op rint a sa + f orp ositivea nda - f orn egative
numbers.

PRINT USING g

The pound sign ff holds a position for each digit in a number. Digits can be specified to
the right or left of the decimal point with the pound sign ff. Zeros are inserted to the
right of the decimal, if needed, in the case where the amount is in whole dollars.
Decimal points are automatically lined up when ff is used. The ff is convenient in finan
cial programming.

Example Program:

10 X=246
20 PRINT USING "ffffff";X

RUN ~
246

If a number has more digits than the number of pound signs, then a percent sign will
print in front of the number.

Input/Output Statements 43



Example Program:

1PP X=99999 110 PRINT USING "¹¹ ¹ " ;X
120 END

RUN ~

%99999

PRINT USING .

Place the period anywhere within the ¹ decimal place holders. The decimal in the
amount will align with the decimal in the USING specification.

10 X= 2.468 20 PRINT USING "¹¹ ¹ ¹ " ;X

RUN ~

2.47

Note that since only two digits were specified after the decimal point, the cents posi
tion was rounded up.

PRINT USING,

Place a comma in any PRINT USING digit position. The comma symbol causes a com
ma to print to the left of every third digit in the result. Extra decimal position holders (¹)
must be used if marc than one comma is expected in a result.

Example Program:

10 X¹=2933604.53! Double precision needed this ¹ tag
20 PRINT USING "¹¹ ¹ ¹ ¹ ¹ ¹ ¹ , . ¹ ¹ " ;X¹
30 END

RUN ~ *

2,933,604.53

PRINT USING **

Two asterisks in the first two positions fill unused spaces in the result with asterisks.
The two asterisks count as two additional digit positions.

Example Program:

100 X=259
120 PRINT USING "**¹ ¹ ¹ ¹ ¹ ¹ ¹ . ¹ ¹ " ;X

RUN ~

*** * * * 259 PP

44 Input/Output Statements



PRINT USING $

A dollar sign at the starting digit position causes a dollar sign to print at the left digit
position in the result.

Example Program:

100 X = 3.59631
110 PRINT USINC "$¹¹¹ . ¹ ¹ " ;X
120 END

RUN ~

PRINT USING $$

Two dollar signs ($$) in the first two positions give a floating dollar sign in the result.
That is, the dollar sign will be located immediately next to the first decimal digit that is
displayed.

Example Program:

100 X=3.5961
110 PRINT US INC "$$¹¹¹ . ¹ ¹ " ;X
120 END

R UN ~ ·

$3.60

PRINT USING ""$

If "*$ is used in the first three positions the result will have asterisks filling unused posi
tions and a dol lar sign will f loat to the position immediately in f ront of the f i rst
displayed digit.

Example Program:

100 X= 53.29
110 PRINT USINC "**$¹¹ ¹ ¹ ¹ ¹ ¹ ¹ . ¹ ¹ " ;X
120 END

RUN ~

* * * * * * * * $ 5 3 29

PRINT USING AAAA

Four exponentiation symbols after the pound sign (¹) decimal place holder will cause
the result to be in exponential (E or D) form.

Input/Output Statements 45



Example Program:

100 X=500
110 PRINT USING "ggAAAA";X
120 END

RUN ~

SE+ 02

PRINT USINC +

The plus sign (+) prints a + f o r positive and a minus (-) for negative in front of a
number. The plus sign (+ ) can be used at the beginning or end o f the PRINT
U SI NG string.

Example Program:

100 A=999.55
110 PRINT USING "+ ffffffff";A
120 END

RUN -g

+ 1000

PRINT USINC

The minus (-) sign following the PRINT USING string makes a — appear following a
negative number. A trailing space will appear if the number is positive.

Example Program:

100 A=-998
110 PRINT USING "pfiff-";A
120 END

R UN ~ ·

998

PRINT USINC !

The exclamation sign (!) pulls the first character out of a string.

Example Program:

100 A$ ="B MATHEMATICS 1A"
110 PRINT USING "!";A$
120 END

RUN

46 Input/Output Statements



PRINT USING %bbbb%

The percent signs (%) and blank spaces (b) will pull part of a string out of a longer str
ing. The length of the string you pull out is 2 plus the number of spaces (b's) between
the percent signs.

Example Program:

100 A$ = "S mith Fred"
120 PRINT USING "%bbb%";A$
130 END

RUN gßgQ

Smith

INPUT Format: INPUTI¹iocbI I "prompt string", IAT(s,b); variable name, variable name
INPUT¹6 "prompt s t r ing" I, AT(x,y)I; variable n ame

Examples: 120 INPUT "TYPE YOUR NAME";A$
350 INPUT "ACCOUNT NO., NAME";NUM,I3$
300 INPUT¹5, AT(9,7);X

INPUT lets you communicate with a program by typing on the computer keyboard.
You are also allowed to print character strings with the INPUT statement. This lets you
write prompts for the user such as TYPE YOUR NAME. The typed characters are as
signed to the variable names when you press the key or t y pe a comma. The IN
PUT statement temporarily stops the the program until keyboard INPUT is complete.
The INPUT statement automatically puts a question mark on the television screen.

If a disk drive has been opened as INPUT and assigned an IOCB¹, then it can be used
to input data. The input from the device is read AT(sector,byte) and assigned a variable
n ame. I N PUT¹6 , AT ( x ,y);X c a n be used t o read a spec i f i c sc r e en
location.

LINE INPUT Format: LINE INPUTI¹iocbI I "promp~t r i ng" I string variable name$
Example: 190 LINE INPUT ANS$

An entire line is input from the keyboard. Commas, colons, semicolons, and other
delimiters in the line input from the keyboard are ignored. Mark the end of the line by
pressing gggg or its ASCII equivalent &9B for the End of Line (EOL).

Example Program:

100 LINE INPUT "WHAT IS YOUR NAME't"; N$
120 PRINT N$
130 END

DATA Format: DATA arithmetic c o n s tant,Iarithmetic c o n stantI
DATA string constant, string c onstantI

Example: 140 DATA 55,793,666,94.7,55
150 DATA ACCOUNT,AGE,"""NAME""",SOCIAL SECURITY

Input/Output Statements 47



The arithmetic c onstants and string constants in the DATA statement are assigned
to variable names by the READ statement. Use a comma to separate the entries that
you wish to input with DATA/READ. More than one DATA statement can be used. The
first DATA item is assigned the first variable name encountered in READ; the second
DATA item is assigned the second variable name, etc. When all the items are read and
the program tries to read data when none exists — an "out-of- data" error occurs. The
ERR statement can be used to test for the out-of-data condition.

If a comma is included in a string item in a data statement, then the whole string item
must be enclosed in quotes. Otherwise, it coufd be mistaken as a comma used to
separate items in the DATA statement. Quotes are not required if a string uses numeric
values as string data.

READ Format: R EAD variable n ame 1, ) variable n a me ~, ) ) variable n a me et c . )
Example: 150 READ A,B

READ assigns numbers or strings in the DATA statement to variable names in the
READ statement. Commas separate variable names in the READ statement and items
in the data statement. Hence, it is all right to leave extra spaces between items because
the comma determines the end of items. READ A, B, C looks at the first three DATA
items. If READ A, B, C is executed again, the next three numbers of the data statement
are assigned to A, B, C respectively. The pairing of variables and data continues until
all the data is read.

Example of DATA/READ:

1 00POR) = 1 T O 3
120 READ A$,A
1 30 P R IN T A$,A
140 NEXT J
150 DATA FRED,50,)ACK,20,)ANE,200
900 PRINT "END OF DATA"
910 END

RESTORE Format: RESTORE ) line number)
Examples: 440 RESTORE 770

550 RESTORE

The RESTORE statement is used if data items are to be used again in a program. That
is, RESTORE allows use of the same DATA repeated a number of times. Without the
RESTORE statement an out-of-data error results from the attempt to READ data a se
cond time. The data can be restored starting with a particular line number using the op
tional ) line number).

AT Formats: PRINT¹6, AT(x,y);variable name,"string c o nstant"
PRINT AT(x,y);variable name,"string c onstant"
PRINT¹iocb, AT(s,b);variable name,"string c onstant"
INPUT¹iocb, AT(s,b);variable name

AT can be added to either PRINT or INPUT. The numbers following AT refer to sector,
byte if the proper disk ¹iocb has been opened. (See OPEN statement below.) The televi
sion screen is the output device when PRINT, or PRINT¹6, are encountered. When the
screen is the device, AT(x,y) gives the coordinates for printing.

48 Input/Output Statements



OPEN Format: OPEN ¹iocb, "device:program n a me" f i le a c c ess
Examples: l30 OPEN ¹4, "K:" INPUT

100 OPEN ¹3, "P:" OUTPUT
150 OPEN ¹4, "D:PROC.SAV" INPUT
I20 OPEN ¹2, "D:CRAPH1.BAS" UPDATE
110 OPEN ¹5, "D:PROC.BAS" APPEND

Mandatory character entered by user.

¹ioch, Input/output control b lock ( ICOB). Choose a number
from 1 to 7 to identify a file and its file access. You must
have a pound sign (¹) followed by an IOCB number (1-7)
and a comma.

· devicerprogramname" Specifies the device and the name o f t h e p rogram.
Devices are D: (disk), P: (printer), E: (screen editor), K:
(keyboard), C: (cassette), S: (television monitor), and R: (RS
232-C). When you use D: your program name follows the
colon. The name of your program can be up to e ight
characters long and have a three-character extension. Pro
gram names must begin with an alphabetic character, At
the beginning of this section you wil l f ind a complete
description of the device codes (K:, P:, C:, D:, E:, S:, R:).

file access Teils the type of operation:

INPUT = input operation
OUTPUT = output operation
UPDATE = input and output operation
APPEND = a l lows you to add onto the end of a f i le.

The idea behind the OPEN statement is to identify a number (the IOCB¹) with the file
access characteristics. After the OPEN¹n statement is encountered in a program, you
can use PRINT¹2, INPUT¹3, NOTE¹5, STATUS¹2, CET¹4, and PUT¹4. That is, you can
use the IOCB¹ as an identifier.

The OPEN¹n and PRINT¹n statements now substitute for LPRINT (LINE PRINTINC):

100 OPEN¹3, "P:" OUTPUT
110 PRINT¹3, "THIS IS A PRINTER TEST"
120 CLOSE¹3

The following IOCB¹ identifiers have preassigned uses:

· ¹ 0 i su sed f or I NPUTa ndO UTPUT t oE;, t hes creene ditor.

· ¹ 6 i su sed f or I NPUTa ndO UTPUT t oS:, t hes creen i tself, i n t est m odes
GRAPHICS 1 and GRAPHICS 2.

An exarnple of the use of IOCB ¹6 is:

100 GRAPHICS 2
110 PRINT¹6, AT(5,5); "SCREEN PRINT TEST"

Input/Output Statements 49



IOCBs ¹1 through ¹5 (and IOCB ¹7) can be used freely, but the preassigned IOCBs
should be avoided unless a program does not use them for one of the preassigned uses
mentioned above.

CLOSE Format: CLOSE ¹iocb
Example: CLOSE ¹2

Use CLOSE after file operations are completed. The ¹ s ign is mandatory and the
number itself identifies the IOCB.

Mandatory symbol

icob The number of a previously opened IOCB

NOTE Format: NOTE¹iocb,variable n a me,~variable n ame~
Example; 120 NOTE¹4, I,J

Use NOTE to store the current diskette sector number in the first variable n ame and
the current byte number within byte. This is the current read or write position in the
specified file where the next byte to be read or written is located.

PUTiC ET Formats: PUT¹iocb, ~AT(sector,byte);~ arithmetic e x pression
GET¹iocb, )AT(sector,byte); ) variable name

Examples: 100 PUT¹6, ASC("A")
200 GET¹1, X
330 GET¹3, AT(8,2);),K,L

PUT and GET are opposites. PUT outputs a single byte value from 0-255 to the file
specified by ¹ioch (¹ is a mandatory character in both of these commands). GET reads
1-byte values from 0-255 (using ¹ iocb to designate the f i le, etc. on d iskette or
elsewhere) and then stores the byte in the variable arithmetic e xpression.

STATUS Formats: STATUS (iocb n u mber)
STATUS ("device:program n ame")

Examples: 100 A= STATUS (6)
120 A = STATUS ("D:MICROBE.BAS")

STATUS returns the value of the fourth byte of the iocb block (status byte). The Most
Significant Bit (MSB) is a 1 for error conditions. A zero in the MSB indicates nonerror
conditions. The remaining bits represent an error number.

50 Input/Output Statements



TABLE 7-1
LIST OF STATUS CODES

Hex Dec Meaning
01 001 Operation complete (no errors)
03 003 End of file (EOF)
80 128 key abort
81 129 IOCB already in use (OPEN)
82 130 Nonexistent device
83 131 Opened for write only
84 132 Invalid command
85 133 Device or file not open
86 134 Invalid iOCB number (Y register only)
87 135 Opened for read only
88 136 End of file (EOF) encountered
89 137 Truncated record
8A 138 Device timeout (doesn't respond)
8B 139 Device NAK
8C 140 Serial bus input framing error
8D 141 Cursor out of range
8E 142 Serial bus data frame overrun error
8F 143 Serial bus data frame checksum error
90 144 Device-done error
91 145 Bad screen mode
92 146 Function not supported by handler
93 147 Insufficient memory for screen mode
AO 160 Disk drive number error
A1 161 Too many open disk files
A2 162 Disk full
A3 163 Fatal disk I/O error
A4 164 Internal file number mismatch
A5 165 Filename error
A6 166 Point data length error
A7 167 File locked
A8 168 Command invalid for disk
A9 169 Directory full (64 files)
AA 170 File not found
AB 171 Point invalid

EOF Format: EOF(n)
Example: 120 IF EOF(4)=0 THEN GOTO 60

A value of true or false will be returned indicating the detection of an end-of-file condi
tion on the last read of IOCB n.

Input/Output Statements 51



ARRAYS

ABOU T A R R A Y S You a re allowed up to 10 subscripted elements in a list or array without having to use
the dimension (DIM) statement.

For example:

100 AN~ RR AY(1) = 55
120 AN A RRAY(2) = 77
1 30 AN ARRAY(3) = 93
140 AN~ RR AY(4) = 61
150 FOR X=1 TO 4
160 PRINT AN~ RR AY(X)
170 NEXT
180 END

An array with more than 10 elements must be dimensioned to reserve space for it in
RAM.

DIM Formats: DIM arithmetic v a r iable n a me (number o f elem e nts), ( list
DIM string variable name$ (number of e l ements), ) list)

Example: 10 DIM A$ (35), TOTAMT (50)

The DIM statement teils the computer the number of elements you plan to have in an
array. If you enter more data elements into an array than you have allowed for in a
dimension statement, you will get an error message.

The simplest array is the one-dimensional array. Let's say a teacher has 26 students in a
class. He can record a numeric test score for each student by dimensioning:

10 OPTION RASE 1
20 DIM SCORE(26)
30 SCORE (1)=55
40 SCORE (2)=86
50 PRINT SCORE (1), SCORE (2)

RUN

Notice that the OPTION BASE statement begins the array subscripting with 1, thus
SCORE (1) stores the numeric score of the first student. OPTION BASE 0 will allow you
to begin subscripting with the number 0.

Arrays 53



ATARI Microsoft BASIC allows you to have up to 255 array dimensions. Three
dimensional arrays allow you to make complex calculations easily.

Example Program:

110 X=20:Y=30:Z=25
120 DIM BOXES(X,Y,Z)
130! Without an OPTION (0(1) the OPTION BASE defaults to 0

S4 Arrays



FUNCTION LI BRARY

ABS Format: ABS (expression)
Example: ABS (-7)

ABS returns the absolute value of a number. The sign of a number will always be
positive after this function is executed. If the number -7 (negative 7) is evaluated with
ABS, the result will be 7 (positive 7).

INT Format: INT (arithmetic e x p ression)
Examples:? INT (5.3) prints 5 on y o ur television screen

? INT (-7.6) prints -8 o n your television screen

INT returns an integer for the arithmetic e x p ression. INT always rounds to the
next lower integer.

SGN Format: SGN (arithmetic e x p ression)
Example:? SGN (-34) prints - i on y o ur television screen

SGN returns the sign of the arithmetic e xpression enclosed in parentheses. The sign is
+1 if the number within the parentheses is positive, 0 if the number is 0, or -1 if the
number is negative.

SQR Format: SQR (arithmetic e x p ression)
Example:? SQR (25) prints 5 on y o ur television screen

SQR returns the square root of a positive arithmetic e x pression enclosed in paren
theses. If the arithmetic ex pression evaluated by SQR has a negative (-) sign, you will
get an ILLEGAL QUANTITY ERROR.

RND Formats: RND Returns a random single-precision value between 0 and 1.
RND (0) Same as RND above.
RND (integer) Returns an integer between 1 and the integer inclusive.

Examples:? RND Prints 6 random digits after decimal point.
RND (37) Prints a number between and including 1 through 37.

RND returns random numbers. RND and RND (0) return random numbers between but
not including 0 and 1. RND (integer) returns a positive integer between and including 1
and the (integer).

Function Library 55



LOG Format: LOG (arithmetic expression)
Example:? LOG (5) p r ints the na turai logarithm 1.60944

LOG returns the naturai logarithm (LOG,) of a nonnegative arithmetic ex pression in
the parentheses. LOG (0) w i l l g ive a F L INCTION CALL ERROR. LOG (1) i s
1.61 385904E-10.

EXP Format: EXP (arithmetic e xp ression)
Example:? EXP (3) prints 20.0 855

EXP returns the Euler's number (e) raised to the power of the arithmetic ex pression
within the parentheses.

SlN Format: SIN (arithmetic e xp ression)
Example:? SIN (1) p rints the si ne of 7 as .841471 radian

SIN returns the trigonometrie sine of the arithmetic ex pression.

COS Format: COS (arithmetic e xp ression)
Example:? COS (.95) p rints cosi ne of'.95 as .58'l683 radian

COS returns the trigonometrie cosine of the arithmetic ex pression.

ATN Format: ATN (arithmetic e x p ression)
Example:? ATN (.66) p rints arct angent of .66 as .583373 radian

ATN returns the arctangent of the arithmetic-expression.

TAN Format: TAN (arithmetic e x p ression)
Example:? TAN (.22) p rints the tangent of .22 as.2236'l9 radian

TAN returns the trigonometrie tangent of the arithmetic ex pression.

SPECIAL-PURPOSE F UNCTIONS

PEEK Format: PEEK (address)
Examples: 110 PRINT PEEK(1034)

135 PRINT PEEK(ADDR)

PEEK (&FFF) looks at the address enclosed in the parentheses, in this case FFF hex
adecimai. PEEK is used to discover the contents of a particular memory byte. You can
examine ROM memory as weil as RAM memory. All memory can be looked at with the
PEEK instruction.

56 Eunction Library



Examples:

PRINT PEEK(888)

Prints the byte in decimal at decimal memory location 888.

PRINT PEEK (&FFFF)

Prints the byte in decimal at memory location FFFF hex.

POKE Format: POK E address, byte
Examples: POKE 2598,255

110 POKE ADDR3,&FF
120 POKE PLACE,J

POKE inserts a byte into an address location. The address and byte can be expressed as
decimal or hexadecimal numbers. The address and byte can also be expressions. Thus,
if X*Y-2 evaluates to a valid memory location or byte, it can be used.

Example:

POKE &FFF,43

Puts decimal 43 into hexadecimal location FFF.

X=22
Y= &8F

POKE X,Y

Puts hexadecimal 8F into memory location 22 decimal.

Note that decimal and hexadecimal are just two ways of assigning a number to the
8-bit byte. The highest number you are allowed to POKE, a byte, is FF in hexadecimal
and 255 in decimal.

FRE (0) Format: FRE (0)
Example: PRINT FRE(0)

This function gives you the number of RAM bytes that are free and available for your
use. Its primary use is in direct mode with a dummy variable(0) to inform the program
mer how much memory space remains for completion of a program. Of course FRE
can also be used within a BASIC program in deferred mode. Using FRE (0) will release
string memory locations that are not in use. This use of FRE (0) to pick up the string
clutter is referred to as "garbage collection."

Function Library 57



USR Format: USR (address,n1)
Example: 550 A= USR(898,0)

USR passes the result of a machine language subroutine to a variable name. The USR
function branches to a machine language routine address and can pass an optional
value, n1. The value of n1 is usually the address of a data table used in the machine
language routine.

During the execution of a USR routine, the programmer may use page zero RAM from
8 CD through 8 FF. The parameter passed will be stored in & E9 and 8 EA as data, and in
&E3 and &E4 as an address. The parameter is assumed to be an integer or VARPTR.

Example Program:

10! ROUTINE TO TEST USR FUNCTION
20! THE ASSEMBLY ROUTINE IS:
30!
40! LDA ff35
50! STA 710
60! RTS
70!
80!
90 I
100 A=O:I =O:COL=O:C=O
110 OPTION RESERVE 10
120 ADDR = VARPTR(RESERVE) ! STARTINC ADDRESS
130 FOR I =O TO 5
140 READ A
150 POKE ADDR+ I,A
160 NEXT I
170 DATA &A9,&23,&8D,&C6,&02,&60
180 A= USR(ADDR,VARPTR(I))
190 STOP

TIME Format: TIME
Example: 200 PRINT TIME

TIME gives the Real-Time Clock (RTCLOK) locations' contents. The decimal locations
18, 19, and 20 (RTCLOK) keep the system time in jiffies (1/60 of a second). Six decimal
digits are returned by TIME. The difference between TIME$ and TIME is that TIME$
gives the time in standard hours, minutes, and seconds, while TIME gives the tirne as a
jiffie count.

58 Function Library



10

STRINCS

+ Format: string + str ing

(Concatenation Example: 110 C$ = A$+ B$

Operator)
Use the + symbol to bring two strings together.

Example Program:

110 A$="never"
120 B$ = "more"
1 30 Z$ = A$+ B$
140 PRINT Z$

RUN I.

nevermore

MID$ Format: MID$(string express ion $,start,n)
Example: 100 A$ = "GETTHEMIDDLE"

110 PRINT MID(A$,4,3)

string expression $ Strin g that will have characters pulled from its middle.

start The character you wish to start with — counting from the
left.

Number of characters you want to pull.

The string is identified by the first parameter of the function. The second parameter
teils the starting character. The third parameter teils how many characters you want.

Example Program:

110 A$ = "AMOUNT OF INTEREST PAID"
120 B$= MID$(A$,11,8)! THIS CAUSES "INTEREST" TO BE PRINTED
130 PRINT B$

LEFT$ Format: LEFT$(string expression $ ,n)
Example: 100 A$ = "TOTALAMOUNT"

110 PRINT LEFT$(A$,5)

string expression $ Strin g variable name or string expression.

Number of characters you want returned from the left
side of the string.

Strings 59



RICHT$ Format: RIGHT$(string expression $,n)
Example: A$="THERIGHT"

110 PRINT RICHT$(A$,5)

string expression $ S t r ing variable name or string expression.

Number of characters to be taken from right side of the
string.

LEN Format: LEN (string expression $ )
Example: 100 A$ = "COUNT THE"

120 r LEN (A$+" CHARACTERS")!prints total number of
130! characters as 20

LEN returns the total number of characters in a string expression $ . LEN stands for
length. Spaces, numbers, and special symbols count as characters.

ASC Format: ASC (string expression $ )
Example: 7 ASC("Smith")! prints 83 ATASCII decimal code for letter S

ASC gives the ATASCII code in decimal for the first character of the string enclosed in
parentheses. See Appendix K for ATASCII Character Set.

VAL Format: VAL (numeric~t r i ng ex p ression $ )
Example: 100 S$ = "309"

120 r VAL (B$)!prints the number 309
130 END

VAL converts strings to numeric values. VAL returns the numeric value of the numeric
constant associated with the numeric~ t r ing e x pression in the parentheses. Leading
and trailing spaces are ignored. Digits up to the first nonnumeric character will be con
verted. For example, PRINT VAL("1 23ASC") prints 123.1f the first character of the string
expression is nonnumeric, then the value returned will be 0 (zero).

CHR$ Format: CHR$ (ATASCI I code n u m b er)
Examples: 110 PRINT CHR$ (123) ! prints ATASCII club symbol

100PRINT CHR$(65) ! PRINTS ATASCII CHARACTER A

CHR$ converts ATASCII values into one-character strings, CHR$ is the opposite of the
ASC function. The A TASCII co de nu m ber can be any number from 0 to 255. Appen
dix K gives a table of both the character set and the ATASCII c od e n u m bers.

60 strings



IN5TR Format: INSTR (start,A$, B$)
Example: 110 HOLD = I NSTR(5,C$,8$)

INSTR searches for a small string l3$ within a larger string A$. The search can begin
(start) a number of characters into the larger string. This starting position is assumed to
be the first character if start is missing. The function returns the character position
within A$, where 8$ starts, or returns a 0 if B$ is not found.

STR$ Format: STR$ (arithmetic e xpression)
ExarpPI: 100 A=999.02

110 PRINT STR$(A)

STR$ turns an arithmetic ex pression into a string. String operations can be carried out
on arithmetic ex pressions with the STR$ function. Note that when the following two
strings are brought together with the concatenation symbol, there is a space between
them which represents the sign of the number.

Example Program:

100 NUM1 =-22.344
120 NMU2 =43.2
130 PRINT STR$ (NUM1) + STR$ (NUM2)
140 END

STRING$ (Nr A$) Form at: STRING$ (N,A$)
Example: 100 A$ = STRING$(20,"*")

STRINC$(N,A$) returns a string composed of N repetitions of A$.

STR ING$ (N,M) Format: STRING$ (N,M)
Example: 110 PRINT STRINC$(20,123)! prints 20 clubs

STRINC$(N,M) returns a string composed for N repetitions of CHR$(M).

INKEY$ Format: INKEY$
Example: 110 A$= INKEY$

INKEY$ records the last key pressed. If no keys are currently being pressed on the
keyboard, a null string is recorded. Statement 110 tests for a null string by representing
it as two double quotes with no space between them. ATARI Microsoft BASIC does not
recognize the space bar since leading and trailing blanks are trimmed for INKEY$.

Example Program:

100 A$= INKEY$
110 IF A$( ) " " T H EN PRINT "You typed a "; A$
120 COTO 100

strings 61



TIME$ Format: TIME$
Example: 100 PRINT TIME$

Set the time with the deferred mode statement:

190 TIME$ = "HH:MM:SS"

where HH = hours (up to 24)
MM = m inutes
SS = seconds

Examples: 110 T IME$ = "22:55:05"
120 T IME$ = "05:30:09"

Note: Use leading zeros to make hours, minutes, and seconds into 2-digit numbers.

After TIME$ is set, you can use it in a program. TIME$ is continually updated to the
current time, from your initial setting.

100 GRAPHICS 2
110 TIME$ = "11:59:05"
120 PRINT¹6, AT(3,3);"DIGITAL CLOCK"
130 PRINT¹6, AT(4,4);TIME$
140 GOTO 120

SCRN$ Format: SCRN$(x,y)
Example: 10 > SCRN$(5,5)

The character at the X-coordinate and Y-coordinate is returned as the value of the func
tion in character-graphics modes. In other graphics modes, SCRN$ returns the color
register number being used by the pixel at location x,y.

Example of SCRN$(x,y):

10 GRAPHICS 1
20 COLOR 1
30 PRINT¹6, AT(5,5);"A"
40 A$ = SCRN$(5,5)
50 PRINT TAB(9);A$
60 END

62 Stri ngs



11

USER-DEFINED FUNCTION

DEF Format: DEF function n ame (variable, variable) = function d e f in it ion
Example: 150 DEF MULT(J,K) = J*K

User-defined functions in the form DEF A(XI = XA2, where A(X) represents the value of
X, squared can be used throughout a program as if they were part of the BASIC
language itself. Normally a user-defined function will be placed at the beginning of a
program. The user-defined function can occupy no more than a single program line.
String-defined functions are allowed. If the defined function is a string v a r iable
name, then the defined expression must evaluate to a string result. One or more
parameters can be defined. Thus, DEF S$(A$,B$) = A$+B$ is legal.

Example Program:

100 DEF AVG(X,Y) = (X+Y)/2
120 PRINT AVG(25,35)
130 END

RUN gggQ
30

DEF 63



GRAI'IiiCS

C RAPH ICS The GRAPHICS command selects one of nine graphics modes. Graphics modes are
OVE RVIEW numbered 0 through 8. The arithmetic expression following GRAPHICS must evaluate

to a positive integer. Graphics mode 0 is a full-screen text mode. ATARI Microsoft
BASIC defaults to GRAPHICS 0,

GRAPHICS 1 through 8 are split-screen modes. In the split-screen modes a 4-line text
window is at the bottom of the television screen. The text window is actually 4 lines of
GRAPHICS 0 mixed into the mode.

GRAPHICS 0, GRAPHICS 1, and GRAPHICS 2 display text and special characters of
gradually increasing size. GRAPHICS 0 is regular text w i th special characters.
GRAPHICS 1 is double-wide text and special characters. GRAPHICS 2 is double-wide,
double-high text, and special characters. Note the keyboard representation of the text
and special characters as an insert to this manual, The special characters that are not
printed on your keyboard are called control characters because you must press the

key to have them display on the television screen.

GRAPHICS 3 through GRAPHICS 8 are modes that plot points directly onto your
television screen. The graphics mode dictates the size of the plot points and the
number of playfield colors you can use. The maximum number of playfield colors in
the point-plotting modes is four. But it is possible to get four more colors on your
television screen by using players and missiles. For information on player-missile
graphics, see Section 13.

C RAPHICS Format: GRAPHICS arithmetic e xpression
Examples: GRAPHICS 2

100 GRAPHICS 5+16
110 GRAPHICS 1+32+16
120 GRAPHICS 8
130 GRAPHICS 0
140 GRAPHICS 18

Use GRAPHICS to select one of nine graphics modes (0 through 8). Table 12-2 sum
marizes the nine modes and characteristics of each. GRAPHICS 0 is a full-screen text
display. Characters can be printed in GRAPHICS 0 by using the PRINT statement
without an IOCBg following the keyword PRINT. GRAPHICS 1 through GRAPHICS 8
are split-screen modes. These split-screen modes actually mix four lines of GRAPHICS
0 at the bottom of the television screen. This text window uses the PRINT statement.
To print in the large graphics window in GRAPHICS 1 and G RAPHICS 2, use PRINTE, .
The following program will print in the graphics window in GRAPH ICS 1 or GRAPHICS
2:

100 GRAPHICS 1
110 PRINTff6, AT(3,3);"GRAPHICS WINDOW TEST"
120 PRINT "TEXT WINDOW"
130 END

Craphics 65



Adding +16 to GRAPHICS 1 through CRAPHICS S will override the text window and
make a full screen graphics mode. If you run the following program without line 140,
the screen will return to graphics mode 0. The screen returns to graphics mode 0 when
STOP or END terminate the full screen graphics mode.

110 GRAPHICS 2 + I6
120 PRINTE, AT(3,3);"WHOLE SCREEN IS"
130 PRINTff6, AT(4,4);"CRAPHICS 2"
140 GOTO 140

Normally the screen wil l be c leared of al l p revious graphics characters when a
GRAPHICS n statement is encountered. Adding + 32 prevents the graphics command
from clearing the screen.

Graphics modes 3 through 8 are point-plotting modes. To draw point graphics you
need to use the COLOR n and PLOT statements. Use of the SETCOLOR statement will
allow you to change the default colors to any one of 128 different color/luminance
combinations. Point-plotting modes are explored in the example at the end of this sec
tion.

To return to CRAPHICS 0 in direct mode, type GRAPHlCS 0 and press the gggQ key.

COLOR Format: COLOR n
Example: 100 COLOR 4

COLOR is paired with SETCOLOR to write up to four colors, called playfields, on the
television screen. You must have a COLOR statement in CRAPHICS 3, 4, 5, 6, 7, and 8
in order to plot a color. When you use the COLOR statement without a SETCOLOR
command you will get the default colors. For example, using Table 12-1, the default
colors for CRAPHICS 3 are: SETCOLOR 4 is orange, SETCOLOR 5 is light green, SET
COLOR 6 is dark blue, and SETCOLOR 8 is black.

Shown below are the SETCOLOR - COLOR pairings by graphics mode:

GRAPHICS 3, 5, 7

SETCOLOR 4,hue,lum goes with COLOR 1
SETCOLOR 5,hue,lum goes with COLOR 2
SETCOLOR 6,hue,lum goes with COLOR 3
SETCOLOR S,hue,lum goes with COLOR 0

GRAPHICS 4, 6
SETCOLOR 4,hue,lum goes with COLOR 1
SETCOLOR S,hue,lum goes with COLOR 0

GRAPHICS 8

SETCOLOR 5,hue,lum goes with COLOR 1
SETCOLOR 6,hue,lum goes with COLOR 2

Note: You must always have a COLOR statement to plot a playfield point, but SET
COLOR is only necessary to make a color other than a default color.

66 Craphics



SETCOLOR Format: SETCOLOR register,hue,luminance

Example. 330 SETCOLOR 5,4,10

The SETCOLOR statement associates a color and luminance with a register.

register Color registers 0,1,2,3 are fo r p l ayer-missiles 0,1,2,3
respectively. Color registers 4,5,6,7 are for playfield colors
assignments. Register 8 is always the background register.

hue Color hue number 0-15. (See table below.)

Iuminance Color luminance (must be an even number between 0 and
14; the higher the number, the brighter the display; 14 is
almost pure white).

TABLE 12-1
THE ATARI HUE (SETCOLOR COMMAND) NL)MBERS AND COLORS

Colors SETCOLOR Hue SETCOLOR Hue
Number Decimal Number Hex

Gray 0
Light orange (gold)

Orange

Red-orange

1 2 3

Pink

Purple
4 5

0 1 2 3 4 5

Purple-blue
Azure blue

6 7

Sky blue

Light blue

6 7 9

8 9

Turquoise 10
Green-blue 11

A B

Green 12 C
Yellow-green 13

Orange-green 14

Light orange 15

D E F

Graphics 67



PLOT Formats: PLOT X, Y

PLOT X,Y TO PLOT X,Y
Examples: 100 PLOT 12,9

112 PLOT 6,9 TO 3,3

Use PLOT to draw single-point plots, lines, and outline objects on the television screen.
PLOT uses an X-Y coordinate system for specifying individual plot points. Give a
number from 0 to whatever the maximum is for the current mode, X first then Y.

0,0

You can "chain" the PLOT instruction. That is, one plot point can be made to draw to
the next plot point. The result of chaining two PLOT points is a straight line. It is also
easy to outline an object using chained plots. To chain plots, use the word TO between
PLOT X,Y's.

Example: 90 COLOR 1 ! You must use a COLOR instruction before PLOT
100 PLOT 5,5 TO 5,15 ! Draws a straight line
120 PLOT 5,5 TO 12,12 TO 2,12 TO 5,5 ! Draws triangle outline

Here is an example program which shows PLOT, COLOR, and SETCOLOR at work:

100 GRAPHICS 3+16 !THE 16 GETS RID OF TEXT WINDOW
110 SETCOLOR 5,4,8 ! PINK
120 SETCOLOR 6,0,4!GRAY
130 SETCOLOR 8,8,6 ! !3LUE
140 COLOR 1 !COLOR 1 GOES WITH DEFAULT ORANGE
150 PLOT 5,5 TO 10,5 TO 10,10 TO 5,10 TO 5,5 ! IN ORANGE
160 COLOR 2 ! PINK
170 PLOT 7,7 TO 12,12 TO 2,12 TO 7,7
180 COLOR 3 ! GRAY
190 PLOT 2,7 TO12,7
200 GOTO 200

FILL Format: FILL x,y TO x,y
Example: 550 FILL 10,10 TO 5,5

FILL fills an area with the color specified by the COLOR and SETCOLOR statements.
The FILL process sweeps across the television screen from left to right. FILL stops paint
ing and starts its next sweep when it bumps into a PLOT line or point. The line on the
left-hand side of a fi!led object is specified by the FILL statement itself.

An example will show how FILL operates. First the outline of three sides of a box are
specified. PLOT 5,5 TO 20,5 TO 20,20 TO 5,20 makes the top, right side, and bottom of
the box. Make the left side and FILL with the statement FILL 5,5 TO 5,20.

68 Graphics



Example:

5,5 20, 5

5, 20 20, 20

The top, right, and bottom of the box (dashed lines) is formed with PLOT 5,5 TO 20,5
TO 20,20 TO 5,20. The box is filled with the statement FILL 5,5 TO 5,20.

10 CRAPHICS 5
20 SETCOLOR 4,12,8! Register 4, green, medium brightness
30 COLOR 'I !COLOR 1 is paired with SETCOLOR 4 in CRAPHICS 5
40 PLOT 5,5 TO 20,5 TO 20,20 TO 5,20
50 FILL 5,5 TO 5,20
60 END

It is worthwhile to carefully review the FILL process. Line 40 in the above example
makes three sides of a box. Then the FILL statement, line 50 draws the left side and fills
the box. The F ILL process scans from the F I LL line to the right until it reaches the PLOT
lin es.

CLS Format: CLS ~ background reg ister o p t i on~
Example: CLS

110 CLS
220 CRAPHICS 3: CLS 8C5
330 CLS 25

CLS clears screen text areas and sets the background color register to the indicated
value, if present. In GRAPHICS 0 and GRAPHICS 8 the optional number after CLS
determines the border color and luminance. In CRAPHICS 1, 2, 3, 4, 5, 6, 7 the optional
number following CLS determines the background color and luminance.

TABLE 12-2
GRAPHICS MODES AND SCREEN FORMATS

R OWS - ROW S  Number RAM
Graphics M o de Split Ful l o f Requir e d
Mode Type Columns S c reen S cree n Colors (B y tes)

TEXT 40 24 992
TEXT 20 20 24 674
TEXT 20 10 12 424

G RAPHICS 40 20 24 434

GRAPHICS 80 40 48 694
GRAPH ICS 80 40 48 1174

CRAPHICS 160 80 96 2174

CRAPHICS 160 80 96 4198
C RAPHICS 320 160 192 8112

Craphics 69



TABLE 12-3

CHARACTERS IN GRAPHICS MODE 1 AND 2

POKE POKE SETC OLOR SETCOLOR SETCOLOR SETCOLOR
7 56,224 756 ,22 6 4 5 6 7

H 32 160 128

5 Q O 33 161 129

D O U O GI

34 162 130

R5 35 163 131

R5 36 132

Q 5
37 165 133

38 166 134

R 8 O K 39 167 135

168 136

Q R5
H 41 169 137

CI 42 10 170 138

55 R Q 43 171 139

S 44 12 172 140

R 8 Q 45 13 173 141

b 5 H
46 14 174 142

d Q El
47 15 175 143

48 16 176 144

O 49 17 177 145

5
9 Q O

50 18 178 146

5 EE
19 179 147

52 20 180 148

8 ER
CI 53 21 181 149

O CI
54 22 182 150

Q Q Q R 8 8

55 23 183 151

56 24 184 152

O 57 25 185 153

I3 58 26 186 154

H Q
59 27 187 155

60 28 188 156

Q 8 8 Q
29 189 167

62 30 190 168

70 Craphics



fZZ lZ I.

ZZZ 9ZL

fSZ IZZ SZ I.

Z5Z OZZ Z6

LSZ l6

OSZ 81Z ZZL

6t'Z 68

8t'Z 9 I.Z OZ I. 88

lt'Z SLZ l8

9t'Z t' LZ 98

StZ

ZLZ 911

Zt'Z 01Z Z8

60Z

Ot'Z 80Z ZLL 08

6fZ ZOZ

8f'Z 90Z Ol l 8L

SOZ 60I.

9fZ t'OZ 801 9L

SfZ fOZ LOL

ZOZ 901

ffZ LOZ SOL

ZfZ t'01 ZL

LfZ 66l f01

Of'Z 86I. ZOL OZ

6ZZ l6l. LOI. 69

8ZZ

ZZZ S6L 66 l9

9ZZ 86

5Z E'6L

261 96

69L l6L



The following short program demonstrates and confirms Table 12-3, This program
prints the ATASCII code for a character in the text window and the character itself in
the graphics window. Every time you press the ~ ke y , a new character appears.
The reason SETCOLOR 4,0,0 is the same as SETCOLOR 8,0,0 is to avoid a screen filled
with hearts. Another way to accomplish this is to lower the character set into RAM (us
ing MC)VE) and redefine the heart character as 8 by 8 zeros. See Appendix C, Alternate
Character Sets, for an example of lowering and redefining the character set. The
special character set is shown in the program as it is now written. To see the standard
character set, just delete line 20. The CRAPHICS 2 instruction automatically pokes
756,224.

10 CRAPHICS 2
20 POKE 756,226
30 SETCOLOR 8,0,0
40 SETCOLOR 4,0,0!AVOID SCREEN HEARTS
50 SETCOLOR 5,4,6! PINK
60 SETCOLOR 6,12,2! CRE EN+ TEXT WINDOW
70 SETCOLOR 7,9,6! LICHT BLUE
80 A$= INKEY$
90 IF A$="" THEN 80
100 ON ERROR COTO150
110 PRINT g6, AT(6,6);CHR$(X)
120 PRINT X
130 X=X+1
140 COTO 80
150 RUN!REPEATS WHEN 256 REACHED

POINT CRAPHICS 3 through 8 plot individual points on your television screen. The number
PLOTT INC following CRAPHICS determines the size of the points you plot. CRAPHICS 3 has the

MODES largest plot points. The following program can be used in CRAPHICS 3 through 8 by
changing line number 10 to the appropriate graphics number. Note that you must in
clude line 20 since it indicates that you are using COLOR1 as a default (see Table12-4
for default colors).

10 CRAPHICS 3!CAN BE CRAPHICS 3 THROUCH 8
20 COLOR 1 !YOU WANT DEFAULT COLOR — ORANGE
30 PRINT "TYPE TWO NUMBERS — SEPARATE THE TWO"
40 PRINT "NUMBERS WITH A COMMA"
50 PRINT "PLOT X,Y"
60 INPUT X,Y
70 PLOT X,Y
80 COTO 30

If you enter and run the above program you will see plot point 5,5 by typing 5,5 and
pressing the gggQ key. The boundaries and middle of CRAPHICS 3 are as follows.

72 Craphics



0,0 39, 0

19,9

0,19 39,19
four Iines of text window...

If you insert a new statement — statement 15 — 15 SETCOLOR 4,4,8 you will get
large, pink dots instead of the default orange. This change to the original plotting pro
gram gives you pink plot points because SETCOLOR 4,x,x aligns with COLOR 1 in
GRAPHICS 3. You can also make the text window at the bottom of the screen go away
by changing statement 10 to 10 GRAPHICS 3+16.

TABLE 124
DEFAULT COLORS, MODE, SETCOLOR, AND COLOR

Default Mode or Setcolor Color Descri ption
Colors Condition Register n and Comme nts

GRAPHICS 0 4 Register
Light blue 5 holds Character luminance
Dark blue

6 7 character (same as background)
Character

Black Text Mode 8 Border

Orange 4 Character
Light green G RAPHICS 1,2 5 Character
Dark blue 6 Character
Red 7 Character
Black Text Modes 8 Character

Background, border

Orange 4 Graphics point
Light green GRAPHICS 3,5,7 5 Graphics point
Dark blue

6 7
Graphics point

Black 4-color modes 8 Background, border

Orange G RAPHICS 4 Graphics point
4 and 6 5

6 7

Black 2-color modes 8 Background, border

GRAPHICS 8 4
Light blue
Dark blue 5 6 7

Black 1 color,2 lums. 8 Border

Craphics 73



Note: Player-missile graphics color is SETCOLOR register, color, luminance, where
register=0,1,2,3 and determines color of player-missile 0,1,2,3, respectively. Player
missile graphics will work in all graphics modes,

The following programs will work in GRAPHICS1 or GRAPHICS 2. The programs show
the alternate basic character set and special character set (POKE 756,226). To restart
these two programs, press the gßg key and type RUN followed by gggg.

2 REM KEYBOARD TYPEWRITER
10 GRAPHICS 2
20 SETCOLOR 4,0,0!to avoid screen full of hearts in lowercase
30 PRINT "TYPE Green/Blue/Red (G/B/R)"
40 INPUT "AND PRESS RETURN> "; C$
50 IF C$="G" THEN K=32
60 IF C$="B" THEN K=128
70 IF C$ ="R" THEN K =160
80 PRINT "TYPE UPPER/LOWER (U/L)"
90 INPUT "AND PRESS RETURN? "; B$
100 IF B$="U" THEN 120
110 POKE 756,226
120 PRINT "NOW TYPE — ALPHA + CTRL KEYS"
130 A$= INKEY$
140 IF A$="" THEN 130
150 A=ASC(A$)+ K!32 is green, 128 is blue, 160 is red
160 PRINT A
170 PRINT¹6, CHR$(A);
180 GOTO 130

100 REM TWINKLE
110 GRAPHICS 16+ 2
120 X= RND(36)
130 ON ERROR GOTO150
140 PRINT¹6, TAB(X);"*"
150 GRAPHICS 32+16+2
160 RESUME

74 Craphics



PLAYER-MISSILE CRAPHICS

PLAYERS AND The following BASIC commands are tools to help you construct and move players and
MISS ILES missiles:

MOVE instruction
OPTION (PLM1 or PLM2)
VARPTR (PLM1 or PLM2)
SETCOLOR 0 or 1 or 2 or 3

MAKINC A Cut a strip of paper about 2 inches wide from an 8 x10 inch sheet of paper. Now draw
PLAYER an 8-bit-wide "byte" down the strip of paper.

OUT OF PAPER

Hex &08 drawn on 8-bit strip.
Hex &14 drawn on 8-bit strip.
Hex &22 drawn on 8-bit strip.
Hex &41 drawn on 8-bit strip.

An upside down V is shown on the strip in binary and hex. This strip of paper is like a
player. If you take the player strip and lay it vertically down the middle of the televi
sion screen, you have "positioned it with the horizontal position register." When you
move the strip right and left, you are "poking new locations into the horizontal position
register" to get that movement.

The MOVE instruction is used to move the player-missile object up and down the
player-missile strip. Your paper strip can serve to demonstrate how the MOVE instruc
tion works. Let's say that you have put the upside down V on your paper strip with a
pencil that has an eraser. To move the object it is necessary for you to erase the whole
object and rewrite it elsewhere on the strip.

As you can imagine, vertical movement is slightly slower than horizontal movement. It
is slower because it takes only a single poke to the horizontal position register for
horizontal movernent, but many erasures and redrawings are necessary to move an ob
ject vertically.

In the actual MOVE instruction you state the lowest address of the object you want to
move; then state the lowest address of the new area to which you want to move the
object; and lastly, state how many bytes you want moved. Hence the format: MOVE
from a d dress, to a ddress, no. o f byt e s.

Player-Missile Craphics 75



HOW THE ATARI MICROSOFT BASIC INSTRUCTIONS ASSIST
PLAYER-MISSILE GRAPHICS

The OPTION (PLM1) zeros out and dedicates a single-line resolution player-missile
area in RAM. OPTION (PLM2) is for double-line player-missile resolution.

VARPTR(PLM1 or PLM2) points to the beginning memory location of the player-missile
area in RAM. This is the point from which you must figure your offset or displacement
to poke your image into the correct area. For example, the starting address (top of
television screen) for player 0 in double-line resolution is VARPTR(PLM2)+128. In
double-line resolution each player is128 bytes long. So if you wanted to poke a straight
line in the middle of player 0, the poke would be POKE VARPTR(PLM2)+192,8rFF.

The SETCOLOR instruction gives the register, color, and luminance assignments. In
ATARI Microsoft BASIC the registers 0, 1, 2, and 3 are used for player-missiles 0, 1, 2,
and 3. It is only necessary to specify SETCOLOR 0,5,10 to set player-missile 0; the CO
LOR instruction is not used.

Remember that you must poke decimal location 559 with decimal 62 for single-line
resolution or with decimal 46 for double-line resolution. You must also poke decimal
location 53277 with decimal 3 to enable player-missile display.

You can use player-missile graphics in all modes. Missiles consist of 2-bit-wide "strips."
Missiles 0, 1, 2, 3 are assigned the same colors as their associated player. Thus, when
SETCOLOR sets the color of player 1 to red, it also sets missile 1 to red.

The terms player and missile are derived from the animated graphics used in ATARI
video garnes. Player-missile binary tables reside in player-missile graphics RAM. This
RAM accommodates four 8-bit players and four 2-bit missiles (see Figure 13-1). Each
missile is associated with a player, unless you elect to combine all missiles to form a
fifth, independent player (see "Priority Control").

A player, like the spaceship shown in Figure 13-2, is displayed by mapping its binary
table directly onto the television screen, on top of the playfield. The first byte in the
table is mapped onto the top line of the screen, the second byte onto the second line,
and so forth. Wherever 1's appear in the table, the screen pixels turn on; wherever 0's
appear, the pixels remain off. The pattern of light and dark pixels creates the image.

You can display player-missile graphics with single-line resolution (use OPTION(PLM1))
or double-line resolution (OPTION(PLM2)). If you select single-line resolution, each
byte of the player will be displayed on a single scan line. If you choose double-line
resolution, each byte will occupy two scan lines and the player will appear larger than
in single-line resolution. Each player is 256 bytes long with single-line resolution, or128
bytes long with double-line resolution. Line resolution only needs to be programmed
once. The resolution you choose will apply to all player-missile graphics in your pro
gram. The Player-Missile Graphics Demonstration Program included in this section is
an example of double-line resolution programming.

Player-missile graphics give you considerable flexibility in programming animated
video graphics. Registers are provided for player-missile color, size, horizontal position
ing, player-playfield priority, and collision control.

76 Pfayer-Ml ssile Craphrcs



Double-Line Single-Line
Resolution Resolution

PMIIASE PMBASE

Register

Unavailable

VARPTR (PLM2) Unavailable
Missiles M3 M 2 M1 MO

+ 128
Player 0

+ 256
Player 1

+ 384 VARPTR (PLM1)
Player 2

+ 512 M3 M2 M1 MO Missiles
Player 3

+ 640 + 256

Player 0

+ 512

Player 1

+ 768

Player 2

+ 1024

Player 3

+ 1280

Figure 13-1 Player-Missile Craphics RAM Configuration

G RAP HIC I I I NARY HEXADE CI MAL DEC IMA L
REPRESENTATION R EPRESENTATION REPRESENTATION REPRESENTATION

00000000 0 0
10000001 81 129
10011001 99 153
10111101 BD 189
11111111 FF 255
10111101 BD 189
10011001 99 153
00000000 0 0

Figure 13-2 Mapping the Player

Player-Missile Craphics 77



COLOR The ATARI 400 and ATARI 800 Computers have nine registers for user control of

CONTROL player-missile, playfield, and background color:

TABLE 13-1

SETCOLOR REGISTER ASSIGNMENTS

SETCOLOR Register,Color,Luminance Fun c t ion

SETCOLOR O,color,luminance Color-luminance of Player-Missile 0
SETCOLOR 1,color,luminance Color-luminance of Player-Missile 1
SETCOLOR 2,color, luminance Color-luminance of Player-Missile 2
SETCOLOR 3,color,luminance Color-Iuminance of Player-Missile 3
SETCOLOR 4,color,luminance Color-luminance of Playfield 0
SETCOLOR 5,color,luminance Co lor-luminance of Playfield 1
SETCOLOR 6,color,luminance Color-luminance of Playfield 2
SETCOLOR 7,color,luminance Color-luminance of Playfield 3
SETCOLOR B,color,luminance Color-luminance of background

Players are completely independent of the playfield and of each other. Missiles share
color registers with their players and hence are the same color as their players. If you
combine missiles to form a f i fth player, they assume the color of playfield color
luminance register 3 (COLPF3).

To program color, specify the register, the hue, and the luminance. Use the SETCOLOR
command, See lines 20 and 100 of the Player-Missile Graphics Demonstration Program
for examples. See also "Craphics," Section 12.

Each color-luminance register is independent. Therefore, you could use as many as
nine different colors in a program, depending upon the graphics mode selected. All
registers cannot be used in all graphics modes (see "Graphics," Section 12).

SIZE CO N T R O L Five s ize-control registers are provided — four for the players and one for all four
missiles:

TABLE 13-2
REGISTERS CONTROLLING WIDTH OF PLAYER-MISSILES

Size Address
Register Hex Dec Function

SIZEPO DOOB 53256 Controls size of Player 0
SI ZE P1 D009 53257 Controls size of Player 1
SI ZE P2 DOOA 53258 Controls size of Player 2
SIZEP3 DOOB 53259 Controls size of Player 3
SI ZE M DOOC 53260 Controls size of missiles

Size-control registers allow you to double or quadruple the width of a player or missile
without altering its bit resolution. To double the width, poke a 1 into the size register;
to quadruple the width, poke a 3; and to return a player or missile to normal size, poke
a 0 or 2. An example is given in line 80 of the Player-Missile Craphics Demonstration
Program.

78 Player-Missile Craphics



POSITION AND v<RncAr
MOVEMENT

Vertical position is set when you specify the location of the player-missile in player
missile graphics RAM. The lower you place the player-missile in RAM, the higher the
image will be on the television screen. A positioning technique is illustrated by lines
120 and 200 of the Player-Missile Graphics Demonstration Program at the end of this
section.

To program vertical motion, use the MOVE command (see lines 350 and 390 of the
Player-Missile Graphics Demonstration Programl. Since the MOVE command does not
zero the old location after the move, an extra zero at each end of the player is used to
"cleanup" as the player is being moved. Give the current position of the player in
RAM, the direction of the move through RAM (forward = + , backward = — l, and the
number of player bytes to be moved. Each byte of the player must be moved. Follow
ing the MOVE command, increment or decrement the vertical position counter (see
lines 360 and 400 of the Player-Missile Graphics Demonstration Programl.

HORIZONTAL

Each player and missile has its own horizontal position register, so players can move in
dependently of each other, and missiles can move independently of their players.

TABLE 13-3
PLAYER-MISSILE HORIZONTAL POSITION REGISTERS

Position Address
Register Hex Dec Function

HPOSPO DOOO 53248 Horizontal position of Player 0
HPOSP1 D001 53249 Horizontal position of Player 1
HPOSP2 D002 53250 Horizontal position of Player 2
HPOSP3 D003 53251 Horizontal position of Player 3
HPOSMO D004 53252 Horizontal position of Missile 0
HPOSM1 D005 53253 Horizontal position of Missile 1
HPOSM2 D006 53254 Horizontal position of Missile 2
HPOSM3 D007 53255 Horizontal position of Missile 3

To set the position of a player or missile, poke its horizontal position register with the
number of the position. To program horizontal movement, simply change the number
stored in the register. See fines 100 and 180 of the Player-Missile Graphics Demonstra
tion Program for examples.

A horizontal position register can hold 256 positions, but some of these are off the left
or right margin of the television screen. A conservative estimate of the range of player
visibility is horizontal positions 60 through 200. The actual range will depend upon the
television set.

DIAGONAL

Horizontal and vertical moves can be combined to move the player diagonally. Set the
horizontal position first, then the vertical position. See fines 270 through 390 of the
Player-Missile Graphics Demonstration Program.

Player-Missile Craphics 79



PRIOR)TY The Priority Control Register (PRIOR,RD01 B; OS shadow GPRIOR,R26F) enables you

CONTROL to select player or playfield color register priority and to combine missiles to form a
fifth player.

PRIORITY SELECT

You have the option to specify which image will have priority in the event player and
playfield images overlap. This feature enables you to make players disappear behind
the playfield and vice versa. To set the priority, poke one of the following numbers into
the Priority Control Register:

1 = A l l p layers have priority over all playfields.
2 = P layers 0 and 1 have priority over al l p layfields, and all playfields have

priority over players 2 and 3.
4 = A l l p layfields have priority over all players.
8 = P layf ields 0 and 1 have priority over all players, and all players have priority

over playfields 2 and 3.

ENABLE FIFTH PLAYER

Setting bit D4 of the Priority Control Register causes all missiles to assume the color of
Playfield Register 3 (&2C7, dec. 711l. You can then combine the missiles to form a fifth
player. If enabled, the fifth player must still be moved horizontally by changing all
missile registers (&D004 through 8 D007l together.

COLL I S ION Collision control enables you to teil when a player or missile has collided with another
CONTROL graphics object. There are 16 collision control registers.

TABLE 13-4
COLLISION CONTROL REGISTERS FOR PLAYER-MISSILES

Collision Address
Register Hex Dec Function

MOPF DOOO 53248 Missile 0 to playfield
M1 PF D001 53249 Missile 1 to playfield
M2PF D002 53250 Missile 2 to playfield
M3PF D003 53251 Missile 3 to playfield
POPF D004 53252 Player 0 to playfield
P1 PF D005 53253 Player 1 to playfield
P2PF D006 53254 Player 2 to playfield
P3PF D007 53255 Player 3 to playfield
MOPL D008 53256 Missile 0 to player
M1 PL D009 53257 Missile 1 to player
M2PL DOOA 53258 Missile 2 to player
M3PL DOOB 53259 Missile 3 to player
POPL DOOC 53260 Player 0 to player
Pl PL DOOD 53261 Player 1 to player
P2PL DOOE 53262 Player 2 to player
P3PL DOOF 53263 Player 3 to player

80 Player-Missile Craphics



ln each case, only the rightmost 4 bits of each register are used. They are numbered 0,
1, 2, and 3 from the right and designate, by position, which playfield or player the rele
vant player or missile has collided with. A one in any bit position indicates collision
since the last HITCLR.

CLEARING COLLISION REGISTERS

All collision registers are cleared at once by writing a zero to the HITCLR register
(8 D01 E, dec. 53278).

PLAYE R-MISS I LE The following ATARI Microsoft BASIC program creates a player (spaceship) that
C RAPHICS shoots missiles and can be moved in all directions with the joystick. Connect a joystick

DEMONSTRA controller to CONNECTOR JACK 1 on the front of your ATARI Home Computer,

TION PROGRAM 05! DOUBLE-LINE RESOLUTION PLAYER AND MISSILE
10 GRAPHICS 8
20 SETCOLOR 6,0,0
30 X = 130
40 Y = 70
50 STICKO = 8r278
60 OPTION PLM2
70 POKE 559,46
80 POKE 8 DOOC,1
90 POKE 8 D01D,3
100 POKE 8 DOOO,X
110 SETCOLOR 0,3,10
120 FOR J = VARPTR(PLM2)+128+Y TO VARPTR(PLM2)+135+Y:READ A:POKE
J,A
125 NEXT J
130 DATA 0,129,153,1 89,255,189,153,0
140 IF PEEK(8 DülO) = 1 THEN 220
150 SOUND 0,220,12,15, INT(X/30)
160 ZAP = X
170 POKE VARPTR(PLM2)+4+ Y,3
180 POKE KD004,ZAP
190 ZAP = ZAP-12
200 IF ZAP (12 THEN POKE VARPTR(PLM2)+4+ Y,O:GOTO 220 ELSE 180
210! JOYSTICK MOVES
220 A = PEEK(STICKO): IF A = 15 THEN GOTO 140
230 IF A = 11 THEN X = X-1
240IFA = 7 TH EN X = X + 1
250 POKE KDOOO,X
260 IF A = 14 THEN GOTO 350 ! MOVE UP
270 IF A = 13 THEN GOTO 390!MOVE DOWN
280 ! MOVE D!AGONALLY
290 IF A =10 THEN X = X-1:POKE 8 DOOO,X:GOTO 350
300 IF A = 6 THEN X = X + 1 :POKE 8.DOOO,X:GOTO 350
310 IF A = 9 THEN X = X-1:POKE KDOOO,X:GOTO 390
320 IF A = 5 THEN X = X + 1 :POKE 8 DOOO,X:GOTO 390
330 GOTO 140
340 ! MOV E UP
350 MOVE VARPTR(PLM2)+128+ Y,VARPTR(PLM2)+128+(Y-1),8

Player-Missile Craphics 81



360 Y = Y-1
370 GOTO 140
380!MOVE DOWN
390 MOVE VARPTR(PLM2)+128 %(Y-1),VARPTR(PLM2)+128+ Y,8
400 Y = Y+1
410 COTO 140
420 STOP
430 END

ANNOTATION Line

10 Sets a high-resolution graphics mode with no text window. You can pro
gram player-missile graphics in any graphics mode. See Section 12,
"Craphics" and Table 124.

20 Sets the background color to black, as follows:

6 = B ackground Color-Luminance Register (COLBK, 8 Dül A);
0 = B lack (see Color Table12-1);
0 = Z ero luminance. The luminance value is an even number be

tween 0 and 14. The higher the number, the greater the
luminance and the brighter the color.

30,40 Initializes player position variables X (horizontal) and Y (vertical).

50 Assigns the label STICKO to joystick register 278.

Specifies double-line resolution RAM for the player-missile graphics (see
Figure 13-1). PLM1 would specify single-line resolution.

70 Sets the Direct Memory Access Control Register (DMACTL, 559) for
double-line resolution (46), A 62 would specify single-line resolution.

Note When DMACTL is enabled, the player-missile graphics registers
(CRAFPO-CRAFP3 and CRAFM) are automatically loaded with data
from the player-missile RAM.

80 Doubles the width of the missile by poking the Size Control Register
(SIZEM, RDOOC) with 1. Poking the register with a 3 would quadruple
the width.

90 Enables the Craphics Control Register (GRACTL, 8 D01D) to display
player-missile graphics (3 enables, 0 disables).

100 Pokes the horizontal position of the player (X = 130 from line 30) into
the player 0 Horizontal Position Register (HPOSPO, &DOOO).

110 Colors the player and missile bright red-orange as follows:

0 = P l ayer-missile 0 Co l o r-Luminance Register (COLPMO,
8 Dül2);

3 = Red-orange (see Color Table 12-1);
10 = L u minance or brightness (see annotation of line 20).

82 Piayer-Missi ie Craphics



120-1 25 Sets variable pointer VARPTR(PLM2) to the player-missile starting ad
dress in player-missile graphics RAM (see Figure 13-1), Pokes data
from line 130 into the player area, VARPTR(PLM2)+128+Y to
VARPTR(PLM2)+135+ Y. The computer uses the data in line130 to
map the spaceship onto the screen (see Figure 13-2).

140 Teils the computer to read the joystick 0 t r igger register (TRICO,
RD010). If the trigger button is not activated (RD010 = 1), the com
puter will go to line 220 and read the joystick position; if the button is
activated (KD010 = 0), the computer will execute lines 150 through
200.

150 Cenerates sound each time the joystick button is pressed. Sound is
programmed as follows:

(1) Select voice. As many as four voices (0 to 3) can be used, but
each voice requires a separate SOUND statement.

(2) Choose pitch from Table14-1. The larger the number, the lower
the pitch.

(3) Set distortion or noise level, using an even number between 0
and 14. A 10 gives a pure tone; 12 gives a buzzer effect.

(4) Set volume, an odd number between 1 and 15. The larger the
number, the louder the sound.

(5) Set duration of sound per second (20 = 20/60 or 'A second).

160 Sets the horizontal position of the missile (ZAP) equal to the horizon
tal position of the player (X).

170 Turns on the screen pixels corresponding to the missile 0 RAM area
[VARPTR(PLM2)+4+ Y] to display the missile (3 = ON; 0 = O FF).

180 Pokes the horizontal position of the missile (ZAP = X from line 160)
into the missile 0 horizontal position register (HPOSMO, KD004).

190 Decrements the missile 0 horizontal position counter by 12 to create
a horizontal "line of fire" from the player.

200 If the missile's horizontal position is less than 12 (off the left side of
the screen), the computer pokes 0's into the missile RAM area to clear
it and goes to line 220. If the missile's horizontal position is 12 or
greater, the computer pokes the new hrizontal position into HPOSMO
(register KD004 in line 180l and decrements the horizontal position
counter by 12 (line 190).

220 Teils the computer to read the STICKO register and find the position
of the joystick(see Figure13-3). If the position is15(neutral), the com
puter goes to line 140 and reads the joystick trigger register (RD010).

230/250 If the joystick is moved left (11), the computer decrements the
horizontal position counter and pokes the spaceship's new horizontal
position into the HPOSPO register (RDOOO).

Player-Missile Craphics 83



240/250 If the joystick is moved right (7), the computer increments the
horizontal position counter and pokes the spaceship's new horizontal
position into HPOSPO,

260 If the joystick is moved up (14), the computer moves the spaceship
back one byte in player-missile RAM (line 350). Each of the 8 bytes
that comprise the spaceship must be moved back. When the move is
completed, the computer decrements the vertical position counter
(line 360).

270 If the joystick is moved down (13), the computer advances the
spaceship one byte in player-missile RAM (line 390) and increments
the vertical position counter (line 400).

290 — 320 If the joystick is moved diagonally (10, 6, 9, or 5), the computer ex
ecutes a horizontal move (after resetting the horizontal position
register), makes a vertical move (line 350 or 390), and resets the ver
tical position counter (line 360 or 400).

14

10

15

13

Figure 73-3 Joystick Controller Positions

84 Player-Missile Craphics



14

SOUND

SOUND Format: SOUND voice, frequency, distortion, volume, duration
Examples: 120 SOUND 2,204,10,12,244

100 SOUND 0,122,8,10

Voice. There can be up to four voices specified by the numbers 0 through 3.

Frequency. From 0-255 (see Frequency Chart, Table 14-1l.

Distortion, The default is a pure tone. Even numbers between 0 and 14 define the
distortion. A 10 is used to create a "pure" tone. A 12 gives a buzzer sound.

Volume, A number between 0 and 15. Use a 1 to create a sound that is barely audible.
Use a15 to make a loud sound. A value of 8 is considered normal. If more than one
sound statement is being used, the total volume should not exceed 32. This will create
an unpleasant "clipped" tone.

Duration. Duration is given in1/60 of a second. The duration indicates how long a tone
or noise will last. If you do not specify a number for the duration parameter, the tone
will continue until the program reaches an END statement, another RUN statement, or
until you type a second SOUND statement using the same voice number followed by
0,0,0. You can also stop the tone by pressing the gang key.

Example: SOUND 2,204,10,12
SOUND 2,0,0,0

Sound 85



TABLE 14-1
FREQUENCY CHART OF PITCH VALUES

Notes Hex Decimal

HIGH NOTES C 1D 29
B 1F 31
Ag or Bb 21 33
A 23 35
Ggor Ab 25 37
G 28 40
Fg or Gb 2A 42
F 2D 45
E 2F 47
Dgor E 32 50
D 35 53
Cg or Db 39 57
C 3C 60
B 40 64
Amor B 44 68
A 4B 72
Gg or Ab 4C 76
G 51 81
Fg or Gb 55 85
F 5B 91
E 60 96
Dg or Eb 66 102
D 6C 108
Cg or Db 72 114

MIDDLE C C 79 12'1
B 80 128
Ag or Bb 88 136
A 90 144
Gg or Ab 99 153
G A2 162
Fg or Gb AD 173
F B6 182

LOW NOTES E C'1 193
Dß or Eb CC 204
D D9 217
Cg or Db E6 230
C F3 243

86 Sound



Example Program:

NIGHT LAUNCH

10 CRAPHICS 2+16
20 SETCOLOR 4,8,4
30 PRINTÖ6, AT(3,3);"NIGHT LAUNCH"
40 FOR DELAY=1 TO 1000;NEXT
50 GRAPHICS 2+16
60 PRINTÖ6, AT(3,3);"AT THE CAPE"
70 FOR DELAY=1 TO 1000:NEXT
80 GRAPHICS 0
90 POKE 752,1
100 SE TCOLOR 6,0,0
110 FOR T=1 TO 24:PRINT "":NEXT
120 PRINT TAB(11);CHR$(8);CHR$(10)
130 PRINT TAB(11);CHR$(22);CHR$(2)
140 PRINT TAB(11);CHR$(22);CHR$(2)
150 PRINT TAB(11);CHR$(1 3);CHR$(1 3)
160 PRINT TAB(11);CHR$(6);CHR$(7)
170 FOR VOL=15 TO 0 STEP -1
180 SOUND 2,77,8,VOL
190 PRINT CHR$(155)!MOVES ROCKET UP
200 FOR R=1 TO 200:NEXT R
210 NEXT VOL
220 END

The above program is a demonstration of the SOUND statement. It decreases (by a
loop) the volume of a distorted sound. The sound effect resembles a rocket taking off
into outer space.

Sound 87



15

GAME CONTROLLERS

In ATARI Microsoft BASIC, the garne controllers are sensed with the PEEK instruction.
The controllers are attached directly to the four controller jacks in the front of the
ATARI Home Computer. The PEEK locations can be given the same names listed
below or you can give them short variable names. A complete list of PEEK locations is
given in Appendix E.

JOYSTICK CONTROLLERS

KEYBOARD CONTROLLERS

PADDLE CONTROLLERS

Figure 15-1 Came Controllers

PADDLE The following example program senses and prints the status of paddle controller 0 (first
CONTROLLERS paddle in leftmost port). This PEEK can be used with other functions or commands to

"cause" further actions like sound, graphics controls, etc. An example is the statement
IF PADDLE(0) )14 THEN GOTO 440. Peeking the paddle address returns a number be
tween 1 and 228, with the number increasing in size as the knob on the controller is
rotated counterclockwise (turned to the left).

Example of initializing and using PEEK for PADDLE(0):

10 PADDLE(0) =624
20 PRINT PE EK(PADDLE(0))
30 COTO 20

PADDLE number and PEEK locations (decimal addresses):

PADDLE(0) = 624
PADDLE(1 ) = 625
PADDLE(2) = 626
PADDLE(3) = 627
PADDLE(4) = 628
PADDLE(5) = 629
PADDLE(6) = 630
PADDLE(7) = 631

Garne Controllers 89



KEYBOARD Veekjng the following addresses returns a status of 0 if you press the trigger button of
CONTROLLERS the designated controller. Otherwise, it returns a value of 1.

Example of using paddle trigger (0):

10 PTRIG(0)=827C
20 PRINT PEEK(PTRIG(0))
30 GOTO 20

PTRIG (paddle trigger) number and PEEK locations (decimal):

PTRI G(0) = 636
PTRIG(1) = 637
PTR I G(2) = 638
PTR IG(3) = 649
PTR I G(4) = 640
PTRIG(5) = 641
PTR I G(6) = 642
PTRIG(7) = 643

JOYSTICK Peeking the joystick locations (addresses) works in the same way as for the paddle con
CONTROLLERS trollers, but can be used with the joystick controller. The joystick controllers are

numbered 0-3 from left to right.

Example of using joystick (0):

10 STICK(0) = 632
20 PRINT PEEK(STICK(0))
30 GOTO 20

STICK (joystick) number and PEEK (decimal) locations:

STICK(0) = 632
STICK(1) = 633
STICK(2) = 634
STICK(3) = 635

Figure 15-2 shows the PEEK number that will be returned for the various joystick posi
tions:

14

10

15

13

Figure 15-2 Joystick Triggers

90 Garne Controllers



Sensing the joystick triggers works the same way as for the paddle trigger buttons. It
can be used with both the joystick and keyboard controllers.

Using joystick trigger (0):

10 STRIG(0) = 644
20 PRINT PEEK(STRIG(0))
30 GOTO 20

STRIG (joystick) number and PEEK (decimal) locations:

STR I G(0) = 644
STRIG(1) = 645
STR I G(2) = 646
STR I G(3) = 647

5 REM THIS PROGRAM WILL SAY "BANG!" WHEN JOYSTICK RED BUTTON IS
6 REM PRESSED
10 IF PEEK(644)=0 THEN? "Bang!"
20 IF PEEK(644)=1 THEN CLS
30 GOTO 10

CONSOLE K EY S The f o l lowing program reads the console keys on the right-hand side of the ATARI
Com puter:

10 POKE 53279,0
20 PRINT PEEK(53279)
30 GOTO 20

Peeking location 53279 (decimal) will return a number that indicates which key was
pressed.

7= No key pressed
6= ~ key pr essed
5= ~ key pr e ssed
3= ~e ~ ke y p ressed

Garne Controllers 91



APPEND X A
SAMPLE PROGRAMS

DISK DIRECTORY PROGRAM

Features used:
· U ser-callableC IOr outines( CIOUSR)( SeeA ppendixN .)
· I n tegers
· V ARPTR f unction
· O NE RROR
· O n-linec omments

10! ROUTINE TO READ
20! DISK DIRECTORY
30!
40 ON ERROR 350
50 OPTION RESERVE(200) !GET SPACE FOR CIOUSR ROUTINES
60 OPEN$1,"D:CIOUSR" INPUT !OPEN FILE
80 ADDR = VARPTR(RESERVE) !CET STARTING ADDRESS OF RESERVED AREA
90 FOR I =O TO 159 !POKE IN CIOUSR ROUTINES
100 GET41,D:POKE ADDR+ I,D
110 NEXT I
120 CLOSE 41
130 PUTIOCB=ADDR !THESE ARE THE PROPER STARTING POINTS
140 CALLCIO= ADDR+61 ! FOR EACH OF THE
150 GETIOCB = ADDR+ 81 ! ROUTINE S
160 DIM IOCB%(10) !DATA FOR ROUTINES TAKES 10 BYTES
1 70 I OC B%(0) = 1 !USE IOCB g1
180 IOCB%(1)= 3 ! DO A CIO "OPEN" CALL
190 IOCB%(2) = 6 ! FOR DIRECTORY INPUT
200 FSPEC$ = "D:*.*" !DIR FILE SPEC
210 ! !PUT ADDRESS OF FSPEC INTO BUFFER
220 Z= VARPTR(FSPEC$) !ADDRESS OF THE STRING FILESPEC
230 Y = VARPTR(IOCB%(3)) !ADDRESS OF THE PROPER ARRAY POSITION
240 POKE Y,PEEK(Z+2) !HIGH ADDRESS BYTE
250 POKE Y+1,PEEK(Z+1) !LOW ADDRESS BYTE
260 ! PUTDATA INTO IOCB
270 Z= USR(PUTIOCB,VARPTR(IOCB%(0)))
280 ! THEN CALL CIO
290 Z= USR(CALLCIO,VARPTR(IOCB%(0)))
300 ! IOCB IS SETUP AND DISK
310 ! IS OPEN...READ DIRECTORY
320 INPUT 41,5$
330 PRINT 5$
340 GOTO 320
350 CLOSE 41
360 END

Appendix A 93



EXPLOSION SUBROUTINE

Feature used: Sound

10! TWO-LINE MAIN PROGRAM
20!AND SUBROUTINE TO PRODUCE
30 ! AN EXPLOSION
40!
50 GOSU B 8000
60 STOP
8000 !
8010 ! EXPLOSION SUBROUTINE
8020 !
8030 SOUND 2,75,8, l4
8040 ICR =0.79
8050 V1 =15:V2 =15:V3=15
8060 SOUND O,NTE,B,V1
8070 SOUND 1,NTE+ 20,8,V2
8080 SOUND 2,NTE+508,V3
8090 V1 = V1 * ICR
8100 V2 = V2 * ( ICR+.05)
8110 V3 = V3 * ( ICR+.08)
8120 IF V3 ) 1 THEN 8060
81 30 SOUND 0,0,0,0,0
8140 SOUND 1,0,0,0,0
8150 SOUND 2,0,0,0,0
8160 RETURN

FANFARE MUSIC EXAMPLE

Feature used: Sound with duration

10!ROUTINE TO GENERATE FANFARE MUSIC
20!TWO-LINE MAIN PROGRAM
30 I
40 GOSUB 8000
50 STOP
8000 !
8010 ! FANFARE MUSIC
8020 !
8030 DUR= 20:V0=181:V1 =144;V2=121:GOSUB 8200
8040 DUR=7:GOSUB 8200
8050 GOSUB 8200
8060 DUR=9:V0=162:V1 =128:V2=108:GOSUB 8200
8070 DUR=15:V0=181:V1 =144:V2=121:GOSUB 8200
8080 VO= 162:V1 =128:V2 =108:GOSUB 8200
8090 V0=153:V1 =128.V2=96:V3=193
8100 For 1=2 TO14
8110 SOUND 3,V0,10,1

94 Appendix A



8120 SOUND 1,V1,10,1
8130 SOUND 2,V2,10,1
8140 SOUND O,V3,10,1
8150 FOR J =1 TO 100:NEXT J
8160 NEXT I
8170 FOR J =1 TO 200:NEXT ]
8180 SOUND 0,0,0,0,0
8185 SOUND 1,0,0,0,0
8190 SOUND 2,0,0,0,0
8195 SOUND 3,0,0,0,0
8197 RETURN
8200 ! SOUND GENERATOR
8210 SOUND O,V0,10,8,DUR
8220 SOUND 1,V1,10,8,DUR
8230 SOUND 2,V2,10,8,DUR
8240 !
8250!NOW STOP THE SOUND
8260 !
8270 SOUND 0,0,0,0,0
8280 SOUND 1,0,0,0,0
8290 SOUND 2,0,0,0,0
8295 FOR J =1 TO 250:NEXT J
8300 RETURN

EXAMPLE OF ATARI PIANO

Features used:
· O PENs tatement
· S tringa rray
· I NKEY$
· S OUND
· O n-linec omments

10! EXAMPLE PROGRAM TO
20! CONVERT YOUR ATARI
30! COMPUTER INTO A PIANO!
40!
50!
60! FIRST, SET UP A 2-OCTAVE
70! SCALE OF KEYS TO PRESS
80 ! AND NOT ES TO PLAY
90 DIM SCALE$(15)
100 DIM PITCH(1 5)
l10! NOW READ THESE INTO
120! THEIR RESPECTIVE TABLES
130 OPEN g1, "D:NOTES.DAT" INPUT
140 FOR 1=1 TO 15
150 INPUT Ii'1,5$,P
160 SCALE$(I) = S$:PITCH(I) = P

Appendix A 95



170 NEXT I
180 CLOSE $1
190 PRINT "PLAY, BURT, PLAY!"
200 !
210! BEGIN TESTING FOR KEYS
220! BEING PRESSED
230 !
240 N$ = INKEY$
250 IF N$='" ' THEN GOTO 240 ELSE GOTO 320
260 !
270! WHEN A KEY IS PRESSED,
280 ! SEE IF ITS ONE ON OUR
290! PIANO KEYBOARD!
300 !
310 !
320 FOR 1 = 1 TO15
330 IF N$ = SCALE$(I) GOTO 380
340 NEXT I
350 GOTO 240 ! NOT A GOOD KEY, TRY AGAIN
360! FOUND A GOOD KEY, PROCESS IT
370 !
380 VOLUME = 8
390 SOUND 1,PITCH(I),10,VOLUME,15
400 GOTO 240
410 F.ND

Sample NOTES.DAT FILE
First item is the key to be pressed.
Second item is the frequency to play.

NOTE.DAT CREATION PROGRAM

10!PROGRAM TO CREATE NOTES.DAT FILE
20!
30 D IM NOTES$(1 5), PITCH(1 5)
40 FOR 1=1 TO 15
50 INPUT "ENTER KEY, FREQ. FOR KEY:";NOTES$(I),PITCH(I)
60 NEXT I
70 OPEN $1,"D:T" OUTPUT
80 FOR I =1, TO 15
90 PRINT $1,NOTES$(I);",";PITCH(I)
100 NEXT I
110 CLOSE $1
120 END

Enter the following values to get a 2-octave scale.

Z, 243
X, 217
C, 193
V, 182
B, 162

96 Appendix A



N, 144
M, 128
A, 121
S, 108
D, 96
F, 91
G, 81
H, 72
J, 64
K, 60

DECIMAL-TO-HEX CONVERSION ROUTINE

Features used:
· S tringa rray
· I n tegers
· O n-linec omments

20!
30! D E C H E X
40 1
50 I
60!
70! PROGRAM TO CONVERT AN INPUT
80!DECIMAL NUMBER TO ITS
90 ! HEXADECIMAL EQUIVALENT
100 !
110 !
130 DIM HEX$(15):DIM HEXBASE(4)
140 FOR I =O TO 15
150 READ HEX$(I)
160 NEXT I
170 FOR 1=0 TO 4
180 READ HEXBASE(l)
190 NEXT I
200 DATA 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
210 DATA 0,4096,256,16,1
220 !
230!GET THE DECIMAL NO.
240 !
250 INPUT "ENTER THE DECIMAL NO.:";DEC
260 IF DEC = 0 THEN 500!STOP
270 !
280!PROCESS EACH HEX DIGIT
290 !
300 FOR J = 1 TO 4
305 IF J =4 THEN ANS% = DEC:GOTO 350
310 ANS% = (DEC/HEXBASE(J)) — .5
320 IF ANS% ( 1 THEN ANS% = 0
330 DEC = DEC — (ANS% * HEXBASE(J))
340 !
350 ! FIND THE HEX DIGIT FOR FIRST POSITION

Appendix A 97



360 FOR I /o = 0 TO15
370 IF ANS% = 1% THEN GOTO 420
380 NEXT 1%
390!IF WE GOT HERE ITS AN ERROR!
400 PRINT" DECIMAL INPUT CAN'T BE COMPUTED"
410 PRINT "PLEASE TRY ACAIN": COTO 250
420 HEXNO$ = HEXNO$ + HEX$(1%)
430 NEXT J
440 !
450!PRINT THE HEX NO. AND GO FOR ANOTHER
460 !
470 PRINT "HEX NO. = " ;HEXNO$
480 HEXNO$ = " "
490 GOTO 250
500 END

VERTICAL FINE SCROLLING

Features used:
· F ines crolling
· V ARPTR
· O PTIONR ESERVEa ndC HR
· U ser-definedd isplay I ist

10 DEFINT A-Z
20 OPTION RESERVE(3000) !AREA FOR SCREEN RAM
30 OPTION CHR1 !AREA FOR DISPLAY LIST
40 ADDR = VARPTR(CHR1)
50 CADDR = VARPTR(RESERVE)
60 VSCROL = &D405 !VERTICAL SCROLL REGISTER
70 LCADDR = 0
80 HCADDR = ((CADDR AND &FFOO)/256) AND &FF
90 FOR I =0 TO 99 !ZERO THE DISPLAY LIST AREA (1 ST 100 BYTES)
100 POKE ADDR+ l,0;NEXT I
110 LADDR = ADDR AND &FF
120 HADDR = ((ADDR AND &FFOO)/256) AND &FF
130 LMSLO = ADDR+ 4 ! A DDRESS OF LOAD
140 LMSHI = ADDR+ 5 ! M EMORY SCAN BYTES (LMS)
150 FOR I=O TO18 !POKE IN NEW DISPLAY LIST
160 READ D!FROM DATA STMTS. 190-210
170 POKE ADDR+ I,D
180 NEXT I
190 DATA &70,&70,&70,&67,800,&00,&27,8 27
200 DATA &27,&27,&27,&27,&27,&27,&27,&27
210 DATA &27,&07,&41
220 POKE ADDR+19,LADDR! LAST 2 BYTES POINT BACK
230 POKE ADDR+20,HADDR !TO TOP OF DISPLAY LIST
240 POKE LMSLO,LCADDR:POKE LMSHI,HCADDR!TELLS SCREEN RAM START
250 K =-1 !250 - 320 LOAD DATA INTO
260 FOR 1=1 TO 300!SCREEN RAM AREA, A PAGE FULL
270 K=K+ 1 :POKE CADDR+K 33 !OF A's AND THEN THE ALPHABET

98 Appendix A



280 NEXT I
290 FOR 1=34 TO 58
300 FOR J =1 TO 20
310 K= K+1:POKE CADDR+ K,I
320 NEXT J,I
330 POKE 822F,O!TURN OFF ANTIC
340 POKE &230,LADDR!TELL IT WHERE MY DISPLAY
350 POKE &231,HADDR ! LIST IS, AND ...
360 POKE &22F,&22!TURN ANTIC BACK ON
370 REM HERE IS THE REAL PROGRAM
380 FOR I =1 TO 15 !380 — 410 DO THE VERTICAL
390 POKE VSCROL,I !FINE SCROLL
400 FOR W=1 TO 30:NEXT W
410 NEXT I
420 CADDR=CADDR+20 !CALCULATE WHERE NEXT LINE OF
430 LCADDR=CADDR AND &FF!SCREEN RAM STARTS
440 HCADDR = ((CADDR AND &FFOO)/256) AND &FF !FOR THE COARSE SCROLL
450 WAIT &D40B,&FF,96!WAIT UNTIL TV VERTICAL LINE COUNTER HITS 96
460 POKE VSCROLO!THEN SET CHARACTERS BACK TO ORIGINAL POSITION
470 POKE LMSLO,LCADDR !AND COARSE
480 POKE LMSHI,HCADDR !SCROLL BY CHANGING LMS BYTE IN DISPLAY LIST
490 GOTO 380

Append/'x A 99



APPENDIX B

GRAPHICS MODES PROGRAMS

MICROBE INVASION EXAMPLE

10 REM MICROBE INVASION
15 REM SPIRAL CREATURES TAKE OVER SCREEN
16 REM 10 PERCENT CHANCE SCREEN CHANGES MODE
17 REM WHEN CREATURE GOES OUT OF BOUNDS
30 RANDOMIZE
40 MODE = RND(8)
50 GRAPHICS MODE+16
60 PIX= RND(15)
70 SETCOLOR O,PIX,6
80 COLOR 1
90 BAK= RND(255)
100 POKE 712,BAK
110 X= RND(150):Y= RND(100)
120 IF X)140 THEN 40
130 Z=2
1 40 NUM= NUM+ 1
150 FOR DOTS=1 TO Z
160 IF NUM=5 THEN NUM= 1
170 ON ERROR GOTO 230
180 PLOT X,Y
190 ON NUM GOSUB 250,270,290,310
200 NEXT
2 10 Z=Z+ 1
220 GOTO 140
230 GRAPHICS MODE+ 32+16!NO TEXT WINDOW, NO SCREEN CLEAR
240 RESUME 60
250 X=X+1:Y= Y+1
260 RETURN
270 X=X+ 1:Y= Y-1
280 RETURN
290 X=X-1:Y= Y-1
300 RETURN
310 X=X-1:Y= Y+1
320 RETURN

Appendix B 101



The following short program makes use of RANDOMIZE and RND to print three.letter
words and three-letter abbreviations of government agencies.

10 RANDOMIZE!Seeds the RND function
20 CRAPHICS 2+ I6
30 X= RND(26)+96!Make first letter
40 Y= RND(5) !Make a vowel for middle letter
50 IF Y=1 THEN Y=97 !Make an A
60 IF Y=2 THEN Y=101 !Make an E
70 IF Y=3 THEN Y=105 ! M ake an I
80 IF Y=4 THEN Y=111 !Make an O
90 IF Y=5 THEN Y=117 !Make a U
100 Z= RND(26)+96!Make last letter
110 PRINTff6, AT(9,3);CHR$(X);CHR$(Y);CHR$(Z)
120 FOR DELAY=1 TO 2000:NEXT
1eo COTO 3O

102 Appendix B



APPENDIX C

ALTERNATE CHARACTER SETS

ATARI Home Computers support several standard character sets that are stored as
part of the Operating System (OS) ROM. These include all the upper- and lowercase
alphabet, numbers, special characters, and a special graphics character set. At times,
however, it is very useful to be able to define your own character set. Applications for
this capability that immediately come to mind include character-driven animation,
foreign language word processing, and background graphics for garnes (for instance, a
map or special playfield).

ATARI Computers and ATARI Microsoft SASIC readily support this ability. This is easy
for the ATARI Home Computer because the OS data base contains a pointer (CHI3AS)
at hex location 2F4 (decimal location 756) which points to the character set to be used.
Normally this points at the standard character set in the OS ROM. Sut in SASIC, you
can POKE your own character set into a free area of RAM (set aside with the OPTION
CHR1 or OPTION CHR2 statement) and then reset the OS pointer, CHSAS, to point to
your new character set. The computer will instantly begin using the new characters.

There are several important things to keep in mind when redefining the character set:

· C raphicsm ode0 n eeds1 28c haractersd efined( OPTIONC HR1).C raphics
modes 1 and 2 allow only 64 characters (OPTION CHR2).

· A II 6 4o r1 28c haractersn eed t ob ed efinede ven t houghy oum ayo nlyw ish t o
change and use one character; this is easily accomplished by transferring the
ROM characters into your RAM area and then changing the desired character to
its new configuration.

· T he6 4characters et r equires5 12b yteso f m emory( 8b ytesp erc haracter)a nd
must start on a 'r l K boundary. The 128-character set requires 1024 bytes of
memory and must start on a 1K boundary. The programmer need not worry
about these restrictions when using the CHR1 and CHR2 options; the area is
allocated to begin on the proper boundary.

· T hev alue t hat i sp oked i ntoC HSASa fter t hec haracters et i sd efined i s t hep age
number in memory where the character set begins. This value can be computed
with the following statement:

CHSAS% = (VARPTR(CHRn)/256) AND KFF

Where "n" is e i ther 1 o r 2 . This value is then poked into location 82F4
(decimal 756).

Appendix C 103



The most time-consuming process in using an alternate character set is creating the
characters, Each character consists of 8 bytes of memory, stacked one on top of the
other (see Figure C-1). Visualize each character as an 8x8 square of graph paper.
Darken the necessary square on the graph paper to create a character (see Figure C-2).

Then, each row of the 8x8 square is converted from this binary representation (where
each darkened square is a 1 and each blank square is a zero) to a hex or decimal
number (see Figure C-2). These numbers are then poked into the appropriate bytes of
the RAM area, from top to bottom in these figures, to define the character in RAM. The
first 8 bytes of the reserved (OPTION CHR'I or CHR2) area define the zeroth character;
the next 8 bytes define the first character, and so on. After transferring the standard
character set from its ROM location to the reserved CHR1 or CHR2 area, any character
can be redefined by finding its starting position in the area, then poking the new bytes
into the starting byte and the next 7 bytes. After all necessary characters are redefined,
poke the new page number into CHBAS and the new character will immediately be ac
tive. Use I3ASIC PRINT statements to display the new characters; for instance, if you
have redefined the "A" to be a solid block and use the statement,

PRINT "A",

the new character will be printed.

A little experimentation with this process will quickly show you how powerful this
capability can be. The program on the following page is an example of character set
redefinition.

Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

Figure C-1 Amount of Memory per Character

Byte
No. Binary Hex Decimal

001 10000 30 = 48
00110000 30 = 48
11111000 F8 = 248
00011100 1C = 28
00001110 OE = 14
00000111 07 = 07
00000011 03 = 03
00000011 03 = 03

Figure C2 Redefining a Character

104 Appendix C



SAMPLE PROGRAM

10!
20! PROGRAM TO DEMONSTRATE
30 ! ALTE RNATE CHARACTER SET
40! DEFINITION
50!
60!THE PROGRAM REDEFINES THE
70 ! CHARACTERS A,B,C,D,E,F,G,H
80!
90 CHBAS = 82F4!CHR. SET POINTER
100 OPTION CHR1 !ALLOCATE CHARACTER SET AREA
110 ADDR% = VARPTR(CHR1) ! F IND START ING ADDRE SS
120 PAGENO% = (ADDR%/256) AND &FF !CALCULATE PAGE
130 !
140 MOVE 57344,ADDR%,1024 !MOVE CHR. SET DOWN INTO RAM
150 !
160 OFFSET=33*8 !OFFSET TO "A"
170 FOR I =0 TO 63!GET NEW CHARACTERS
180 READ C
190 POKE ADDR%+ OFFSET+ I,C !AND INSERT
200 NEXT I
210 !
220!DATA STATEMENTS ARE BY CHARACTER
230 !
240 DATA &07,&OF,&1F,&3F,&7F,&FF,&FF,&FF
250 DATA &EO,&FO,&F8,&FC,&FE,&FF,&FF,&FF
260 DATA 8 FF,8 FF,8 FF,8 7F,8 3F,&1F,8 OF,8 07
270 DATA 8 FF,8 FF,8 FF,8 FE,8 FC,8 F8,8 F0,8 EO
280 DATA 800,800,800,83F,87F,8 FF,8 FF,8 FF
290 DATA &00,&00,&00,&FC,&FE,&FF,&FF,&FF
300 DATA &FF,&FF,&FF,8 7F,8 3F,800,&00,800
310 DATA 8 FF,&FF,8 FF,8 FE,8 FC,800,800,800
320 !
330 POKE CHBAS.PAGE NO% ! SWITCH TO NEW CHARACTER SET!
340 !
350 POKE 82F0,1 !TURN OFF CURSOR
360 SETCOLOR 6,2,6 370 X=20
380 FOR Y = 10 TO 20
390 WAIT &D40B,&FF,110
400 CLS: PRINT AT...
410 PRINT AT(X,Y+1):"CD"
420 FOR W=1 TO 30:NEXT W
430 NEXT Y
440 CLS: PRINT AT...
450 PRINT AT(X,22);"GH"
460 SOUND 0,79,10,8,4
470 FOR W=1 TO 80:NEXT W
480 FOR Y=20 TO 10 STEP -1
490 WAIT 8 D40B,&FF,110
500 CLS: PRINT AT...
510 PRINT AT(X,Y+1);"CD"
520 FOR W=1 TO 30:NEXT W
530 NEXT Y
540 GOTO 380

Appendix C 105



APPENDIX D

DERIVED FUNCTIONS

The following trigonometrie functions can be derived by the calculations shown.

Derived Functions Derived Functions in Terms of Microsoft

Secant S E C(X) = 1/COS(X)
Cosecant CSC(X) = 1/S I N(X)
Inverse sine ARCSIN(X) = ATN(X/SQR(-X*X+1))
Inverse cosine ARCCOS(X) =-ATN(X/SQR(-X*X+1) + CONSTANT))
Inverse secant ARSEC(X) = ATN(SQR(X*X 1)) + (SG N(X 1)*CON

STANT)
Inverse cosecant A RCCSC(X) = ATN(1/SQ R(X*X-1 ))

+ (SG N(X-1 )*CON STAN T)
Inverse contangent ARCCOT(X) = ATN(X)+ CON STAN T
Hyperbolic sine S IN H(X) = (EXP(X)-EXP(-X))/2
Hyperbolic cosine COSH(X) = (EXP(X)+ EXP(-X))/2
Hyperbolic tangent TANH(X) =-EXP(-X)/(EXP(X)+ EXP(-X))*2+1
Hyperbolic secant SECH(X) =2/(EXP(X)+ EXP(-X))
Hyperbolic cosecant CSC H(X) = 2/( E X P(X) E X P(-X))
Hyperbolic cotangent COTH(X) = EXP(-X)/(EXP(X)EXP(-X))*2+1
Inverse hyperbolic sine ARCS INH(X) = LOG(X+ SQR(X*X+1))
Inverse hyperbolic cosine ARCCOS H(X) + LOG(X+ SQR(X*X-1 ))
Inverse hyperbolic tangent ARCTANH(X) = LOG((1+ X)/(1-X))/2
Inverse hyperbolic secant ARGS E C H(X) = LOG((SQ R(-X*X+ 1) + 1)/X)
Inverse hyperbolic cosecant ARCCSCH(X) = LOG((SGN(X)*SQR(X*X+1)+1)/X)
Inverse hyperbolic cotangent ARCCOTH(X) = LOG((X+1)/(X-1))/2

Appendix D 107



APPENDIX E

MEMORY LOCATIONS

Memory locations are expressed in hexadecimal, with decimal equivalents in paren
theses. For additional information, see the ATARI Personal Computer System Technica/
Users Notes (part number C016555).

MEMO R Y M A P The 6502 Microprocessor is divided into four basic memory regions: RAM, cartridge
area, I/O chip region, and resident OS ROM. Memory regions and their address boun
daries are listed below:

RAM (minimum required for operation): 0000-1 FFF (0-8191)
RAM expansion area: 2000-7 F F F (8192-32767)
Cartridge B (left cartridge) or 8K RAM: 8000-9FFF (3276840959)
Cartridge A (right cartridge) or 8K RAM: AOOO-BFFF (4096049151)
Unused: COOO-C F F F (491 52-53247)
I/O chips: D000-D7FF (53248-55295)
OS floating point package: D800-DFFF (55296-57343)
Resident Operating System ROM: E000-FFFF (57344-65535)

RAM REC ION The RAM region, shared by the OS and the program in control, is divided into the
following subregions:

· 6 502M icroprocessorP age0 A ddressM odeR egion:0 000 t hroughO OFF( 0-255)
allocated as follows:

0000 through 007F (0-1 27): OS
0080 through OOFF (128-255): User applications
OOD4 through OOFF (212-255): Floating point package, if used.

· P age1, 6 502H ardwareS tackR egion:0 100 t hrough0 1FF( 256-511).

Note: At power up or gßggßgg, the stack location points to address 01 FF (511) and
the stack then pushes downward toward 0100 (256). The stack wraps around from 0100
to 01FF if a stack overflow occurs.

· P ages2 -4,0 SD ataB ase( workingv ariables, t ables,d atab uffers):0 200 t hrough
047F (512-1151).

· P ages7 -XX,U serB oot A rea:0 700( 1792) t os tart o f f reeR AMa rea,w hereX X i sa
function of the screen graphics mode and the amount of RAM installed.

Note: When initial diskette startup is completed, the data base variable points to the
next available location above software loaded. When no software is entered by the the
initial diskette startup, the data base variable points to location 0700.

· S creenD isplayL ist a ndD ata:P ageX X t o t opo f R AM.D atab asep ointerc on
tains address of last available location below the screen area.

A ppendix E 109



CARTRJDCE Cartridge B is the RICHT CARTRIDCE on the ATARI 800 Home Computer. Cartridge A
AREA is the LEFT CARTRIDGE on the ATARI 800 Home Computer and the only cartridge on

the ATARI 400 Home Computer.

· C artridgeß: 8 000 t hrough9 FFF( 32768-40959)
· C artridgeA: A 000 t hroughB FFF( 40960-49151) f or8 Kc artridges;8 000 t hrough

BFFF (32768-491 51) for 16K cartridges (optional)

Note: On the ATARI 800 Home Computer, if a RAM module plugged into the last slot
overlaps any of these cartridge addresses, the installed cartridge will disable the con
f licting RAM module in 8K increments.

I/O CHIPS The 6502 Microprocessor performs input/output operations by addressing the follow
ing external support chips as memory:

· C T IA D 000 t hroughD 01F( 53248-53279)
· P OKEY D 200 t hroughD 21F( 53760-53791)
· P IA D 300 t hroughD 31F( 54016-54047)
· A NT IC D 4 0 0 t hroughD 41F ( 54272-543030)

Some of the chip registers are read/write; others are read only or write only. Table E-2
lists the registers and their addresses by chip. For additional information, see the
ATARI Personal Computer System Technical Users Notes.

RESIDENT The region from D800 through FFFF (55296-65535) permanently contains the OS and
OS ROM the floating point package:

· F loatingp oint p ackage:D 800 t hroughD FFF( 55296-57343)
· O peratingS ystemR OM:E 000 t hroughF FFF( 5734465535)

The OS contains many vectored entry points, all fixed, at the end of the ROM and in
RAM. The floating point package is not vectored, but a)l documented entry points will
be fixed. See the Appendix of the A TARI Personal Computer System OS Users Manual
(part of the A TARI Personal Computer System Technical Users Notes) for listings of the
fixed ROM vectors and entry points.

TABLE E-1
USEFUL OS DATA BASE ADDRESSES

Address Byte
Hex Dec Name Size Funct i on

MEMORY CONFIGURATION (See Sections 4 and 7, A TARI Personal Computer System OS Users Manual, part of
ATARI Personal Computer System Technical Users Notes.)

OOOE 14 A PPMHI User-free memory screen lower limit
006A 106 RAMTOP Display handler top of RAM address (MSB)
02 E4 740 RAMS IZ Top of RAM address (MSB)
02E5 741 MEMTOP User-free memory high address

02 E7 743 MEMLO User-free memory low address

110 Appendix E



TEXT/GRAPHICS SCREEN (See Section 5, OS Users Manual.)

Screen Margins (text mnOee; text window)

0052 82 LMARGN Left screen margin (0-39; default 2)

0053 83 RMAR( N Right screen margin (0-39; default 39)

Cursor Control

0054 84 ROWSCRS Current cursor row
0055 85 COLCRS Current cursor column
005A 90 OLDROW Prior cursor row
005B 91 OLDCOL Prior cursor column
0290 656 TXTROW Current cursor row in text window

0291 657 TXTCOL Current cursor column in text window

02FO 752 CRSINH Cursor display inhibit f lag
(0 = cursor on, 1 = cursor off)

Color Control

02CO 704 PCOLRO Color-luminance Player-Missile 0

02C1 705 PCOLR1 Color-luminance of Player-Missile 1

02C2 706 PCOLR2 Color-luminance of Player-Missile 2

02C3 707 PCOLR3 Color-Iuminance of Player-Missile 3

02C4 708 COLORO Color-luminance of Playfield 0

02C5 709 COLOR1 Color-luminance of Playfield 1

02C6 710 COLOR2 Color-luminance of Playfield 2

02C7 711 COLOR3 Color-Iuminance of Playfield 3

02C8 712 COLOR4 Color-Iuminance of background

Attract Mode

004D 77 ATRACT Attract mode timer and f lag
(Value 128 = on; turns on every 9 minutes)

Tabbing

02A3 675 TABMAP 15 Tab stop bit map (default: 7, 15, 23,
etc. to 119)

Screen Memory

0058 88 SAVMSC Upper left corner of screen

Split-Screen Memory

0294 660 TXTMSC Upper left corner of text window

Appendix E 111



DRAW/F ILL Function

0060 96 NEWROW Destination point; initialized to value in ROWCRS.

0061 97 NEWCOL Destination point; initialized to value in COLCRS,

02FD 765 F ILDAT Fill data for graphics FILL command.

Internal Character Code Conversion

02FA 762 ATACHR Contains last ATASCII character or plot point,

Display Control Characters

02FE 766 DSPFLC Display control character f lag.
(1 = display control characters)

KEYBOARD (See Section 5, OS Users Manual.)

Key Reading

02FC 764 CH Contains value of last keyboard character in FIFO or
$FF if FIFO is empty.

Special Functions

0011 17 BRKKEY k ey f lag (normally nonzero; set to 0 by : - · )

02 B6 694 INVFLC Inverse video f lag (norm = 0; set by g key)
02BE 702 SHFLOK Shift/control lock control f lag ($00 = no lock (norm);

$40 = caps lock; $80 = control lock)
02FF 767 SSFLAC Start/stop f lag (norm = 0; set by ~ 1). Set to $40 on

power up a nd reset by . 0

CENTRAL IIO (CIO) ROUTINE (See Section 5, OS Users Manual.)

I/O Control Block

0340-034F (832-847) IOCB 16 I/O Control Block 0
0350-035F (848-863) IOCB 16 I/O Control Block 1
0360-036 F (864-879) IOC B 16 I/O Control Block 2
0370-037F (880-895) IOC B 16 I/O Control Block 3
0380-038F (896-911) IOCB 16 I/O Control Block 4
0390-039F (912-927) IOCB 16 I/O Control Block 5
03AO-03AF (928-943) IOCI3 16 I/O Control Block 6
03BO-03BF (944-959) IOCB 16 I/O Control Block 7

112 Appendix E



0340 832 ICHID Handler I.D. (See Section 5; Initialized to $FF at power
up and ~ggg.)

0341 833 ICDNO Device number

0342 834 ICCMD Command byte

0343 835 ICSTA Status
0344 836 I C BA L/I C BA H Buffer address

0346 838 ICPTL/ICPTH PUT BYTE vector (Points to CIO's "IOCB not OPEN" at
power up and g~gggg.)

0348 840 ICBLL/ICBLH 2 Buffer length/byte count

034A 842 ICAX1/ICAX2 2 Auxiliary information

034C 844 I CAX3/I CAX6 4 Spare bytes for handler use

Zero Page IOCB

0020 32 ZIOCI3 16 Zero page IOCB (Only the first 12 bytes (IOCBs) are
moved by the CIO utility.)

0020 32 ICH IDZ 1 Handler index number (set to $FF on CLOSE)

0021 33 ICDNOZ 1 Device drive number

0022 34 ICCOMZ 1 Command byte

0023 35 ICSTAZ 1 Status byte

0024 36 ICBALZ, ICBALH 2 Buffer address

0026 38 I CPTLZ, ICPTHZ 2 PUT BYTE vector (Points to CIO's "IOCB not OPEN"
on CLOSE.)

0028 40 I CBLLZ, ICBLHZ 2 Buffer length/byte count

002A 42 ICAX1 Z, I CAX2Z 2 Auxiliary information
0002C 44 ICSPRZ 4 CIO working variables

(ICIDNO, ICOCHR) CIDNO = ICSPRZ+2; ICOCHR = ICSPRZ+3 (See
Sections 5 and 9 of the OS Users Manual,)

DEVICE STATUS

02EA 746 DVSTAT Device status

DEVICE TABLE (See Section 9, OS Users Manual.)

031 A 749 HATABS 38 Device handler table

SERIAL IlO (SIO) ROUTINE (See Section 9, OS Manual.)

Device Control Block

0300-030 B (768-779) DC I3 12 Device control block
0300 768 DDEVIC 1 Device bus I.D.
0301 769 DUNIT 1 Device unit number

Appendix E 113



0302 770 DCOMND 1 Device command

0303 771 DSTATS 1 Device status

0304 772 DBUFLO,DBUFHJ 2 Handler buffer address

0306 774 DTIMLO 1 Device timeout (See Section 9, OS Users Manual.)

0308 776 DBYTLO,DBYTHI 2 Buffer length/byte count (See Section 9, OS Users
Manual.)

030A 778 DAUX1,DAUX2 2 Auxiliary information

BUS SOUND CONTROL

0041 65 SOUNDR Quiet/noisy I/O f lag (0 = quiet)

ATARI CONTROLLERS (See Appendix L, OS Users Manual.)

J oysticks

0278 632 S TICKO-STICK3 4 Joystick position port
0284 644 STRI GO-STR I G3 4 Joystick trigger port

Paddles

0270 624 PADDLDPADDL7 8 Paddle position port

027C 636 PTR I GO-PTR I G7 8 Paddle trigger port

Light Pen

0234 564 LPENH 1 Light pen horizontal position code

0235 565 LPENV 1 Light pen vertical position code

0278 632 S TICKO-STICK3 4 Light pen button port

f LOATINC POINT PACKACE (See Section 8, OS Users Manual.)

OOD4 212 FRO 6 Floating point register 0
OOEO 224 FR1 6 Floating point register 1
OOF2 242 CIX 1 Character index
OOF3 243 I N BUFF 1 Input text buffer pointer
OOFB 251 DEGFLG/RADFLG 1 Degrees/radians f lag (O = D E GFLG; 6 = de g rees;

DEGFLG = 0)
OOFC 252 FLPTR 2 Pointer to floating point number
0580 1408 LI3UFF 96 Text buffer

114 Appendix E



POWER UP AND ~ (See Se ction 7, OS Users Manual.)

Diskette/Cassette Boot

0002 2 CAS IN I Cassette boot initiajization vector

OOOC 12 DOS IN I Diskette boot initialization vector

Environment Control

0008 8 WARMST W armstart f lag (= 0 on power up; $FF on : g~ g)
OOOA 10 DOSVEC Noncartridge control vector

(See Section 10, OS Users Manual.)

INTERRUPTS (See Secton 6, OS L)sers Manual.)

00'1 0 16 POKMSK POKEY interrupt mask

0042 66 CR I T I C Critical code section f lag
(nonzero = executing code is critical)

Real Time Clock

001 2 18 RTCLOK Real time frame counter (1/60 see)
(+0 = M SB; +1 = N SB; + 2 = L SI3)

System VBLANK Timers

0218 536 CDTMV1 System timer 1 value

021A 538 CDTMV2 System timer 2 value

021 C 540 CDTMV3 System timer 3 value

021E 542 CDTMV4 System timer 4 value

0020 544 CDTMV5 System timer 5 value

0226 550 CDTMA1 Systemtimer 1 jump address

0228 552 CDTMA2 System timer 2 jump address

022A 554 CDTMF3 System timer 3 f lag

022C 556 CDTMF4 System timer 4 f lag

022 E 558 CDTMF5 System timer 5 f lag

NMI Interrupt Vectors

0200 512 VDSLST Display list interrupt vector
(not used by the OS)

0222 546 VVBLKI Immediate VBLANK vector
0224 548 VVBLKD Deferred VBLANK vector

Appendix E 115



IRQ Interrupt Vectors

0202 514 VPRCED Serial I/0 bus proceed signal
0204 516 VI NTE R Serial I/O bus interrupt signal

0206 518 VSREAK 8REAK instruction vector

0208 520 VKEYI3D Keyboard interrupt vector

020A 522 VUSE RIN Serial I/O bus receive data ready

020C 524 VSE ROR Serial I/O bus transmit ready

020E 526 VSE ROC Serial I/O bus transmit complete

0210 528 VT IMR1 POKEY timer vector (not used by OS)

0212 530 VTIMR2 POKEY timer vector (not used by OS)

0214 532 VTIMR4 POKEY timer vector (not used by OS)

0216 534 VIMI RQ General IRQ vector

Hardware Register Updates

0230 560 SDLSTL Screen display list address
0231 561 SDLSTH Screen display list address
02CO 704 PCOLRx Color register

02C4 708 PCOLORx Color register

02F3 755 CHACT Character control
02F4 756 CHBAS Character address base register

($EO= uppercase, number set; $E2= lowercase, special
graphics set; default= $EO)

USER AREAS (See Section 4, OS Users Manual.)

Note: The following areas are available to the user in a nonnested environment.

128 128
1152 640

116 Appendix E



Note: For additional information refer to the A TARI Personal Computer System Hardware Manual(part of the ATARl
Personal Computer System Technical Notes).

TABLE E-2
HARDWARE ADDRESSES

Address Register O S Shad ow
Hex Dec Name Function Hex Dec Name

ANTIC CHIP

D400 5 4 272 DMACTL Direct memory access (DMAl 22F 559 SDMCTL
control (WRITEl

D401 5 4 273 CHACTL Charact e r control (WRITEl 2F3 755 CHART

D402 5 4 274 DLI STL Disp lay l i s t pointer 230 560 SDLSTL
low byte (WRITEl

D 403 5 4 27 5 DLIS T H Display list pointer 2 31 561 SDLST H
high byte (WRITEl

D404 5 4 27 6 H S C ROL Horizontal scroll (WRITEl

D 405 5 4 27 7 VSC R O L Vertical scroll (WRITEl

D407 5 4 279 PM I 3ASE Player-missile base address
(WRITEl

D409 5 4 28 1 CHI 3ASE Character base address 2 F4 756 CHI3A S
(WRITEl

D 40A 5 4 282 W SYN C Wait for horizontal sync
(WRITEl

D 40(3 54283 VCOU N T Vertical line counter (READl

D40E 5 4286 NM IE N Nonmaskable interrupt (NMIl
enable (WRITEl

D40F 5 4 287 NM I R E S Reset NM I ST (WRITEl

D40F 5 4 287 NM I S T NM I statu s (READl

D410-D4FF (54288-54527) Repeat ANTIC addresses D400 through D40F.

CTIA CHIP

PLAYER-MISSILE GRAPHICS CONTROL

Horizontal Position Control (WRITE)

DOOO 53248 HPOSPO Horizontal position Player 0

D001 5 3 249 HPOSPI Horizontal pos it ion P I ayer 1
D002 5 3 250 HPOSP2 Horizontal position Player 2

D003 5 3 251 HPOSP3 Horizontal position Player 3

D004 5 3 252 HPOSMO Horizontal position Missile 0
D005 5 3 253 HPOSM1 Horizontal position Missile 1

D006 5 3 254 HPOSM2 Horizontal position Missile 2

D007 5 3 255 HPOSM3 Horizontal position Missile 3

Appendix E 117



Collision Control (READ)

D000 53248 MOPF Missile 0 to playfield

D001 53249 M1 PF Missile 1 to playfield

D002 53250 M2PF Missile 2 to playfield
D003 53251 M3PF Missile 3 to playfield

D004 53252 POPF Player 0 to playfield

D005 53253 P1 PF Player 1 to playfield

D006 53254 P2PF Player 2 to playfield

D007 53255 P3PF Player 3 to playfield

D008 53256 MOPL Missile 0 to player

D009 53257 M1 PL Missile 1 to player

DOOA 53258 M2PL Missile 2 to player

DOOB 53259 M3PL Missile 3 to player

DOOC 53260 POPL Player 0 to player

DOOD 53261 P1 PL Player 1 to player
DOOE 53262 P2PL Player 2 to player
DOOF 53263 P3PL Player 3 to player

Collision Clear (WRITE)

D01 E 53278 H I TC LR Collision clear

Size Control (WR ITE)

Note: 0 = normal, 1 = d o uble, 3 = quadruple size.

D008 53256 S IZE PO Size of Player 0

D009 53257 S IZE P1 Size of Player 1

DOOA 53258 S IZE P2 Size of Player 2

DOOB 53259 S IZE P3 Size of Player 3

DOOC 53260 SIZEM Sizes of all missiles

G raphics Registers (WR ITE)

DOOD 53261 GRAFPO Graphics for Player 0

DOOE 53262 GRAFP1 Graphics for Player 1

DOOF 53263 GRAFP2 Graphics for Player 2

D01 0 53264 GRAFP3 G ra p hics for P I ayer 3
D01 1 53265 GRAFM Graphics for all missiles

118 Appendix E



Joystick Controller Triggers (READ)

D010 53264 TR I GO Read Joystick 0 trigger 284 644 S TRIGO

D011 53265 TRI G1 Read Joystick 1 trigger 285 645 STR I G1

D012 53266 TR I G2 Read Joystick 2 trigger 286 646 S TRIG2
D01 3 53267 TRI G3 Read Joystick 3 trigger 287 6 47 STR I G 3

Color-Luminance Control (WRITE)

D01 2 53266 COLPMO Color-lum Player-Missile 0 2CO 704 COLRO

D01 3 53267 COLPM1 Color-lum Player-Missile 1 2C1 705 PCOLR1

D014 5 3 268 COLPM2 Color-lum Player-Missile 2 2C2 706 PCOLR2
D015 5 3 269 COLPM3 Color-lum Player-Missile 3 2C3 707 PCOLR3

D016 5 3 270 COLPFO Color-lum Playfield 0 2C4 708 COLORO

D017 5 3 271 COLPF1 Color-lum Playfield 1 2C5 709 COLOR1

D018 5 3 272 COLPF2 Color-lum Playfield 2 2C6 710 COLOR2

D019 5 3 273 COLPF3 Color-lum Playfield 3 2C7 711 COLOR3

D01A 5 3 274 COLBK Color-lum background 2C8 712 COLOR4

Priority Control (WRITE)

D 01 B 53275 PRI O R Priority selection 2 6F 623 G PRIO R

G raphics Control (WR I TE)

D01 D 53277 G R A CTL G raphics control

MISCELLANEOUS IIO FUNCTIONS

PAL/NTSC Systems

D01 4 53268 PAL Read PAL/NTSC bits

Console Switches (set to 8 during VBLANK)

D01 F 53279 CONSOL W rite con sole switch port
D01 F 53279 CONSOL Read con s ole switch port

Appendix E 119



POKEY CHIP

Audio (WRITEl

D200 53760 A UDF1 Audio Channel 1 frequency

D201 53761 AUDC1 Audio Channel 1 control
D202 5 3 762 AUDF2 Audio Channel 2 frequency

D203 5 3 763 AUDC2 Audio Channel 2 control

D204 5 3 764 AUDF3 Audio Channel 3 frequency

D205 5 3 765 AUDC3 Audio Channel 3 control

D206 5 3 765 AUDF4 Audio Channel 4 frequency

D207 5 3 767 AUDC4 Audio Channel 4 control

D 208 5 3 768 AUDC T L Audio control

Start Timer (WRITE)

D209 5 3 769 ST IM E R Resets audio-frequency
dividers to AUDF values

Pot Scan (Paddle Controllers)

D200 5 3 760 POT 0 Read Pot 0 270 624 PADDLO

D201 5 3 761 POT 1 Read Pot1 271 625 PADDL1

D202 5 3 762 POT 2 Read Pot 2 272 626 PADDL2

D203 5 3 763 POT 3 Read Pot 3 273 627 PADDL3

D204 5 3 764 POT 4 Read Pot 4 274 628 PADDL4

D205 5 3 765 POT 5 Read Pot 5 275 629 PADDL5

D206 5 3 766 POT 6 Read Pot 6 276 630 PADDL6

D207 5 3 767 POT 7 Read Pot 7 277 631 PADDL7
D208 5 3 768 ALLPOT Read 8-line pot-port state

D20B 5 3771 POTGO Start pot scan sequence
(written during VBLANKl

Keyboard Scan and Control (READ)

D209 5 3 769 K B CO DE Keyboard code 2FC 76 4 CH

Random Number Generator (READ)

D20A 5 3770 RAN DOM Random number generator

120 Appendix E



Serial Port

D20A 53770 S K RES SKSTAT reset (WRITE)

D20D 53773 SERIN Serial port input (READ)

D20D 53773 SE ROUT Serial port output (WRITE)

D20F 5 3 775 SKC T LS Serial Port 4-keyboard 232 5 6 2 SSK C TL
control (WRITE)

D20F 5 3 775 SKS T AT Serial Port 4-keyboard
status register (READ)

IRQ Interru pt

D20E 5 32774 I RQ E N IRQ interrupt enable (WRITE) 10 16 PO KMSK

D20E 5 32775 IR Q ST IRQ interrupt status (READ)

D210-D2FF (53776-5401 5) Repeat D200-D20F (53760-53775)

PIA CHIP

Joystick Read/Write Registers

D 300 5 401 6 POR T A Writes or reads data from 2 78 6 32 STIC KO
Controller Jacks 1 and 2 279 6 33 ST I C K1
i f bit 2 of PACTL = 1.
Writes to direction control register if
b it 2 of PACTL = 0.

D301 5 401 7 POR T B Writes or reads data from 27A 6 3 4 STI C K2
Controller Jacks 3 and 4 2 7B 6 3 5 ST I C K3
if bit 2 of PBCTL = 1.
Writes to direction
control register if
b it 2 of PBCTL = 0.

D 302 5 4 01 8 PAC T L Port A control (set to $3C
by IRQ code).

D303 5 401 9 P B CTL Port B control (set to $3C
by IRQ code).

D304D3FF (54020-54271) Repeat D300-D303 (54016-54019)

Appendix E 121



APPENDIX F

PROGRAM CONVERSIONS

COPYRIGHT NOTICE

Computer programs are protected in general by the Copyright Law. While the
Copyright Law expressly permits the owner of the copyright for a computer program to
adapt the program as necessary for ut i l ization on a machine, such adaptation or
translation is otherwise generally prohibited. ATARI recommends that you only con
vert programs purchased from the copyright owner or in accordance with a software
I icense.

CONVERTINC The COMMODORE PET*® BASIC, APPLE**® APPLESOFT**® BASIC, and RADIO
PROC RAMS TO SHACK***® LEVEL II BASIC were all written by Microsoft. The overall approach and

ATARI syntax of these BASIC languages has been kept compatible whenever possible to allow

MICROSOFT both programs and programmers to easily move from machine to machine. This ap
pendix reviews the differences and indicates how to work around them when convert

BASIC ing to ATARI Microsoft BASIC.

Microsoft divided its original BASIC into several different levels: 4K, 8K, Extended, and
Full. Each successive level was a superset of the previous level and required more
memory. When a manufacturer requested BASIC, the specific level to start from was
determined by the memory constraints of the target machine. One source of incom
patibility is due to starting at different levels. PET BASIC and APPLE APPLESOFT
BASIC are based on the 8K level. RADIO SHACK LEVEL II and ATARI Microsoft
BASIC are based on the full language level. Fortunately, this makes conversion into
ATARI Microsoft BASIC easy. The key language differences between 8K and Full
BASIC are the following:

· D ATAT YPES: I n8 KB ASIC,d oublep recision i sn ot s upported.O nly9 d igitso f
accuracy are available. Integers can be used but they are converted to single
precision before any arithmetic is done, so their only advantage is small storage
requirements — not speed.

· P RINTU SING i sn ot a vailable,s o t heu serh as t o f ormat h iso wnn umbers.

· T he a dvanced s tatements: I F... THEN...ELSE,D EFINT,D EFSNG,D EFDBL,
DEFSTR, TRON, TROFF, RESUME, and LINE INPUT are not supported.

· T he f unctions, I NSTRa ndS TRING$,a ren ot s upported.

· A rraysc ano nlyb es ingled imensioned.

· U ser-defined f unctionsc ano nlyh aveo nea rgument.

By far the most difficult areas for conversion are machine-dependent features such as
graphics and machine language use. In all programming it is important to isolate the
uses of the features and document the assumption made about the machine.

*PET is a registered trademark of Commodore Business Machines, Inc.
**APPLE and APPLESOET are registered trademarks of APPLE COMPLITER.
***RADIO SHACK is a registered trademark of TANDY CORPORATION.

Appendix F 123



APPENDIX G

CONVERSION FROM COMMODORE (PET)
BASIC VERSION 4.0

Most of the diff iculty in converting from Commodore (PET) BASIC (used on Com
modore PET computers) comes from specific hardware features rather than the BASIC
language since it is a strict implementation of the 8K level. Some of the conversion
problems are:

· T heC ommodoreP ETc haracters et h asb eene xtended t o2 56c haracters.T hese
characters are block graphics characters. In order to emulate this feature of the
Commodore PET, an ATARI Computer user should set up a R A M-based
character set.

· C ommodoreP ETB ASICh asb uilt-inc onstantsa s f ollows:T 1$( TIME$ f orA TARI
Computers) and Tl (TIME for ATARI Computers), ST for the STATUS of the last
I/O operation and a pi symbol for the constant pi.

· C ommodoreP ET I /O i sd onew iths pecial statements t hat c ontrol i ts I EEEb us.
The arguments to OPEN are completely different from other machines and
must be completely changed. The exact format of sending the characters is
done by specifying a channel number with PRINT and INPUT statements, which
is the same as ATARI M icrosoft BASIC, so only the OPEN and control
statements need to be reprogrammed.

The display size of the Commodore PET is 40 by 25. If menus are designed for
this layout, they will need to be reprogrammed.

· P EEKsa ndP OKEsa rea Iwaysv erym achined ependent.C ommodoreP ETp ro
grams often use PEEK and POKE to control cursor positioning because there is
no direct way to change the cursor position. Each PEEK and POKE must be ex
amined and reprogrammed.

· C ommodoreP ETp rogramso ftene mbedc ursorc ontrol c haracters i n I iteral t ext
strings. The ATARI Microsoft BASIC also supports this feature but the character
codes are different and must be changed.

· T heC ommodoreP ETc allsC LEAR,C LR.

· A nyu seo f m achine language t hrough t heC ommodoreP ETE XECs tatement w ill
have to be carefully examined because although the microprocessor is the
same, the layout of memory and the way of passing arguments to BASIC and
receiving them from BASIC are quite different.

· S ince t heC ommodoreP ETd oesn ot s upport s oundo r t rueg raphics t here i sn o
conversion problem in these areas.

· R ND i sd ifferent.R NDw itha p ositivea rgument ( generally1 )r eturnsa n umber
between 0 and 1.

Overall, if a special character set is set up identical to the Commodore PET's, it should
be quite easy to convert programs that do not make heavy use of machine language or
PEEK and POKE.

Appendix G 125



CONVERSION TO ATARI MICROSOFT BASIC

Use the following table to convert a software program developed under Commodore
(PET) BASIC 4.0.

Note: For simplicity, those universal BASlC commands such as RUN, CONT, and POKE
have been omitted. In those cases, no conversion is necessary.

The following table can also be used to perform diskette-based functions. Commodore
(PET) BASIC 4.0 is a diskette-based language that must be supported by the ATARI
ComputerDOS options.

(Also see Appendix A.)

COMMODORE (PET) Eq u ivalent ATARI Computer ATARI
COMMAND DOS OPTIO N Microsoft

BASIC

DIRECTORY A~
DIRECTORY — SEARCH SPEC, LIST FILE?

R

COPY
COPY — FROM,TO?
D1:fn,D2:fn ~

RE NAME E NAME
RENAME,GIVE OLD NAME,NEW
D2:o/d fn, new fn ~

SCRATCH S KILL
DELETE FILESPEC
D2:fn ~ *
TYPE "Y" TO DELETE fn
Y

HEADER I Q
WHICH DRIVE TO FORMAT?

1 ~
TYPE "Y" TO FORMAT DRIVE 1
Y~

BACKUP DO TO D1 I · - 5
DUP DISK — SOURCE,DEST DRIVES>
1,1 gang+
TYPE "Y" IF OK TO USE PROGRAM AREA?
Y . .5
INSERT SOURCE DISK, TYPE RETURN

INSERT DESTINATION DISK, TYPE RETURN

126 Appendix C



Keep in mind that the Commodore (PET) BASIC 4.0 is a diskette-supported language,
Therefore, when converting to run the 'Commodore (PET) program on your ATARI
Computer, you must be aware of the peripherals involved.

DLOAD LOAD "Dn;filename"
LOAD CLOAD

DCLOSE CLOSE fiienumber

DOPEN OPEN fiienumber

DSAVE SAVE filename
SAVE CSAVE

Some of the Commodore (PET) BASIC 4.0 commands cannot be easily supported. As
an example, use the following conversion:

APPE NDff OPEN ffl, "f i lespec" INPUT
OPEN ff2, "filespec" OUTPUT
LINE INPUTS l, A$
PRINT ff2, A$
CLOSE ffl
KILL "filename"
INPUT "filename"; N$
LINE INPUT " ";A$
LINE INPUT " ";B$
PRINTff2, N$
PRINTff2, A$
PRINTff2, B$
CLOSE
NAME "fifename2" AS "filename"

Check the logical flow of the software that you wish to convert to determine the direc
tion of these commands. You will have to program around their use, depending upon
the results you wish to accomplish with your software application.

Appendix C 127



APPENDIX H

CONVERTING RADIO SHACK
TRS40 PROGRAMS TQ

ATARI MICROSOFT BASIC

Radio Shack BASIC is based on Full Microsoft BASIC, so converted programs will
make much better use of the features of ATARI Microsoft BASIC than APPLE or Com
modore PET programs. ATARI Microsoft BASIC does have some additional features,
such as COMMON, because it was written later and because the memory limitation
for storing BASIC itself is not as restrictive on the ATARI Computer as it is on the Radio
Shack Computer. The term Radio Shack BASIC refers to the BASIC built into the
Model I and Model II I computers, and called "Level II" BASIC. The BASIC on the
Model II is very similar, but it is not specifically covered here.

· T heR adioS hackd isplays izep oses t heg reatest p roblem i nc onvertingT RS-80
BASIC programs, because it is 16 by 64. Programs that use the full 64 characters
for tables or menus will need to be changed.

· R adioS hacks upportsa f ormo f g raphics t hat a llowb lacka ndw hited isplayso f
128 by 48 pixels intermixed with characters. The only statements for manipula
tion of the graphics are: CLS (clear screen), SET (turn a point on), RESET (turn a
point off), and POINT (test the value of a point on the screen).

· R adioS hackd oesn ot s tore t heu p-arrowc haracter i n t hes tandardA SCII p osi
tion, so it has to be translated when moving programs onto the ATARI Com
puter.

· R adioS hackP RINTER I /O i sd onew ithL PRINTa ndL LISTw ithout o peninga
device. Radio Shack cassette I/O is done with PRINT or INPUT to channels 1
and 2 (two drives can be supported). The format of files on cassette is complete
ly different.

· C alls t om achine I anguagea red onew ithU SR.B ecauseR adioS hackC omputers
use the Z-80 processor instead of the 6502, machine language routines will have
to be completely rewritten.

· P EEKsa ndP OKEsc annot b ed irectlyc onverted.P EEKa ndP OKEa ren ot h eavi
ly used on the Radio Shack Computers.

· T hec ursorp ositionings yntax i sa n© a fterP RINT i nR adioS hackS ASICa nd
"AT" in ATARI Microsoft BASIC.

· T hee rrorc odesr eturnedb yE RRa rec ompletelyd ifferent.

Appendix H 12 9



TRS4l ATARI DEFINITION

AUTO mm-nn AUTO mln,nn Generates line numbers automati
cally.

CDBL(exp) Returns double-precision represen
tation of expression.

C IN T(exp) Returns largest integer not greater
than the expression.

CLOAD CLOAD Loads a BASIC program from
LOAD"C:" tape.

CLOAD? VE Rl FY"C:filespec" Verifies BASIC program on tape to
one in memory.

CSNC(X) Automatically truncates Returns single-precision representa
tion of the expression.

EDIT ln AUTO line number Let s you edit specified line number.
Use cursor control keys.

FIX(x) SCN(X)*INT(ABS(X)) Tru ncates all digits to the right of
the decimal point.

INPUT¹-1 OPEN¹5, "C:" INPUT IN P U T r eads data f rom cassette
INPUT¹5 tape.

LIST mm-nn LIST mm-nn Lists the program in memory onto
the printer.

LLIST LIST "P:" mm-nn Lists p r ogram to printer.

LPRINT OPEN¹4, "P:" OUTPUT Prints a line on printer.
PRINT¹4, "TEST"

MEM PRINT FRE (0)

POINT (x,y) OPEN¹5, "D:" INPUT or GET¹iocb, AT(s,b)
INPUT¹5, AT(sector,byte) or PUT¹iocb, AT(s,b)

PRINT © n, list PRINT¹6, AT(x,y);list

PRINT CLOAD Writes data to cassette.

RAN DOM RANDOMIZE

SYSTEM DOS

130 Appendix H



APPENDIX I

CONVERTINC APPLESOFT PROCRAMS
TO ATARI MICROSOFT BASIC

Applesoft started from exactly the same BASIC source as PET BASIC, so once again
there are very few pure language issues in converting programs to ATARI Microsoft
BASIC.

· A pplea dded t wo I anguage f eatures t oA pplesoft t oe nhancec ompatibilityw ith
their integer BASIC. They are: ONERR for error trapping and POP for eliminating
GOSUB entries. ONERR can be easily converted to ON ERROR in ATARI
Microsoft BASIC. POP has no equivalent since it allows a very unstructured
form of programming where subroutines aren't really subroutines. To convert,
add a f lag, change the POP to set the f lag, RETURN, and then have a statement
at the RETURN point check the f lag and clear it and branch if it is set.

· T heA ppled efault d isplays ize i sd ifferent f rom t heA TARI d isplay( actual s creen
size is the same). Menus and tables laid out to use the full display will have to be
edited.

· T heA ppled iska ndp eripheral I /Os cheme i su nique.P rints t os pecificc hannels
are used to activate plug-in peripheral cards. The prints for the cards all have to
be reprogrammed.

· T he m ost d ifficult c onversion t ask i sc hanging t heg raphicsa nd s ound
statements. The overall Apple high-resolution display size is 280 by192. The co
lor control is fairly unusual because each pixel cannot independently take on all
color values. The sound port is a single bit.

· A v arietyo f C ALLs tatementsa reu sed i nA pplesoft t o t riggerm achine-specific
features. Use of PEEK and POKE is much rarer but also must be changed.

· U seo f m achine I anguageg enerallyw ill d ependo n t hee xact m emory I ayout o f
the Apple Computer. Since the microprocessor is the same, machine language
can be converted when the source is available except for references to the Ap
ple Operating System.

· R ND i sd ifferent.A ppleR NDw itha p ositivea rgument ( generally1 )r eturnsa
number between 0 and 1.

Appendix I 131



The following list of commands, statements, and functions illustrates how to convert
Applesoft programs to ATARI Microsoft.

APPLESOFT ATARI

CALL USR (addr.)
ctrl C
DEF FN name(x)= DEF name(x)=
HLIN PLOT x,y To x,y
HOME CLS
HPLOT PLOT
HTAB PRINT AT(x,y)
INVE RSE A
NORMAL Q
LOAD LOAD "D:"
NOTRACE TROFF
ONERR GOTO n ON ERROR GOTO
PDL P E E K(address)
POP add f lag

check flag
RECALL OPEN¹n, "C." OUTPUT
SAVE SAVE "D:"
TEXT GRAPHICS 0
TRACE TRON
VL IN PLOT x,y TO x,y
VTAB PRINT AT(x,y)

132 Appendix I



APPENDIX ]

CONVERTING ATARI BK BASIC
TO ATARI MICROSOFT BASIC

ATARI Microsoft BASIC has improved graphics capabilities. You should consider
rewriting graphics sections to take advantage of player-missile graphics. The SET
COLOR registers have been changed so that registers 0, 1, 2, and 3 now refer to player
missiles. What was SETCOLOR O,cc, and 11 is now SETCOLOR 4,cc, and 11. SET
COLOR numbers have changed so that what was 0, 1, 2, 3, and 4 for the register assign
ment is now 4, 5, 6, 7, and 8. Other graphics changes include a FILL instruction and a
"chained" PLOT that replaces DRAWTO.

Microsoft has improved string-handling capabilities. If your initial program occupies
too much RAM you might consider compacting it by rewriting it in Microsoft.

The are minor differences in the RND() and other instructions when converting to
ATARI Microsoft BASIC. The RND() can be made to work identically to the 8K BASIC's
if you include a RANDOMIZE statement as part of your program. Programs that you
have listed in 8K BASIC onto diskette can be loaded with ATARI Microsoft BASIC, and
with a few changes should run.

ATARI BK ATARI MICROSOFT
BASIC BASIC COMME NTS

ADR(s$) VARPTR(s$)

CLR CLEAR

DEG

DRAWTO PLOT x,y TO x,y

LIST mm,nn LIST mm-nn

LOCATE x,y,var var = SCRN$(x,y)

LPRI NT OPEN¹7, "P:" OUTPUT
PRI NT¹7,

OPEN¹iocb, OPE N¹iocb,
aexp1, aexp2, filespec INPUT
filespec
filespec
filespec

POI NT¹iocb INPUT¹iocb,
sector, byte AT (sector, byte)

Appendix J 133



ATARI 8K ATARI MICROSOFT
BASIC B ASIC COMMEN TS

POP Use the USR function to cali a machine
language routine. POP stack in 6502
code.

POSITION x,y PRINT(46, ( AT(x,y)

SOUND voice, SOUND voice, The duration is a new o p t ion. Dura
pitch,noise,vol. p itc h, noi se,vol., tion is given in 1/60 of a second called

duration jiffies. Thus, SOUND will work the same
a s when c o n vert ing p r o grams t o
Microsoft BASIC.

TRAP exp ON ERROR exp

USR(addr, listl U S R(ad dr, pointer) Y ou pass only one argument to t h e
ATARI Microsoft BASIC rather than an
argument list.

XIO FILL x,y TO x,y Microsoft's FILL plots points from x,y
TO x,y. It scans to the right as it fills the
area f rom x , y T O x, y . T h e s w eep
rightward stops and a new f i l l ing scan
begins when a solid plotted line is met.

For other XIO commands, see Appendix N.

PADDLE, PTRIC, STICK, STRIC are done with PEEKs and POKEs in ATARI Microsoft.
See the Section 15, "Came Controllers," for detailed description.

134 Appendix J



APPENDIX K

ATASCII CHARACTER SET

DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

G O D H

O O G V Kl

b CI
R
a
R H

8 H

GI
Q

O O O Gl

O O I3

Appendix K 135



DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

27 1B

28 1C

29 1D

30 1E

31 1F Q
32 20

33 R
34 22

35 23

24

37 25

38 26

39 27

40 28

41 29 S Rl
42 2A 5I
43 2B Rl

2C

45 2D Rl
2E

47 2F

48 30 R Q
49 31 S
50 32

51 33

52 34

53 35

54 36

55 37

56 38

57 39

58 3A

59 3B R
3C 5I

136 Appendix K



DECIMAL CODE HEXADECIMAL CODE COD E CHARACTER

61 3D

62 3E

63 3F

64

5 5

65 41 Rl
66 42

67 43 IR
44 Sl

69 45 Sl
70 S
71 47 5I
72

73 49

74 4A

75 4B

Q Q Q

76 4C 5I
77 4D

78 4E Q CK
79 4F

80 50
m Q

51

52 S EK
53 Q
54 O
55

56

57 CE

59

5A

5B

S R Sl

92 5C O
93 5D

94 5E Sl

Appendix K 137



DECIMAL CODE HEXADECIMAL CODE COD E CHARACTER

95 5F

96

97 61

b p t

98 62

99 63

101 65

102

103 67

68

S Ql

105 69 RR
106 6A 5I
107 6B

108 6C

109 6D

110 6E

6F

112 70 5 IR
113

114 72

115 73

116 74

117 75

118 76

119 77 R Q
120 78

121 79

122 7A

123 7B

124 7C

125 7D

126 7E

127 7F Q

138 Appendix K



y x>puaddy

09L

6SL

8SL

1' CI6 LSL

4

SSL

1

66 8SL

T' 86 ZSL

J Z6 LSL

I 96 OSL

S6

+ F r

Z6

06

CI8

68

88

L S8

I.
I' LPL

I OCL

6ZL

A 821

tl)l3VHVH3 3003 3003 1VWI3MVX3H ~a03 SVWI3>a



DECIMAL CODE H EXADECIMAL CODE CODE CHARACTER

161 A1

162

163 A3 S

A4

165 A5 /

166 A6 A

167 A7 I

168 A8 C

169 A9

170 AA

171 AB +

172 AC 'I

173 AD

174 AE

175 AF /

176 l5
177 l5
178 z

179

180 4

181 B5 S

182 B6 6

183 7

184 B8 8

185 B9 N
186 BA

187 BB 1

188 BC

189 BD

190 BE

191 BF

192 CO

193 C1 l5
194 C2 B

140 Appendix K



DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

195 C3

196 C4

197 C5

198 C6

C D F

199 C7 Qu
C8 p~
C9

202 CA
I J

203 CB R
CC L

205 CD M

CE W
207 CF

DO

209 D1

O P O

210 D2 W
211 D3

212 D4
5 T

213 D5 W
214 De V

215 D7 W

216 D8 W
217 D9 Y

218 DA Z

219 DB 8
220 DC

221 DD

222 DE

223 DF

224 EO 4

225 a

226 E2 b

227 E3 C

228 E4 d

AppenChx K 141



DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

229 E5

230 E6

231 E7

232 E8

e f 9 h

233 E9 X

234 EA

235 EB
J k

236 EC l

237 ED M

238 EE n

239 EF

FO
O P

241

242 F2

243 F3

4 P S

F4

245 F5

F6

t V V

247 F7

248 F8

249 F9

250 FA

W X V Z

251 FB

252 FC I
253 FD fi,

254 FE 4

255 FF

142 Appendix K



APPENDIX L

ALPHABETICAL DIRECTORY
OF BASIC RESERVED WORDS

RESERVED BRIEF SUMMARY
WORD OF BASIC STATEMENT

ABS Function returns absolute value (unsigned) of the variable
or expression.
Example: Y= ABS(A+ B)

AFTER Causes the placement of an entry on a time-interrupt list.
The elapsed time to be associated with time interrupt is
specified by the numeric expression in units of jiffies (1/60
of a second).
Example: AFTER (180) GOTO 1000

AND Logical operator: Expression is true only if both subex
pressions joined by AND are true.
Example: IF A=10 AND B=30 THEN END

ASC String function returns the numeric ATASCII value of a
single string character.
Example: PRI NT ASC(A$)

AT Use to position disk or screen output via PRINT state
ment.
Example: PRINT AT(S,B);"START HERE"

ATN Function returns the arctangent of a number or expression
in radians.
Example: PRINT ATN(A)

AUTO A command generating line numbers automatically.
Example: AUTO 100,50

BASE Use with OPTION statement to set minimum value for ar
ray subscripts.
Example: OPTION BASE 1

CHR Use with OPTION statement to allocate RAM for alter
nate character sets, where: CHR1 = 1 024 by tes are
a llocated (128 characters), CHR2 = 512 b y tes a re
allocated (64 characters), CHRO = f ree the al located
RAM
Example: OPTION CHR1

CHR$ String function returns a single string character equivalent
to a numeric value between 0 and 255 in ATASCII code.
Example: PR IN T CHR$(48)

AppenChx L 143



CLEAR Use to set all strings to null and set all variables to zero.
Example: CLEAR

CLEAR STACK Resets all entries on the time stack to zero.
Example: CLEAR STACK

CLOAD Use to put programs on cassette tape into computer
memory.
Example: CLOAD

C LOSE I/O statement used to close a file at the conclusion of I/O
operations.
Example: CLOSE ff6

CLS Erases the text port ion o f t h e screen and sets the
background color register to the indicated vaiue, if pre
sent.
Example: CLS 35

COLOR Establishes the color register or character to be produced
by subsequent PLOT and FILL statements.
Example: COLOR 2

COMMON A program statement passing variables to a chained pro
gram.
Example: COMMON A,B,C$

CONT Continues program execution after a Q~ or S TOP.
Example: CONT

COS Function returns the cosine of the variable or expression
(degrees or radians).
Example: A = COS(2.3)

CSAVE Used to put programs that are in computer memory onto
cassette tape.
Example: CSAVE

DATA I/O statement lists data to be used in a READ statement.
Example: DATA 2.3,"PLUS",4

DEF Statement having two appiications:
1) Def ine an arithmetic or string function.

Example: DEF SQUARE (X,Y)=SQR(X*X+ Y*Y)

2) Def ine default variable of type INT, SNG, DBL, or
STR.

Example: DEFINT I-N

DEL Delete program lines.
Example: DEL 20-25

DIM Reserves the specified amount of memory for matrix, ar
ray, or string array.
Example: DIM A(3), B$(10,2,3)

144 Appendix L



END Stop program, close all files, and return to BASIC com
mand level,
Example: END

EOF Returns true (-1) if file is positioned at its end.
Example: IF EOF(1)GOTO 300

ERL Error line number.
Example: PRINT ERL

ERR Error code number.
Example: IF ERR=62 THEN END

ERROR Generate error of code (see table). May cali user ON ER
ROR routine or force BASIC to handle error.
Example: ERROR 17

EXP Function raises the constant e to the power of expression.
Example: B= EXP(3)

FILL Fills in area between two plotted points with a color.
Example: FILL 10,10 TO 20,20

FOR... TO...STEP Use with NEXT statement to repeat a sequence of pro
gram lines. The variable is incremented by the value of
STE P.
Example: FOR DAY=1 TO 5 STEP 2

FRE(0) Gives memory free space available to programmer.
Example: PRINT FRE(0)

GET Reads a byte from an input device.
Example: G ETC,D

GOSLIB Branch to a subroutine beginning at the specified line
number.
Example: GOSUB 210

GOTO Branch to a specified line number.
Example: GOTO 90

GRAPHICS Establishes which of the display lists and graphics modes,
contained in the operating system are to be used to pro
duce the screen display.
Example: GRAPHICS 5

IF... THEN If exp is true, the THEN clause is executed. Otherwise, the
next statement is executed.
Example: IF ENDVAL)0 THEN GOTO 200

IF... THEN„.ELSE If exp is true, the THEN clause is executed. Otherwise, the
ELSE clause or next statement is executed.
Example: IF X(Y THEN Y=X ELSE Y=A

Appendix L 145



INKEY$ Returns either a one-character string read from terminal
or null string if no character pending at terminal.
Example: A$ = INKEY$

INPUT Read data from a device.
Example: INPUT g1,A, B

Read data from the keyboard. Semicolon after INPUT
suppresses echo of carriage return/line feed, If a prompt is
given, it will appear as written; if not, a question mark will
appear in its place.
Example: INPUT "VALUES";A, B

INSTR Returns the numeric position of the f irst occurrence of
string2 in string1 scanning from position exp.
Example: INSTR(3,X$,Y$i

INT Evaluates the expression for the largest integer less than
express ion.
Example: C = I NT(X+ 3i

KILL Delete a disk file.
Example: KILL "D:INVEN.BAS"

LEFT$ Returns leftmost length characters of the string expres
sion.
Example: B$ = LEFT$(X$,8l

LEN String function returns the length of the specified string in
bytes or characters (1 byte contains 1 character).
Example: PRINT LEN(B$i

LET Assigns a value to a specific variable name.
Example: LET X= I+5

LINE INPUT Read an entire line from the keyboard. Semicolon after
LINE INPUT suppresses echo of carriage return/line feed.
See INPUT.
Example: LINE INPUT "NAME";N$

LIST Display or otherwise output the program list.
Example: L I ST 100-1000

LOAD Load a program file.
Example: LOAD "D:INVEN"

LOCK Sets the file locked condition for the f ile named in the
string express ion.
Example: LOCK "D1:TEST.BAS"

LOG Function returns the natural logarithm of a number.
Example: D= LOG(Y-2l

MERGE Merge program on disk with program in memory by line
number.
Example: MERGE "D:SUB1"

146 Appendix L



MID$ Returns characters from the middle of the string starting
at the position specified to the end of the string or for
length characters,
Example: A$ = MID$(X$,5,10)

MOVE Moves bytes of memory from one area to another so that
the block is not changed.
Example: MOVE 45000,50000,6

NAME Change the name of a disk file.
Example: NAME "D:SUB1" AS "SUB2"

NEW Delete current program and variables.
Example: NEW

NEXT Causes a FOR/NEXT loop to t e rminate o r c o nt inue
depending on the particular variables or expressions.
Example: NEXT I

NOT Unary operator used in logical comparisons evaluates to
0 if expression is non-zero; evaluates to1 if expression is 0.
Example: IF A= NOT B

NOTE Causes the current disk sector number to be stored into
the first variable and the byte number into the second
variable for the file associated with the IOCB¹.
Example: NOTE ¹1,S,B

ON ERROR Enables error trap subroutine beginning at specified line.
If line=O, disables error trapping. If line=O inside error
trap routine, forces BASIC to handle error.
Example: ON ERROR GOTO 1000

ON...GOSUB GOSUB to statement specified by expression. (If exp=1,
to 20; if exp=2, to 20; if exp=3, to 40; otherwise, error.)
Example: ON DATE%+1 GOSUB 20,20,40

ON...GOTO Branch to statement specified by exp. (If exp=1, to 20; if
exp=2, to 30; if exp=2, to 40; otherwise, error)
Example: ON INDEX GOTO 20,30,40

OPEN Open a device. Mode must be one of:INPUT, OUTPUT,
UPDATE, and APPEND.
Example: OPEN ¹1, "D:INVEN.DAT", OUTPUT

OPTION BASE Declare the minimum value for array subscripts; n is 0
OI' 1.
Example: OPTION BASE 1

OPTION CHR Allocates space for alternate character sets.
Example: OPTION CHR1

OPTION PLM Allocates space for player-missile graphics.
Example: OPTION PLM1

Appendix L 147



OPTION RESERVE Allocates free space for programmer's use in assembly
language program,
Example: OPTION RESERVE(50)

OR Logical operator used between two expressions. If either
one is true, a "1" is evaluated. A "0" results only if both
are false.
Example: IF A=10 OR B= 30 THEN END

PEEK Function returns decimal form of contents of specified
memory location.
Example: PRINT PEEK (8 2000)

PLM U sed with OPTION statement to a l locate RAM f o r
player-missile graphics, where:
PLM1 = single-line resolution
PLM2= double-line resolution
PLMO= free the allocated RAM
Example: OPTION PLM2

PLOT Plots a single point on the screen or draws from one point
to another.
Example: PLOT 10,10 TO 20,20

POKE Insert the specified byte into the specified memory loca
tion.
Example: POKE 82310,255

PRINT I/O command causes output from the computer to the
specified output device.
Example: PRINT USINC "!";A$,B$

PUT Write byte-oriented data to a data file.
Example: PUT ff3,4

RANDOMIZE Reseed the random number generator.
Example: RANDOMIZE

READ Read the next i tems in the DATA l ist and assign to
specified variables.
Example: READ I,X,A$

REM Remarks. Allows comments to be inserted in the program
without being executed by the computer on that program
l ine. Alternate forms are exclamation point ( ! ) and
apostrophe (').
Example: REM DAILY FINANCES

RENUM Renumber program lines.
Example: RENUM 100„100

RESERVE Used with OPTION statement to reserve a specified
number of bytes for the programmer's use.
Example: OPTION RESERVE (512)

148 Appendix L



RESTORE Resets DATA pointer to allow DATA to be read more
than once.
Example: RESTORE

RESUME Returns from ON ERROR or time-interrupt routine to
statement that caused error. RESUME NEXT returns to
the statement after error causing statement and RESUME
line number returns to statement at line number.
Example: RESUME

RETURN Return from subroutine to the statement immediately
following the one in which GOSUB appeared.
Example: RETURN

RIGHT$ Returns rightmost length characters of the string expres
sion.
Example: C$ = RIGHT$(X$,8)

RND Generates a random number. If parameter = 0, returns
random between 0 and 1. If parameter )0 , returns ran
dom number between 0 and parameter.
Example: E = RND(10)

RUN Executes a program starting with the lowest line number.
Example: RUN

SAVE Save the program in memory with name "fi lename.",A
saves program in ASCII. ,P protects f i le. Also, SAVE
"filename" LOCK encrypts the program as it writes to
disk.
Example: SAVE"D:PROG"

SCRN$ T he character or c o lor number o f t h e p i xel a t a n
x-coordinate and a y-coordinate is returned as the value
of the function.
Example: A= SCRN$ (23,5)

SETCOLOR Associates a color and luminance with a color register.
Example: SETCOLOR 0,5,5

SGN 1 if expression ) 0
0 if expression = 0
-1 if expression ( 0
Example: B = SG N(X+ Y)

SIN Function returns trigonometrie sine of g iven value in
degrees.
Example: B= SIN(A)

SOUND Statement initiates one of the sound generators.
Example: SOUND 1,1 21,8,10,60

Appendix L 149



SPC Use in PRINT statements to print spaces.
Example: PRINT SPC(5),A$

SQR Function returns the square root of the specified value.
Example: C= SQR(D)

STACK Returns the number of entries available on time stack.
Example: A = STACK

STATUS Function accepts a single argument as either a numeric or
string then returns status of logical unit number or file.
Example: ST = STATUS(2)

STOP Causes execution to stop, but does not close files.
Example: STOP

STR$ Function returns a character string equal to numeric
value given.
Example: PRINT STR$(35)

STRING$ Returns a string composed of a specified number of
replications of A$.
Example: X$ = STRING$(100,"A")

Returns a string 100 units long containing CHR$(65).
Example: Y$ = STRING$(100,65)

TAB Use in PRINT statements to tab carriage to specified posi
tion.
Example: PR IN T TAB(20),A$

TAN Tangent of the expression (in radians).
Example: D = TAN(3.14)

TIME Returns numeric representation of time from the real time
clock.
Example: ATM= TIME

TIME$ The time of day in a 24hour notation is returned in the
string. The format is HH:MM:SS.
Example: TIME$="08:55:05"

PRINT TIME$

TROFF Turn trace off.
Example: TROFF

TRON Turn trace on.
Example: TRON

UNLOCK Statement terminates the LOCK condition.
Example: UNLOCK "D1:DATA.OUT"

USING Provides string format for printed output.
Examples: PRINT USING "ffffff.ffff";PDOLLARS

150 Appendix L



USR Function returns results of a machine-language sub
routine.
Example: X= USR(SVBV, VARPTR(ARR(0)))

VAL Function returns the equivalent numeric value of a string.
Example: PRINT VAL("3.1")

VARPTR Returns address of variable or graphics area in memory,
or zero if variable has not been assigned a value.

Example: I = VARPTR(X)

VERIFY C ompares the program in memory w ith the one on
filename. If the two programs are not found to be iden
tical, it returns an error.
Example: VERIFY "D1:DATA.OUT"

WAIT Equality comparison, pauses execution until result equals
third parameter.
Example: WAIT KE456,KFF,30

XOR Bitwise exclusive OR (integer).
Example: IF A XOR B=O THEN END

Appendix L 151



APPENDIX M

ERROR CODES

CODE ERROR

NEXT without FOR. NEXT was used without a matching
FOR statement. This error may also happen i f NEXT
variable statements are reversed in a nested loop.

Syntax. Incorrect punctuation, open parenthesis, illegal
characters, and misspelled keywords will cause syntax
errors.

RETURN without GOSUB. A RETURN statement was
placed before the matching GOSUB.

Out of data. A READ or INPUT ff statement was not given
enough data. DATA statement may have been left out or
all data read from a device (diskette, cassette).

Function cali error. Attempted to execute an operation
using an illegal parameter. Examples: square root of a
negative number, or negative LOG.

Overflow. A number that is too large or small has resulted
from a mathematical operation or keybord input.

Out of memory. All available memory has been used or
reserved. This may occur with very large matrix dimen
sions, nested branches such as GOTO, GOSUB, and FOR
NEXT loops.

Undefined line. An attempt was made to refer or branch
to a nonexistent line.

Subscript out of range. A matrix element was assigned
beyond the dimensioned range.

10 Redefinition error. Attempt to d imension a matrix that
had already been dimensioned using the DIM statement
or defaults.

Division by zero. Using zero in the denominator is illegal.

12 Illegal direct. The use of INPUT, GET or DEF in the direct
mode.

13 Type mismatch. It is illegal to assign a string variable to a
numeric variable and vice-versa.

Appendix M 153



15 Quantity too big. String variable exceeds 255 characters
in length.

16 Formula too complex. A mathematical or string operation
was too complex. Sreak into shorter steps.

17 Can't continue. A CONT command in the direct mode
cannot be done because program encountered an END
statement.

18 Undefined user function. The USR function cannot be
carried out. User code has an error in logic or USR start
points to wrong memory address.

19 No RESUME. End of program reached in error-trapping
mode.

20 RESUME without error. RESUME encountered before ON
ERROR GOTO statement.

21 FOR without NEXT. NEXT statement encountered before
a FOR statement.

For an explanation of the following error codes, see ATARI Disk Operating System II
Manual.

128 BREAK abort

129 IOC B

130 Nonexistent device

131 IOCB write only

132 Invalid command

133 Device or file not open

134 Bad IOCB number

135 IOCB read-only error

136 EOF

137 Truncated record

138 Device timeout

139 Device NAK

140 Serial bus

154 Appendix M



141 Cursor out of range

142 Serial bus data frame overrun error

143 Serial bus data frame checksum error

144 Device-done error

145 Read after write-compare error

146 Function not implemented

147 Insufficient RAM

160 Drive number error

161 Too many OPEN files

162 Disk full

163 Unrecoverable system data I/O error

164 File number mismatch

165 File name error

166 POINT data length error

167 File locked

168 Command invalid

169 Directory ful I

170 File not found

171 POINT invalid

Appendix M 155



APPENDIX N

USE OF THE CIO
CALLING USR ROUTINEN

There are three, prewritten USR routines provided on the ATARI Microsoft BASIC
diskette for your use. These routines provide a flexible way to interact with the Central
Input/Output (CIO) facilities of your ATARI Home Computer. These routines (or similar
routines if you prefer to write your own) allow the BASIC program to send or retrieve
data directly to or from an Input/Output Control Block (IOCB). The IOCB's are discuss
ed in detail in the A TARI Operating System Vsers Manual (part of A TARI Personal Com
puter System Technica/ Vsers Notes). Refer to that document for a complete descrip
tion of CIO capabilities.

These routines allow the BASIC programmer to perform such tasks as retrieving a disk
directory, formatting a diskette, or conditioning a specific IOCB and its associated
logical unit number to interface with RS-232 devices. Following is a brief description of
how to read these routines into your own program and how to use them

STEP 1. Inserting the Routines Into a BASIC Prograrn.

All three routines are contained in the file CIOUSR on the ATARI Microsoft BASIC
diskette. They are in a machine-readable format, ready to be poked directly into RAM.
To allocate RAM for this purpose, use the OPTION RESERVE n statement where n
should be at least 160. Get the starting address of the reserved area with the statement
ADDR= VARPTR(RESERVE). Then, the following code can be used to put the routines
into the BASIC program:

OPEN ff1, "D:CIOUSR"
INPUT FOR I = 0 TO 159
GET A'1,
POKE ADDR+ I,:NEXT I
CLOSE ff1

STEP 2. Setting Up the Data Array

The routines are now in the reserved area of the BASIC program. There are three
routines called PUTIOCB, CALLCIO, and GETIOCB. PUTIOCB starts at RAM location
ADDR. CALLCIO starts at ADDR+61. GETIOCB starts at ADDR+81.

The GETIOCB routine retrieves the user-alterable bytes from a specified IOCB and
puts them into an integer array of length 10. The programmer may alter any of these
parameters and then put the new values back into the IOCB with the PUTIOCB
routine. When the proper parameters have been set, the use of CALLCIO will cause the

Appendix N 157



IOCB values to be executed by the CIO facility. The next step is to dimension an in
teger array to use for retrieval and storage of the IOCB parameters. This array should
be dimensioned to10 using a HASE option of zero. Following is a list of the elements of
the array and what each is used for:

Element Number IOCB Parameter

This element is the number of the IOCB to be
used (1 to 8).

COMMAND CODE

STATUS — returned

BUFFER ADDRESS

BUFFER LENGTH

5-1 0 AUX byte 1 — 6

Each element of an integer array has two bytes of data storage, so the buffer address in
element 3 will fit into a single integer element.

STEP 3. Calling the USR Routines

A USR cali is used to execute the CIOUSR routines. The GETIOCB routine will return
to the program the current values of the specified IOCB's parameters. After changing
these parameters in the array, to effect some CIO function (i.e., setting the baud rate
on an RS-232 port), the PUTIOCB routine is called to put the desired values into the
specified IOCB. Then the CALLCIO routine is called to execute the CIO facility.
Following is the syntax necessary to cali each of the routines:

nvar = USR(addr,VARPTR(array(0)))

where:

nvar — a numeric variable which will receive the status of the CIO function in the
case of a CALLCIO cali, otherwise it wil l not be specifically affected by these
routines.

addr — the starting address of the proper CIOUSR routine, in our current example
these would be ADDR for PUTIOCB,ADDR+61 for CALLCIO and ADDR+81 for
GETIOCB.

array(0) — the array will be the integer array the program uses for data retrieval and
storage for the routines. Passing the VARPTR of element zero of this array to the
routines teils them where to begin retrieving the data from, starting with the IOCB
number.

158 Appendix N



Following is an example program to set up and use an RS-232 port for telecommunica
tions. Also see the "Disk Directory Program" in Appendix A for another example of the
use of these routines.

10!
20!ROUTINE TO DEMONSTRATE
30 ! CIOUSR ROUTINE S...
40 I
50!PROVIDES TELECOMMUNICATIONS
60!WITH RS-232 DEVICES
70!
80 DIM CIO%(10),S%(10)
90 CIO%(0) = 2
1 00 S%(0) = 5; S%(1) = RQD
110 OPTION RESERVE 200
120 ADDR=VARPTR(RESERVE)
130 PUTIOCB= ADDR
140 CALLCIO = ADDR+ 61
150 GETIOCB=ADDR+81
160 OPEN ff1,"D:CIQUSR" INPUT
170 FOR ! =9 TO 159
180 GET ff1,D:POKE ADDR+ I,D
190 NEXT I
200 CLOSE ff1
210 OPEN ff1,"K:" INPUT
220 CIO%(0)= 2
230 CIO%(1) = 3
240 FSPEC$="R:"
250 Z= VARPTR(FSPEC$)
260 Y = VA R P T R(C I 0%(3))
270 POKE Y,PEEK(Z+2)
280 POKE Y+1,PEEK(Z+1)
290 Y = VARPTR(S%(3))
300 POKE Y,PEEK(Z+2)
310 POKE Y+1,PEEK(Z+1)
320 C IO%(5) = 1 3
330 A= USR(PUTIOCB,VARPTR(CIO%(0)))
340 A= USR(CALLCIO,VARPTR(CIO%(0)))
350 A = USR(G ETIOC B,VARPTR(CIO%(0)))
360 CIO%(1) = 40
370 C I 0%(5) = 0: C I O(6) = 0
380 A = USR(PUTIOCB,VARPTR(CIO%(0)))
390 A= USR(CALLCIO,VARPTR(CIO%(0)))
400 X= USR(PUTIOCB,VARPTR(S%(0)))
4'10 !
420!SHOULD BE READY TQ GO NOW
430 PRINT "STARTING LOOP"
440 I
450 GET ff1,A:PUT ff2,A:POKE 764,255
460 X= USR(CALLCIQ,VARPTR(S%(0))):IF PEEK(747)=0 THEN 480
470 GET ff2,D:IF D ( ) 1 0 T HEN PRINT CHR%(D);
480 IF PEEK(764)() 255 THEN 450
490 GOTO 460

Appendix N 159



APPENDIX 0

ACTIONS TAKEN
WHEN PROGRAM ENDS

ACTIONS TAKEN

Key Pressed
or Statement Run Out
Executed Close All Files the Stack Clea r Sound

STOP
ERRORS

NO NO YES

Running off the last
statement or "END" YES YES YES

After a direct mode
statement NO YES NO

RUN YES NO YES

Appendix O 161



INDEX

DEL 22, 144
DOS 20

ABS 55, 143 KILL 26, 146
AFTER 35,143 LIST 20, 146
Alternate character set 103-105 LOAD 23, 146
AND 16, 143 LOCK 26, 146
Apple 123, 131-1 32 MERGE 24, 146
Arithmetic symbols 16 NAME...TO 26, 147
Array 53 NEW 19, 147
ASC 60, 143 RENUM 25, 148
Asterisk 44-45 RUN 19, 149
ATASCII 135-142 SAVE 23, 149
AT 48, 143 SAVE...LOCK 23, 149
ATN 56, 143 TROFF 27, 150
Audio track of cassette 41 TRON 26, 150
AUTO 21, 143 UNLOCK 26, 150

VERIFY 24, 151
Commodore PET 123, 125-127

B COMMON 36, 144
C oncatenation operator 5 9

BASE 143 Constants 9
BASIC 1 CONT 30, 144
Blanks (see Spaces) Controllers,
Brightness (see Luminance) ga me 89-91

joystick 84
keyboard 89
paddle 89-90

COS 56,144
Central Input/Output 157-159 CSAVE 24, 144
Character Cursor control keys 6

a ssigning color to 78
ATASC II 135-142
set, internal 103-105, 135-142

Sizes in text modes 65
CHR 143 DATA 48, 144
CHR$ 60, 143 Decimal-to-hex example 97-98
CIO (See Central Input/Output) DEF 63, 144
CLEAR 36, 144 Default
Clear screen colors 66

deferred mode 5 disk drive 41
direct mode 5 tab settings 42-43

CLEAR STACK 35, 144 Deferred mode 1
CLOAD 24, 144 DEFDBL 11
C LOS E 50, 144 DEFSNG 10
CLS 69, 144 DEFSTR 13
Colon 4 DEL 22, 144
COLOR Derived functions 107

assigning 78 Devices 41
changing 78 Delete line 7
default 66, 73 DIM 53, 144
registers 78, 144 Direct mode 1

Comma 2-3, 44 Disk directory program 93
Commands Disk drive

AUTO 21, 143 d efault number 4 1
CLOAD 24, 144 Disk drives (D:) 41
CSAVE 24, 144 Display, split-screen override 65

Index 163



Distortion 85 trigonometrie
Dollar sign 45 ATN 56, 143
Double-line resolution 77 COS 56, 144

Double precjsjon 5IN 56, 149
double-precision real constants 10 TAN 56, 150
double-precision real variables 11
DEFDBL 11

DOS 20

Garne controllers
keyboard 89
joystick 84, 90-91

Editing 5 paddle 89-90
Editing, screen 6-7 CET 50, 145
END 30, 145 COSUB 33, 145
End of program COTO 30, 145

actions taken 161 GRAPH ICS 65, 145
EOF 51, 145 G raphics
ERL 35, 145 modes 65, 69-71
ERR 35, 145 statements
ERROR 34, 145 cLS e9
Error messages 153-1 55 col QR ee
Escape key 5 F ILL 68
Exclamation sign 46 GRAPHICS 65, 145
EXP 56, 145 PLOT 68
Explosion example 94 SETCOLOR 67
Exponential symbol 16, 45
Expressions

logical 15
numeric 15
string 15 Hexadecimal constants 13

Fanfare music example 94-95 IF...THEN 31, 145
F ILL 68, 145 IF... THEN...ELSE 31, 145
FOR... TO...STEP 32, 145 INKEY$ 61, 146
FRE (0) 57, 145 INPUT 47, 146
Function Input/output statements

arithmetic AT 48
ABS 55, 143 CLOAD 24, 144
EXP 56, 145 CLOSE 50, 144
INT 55, 146 CSAVE 24, 144
LOG Se, 14e DATA 48, 144
RND 55, 149 DOS 20
SGN 55, 149 EOF 51, 145
SQR 55, 150 GET 50 145

derived 107 INPUT 47, 146
spee ial purpose LINE INPUT 47

F RE (0) 57,145 LOAD 23, 146
PEEK 56, 148 NOTE 50, 147
POKE 57, 148 OPEN 49, 147
USR 58, 151 PRINT 41, 148
TIME 58, 150 PRI NT US INC 43

string PUT 50, 148
ASC 60, 143 READ 48, 148
CHR$60, 143 RESTORE 48
INKEY$ 61, 146 SAVE 23, 149
INSTR 61, 146 SPC 43
LEFT$59, 146 STATUS 50, 150
LEN 60, 146 TAB 42, 150
RIGHT$ 60, 149 Input/Output Control Block 112, 157-158
SCRN$62, 149 Input/output devices
STR$61, 150 disk drives (D:) 41
STRING$ (N,A$) 61, 150 keyboard (K:) 41
STRING$ (N,M) 61, 150 printer (P.) 41
TIME$ ez, 15o program recorder (C:) 41
VAL 60, 151 RS-232 interface (R:) 41

164 Index



screen editor (E:) 41 Microbe Invasion example 101
TV monitor (S:) 41 Microsoft

INSTR 61, 146 conversion from Apple Applesoft 123,
(NT 55, 146 131-132
In tegers conversion from ATARI 8K BASIC 133-134

integer constants 11 conversion from Commodore PET
integer variables 11-12 BASIC 123, 125-127
DE F IN T 12 conversion from Radio Shack Level II

Inverse key 5 BASIC 123, 129-1 30
IOCB (see Input/Output Control Block) MID$ 5 9 , 147

Minus sign 46
Missiles 76-77
Modes, graphics 65, 69-71
Modes, operating

Joystick controller 84 deferred 1
d irect 5

Modes, text
Override split-screen 65

MOVE 30, 75, 147
Keyboard (K:) 41 Music example 94
Keyboard controllers 89
Keyboard operation 5
Keys N

special function
ATARI 5 NAME... TO 26, 147
BACKSPACE 6 NEW 19, 147
BREAK 5, 7 NEXT 32, 147
CAPS/LOWE R 5 NOT 16, 147
CLEAR 6 NOTE 50, 147
DE LETE 6-7 NOTE.DAT creation program 96
ESCAPE 5 Numeric expressions 15
INSERT 6
RETURN 5, 41
SYSTEM RESET 5 O
TAB 6

editing ON ERROR 34, 147
CONTROL 6 ON...GOSUB 34, 147
SHIFT 5, 7 ON...GOTO 33, 147

cursor control OPEN 48, 147
down arrow 6 Operators
l eft arrow 6 a rithmetic 1 6
r ight arrow 6 b inary 16
up arrow 6 l ogical 16

Keywords 2 r elational 15
KILL 26, 146 OPTION BASE 36, 147

OPTION CHR 38, 147
OPTION PLM 38, 76, 147
OPTION RESERVE 39, 148
Output devices 41

LEFT$ 59, 146 OR 16, 148
LEN 60, 146
LET 29, 146
Letters

capital (uppercase) 5
lowercase 5 Paddle controllers 89-90

LINE INPUT 47, 146 Parentheses 16
LIST 20, 146 PEEK 56, 89, 148
LOAD 23, 146 Percent sign 47
LOCK 26, 146 Period 44
LOG 56, 146 Peripheral devices (see Input/output devices)
Logical operators 16 Piano example 95-96
Luminance 78 Pitch

definition 83 , 86
va lues 86

Player-missile example 75, 81
Player-missile graphics

Mandatory ff symbol 43 annotation 82-84
MERGE 24, 146 collision control 80-81
Memory locations 109 c olor control 7 8

Index 165



diagonal movement 79 Spaces 47
horizontal movement 79 SPC 43, 150
mapping 77 5pecial function keys 5

priority control 80 SQR,F) 5, 150
RAM configuration 77 STACK 35, 150
size control 78 Statements

vertical movement 79 AFTER 35, 143
PLOT 68, 148 CLEAR 36, 144
Plus sign 46 CLEAR STACK 35, 144
Point-plotting modes 72 COMMON 36, 144
POKE 57, 148 CONT 30, 144
Pound sign 43 END 30, 145
Precision ERL 35, 145

of numeric variables 9 ERR 35, 145
Precedence of operators 15-1 6 ERROR 34, 145
PR INT41, 148 FOR... TO...STEP 32, 145
Printer (P:) 41 GOSUB 33, 145
Printer listing 21, 41 GOTO 30, 145
PRINT US ING 43 IF... THEN 31, 145
Program Recorder (C:) 41 IF... THEN...ELSE 31, 145
PUT 50, 148 LET 29, 146

MOVE 30, 147
NEXT 32, 147
ON ERROR 34, 147
ON...GOSUB 34, 147
ON...GOTO 33, 147Question mark as prompt 42 OPTION BASE 36 147

Quotation marks 2 OPTION CHR 38, 147
OPTION PLM 38 147
OPTION RESERVE 39, 148
RANDOMIZE 37, 148
REM 29, 148

Radio Shack 123, 129-130 RESUME 36, 149
RANDOMIZE 37, 102, 148 RETURN 33, 149
READ 48, 148 STACK 35, 150
Relational and logical symbols 15 STOP 30, 150
Relational operators 15-16 SUBROUTINES 33
REM 29, 148 VARPTR 39, 151
RENUM 25, 148 WAIT 31, 151
RESERVE 148 STATUS 50, 150
Reserved Words 143-151 STOP 30, 150
RESTORE 48, 149 STR$61, 150
RESUME 36, 149 Strings
RETURN 33, 149 concatenation operator 59
RIGHT$60, 149 DEFSTR 13
RND 55, 102, 149 string constants 12
RS-232 (R:) 41, 159 string expressions 16
RUN 19, 149 string functions

ASC 60, 143
CHR$60, 143
INKEY$61, 146
INSTR 61, 146

SAVE 23, 149 LEFT$ 59, 146
SAVE...LOCK 23, 149 LEN 60, 146
Screen editor (E:) 41 MI D$59, 147
SCRN$62, 149 RIGHT$60, 149
Semicolon 3 SCRN$62, 149
SETCOLOR 67, 76, 78, 149 STR$61, 150
SGN 55, 149 STR ING$ (N,A$) 61, 150
Single-line resolution 77 STR ING$ (N,M) 61, 150
Single precision TIME$ 62, 150

single-precision real constants 9 VAL 60, 151
single-precision real variables 9 string variables 12
DEFSNG 10 STRING$ (N,A$) 61, 150

SIN 56, 149 STR ING$ (N,M) 61, 150
SOUND Subroubne

rocket example 87 definition 33
t erminating 85 GOSUB 33, 145

166 Index



TAB 43, 150
TAN 56, 150
Text modes 65
TIME$62, 150
T IME 58, 150
TROFF 27, 150
TRON 26, 150
TV monitor (S0 41
Typewriter graphics example 74

U

UNLOCK 26, 150
User-defined function

DEF 63, 144
USING 150
USR 58, 151

VAL 60, 151
Variables

naming 9
VARPTR 39, 76-77, 151
VERIFY 24, 151
Vertical fine scrolling example 98-99
Voice 85

W

WAIT31, 151
Window

graphics 65
t ext 65

X-coordinate 68
XOR 16, 151

Y-coordinate 68

Zero
as dummy variable 57

Index 167



IMPORTANT WARRANTY INFORMATION

LIMITED 90-DAY WARRANTY
ON ATARIo COMPUTER CASSETTES,

CARTRIDGES, OR DISKETTES

ATARI, INC ("ATARI") warrants to the original consumer purchaser that this ATARI Computer Cassette, Cartridge, or Diskette ("Computer
Media" ), not including computer programs, shall be free from any defects in material or workmanship for a period of 90 days from the date
of purchase. If any such defect is discovered within the warranty period, ATARI, at its option, will repair or replace the defective Computer
Media. Computer Media returned for in-warranty repair/replacement must have the ATARI label still intact, must be accompanied by proof
of date of purchase satisfactory to ATARI, and must be delivered or mailed, postage prepaid, to:

ATARI, INC.
Customer Service Department
590 Brennan Street
San Jose, CA 95131

This warranty shall not apply if the Computer Media (i) has been misused or shows signs of excessive wear, (ii) has been damaged by being
used with any products not supplied by ATARI, or (iii) has been damaged by being serviced or modified by anyone other than the ATARI
Customer Service Department.

ANY APPLICABLE IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR
POSE, ARE HEREBY LIMITED TO NINETY DAYS FROM THE DATE OF PURCHASE. CONSEQUENTIAL OR INCIDENTAL DAMAGES
RESULTING FROM A BREACH OF ANY APPLICABLE EXPRESS OR IlvlPLIED WARRANTIES ARE HEREBY EXCLUDED,

The provisions of the foregoing warranty are valid in the United States only and are subject to the laws of the State in which the Computer
Media is purchased. Such laws may broaden the warranty protection available to the consumer purchaser of the Computer Media.

REPAIR SERVICE: If your ATARI Computer Media requires repair other than under the90-day Limited Warranty, please contact the ATARI
Customer Service Department for repair/replacement information. From California cali (800) 662-6297, outside California (800) 538-7037 or
(800) 538-7602 in Hawaii or Alaska.

IMPORTANT: If you ship your ATARI Computer Media, package it securely and ship, charges prepaid and insured, by parcel post or
United Parcel Service. ATARI assumes no liability for losses incurred during shipment.

DISCLAIMER OF WARRANTY ON ATARI COMPUTER PROGRAMS:

All ATARI computer programs are distributed on an "as is" basis without warranty of any kind. The entire risk as to the quality and perfor
mance of such programs is with the purchaser. Should the programs prove defective fo)lowing their purchase, the purchaser and not the
manufacturer, distributor, or retailer assumes the entire cost of all necessary servicing or repair.

ATARI shall have no liability or responsibility to a purchaser, customer, or any other person directly or indirectly, by computer programs
sold by ATARI. This includes, but is not limited to any interruption of service, loss of business or anticipatory profits, or consequential
damages resulting from the use or operation of such computer programs.



l

®

®


