fit

il
b

il
ey

BIAR| 8O0

INSTRUCTION

ATARI MICROSOFT BASIC

MANUAL

ATARI® Microsoft BASIC Instructions

ABS 55 LINE INPUT 47 STACK 35

AFTER 35 LIST 20 STATUS 50

ASC 60 LOAD 23 STOP 30

AT 48 LOCK 26 STR$ 61

ATN 56 LOG 56 ' STRINGS (N,A$) 61

AUTO 21 MERGE 24 STRINGS$ (N, M) 61

CHR$ 60 MID$ 59 TAB 42

CLEAR 36 MOVE 30 TAN 56

CLEAR STACK 35 NAME..TO 26 TIME 58

CLOAD 24 NEW 19 TIME$ 62

CLOSE 50 NEXT 32 TROFF 27

CLS 69 NOTE 50 TRON 26

COLOR 66 ON ERROR 34 UNLOCK 26

COMMON 36 ON..GOSUB 34 USR 58
-CONT 30 ON...GOTO 33 VAL 60

COS 56 OPEN 49 VARPTR 39

CSAVE 24 OPTION BASE 36 VERIFY 24

DATA 48 OPTION CHR 38 WAIT 31

DEF 63 OPTION PLM 38 +(Concatenation) 59

DEL 22 OPTION RESERVE 39

DIM 53 PEEK 56

DOS 20 PLOT 68

END 30 POKE 57

EOF 51 PRINT 42

ERL 35 PRINT USING 43

ERR 35 PUT/GET 50

ERROR 34 RANDOMIZE 37

EXP 56 READ 48

FILL 68 REM 29

FOR..TO...STEP 32 RENUM 25

FRE (0) 57 RESTORE 48

GET 50 RESUME 36

GOSUB 33 RETURN 33

GOTO 30 RIGHT$ 60

GRAPHICS 65 RND 55

IF.. THEN 31 RUN 19

IF.. THEN...ELSE 3 SAVE 23

INKEY$ o1 SAVE...LOCK 23

INPUT 47 SCRN$% 62

INSTR 61 SETCOLOR 67

INT . 55 SGN 55

KILL 26 SIN 56

LEFT$ 59 SOUND 85

LEN 60 SPC 43

LET 29 SQR 55

ATARI MICROSOFT BASIC
INSTRUCTION MANUAL

N\

ATARI®

A Warner Communications Company

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Home Computer Division.
However, because of the ongoing improvement and update of the computer software and hardware, ATARI, INC. cannot guarantee the
accuracy of printed material after the date of publication and cannot accept responsibility for errors or omissions.

Reproduction is forbidden without the specific written permission of ATARI, INC., Sunnyvale, CA 94086. No right to reproduce this docu-

ment, nor the subject matter thereof, is granted unless by written agreement with, or written permission from the Corporation.

MANUAL © 1981 ATARI, INC.
PRINTED IN U.S.A. PROCRAM © 1981 MICROSOFT

PREFACE

In this manual you will find all the commands and statements used by ATARI®
Microsoft BASIC. The INSTRUCTION list on the inside front cover is in alphabetical
order with page numbers for your convenience.

BASIC was developed at Dartmouth College by John Kemeny and Thomas Kurtz. It
was designed to be an easy computer language to learn and use. Many additions in re-
cent years have made BASIC a complete and useful language for skilled programmers.

This reference manual does not teach BASIC. Those who wish to learn BASIC should

read an introductory book. Helpful books are: Computer Programming in BASIC for
Everyone by Dwyer and Kaufman, and Basic BASIC by James S. Coan.

Preface i

CONTENTS

PREFACE iii
LOADING INSTRUCTIONS v
1 MICROSOFT OVERVIEW 1
What Is a Program? 1
Keywords 2

Line Construction 2
Quotation Marks 2

The Comma 2

Use of Semicolon in PRINT Statement 3

The Colon 4

2 EDITING 5
Keyboard Operation 5
Special Function Keys 5
Cursor Control Keys 6

3 CONSTANTS, VARIABLES, AND NAMES 9
Single-Precision Real Constants 9
Single-Precision Real Variables 9
DEFSNG 10
Double-Precision Real Constants 10
Double-Precision Real Variables 11
DEFDBL 11
Integer Constants 1
Integer Variables 1
DEFINT 12
String Constants 12
String Variables 12
DEFSTR 13

Hexadecimal Constants

13

Contents v

Contents vi

NUMERIC AND STRING EXPRESSIONS 15
Numeric Expressions 15

Relational Operators 15

Relational and Logical Symbols 15

Arithmetic Symbols 16
String Expressions 16

Relational Operators in Strings 16
COMMANDS 19
NEW 19
RUN 19
DOS 20
LIST 20
AUTO 21
DEL 22
SAVE 23
SAVE...LOCK 23
LOAD 23
CLOAD 24
CSAVE 24
VERIFY 24
MERGE 24
RENUM 25
LOCK 26
UNLOCK 26
KILL 26
NAME..TO 26
TRON 26
TROFF 27
STATEMENTS 29
REMor!or’ 29
LET 29
MOVE 30
STOP 30
CONT 30
END 30
GOTO 30
IF.. THEN 3
IF.. THEN...ELSE 31
WAIT 31
FOR..TO...STEP 32

NEXT 32
GOosuB 33
RETURN 33
ON...COTO 33
ON..GOSUB 34
ON ERROR 34
ERROR 34
ERL 35
ERR 35
AFTER 35
CLEAR STACK 35
STACK 35
RESUME 36
OPTION BASE 36
CLEAR 36
COMMON 36
RANDOMIZE 37
OPTION PLM1, OPTION PLM2, OPTION PLMO 38
OPTION CHR1, OPTION CHR2, OPTION CHRO 38
OPTION RESERVE 39
VARPTR 39
INPUT/OUTPUT STATEMENTS 41
PRINT 42
TAB 42
SPC 43
PRINT USING 43
INPUT 47
LINE INPUT 47
DATA 48
READ 48
RESTORE 48
AT 48
OPEN 49
CLOSE 50
NOTE 50
PUT/CET 50
STATUS 50
EOF 51
ARRAYS 53
About Arrays 53
DIM 53

Contents vii

Contents viii

9 FUNCTION LIBRARY 55
ABS 55
INT 55
SGN 55
SQR 55
RND 55
LOG 56
EXP 56
SIN 56
COS 56
ATN 56
TAN 56
PEEK 56
POKE 57
FRE (0) 57
USR 58
TIME 58

10 STRINGS 59
+ (Concatenation Operator) 59
MID$ 59
LEFTS$ 59
RIGHTS 60
LEN 60
ASC 60
VAL 60
CHRS$ 60
INSTR 61
STR% 61
STRINGS (N,A%) o1
STRINGS (N,M) 61
INKEY$ 61
TIMES$ 62
SCRN$ 62

11 USER-DEFINED FUNCTION 63
DEF 63

12 GRAPHICS 65
Graphics Overview 65
GRAPHICS 65
COLOR 66
SETCOLOR 67
PLOT 68
FILL 68
CLS | 69
Point-Plotting Modes 72
13 PLAYER-MISSILE GRAPHICS 75
Players and Missiles 75
Making a Player Out of Paper 75

How ATARI Microsoft BASIC Instructions Assist
Player-Missile Graphics 76
Color Control 78
Size Control 78
Position and Movement 79
Vertical 79
Horizontal 79
Diagonal 79
Priority Control 80
Priority Select 80
Enable Fifth Player 80
Collision Control 80
Clearing Collision Registers 81
Player-Missile Graphics Demonstration Program 81
Annotation 82
14 SOUND 85
15 GAME CONTROLLERS 89
Paddle Controllers 89
Joystick Controllers 920
Console Keys 91

Contents

ix

Contents x

APPENDICES

A SAMPLE PROGRAMS, 93
B GRAPHICS MODES PROGRAMS 101
C ALTERNATE CHARACTER SETS 103
D DERIVED FUNCTIONS 107
E MEMORY LOCATIONS 107
F PROGRAM CONVERSIONS 123
G CONVERSION FROM COMMODORE (PET)
BASIC VERSION 4.0 125
H CONVERTING RADIO SHACK TRS-80 PROGRAMS TO
ATAR! MICROSOFT BASIC 129
I CONVERTING APPLESOFT PROGRAMS TO
ATARI MICROSOFT BASIC 131
)] CONVERTING ATARI 8K BASIC
TO ATARI MICROSOFT BASIC 133
K ATASCH CHARACTER SET 135
L ALPHABETICAL DIRECTORY
OF BASIC RESERVED WORDS 143
M ERROR CODES 153
N USE OF THE CIO CALLING USR ROUTINES 157
O ACTIONS TAKEN WHEN PROGRAM ENDS 161
INDEX 163
ILLUSTRATIONS
3-1 Machine Representation of Single-Precision Real 10
3-2 Machine Representation of Double-Precision Variable 1
3-3 Machine Representation of Integer Variable 12
13-1 Player-Missile Graphics RAM Configuration 77
13-2 Mapping the Player 77
13-3 Joystick Controller Positions 84
15-1 Game Controllers 89
15-2 Joystick Triggers 90
C-1 Amount of Memory per Character 104
C-2 Redefining a Character 104

TABLES

3-1 Decimal, Hexadecimal, and Binary Equivalents 13
7-1 List of Status Codes 51
12-1 The ATARI Hue (SETCOLOR Command)
Numbers and Colors 67
12-2 Graphics Modes and Screen Formats 69
12-3 Characters in Graphics Mode 1 and 2 70
12-4 Default Colors, Mode Setcolor, and Color 73
13-1 SETCOLOR Register Assignments ' 78
13-2 Registers Controlling Width of Player-Missiles 78
13-3 Player-Missile Horizontal Position Registers 79
13-4 Collision Control Registers for Player-Missiles 80
14-1 Frequency Chart of Pitch Values 86
E-1 Useful OS Data Base Addresses 110
E-2 Hardware Addresses 117

Contents xi

LOADING INSTRUCTIONS

Important: The disk-based release of ATARI® Microsoft BASIC requires that all car-
tridges (ATARI BASIC, Assembler Editor, games, and the like) be removed from the
front cartridge slots of your computer. You will need a blank diskette in addition to the
ATARI Microsoft BASIC diskette on which to store programs.

Warning: The ATARI Microsoft BASIC diskette is write-protected. Do not attempt to
punch a notch in the corner in order to write on it. Attempting to make a readjwrite
diskette out of your ATARI Microsoft BASIC diskette could destroy BASIC and void all
warranties.

Use the following setup procedure to load ATARI Microsoft BASIC, format a blank
diskette, write DOS files, create MEM.SAV, and transfer CIOUSR and DIR files (see
Quick-Reference Guide for a list of timesaving steps).

1. Connect the ATARI 800 Home Computer to a television set and to a wall
outlet as instructed in the operators manual.

Note: ATARI Microsoft BASIC requires a minimum of 32K of RAM.

2. Connect the ATARI 810™ Disk Drive to the ATARI 800 Home Computer and
to a wall outlet as instructed in the ATARI 810 Disk Drive Operators Manual.

Turn on your television set.

Turn the POWER (PWR) switch to ON for Disk Drive 1. Disk drive numbers are
set by switches located in the back of your disk drive. Consult your ATARI 810
Disk Drive Operators Manual for drive numbers. Turn the POWER (PWR)
switch to ON for any other disk drives you wish to use. Two red lights (the
BUSY light and the PWR ON light) will come on.

5. When the BUSY light goes out on Disk Drive 1, open the drive door by press-
ing the door handle release lever.

6. Hold the ATARI Microsoft BASIC diskette with the label in the lower right cor-
ner and the arrow pointing towards the disk drive. Insert the diskette into the
disk drive and close the disk drive door.

7. Switch the computer console POWER (PWR) to ON. ATARI Microsoft BASIC
will load into the computer's memory automatically.

8. Type DOS EHIEY The Disk Operating System 1l version 2.0S will load into
your computer'’s memory.

9. Remove your ATARI Microsoft BASIC Diskette from the disk drive and insert
a blank diskette (CX8202).

10. Use the I DOS option to format the blank diskette.
11.. Use the H DOS option to write DOS files onto the diskette.

Loading Instructions xiii

xiv Loading Instructions

12.

13.

14.

15.

Use the N DOS option to create MEM.SAVE. The MEM.SAV file is used to
save the ATAR! Microsoft BASIC program in memory when you use the DOS
command. See the ATAR! Disk Operating System Il Reference Manual for

more information on MEM.SAVE.

If you have two disk drives you can use the C DOS option to copy files from

the ATARI Microsoft BASIC diskette. If you have one disk drive you must use
the O DOS option.

Copying files with two disk drives:

e Put ATARI Microsoft BASIC in Drive 2.
¢ Put formatted diskette in Drive 1.

* Type C Ginlils

e Respond to COPY—FROM, TO? by typing D2:*.* ,D1:*.* §

¢ Turn off the computer and reload ATARI Microsoft BASIC. MEM.SAV is
now at work.

Copying files with one disk drive:

e Put ATARI Microsoft BASIC in disk drive.

* Type O GG

¢ Respond to NAME OF FILE TO MOVE?

7% since source disk is in place.

¢ Insert blank as DESTINATION DISK and press &
e Repeat the O procedure with the file DIR.

e Turn off computer and reload. ATARI Microsoft BASIC. MEM.SAV s
now at work.

® Press i

Remove your newly created program storage diskette and insert the ATARI
Microsoft BASIC diskette. Turn your computer console off and then back on
again to reload and reinitialize BASIC. To activate the MEM.SAV file you
must remove BASIC and insert a program storage dlskett Put your program
storage diskette back into the disk drive and press 5 et i
= #8 with your program storage diskette in the disk drive, the
MEM.SAV diskette file will save the correct return locations for future returns
to BASIC.

If you wish to have duplicate program storage diskettes, now is the time to
make them since you have not vet stored any programs. Use DOS option 1 to
format the duplicate storage diskette. Then use the H option to write DOS
files. Now use the } option to duplicate the program storage diskette.

You should now remove the ATARI Microsoft BASIC diskette and hereafter use the
new program storage diskette(s) you have created. With a program diskette you can
save and load the programs you write, and return to BASIC.

Pressing

with a program storage diskette in the disk drive brings you back

to BASIC with a “warmstart,” which means that the variables and your program will be

just as you left it before you typed DOS &

QUICK-REFERENCE GUIDE

Boot* system with ATARI Microsoft BASIC Master Diskette.
Type DOS GEITE
Remove BASIC Master Diskette.
Format blank diskette. (DOS 2.0S)
Write DOS files to the new diskette.
Create MEM.SAV on the diskette.

Copy from BASIC Master Diskette to your new diskette, CTOUSR and
DIR.

Turn off your system and reboot* with ATARI Microsoft BASIC.
9. Insert newly created diskette into Drive 1.

10. Type DOS §2

11. After DUP file is loaded, press ESEU{iETESS.

R

N oo »

&

12. Use your newly created program storage diskette to make duplicate
program storage diskettes (DOS option }).

Note: Steps 10, 11, and 12 write the correct Microsoft memory images into
the MEM.SAV files on your Microsoft BASIC program storage diskette.

*BASIC loads into RAM automatically (boots) when you turn on the com-
pufer.

Loading Instructions xv

1

MICROSOFT OVERVIEW

WHAT IS A
PROGRAM?

ATARI® Microsoft BASIC is a customized and enhanced BASIC programming
language. It was developed by Microsoft for the ATARI 800™ Home Computer, which
uses the 6502 microprocessor and customized graphics and sound-integrated circuits.

In the development of ATARI Microsoft BASIC, the two primary considerations were
processing speed and compatibility with other microcomputer BASIC languages. The
fast ATARI 800 Computer clock rate of 1.8 MHz combines with the state-of-the-art
Microsoft design to give high microprocessor throughput speed. ATARI Microsoft
BASIC is a superset of the existing microcomputer languages. That is, ATARI Microsoft
BASIC combines the capabilities of other microcomputer BASIC languages with some
unique features. New graphics features have been added to take advantage of the
hardware-supported player-missile graphics. Sound capabilities now include the ability
to set the length of time a sound is heard. You can renumber and merge programs easi-
ly with Microsoft BASIC. This is a powerful language with software tools to fit a variety
of needs.

A program is a list of steps (statements) that you wish the computer to perform. Every
statement stored in memory must have a line number. The lowest line number is 0 and
the highest allowable line number is 63999. Statements are performed in line number
order starting with the lowest numbered line. You can change the order in which the
statements are performed by branching or jumping to other line numbers,

Line numbers always precede statements that you want stored in memory. Because the
statements that have line numbers wait in memory until the command RUN is given,
they are written in what is called the deferred mode.

To be exact, execution of a program waits until you type the word RUN and press the
i key. When ATARI Microsoft BASIC is first loaded, it is ready for you to write
programs (deferred mode) or execute statements immediately (direct mode).

When the computer is ready to accept input, a prompt >appears on your television
screen. When you see the >, you can enter statements with line numbers (deferred
mode) or statements without line numbers for immediate execution.

Let's write a BASIC program in the deferred mode:

>
100 PRINT 7 * 7

RUN
49

This single-line program does not execute immediately. The program waits to perform
the statement until you type RUN and press | . The word RUN typed without a
line number, executes the program |mmed|ately after you press the ETIETE key.

Microsoft Overview 1

KEYWORDS

LINE
CONSTRUCTION

2 Microsoft Overview

Keywords must be spelled out. Abbreviations are not legal syntax in ATARI Microsoft
BASIC.

Keywords are words the computer recognizes. Each keyword tells the computer what

you want done. The words IF, COSUB, INPUT, and GOTO are keywords. Keywords

can be thought of as the verbs in the vocabulary of your computer. If you write a state-
ment that uses a keyword the computer does not recognize, BASIC will give you an
ERROR statement when you run the program. ATARI Microsoft BASIC does not allow
you to use keywords as variables, but does allow you to embed keywords in the
variable names. That is, IF and GOSUB cannot be variables, but LIFE and RGOSUB are
allowed. A complete list of keywords is given in Appendix L.

The form of the BASIC statement looks like this:

Line
Number Statement

100 IF A< >B THEN 630 ELSE 210

Just as there are punctuation marks in the English language, so there are quotes, com-
mas, semicolons, and colons in BASIC. The rules of punctuation are listed in this
manual with the keywords that require them or have them as options. Following is a
summary of punctuation use.

QUOTATION MARKS

The quotation marks are used to indicate where typed characters begin and end. Just
as we use quotes in English to mark the beginning and end of a speaker’'s words, so it is
with BASIC. The quote mark means that the material quoted constitutes a string
variable or string constant; strings will be covered later in the text. For now it is enough
to know that quotes tell the computer where to begin and end a string. The string in
this example program will be told when to start and stop printing on the screen by
quotes:

Example Program:

100 PRINT “START PRINTING ON SCREEN— — — — —- NOW STOP”

RUN
START PRINTING ON SCREEN— — — — —- NOW STOP

THE COMMA

The comma has three uses.

® Use the comma to separate required items after a keyword. The keyword
SOUND has five different functions in ATARI Microsoft BASIC. Each parameter
is separated by commas. For example, SOUND 2,&79,10,8,60 means voice 2,
pitch hexadecimal 79 (middle C), noise 10, volume 8, and duration in jiffies (1/60
of a second) 60. Another example of the comma is the statement SETCOLOR
4,410 which means register 4, pink, bright luminance. The comma tells where
one piece of information ends and the next begins. BASIC expects to find an ex-
act order separated by commas.

® Use the comma to separate optional values and variable names. You can input
any number of variable names on a single line with an INPUT statement. The
variable names are of your own invention. You can have as many of them as
you like as long as you separate them with a comma. For example, INPUT
A,B,C,D,E tells the computer to expect five values from the keyboard.

e Use the comma to space advance to the next output field in a PRINT statement.
When used in a PRINT statement at the end of a quoted string or between ex-
pressions, the comma will advance printing to the next column which is a multi-
ple of 14. For example, if X is assigned the value of 25 then the statement 10
PRINT “YOU ARE”, X, “YEARS OLD” will have the following spacing when you
run it:

<14 columns>» | =14 columns—»

YOU ARE 25
YEARS OLD

USE OF SEMICOLON IN PRINT STATEMENT

The semicolon is used for PRINT statement output. The semicolon leaves one space
after variables and constants separated by semicolons. A positive number printed with
semicolons will have a leading blank space. Negative numbers will have a minus sign
and no preceding blank space. For example, if X is assigned the value of 25, then the
statement 10 PRINT “YOU ARE”;X;”YEARS OLD” will have the following spacing when
the program is run:

YOU ARE 25 YEARS OLD

If X is assigned the value of -25, then the statement 10 PRINT “YOU ARE":X.”YEARS
OLD” will have the following spacing when the program is run.

YOU ARE-25 YEARS OLD

If you want more than one space left before and after the 25 you must leave the space
in the string within the quotes. Thus,

10 PRINT “YOU ARE “25/” YEARS OLD”

will give the following spacing when the program is run:

YOU ARE 25 YEARS OLD

The semicolon can also be used to bring two PRINT statements, string constants, or
variables together on the same line of the television screen. For example;

100 PRINT "THE AMOUNT 1S $7;

120 AMOUNT =20

125 REM BOTH STRING CONSTANT AND VARIABLE
126 REM WILL PRINT ON THE SAME LINE

130 PRINT AMOUNT

Microsoft Overview 3

4 Microsoft Overview

THE COLON

The colon is used to join more than one statement on a line with a single line number.
Thus, many statements can execute under the same line number. By joining more than
one statement on a single line, the program requires less memory.

For example:
10 X=5Y=3:Z=X+Y:PRINT ZEND

Many times this also helps the programmer organize the program steps. The same pro-
gram with line numbers instead of colons uses more bytes of memory:

10 X=5
20Y=3
30 Z=X+Y
40 PRINT Z
50 END

2

EDITING

KEYBOARD
OPERATION

SPECIAL
FUNCTION
KEYS

The ATAR! 800 Computer keyboard has features that differ from those of an ordlnary
typewriter. To print lowercase letters on your television screen, press the € VA
key. The keyboard will now operate like a typewriter, with the £E38 key giving upper—
case letters. Since most BASIC programs are wrltten in uppercase, you will normally
want to return to the uppercase mode. Press the @22 key and hold it down while you
press the FTER key to return to uppercase letters.

EE Inverse (Reverse) Video Key or ATARI logo key. Press this key to
reverse the text on the screen (dark text on light background).
Press key a second time to return to normal text.

Lowercase Key. Press this key to shift the screen characters
from uppercase (capitals) to Iowercase To res the
characters to uppercase , press the % key and the e
key simultaneously.

Escape Key. Press this key to enter a command to be entered in-
to a program for later execution.

Example: To clear the screen, enter:

10 PRINT ~

and press § 2. Then, whenever line 10 is executed the screen

will be cleared.

§&7 is also used in conjunction with other keys to print special
graphics control characters. See the graphics in Appendix K for
specific keys and their screen-character representations.

Break Key. Press this key to stop your program You may
resume execution by typing CONT and pressing £

System Reset Key. This key is similar to FEZ in that it also
stops program execution. Use this key to return the screen
display to graphics mode 0, and to clear the screen.

Editing 5

CURSOR In addition to the special function keys, there are cursor control keys that allo
CONTROL KEYS mediate editing capabilities. These keys are used in conjunction with the §5738

S - TAE keys simultaneously to
set a tab. To clear a tab, press the B and EHEINRIY keys
simultaneously. Used alone, § A8 advances the cursor to
the next tab position. In deferred mode, set and clear tabs by
adding a line number, the command PRINT, and a quotation
mark, and pressing the §&52 key.

Examples:

100 PRINT
200 PRINT

If tabs are not set, they default to columns 7,15, 23, 31, and 39.

Insert Key. Press the §i@ and S keys simultaneously to
insert a line. To insert a single character press the &8 and
gnEEE keys simultaneously.

keys. The keys that offer special editing features are described in the following

paragraphs.

Lo eamasr]

6 Editing

Hold the control key down while pressing the arrow keys to
produce the cursor control functions that allow you to
move the cursor anywhere on the screen without changing
any characters already on the screen. Other key combina-
tions set and clear tabs, halt and restart program lists, and
control the graphics symbols. Striking a key while pressing
the 2818 key will produce the upper left symbol on those
keys that have three functions.

Moves cursor up one line without changing the program or
display.

Moves cursor one space to the right without disturbing the
program or display.

Moves cursor down one line without changing the program
or display.

Moves cursor one space to the left without disturbing the
program or display.

Inserts one character space.
Deletes one character or space.

Temporarily stops and restarts screen display. You can use
S5 1 while listing a program or while running a program.

Rings buzzer.

Hold the & key down while pressing the numeric keys to display the symbols
shown on the upper half of those keys.

Inserts one line.

Deletes one line.

Returns screen display to uppercase alphabetic characters.

Stops program execution or program list, prints a > on the
screen, and displays the cursor (J]) underneath.

Editing 7

3

CONSTANTS, VARIABLES,
AND NAMES

SINGLE-
PRECISION REAL
CONSTANTS

SINGLE-
PRECISION REAL
VARIABLES

There are five types of constants in Microsoft BASIC: single-precision real, double-
precision real, integer, string, and hexadecimal.

FORMING A VARIABLE NAME

In ATARI Microsoft BASIC a variable name can be up to 127 characters long. The
allowable characters include the alphabet ABCDEFGHIJKLMNOPQRSTUVWXYZ,
numbers 1234567890, and underscore {__). The underscore character (_) is a legal
character in ATARI Microsoft BASIC. Numbers are allowed in variable names as long
as the variable name starts with an alphabetic character. The variable name X9 is
allowed, while 9X is not allowed.

SPECIFYING PRECISION OF NUMERIC VARIABLES

After you create a variable name, you can specify the precision of the variable in one
of two ways. The variable name itself can have a variable-type identifier (none, #, %, $)
as the last character or you can predefine the starting letter as a variable type using
DEFSNG, DEFDBL, DEFINT, or DEFSTR.

PREDEFINING VARIABLE PRECISION

The advantage of predefining the variable type is that you can change all the variables
from one type to another without having to go through your program changing all
variable names. Changing DEFINT A to DEFDBL A, for example, changes all variables
beginning with the letter A from integer type to double-precision type. Your other op-
tion is to use a type tag identifier: # (double precision), % (integer), and % (string). Tag
identifiers are attached to the end of the variable name itself. If variables should have
both DEF identification of type and a tag identifier (#, %, $), the tag identifier has
precedence.

Although DEFSNG, DEFDBL, DEFINT, and DEFSTR can be placed anywhere in a pro-

gram, they are usually placed near the beginning. In all cases the DEF statement must
precede the variable whose type it defines.

Examples: 65E12, 333335, 45E8, 33E-6

If you do not otherwise specify a constant (and it is outside the range -32768 to 32767),
it is single-precision real.

Examples: AMT, LENGTH, BUFFER

If you do not declare the precision of a variable, it becomes single-precision real by

default. Numbers stored as single precision have an accuracy of six significant figures.
The exponential range is -38 to + 38.

Constants, Variables
and Names 9

DEFSNG

DOUBLE-
PRECISION REAL
CONSTANTS

Constants, Variables
10 and Names

Format: DEFSNC letter,|beginning__letter-ending__letter|
Examples: 100 DEFSNG K, S, A-F
120 DEFSNG Y

Variable names beginning with the first letters identified in DEFSNG will be single-
precision real variables. In DEFSNG K, S, A-F, the letter range A-F means ABCDEF will
be single precision. Variable names starting with K and S will also be single precision in
this example. Single letters and ranges of letters must be separated by commas.

Example Program:

10 DEFSNG A-F

20 COUNTER=COUNTER+1
30 PRINT COUNTER

40 COTO 20

In the DEFSNG example program, all variable names beginning with the letter C will be
single precision. Thus, COUNTER is single precision in this example because it starts
with C. If counter were COUNTER# (# means double precision), it would have double
precision even though it is defined as single precision. Keep in mind that the tag iden-
tifier in a variable name takes precedence.

Figure 3-1 illustrates how single-precision real numbers are represented in memory.

Y

< X — | - MANTISSA

BYTE 0 BYTE 1 BYTE 2 BYTE 3

mantissa sign bit

exponent sign bit implicit radix point

Figure 3-1 Machine Representation of Single-Precision Real

Examples: 45D5, 23D-6, 8888888D-11

You can specify double-precision real in the constant by putting the letter D before the
exponential part. Double-precision real numbers are stored in 8 bytes. Numbers are ac-
curate to 16 decimal digits.

DOUBLE-
PRECISION REAL
VARIABLES

DEFDBL

INTEGER
CONSTANTS

INTEGER
VARIABLES

exponent
sign bit implicit radix point

Examples: DBL#, X#, LGNO#

The pound sign (#) is the identifier for double-precision real variables. A double-
precision real variable has 8 bytes. The exponent and sign are stored in the first byte.
The range is the same as single precision -38 to +38. The accuracy is 16 significant
figures in double-precision real. The pound sign (#) identifier is placed after the variable
name.

Format: DEFDBL letter,|beginning__letter-ending__letter|
Examples: 10 DEFDBL C-E, Z
20 DEFDBL R

Variable names starting with letters identified by the DEFDBL statement are double-
precision real. In the example above CDE, Z, and R are all declared as double-
precision. The variable name E1 would be a double-precision variable because the
variable name begins with E.

Figure 3-2 illustrates how double-precision real numbers are represented in memory.

— EX —» - MANTISSA —»

I | l I l I

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7

mantissa sign bit

Figure 3-2 Machine Representation of Double-Precision Variable

Examples: 23, -9999, 709, 32000

All numbers in ATARI Microsoft BASIC within the range -32768 to 32767 are stored as
two bytes of binary. If an integer constant is multiplied with a single-precision real
number, the product of the multiplication will be a single-precision real number. The
results of mathematical operations are always stored in the higher level precision type.

Examples: SMALLNO%,)%, COUNT%

An integer can be identified by having a percent sign (%) as the last character in the
variable name. An example of an integer identified by name is NO%. The 16-bit integer
is stored as twos complement binary.

Constants, Variables
and Names 11

DEFINT

STRING
CONSTANTS

STRING
VARIABLES

Constants, Variables
12 and Names

Format: DEFINT letter,|beginning__letter-ending__letter]|

Examples: 10 DEFINT N, J, K-M
20 DEFINT |

The starting letters of variable names identified by the DEFINT statement are integers.
Integer variables increase the speed of processing but can only accurately hold values
between -32768 and + 32767. Remember that tag identifiers have precedence. Even
though N is defined by DEFINT as being an integer type, the pound sign appearing
after the N identifies it as double precision. N#, N1#, NUMB# are all double precision.

Figure 3-3 illustrates how integers are represented in memory.

BYTE 0 BYTE 1

sign bit
0 is positive
1 is negative

Figure 3-3 Machine Representation of Integer Variable

Negative integers are stored as twos complement binary.

Examples: “AMOUNTS”, “FILL IN NAME "’

String constants are always enclosed in quotes. The string constant can be any length
up to the maximum l[ine length (127). Strings are composed of ANY keyboard
characters: "#$%&&()JOOKJHCGFDS.” A double-quote character (“”) is also allowed.
The double quote () will give you a single quote when the string is printed.

Example of a string constant used in a print statement:
10 PRINT “Strings and %&’$ “"things”""”

20 A$="STRING CONSTANTS ASSIGNED TO VARIABLE NAME"
30 PRINT A%

Examples: A%, NINT$, ADDRESS$

String-variable names end with a dollar sign $. A string variable can be assigned a string
up to 255 characters. The double-quote (“”) character is a legal ATARI Microsoft
BASIC way of getting a single quote (") within a string.

Examples of strings assigned to A%:

10 A$="a string”
20 A$="another *"string”""”

DEFSTR Format: DEFSTR letter, |beginning__letter-ending__letter|
Examples: 10 DEFSTR A, K-M, Z
20 DEFSTRF, J, I, O

A variable name can be defined as a string by declaring its starting letter in the DEFSTR
statement. Strings can be up to the length of 255 characters. As in all variable name
declarations, the tag identifier has precedence. A# or A% are their tag types even if
their first letter is defined by DEFSTR.

Example Program:

10 DEFSTR A, M, Z
20 A="Employee Name AMOUNT”
30 PRINT A

The example program will print the heading Employee Namme AMOUNT.

HEXADECIMAL Examples: &76, &F3, &7B, &F3EB
CONSTANTS

It is often easier to specify locations and machine language code in hexadecimal (base
16) rather than decimal notation. By preceding a number with &, you declare it to be

hexadecimal.

To jump to the machine language routine starting at hexadecimal location C305, you
specify A= USR(&C305,0). A= PEEK (&5A61) will assign the contents of memory loca
tion 5A61 hex to the variable named A. Hexadecimal is useful in representing screen
graphics— especially player-missile graphics.

Following is an equivalency table for decimal, hexadecimal, and binary numbers.

TABLE 3-1
DECIMAL, HEXADECIMAL, AND BINARY EQUIVALENTS
Decimal Hexadecimal Binary

1 1 0001
2 2 0010
3 3 o011
4 4 0100
5 5 0101
6 6 0110
7 7 o111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 711

Constants, Variables
and Names 13

4

NUMERIC
AND STRING
EXPRESSIONS

NUMERIC
EXPRESSIONS

RELATIONAL OPERATORS

There is no real order of precedence for the relational operators =, <>, >, <=,
> = They are evaluated from left to right.

RELATIONAL AND LOGICAL SYMBOLS

Because the relational symbols are evaluated from left to right, you could say that
their order of precedence is from left to right. The relational symbols =, < >, <, >,
<=, >= have precedence over the logical operators NOT, AND, OR, and XOR. NOT
has the highest precedence, AND ranks next, OR ranks next, and XOR ranks last.

The relational operators are combined to form expressions. For example: A>B AND
C <D is an expression. The greater than {>) and less than (<) symbols are considered
first, then the AND is evaluated. If the relationship is true, a nonzero number will
result. If the relationship is not true, then zero will be the result. Nonzero is true and
zero is false. In an IF statement this evaluation determines what happens next. The
ELSE or the next line number is taken when an the expression formed with operators is
false.

OPERATOR MEANING

= Equals. This is a true use of the equal sign. It asks if
A=B. The B is not assigned to A

<> or >< Not Equal. Evaluates whether two expressions are
not equal.

< Is less than. A is less than B is represented by A <B.

> Greater than. A is greater than B is represented by
A>B.

>=or => Creater than or equal to. A is greater than or equal

to B is represented by A>=B.

<=or =< Less than or equal to. A is less than or equal to B is
represented by < =.

Numeric and
String Expressions 15

STRING
EXPRESSIONS

Numeric and
16 and String Expressions

ARITHMETIC SYMBOLS

The arithmetic symbols are: (), =,- A, *,/, +, - (the first dash - means negation, the last
dash means subtraction). The arithmetic symbols can be mixed with the logical
operators in creating expressions, The expression A/C > D*A is legal. The arithmetic
expressions represent mathematical symbols. The * symbol represents multiplication.
The A is used in ATARI Microsoft BASIC to mean exponent. The order of precedence
IS:

SYMBOL MEANING
0 Arithmetic within parenthesis is evaluated first.
= Equals sign.

- Negative number. This is not subtraction but a
negative sign in front of a number. Example: -3,
-A, -6.

A Exponent.
Multiplication.
/ Division.

+ Addition.

- Subtraction.

RELATIONAL OPERATORS IN STRINGS

Relational operators in strings (=, <>, <, >, <=, >=) can accomplish useful
tasks. Alphabetical order can quickly be achieved by an algorithm using the expression
A$ <B$. A match between names can be found by asking that A3=B$. The string
variables are evaluated as numbers in ATASCII code and since the ATASCI! is ordered
alphabetically, the evaluation of string expressions is useful.

SYMBOL MEANING

A% <B$ True (nonzero) if A$ has a lower ATASCII code
number than B$.

Sort Example:

100 INPUT A$,B$

120 IF A% <B% THEN 160
130 C$=A%

140 A$=DB$

150 B$=C$

160 PRINT A%, B$

170 END

To experiment, type any two word combinations and separate them by commas. The
words will be sorted into alphabetical order using the example above. Thus, you will
see that BILL comes before BILLY, and CAT comes before DOG.

The logical operators have the following order of precedence:

OPERATOR

NOT

AND

OR

XOR

MEANING

Not. The 8 bits of the number are complemented. If
it is a binary 1 it becomes a 0 after this logical
operation.

The bits of the number are logically ANDed. Exam-
ple: AAND B. If Ais1 and Bis 1 the result is 1. If A
is1 and B is O the result is 0. If Ais 0 and Bis 1 the
result is 0. If A is 0 and B is O the result is O.

The bits of the number are logically ORed. Exam-
plee AORB.IfAis1and Bis1 theresultis1.If Ais
1 and B is O the result is 1. If Ais0 and B is 1 the
result is 1. If A is 0 and B is O the result is 0.

The bits of the number are logically eXclusive
ORed. Example: A XOR B. If Ais 1 and B is 1 the
resultis 0. [f Ais1 and Bis O the resultis 1. If A is O
and B is 1 then the resultis 1. If Ais 0 and B is O then
the result is 0.

The logical operators can be used with string {A$) variables. Read Section 10 on string

expressions.

Numeric and
String Expressions 17

NEW

RUN

5
COMMANDS

In ATARI Microsoft BASIC, statements are not evaluated for syntax errors until you
type RUN and press the EZE key.

Format: NEW
Examples: NEW
100 IF CODE < >642 THEN NEW

NEW clears your program to allow you to enter a new program. The NEW command
does not destroy TIMES$. All variables are cleared to zero and all strings are nulled
when NEW is executed.

Format: RUN |”device:program__name”| |optional__starting__line__number|
Examples: RUN

RUN 120

200 RUN “D:TEST.BAS”

110 RUN 200

RUN without a line number starts executing your program with the lowest line

numbered statement. RUN initializes all numeric variables to zero and nulls string
variables before executing the first statement in the program.

RUN can be used in the deferred mode (with a line number). Refer to the program on
the next page. It can also be used to enter a program from diskette or cassette.
However, when RUN is used to run a program on diskette or cassette (i.e, RUN
“D:SHAPES”), it cannot be used with Joptional__starting__line__number|, which can
only be used to run programs that are already in memory.

Example: 200 RUN “D:TEST

When statement line number 200 is executed, it will run the program called TEST.
RUN can be used to run tokenized (saved with the SAVE instruction) programs only.
RUN can be used to start executing a program at a particular line number.

Example: RUN 250

When RUN is executed in a program, as mentioned earlier, all numeric variables are
set to zero and all strings are nulled.

Commands 19

DOS

LIST

20

Commands

Example Program:

100 X=55
10 Y=77
120 AS="A TEST”

130 PRINT XY,A$

140 RUN 150

150 PRINT X,Y,A$,”Variables are 0 and String is null”
160 END

Format: DOS
Example: DOS

The DOS command lets you leave BASIC and enter the DOS Menu. This makes
available all of the DOS Menu items on programs and data stored on diskette. To
return to ATARI Microsoft BASIC, press the E3EIEETaE key. This method of exiting
DOS will keep your program exactly as it was before you entered DOS.

Format: LIST |“device:program__name”| |m-n|
Examples: 100 LIST

150 LIST “C:

120 LIST “P:” 10-40

100 LIST “D:GRAFX.BAS

110 LIST 100-200

100 LIST -300

LIST writes program statements currently in memory onto the television screen or
another device. If “device:program__name” is present, the program statement current-
ly in memory is written onto the specified device.

Legal device names include: D: (for Disk), C: (for Cassette), P: (for Printer). If you do not
follow LIST with a device name, the screen (S:) is assumed.

When you list programs on the screen, it is often convenient to freeze the list while it is
scrolling. To freeze a listing, press both the and 1 key at the same time. To con-
tinue the listing, again press and 1 at i

With the LIST command you can list just one statement or as many as you wish. A -
(hyphen) is used to specify the range of statements:

LIST Lists the whole program from lowest line number to the
highest.

LIST n Lists only the statement n (where n is a statement
number).

LIST -m Listing starts with the first statement in the program and

stops listing with statement m. Statement m is listed.

LIST n- Listing starts with statement number n and continues to
the last statement number in the program.

LIST n-m Listing starts with n and ends with m. Both statements n
and m are included in the listing,

AUTO

Example:

100 REM Example of the list

110 REM Command

120 PRINT “SHOWS WHICH STATEMENTS”
130 PRINT “OR GROUP OF STATEMENTS”
140 PRINT “GET LISTED”

LIST 110130

110 REM Command
120 PRINT “SHOWS WHICH STATEMENTS”
130 PRINT “OR GROUP OF STATEMENTS”

Example of LIST used in deferred mode:

10 COUNT=1

20 COUNT=COUNT +1

30 PRINT COUNT

40 IF COUNT < > 30 THEN 20
50 LIST

Use LIST to list a program on a printer. This is done in direct mode.

LIST”P:

Use LIST to list a program in untokenized ASCIl form onto a diskette. To list to diskette
use:

LIST”D:name.ext

Use LOAD when you are entering untokenized (listed) programs into your computer.
LOAD can be used to enter programs that have been listed or saved to cassette or
diskette.

Examples: AUTO 200,20
AUTO

AUTO numbers your lines automatically. If you do not specify n,i (starting number, in-
crement) you will get line numbers starting at 100 with an increment of 10. Use AUTO
when you start writing a program. Type AUTO, then type a starting line number. (See
the example on the following page.) Then type the amount you want the numbers to in-
crease. After you start the AUTO numbering, you will automatlcally have a new line
number every time you type a statement and press LT

by itself without typing a statement. AUTO can also be stopped by pressing the
key.

Commands 21

DEL

22 Commands

Example Program:

Starts numbering at 300 and increments by
20

AUTO 300,20 g0

300 PRINT “THIS SHOWS HOW”
320 PRINT “AUTO NUMBERING”
340 PRINT “WORKS”

360 GOty

AUTO numbering ends when you press S right after a line number. If there is an
existing line at that number, the line will be displayed on your television screen.

Format: DEL n-m

Examples: DEL 450 -
DEL 250 - 350
DEL - 250

DEL deletes program statements currently in memory. With the DEL command you
can delete just one statement or as many as you wish. A - (hyphen) is used to specify
the range of statements:

DEL n Deletes only the statement n (where n is a statement
number).
DEL -m Deletion starts with the first statement in the program and

* stops with statement m. Statement m is deleted.

DEL n- Deletion starts with statement number n and continues to
the last statement number in the program.

DEL n-m Deletion starts with n and ends with m. Both statements n
and m are deleted.

Example Program:

100 PRINT “AN EXAMPLE OF”
120 PRINT “HOW THE DELETE”
130 PRINT “COMMAND WORKS”

DEL 120- £
Only statement 100 is left in memory.

LIST g3

100 PRINT “AN EXAMPLE OF”

SAVE

SAVE...LOCK

LOAD

If you want to delete a single statement from a program, simply type the statement
number and press EEIEE

Example Program:
110 FOR X=1 TO 5000:NEXT

110 I

Format: SAVE “device:program__name”
Example: SAVE “D:GAME.BAS”

SAVE copies the program in memory onto the file named by program__name. Legal
devices are D: (for disk), C: (for cassette). For example, the command SAVE
“D:.TEMP.BAS” will save the program currently in memory onto diskette. The program
is recorded in “tokenized” form onto tape or diskette.

Example:
SAVE “D:PROGRAM”
Saves PROGRAM on diskette.
SAVE “C:

Saves the program on cassette.

Format: SAVE “device:program__name” LOCK
Example: SAVE “D:PROGRAM.EXA” LOCK

SAVE “device:program__name” LOCK saves a program onto tape or diskette and en-
codes it so that it cannot be edited, listed, merged, examined, or modified. LOCK is-
used to prevent program tampering and theft.

Format: LOAD “device:program__name”
Examples: LOAD “D:EXAMPLE”
110 LOAD “C”

LOAD “device:program__name” replaces the program in memory with the one
located on device:. Disk drive or cassette can be specified for device:. Use LOAD “C”
to load data or listed cassette files. For programs that have been previously saved use
CLOAD to increase loading speed. For diskette files, use “D:program__name” for listed
programs or saved programs.

Commands 23

CLOAD

CSAVE

VERIFY

MERGE

24 Commands

Format: CLOAD
Examples: CLOAD
440 CLOAD

Use CLOAD to load a program from cassette tape into RAM for execution. When you
enter CLOAD and press § I the in-cabinet buzzer sounds. Position the tape to the
beginning of the program, usmg the tape counter as a guide, and press PLAY on the
ATARI 410™ Program Recorder. Then press the § key again. Specific instructions
to CLOAD a program are contained in the ATA 410 Program Recorder Operators
Manual,

Format: CSAVE
Examples: CSAVE
330 CSAVE

CSAVE saves a RAM-resident program onto cassette tape. CSAVE saves the tokemzed
(compacted) version of the program. As you enter CSAVE and press]
cabinet buzzer sounds twice signaling you to press PLAY and RECORD on the Program
Recorder. Then press # again. Do not, however, press these buttons until the tape
has been positioned. Saving a program with this command is speedier than with
SAVE”C” because short inter-record gaps are used. Use SAVE”C” with LOAD”C:” or
CSAVE with CLOAD but do not mix these paired statements — SAVE”C:” with CLOAD
will give you an error message.

Format: VERIFY “device:program__name”
Examples: VERIFY “D:BIO.BAS”
VERIFY “C:

VERIFY compares the program in memory with the one named by “device:pro-
gram__name”. If the two programs are not identical, you get a TYPE MISMATCH ER-
ROR.

Format: MERGE “device:program__name”’
Examples: MERGE “D:STOCK.BAS”
MERGE “C:

Use MERGE to merge the program stored at “device:program__name’” with the pro-
gram in memory. Only programs that have been saved using the LIST instruction to put
them on diskette or cassette can be merged. If duplicate line numbers are en-
countered, the line on “device:program__name” will replace the one in memory. On
the following page, you can see an example of merging programs.

Example Program:
100 REM THIS IS A PROCRAM

120 REM STORED ON DISKETTE
130 PRINT “MERGE TEST”

RENUM

LIST “D:STOCK.BAS”

110 REM THIS PROGRAM IS
125 REM IN COMPUTER MEMORY

140 PRINT “RESULT”

MERGE “D:STOCK.BAS”
LIST

100 REM THIS iS A PROCRAM
110 REM THIS PROGRAM 1S

120 REM STORED ON DISKETTE
125 REM IN COMPUTER MEMORY
130 PRINT “MERGE TEST”

140 PRINT “RESULT”

Format: RENUM |m, n, i

Example: RENUM 10,100,110
m = The line number to be applied to the first renumbered statement.
n = The first line number to be renumbered.

i = The increment between generated line numbers.

RENUM gives new line numbers to specified lines of a program. The line number to
be applied to the first renumbered statement is the first parameter. The first line
number to be renumbered is the next parameter. The increment or amount of in-
crease between numbers is the last parameter.

The default of RENUM is 10, 0, 10.

Renumber changes all references following GOTO, GOSUB, THEN, ON...COTQ,
ON...GOSUB, and ERROR statements to reflect the new line numbers.

Note: RENUM cannot be used to change the order of program lines. For example,
RENUM 15, 30 would not be allowed when the program has three lines numbered
10, 20, and 30. Numbers cannot be created higher than 63999.

RENUM Renumbers the entire program. The first new line number
will be 10. Lines will increment by 10.

RENUM 10,100 The old program line number 100 will be renumbered 10.
Lines increment by 10 (the default is 10).

RENUM 800,900,20 Renumbers lines from 900 to the end of the program. Line
900 now is 800. The increment is 20.

Commands 25

RENUM 300, 140, 20 gives number 300 to line 140 when it is encountered . The incre-

ment is 20. :
BEFORE AFTER
100 _ 100
110 110
120 120
130 130
140 300
150 320
160 340
170 360
LOCK Format: LOCK “device:file_name”

Example: LOCK “D:CHECKBK"”

LOCK is the same LOCK that exists in the DOS Menu. LOCK ensures that you do not
write over a program without first unlocking it. As a BASIC command, LOCK offers a
measure of protection against accidental erasure.

UNLOCK Format: UNLOCK “device:program__name”
Example: UNLOCK “D:GAME1.BAS”

The UNLOCK statement restores a file so that you can write to, delete, or rename it.

KILL Format: KILL “device:program__name”
Example: KILL “D:PROG1.BAS”

KILL deletes the named program from a device.

NAME.. TO Format: NAME “device:program__name__1" TO “program__name__2"
Example: NAME “D:BALANCE” TO “CHECKBK”

NAME gives a new name to “device:program__name__1.” The device (D1: through
D8:) must be given for the old program, but the new program name enclosed in quotes
is the only thing following the word TO.

TRON Format: TRON
Examples: TRON
550 TRON

This command turns on the trace mechanism. When TRON is on, the number of each
line encountered is displayed on your television screen before it is executed. Use
TRON in direct or deferred mode.

26 Commands

TROFF Format: TROFF
Example: 770 TROFF

This command turns off the trace mechanism. Use TROFF in direct or deferred mode.

Commands 27

6

STATEMENTS

REMor! or’

LET

Format: REM

Example: 10 REM THIS PROGRAM COMPUTES THE AREA OF A SPHERE
20 LET R=25 ISets an initial value
30 GOSUB 225 ‘GO TO COMPUTATION SUBROUTINE
65 PRINT R:REM PRINTS RADIUS

Format: ! and ’
Example: 10 PRINT “EXAMPLE” 'TAIL COMMENTS
20 GOTO 10 ! USE ! and ’

The exclamation point (1) and the accent () are used after a statement for comments.
REM must start right after the line number or colon, while ! and ’ do not require a
preceding colon.

REM, !, and ‘ are used to make remarks and comments about a program. REM does not
actually execute. Although REM does use RAM memory, it is a valuable aid to reading
and documenting a program.

Formats: |LET| variable__name = |arithmetic__expression| or |string__expression|
variable__name = |arithmetic__expression| or |string__expression|
Example: 100 LET COUNTER = 55
120 D=598

LET assigns a number to a variable name. The equal sign in the LET statement means
assign,” not “equal to” in the mathematical sense. For example, LET V=9, assigns a
value of 9 to a variable named V. The number on the right side of the equal sign can be
an expression composed of many mathematical symbols and variable names. Thus,
LET V=(X+Y9)(W*Z) is a legal statement.

The word LET is optional in assignment. All that is necessary for assignment is the
equal sign. Thus,

100 LET THIS = NUMBER * 5
is the same as:

100 THIS = NUMBER * 5

Statements 29

MOVE

STOP

CONT

END

GOTO

30 Statements

Format: MOVE from__address, to__address, no.__of__bytes
Example: 20 MOVE MADDR1, MADDR?2, 9

The MOVE statement moves bytes of memory from the area of memory whose lowest
address is given by the first numeric expression (from__address) to the area whose
lowest address is given by the second numeric expression (to__address). The third
numeric expression specifies how many bytes are to be moved. The order of move-
ment is such that the contents of the block of data are not changed by the move.
MOVE’s primary use is in playermissile graphics.

Example: MOVE 55,2225

Five bytes with a starting low address at 55 (i.e., 55-60) will be moved to location
222-226.

Format: STOP
Example: 190 STOP

STOP is used to halt execution of a program at a place that is not the highest line
number in the program. The STOP command prints the line number where execution
of the program is broken. STOP is a useful debugging aid because you can use PRINT
in the direct mode to show the value of variables at the point where execution halts.
Also, you know that your program got as far as the STOP command.

Format: CONT
Example: CONT

CONT resumes program execution from the point at which it was interrupted by either
STOP, the key, or a program error. This instruction is often useful in debugging a
program. A breakpoint can be set using the STOP statement. You can check variables
at the point where execution stops by using PRINT variable__name in the direct mode
(without a line number). Then resume the program by using the CONT statement.

Format: END
Example: 990 END

END halts the execution of a program and is usually the last statement in a program.
When END terminates a program, the prompt character appears on the screen. In
ATARI Microsoft BASIC, it is not necessary to end a program with the END statement.

Format: GOTO line__number
Example: 10 GOTO 110

GOTO tells which line number is executed next. Normally, statements are executed in
order from the lowest to highest number, but GOTO changes this order. GOTO causes
a branch in the program to the line number following GOTO.

Example: GOTO 55

[F..THEN

[F...THEN...ELSE

WAIT

Since this statement does not have a line number, it starts immediate execution of the
program in memory starting at line number 55.

100 PRINT “THIS 1S A COMPUTER”
120 GOTO 100

RUN

This program will cause endless branching to line number 100. Thus, the television
screen quickly fills up with THIS IS A COMPUTER.

Format: IF test__condition THEN goto__line__number or a__statement
Examples: 10 |[F A=B THEN 290
20 IF J>Y AND) <V THEN PRINT “OUT OF STATE TAX”

If the result of an IF..THEN test is true, the next statement executed is goto__line
__number. A test is made with the relational or mathematical operators. The test can
be made on numbers or strings. The words GOTO after THEN are optional. If the state-
ment test, test__condition, is false, the execution goes to the next numbered line in the
program.

160 IF A__NUMBER > ANOTHER_NUMBER THEN 300
200 PRINT “ANOTHERNUMBER IS LARGER”

250 STOP

300 PRINT “ANUMBER IS LARGER”

450 END

Format: IF test_ condition THEN goto__line__number or statement ELSE
goto__line__number or statement
Example: 250 IF R<Y THEN 450 ELSE 200

This is the same as IF...THEN except that execution passes to the ELSE clause when the
relational or mathematical test is untrue.

Format: WAIT address, AND__mask__byte, compare__to__byte
Example: 330 &D40B,&FF,110 IWAIT FOR VBLANK

WAIT stops the program until certain conditions are met. Execution waits until the
compare__to__byte, when ANDed with the AND__mask__byte, equals the byte con-
tained in memory location address.

WAIT is ideal if you need to halt execution until VBLANK occurs. VBLANK occurs
every 1/60 of a second. It consists of a number of lines below the visible scan area.You
can make sure that your screen will not be interrupted halfway through its scan lines
(causing the screen to blip) if you WAIT until a VBLANK occurs. This technique is used
to animate characters as shown in Appendix C, Alternate Character Sets. See Appendix
A for an example of the WAIT statement used to control the timing of vertical fine
scrolling.

Statements 31

FOR..TO..STEP Format: FOR starting__variable = starting__value TO ending-value STEP |increment|
Examples: 10 FOR X=1 TO 500 STEP 3
30 FOR Y=20 TO 12 STEP -2
20 FOR COUNTER=1 TO 250

The FOR/NEXT statement starts incrementing numbers by increment until end-
ing__number is reached. When the ending number is counted, execution goes to the
statement number after the NEXT statement.

FOR/NEXT determines how many times statements between the line numbers of the
FOR..TO..STEP and the NEXT are executed repeatedly. If STEP is omitted, it is as-
sumed to be 1. STEP can be a negative number or decimal fraction.

Example Program:

100 FOR X=1TO 30
110 PRINT X, SQR(X)
120 NEXT

NEXT Format: NEXT |variable__name
Examples: 30 NEXT J,1
40 NEXT VB
120 NEXT

NEXT transfers execution back to the FOR..TQO line number until the TO count is up.
NEXT does not need to be followed by a variable name in Microsoft BASIC. When
NEXT is not followed by a variable name, the execution is transferred back to the
nearest FOR...TO statement.

Example Program:
100 FOR X=10 TO 100 STEP 10
110 PRINT X

120 NEXT
130 END

RUN &

10
20
30
40
50
60
70
80
90
100

Two or more starting-variables can be combined on the same NEXT line with commas.

32 Statements

GOSUB

RETURN

ON..GOTO

Example Program:

100 FOR X=1TO 20
110 FOR Y=1TO 20
120 FOR Z=1TO 20
130 NEXT Z,Y,X

SUBROUTINES

A subroutine is a group of statements that you wish to use repeatedly in a program.
The GOSUB statement gives execution to the group of statements. RETURN marks the
end of the subroutine and returns execution to the statement after the GOSUB state-
ment.

Format: GOSUB line__number
Example: 330 COSUB 150

GOSUB causes line__number to be executed next. The statement starting with
line__number is the start of a group of statements you wish to use a number of times in
a program.

Format: RETURN
Example: 550 RETURN

RETURN returns the program to the line number after the GOSUB statement which
switched execution to this group of statements.

Example Program:

110 GOSUB 140

120 PRINT “THIS IS THE END”

130 STOP

140 PRINT “THIS IS THE START”

150 PRINT “OF CODE WHICH”

160 PRINT “IS EASY TO CALL”

170 PRINT “(EXECUTE) A NUMBER”

180 PRINT “OF TIMES IN A”

190 PRINT “PROGRAM”

200 RETURN ! EXEC