OPTIMIZED SYSTEMS SOFTWARE

(8S BASIC A+

for the ATARI 800 (R)

COPYRIGHT (€ 1981, 0&€

MAY 1981

Version 3.1

NOTICE

0SS reserves the right to make changes or improvements in the
product described in this manual at any time and without notice.

This manual is copyrighted and contains proprietary information.
All rights are reserved. This document may not, in whole or part,
be copied, photocopied, reproduced, translated, or reduced to any

electronic medium or machine-readable form without prior consent,
in writing, from 0SS.

0SS BASIC A+ is Copyright (C) 1981, OPTIMIZED SYSTEMS SOF TWARE.

Optimized Systems Software
10379 Lansdale Avenue
Cupertino, CA 25014
Telephone: 408-4446-3099

ATARI and ATARI 800 are registered trademarks of ATARI, INC.

CONTENTS

NOTE: Sections Marked with an asterisk (#) are new or
substantially changed from standard Atari Basic.

T T T R S D 1 S 0 0 S e e S e s i e S . S St . S S S o S —— —— - G — S " —— — S i SO o S~ T Y o o 0
T T I e 0 S S D £ it e i s e s o e it S ot S S o St > S o — e W — — — — — = — o —_— t2o o> S ot e n® e e S

Terminology 1
Special Notations Used in This Manual 3
Abbreviations Used in This Manual 4
Operating Modes 5
Special Function Keys S
#Arithmetic Operators 6
#0Operator Precedence 7
Built—-In Functions 7
Graphics 8
Sound and Games 8
Wraparound and Keyboard Rollover 8
Error Messages 8

T S o S St S i s o S s e o S e e S T S — — " — T —— = o~ oo oo T e W S S} o S o o o S — o S 2 2o

T I S S S S S S M s e e s S S . (e S " D S o _— — — —— " c— —— — —S T —— — — — — ——— _— — —— S o - —— =t ~ors S > oo s

?
CONT ?—-A
END 9
LET 10-A
LIST 10
NEW 10
REM 10
RUN 11
sTOP 11
#*Advanced Program Development Commands 12-A
#TRACE/TRACEOFF 12-A
#LVAR 12-A
#L OMEM i2-A
#DEL 12-A

Screen Editing 13
Control (CTRL) Key i3
Shift Key 13

Double Key Functians 14

Cursor Control Keys 14

Keys Used with CTRL Key

Keys Used with Shift Key
Special Function Keys

Break Key

Escape Key

FOR...TO...STEP / NEXT
GOSUB / RETURN

GOTO0

IF. .. THEN

ON. . . GOSUB

ON. . . GOTO

RESTORE
#TRAP

#Advanced Program Control Statements

#IF. . ELSE. .. ENDIF
#*WHILE / ENDWHILE

s s o D . o > — — — — — ——— = ——— — t—— — — So— —— ——— . o oo e o " o o

S s e t hd VY M S o S S G — — " _—— — ————" c— —— — — —o—_ w— o o380 S "o S S S

Input/Output Devices
CLOAD

CSAVE

DOS and ZP OS
ENTER

INPUT

LOAD

LPRINT

NOTE

OPEN and CLOSE
POINT

PRINT

PUT and GET

READ and DATA
SAVE
#STATUS

XI10

Chaining Programs

#Advanced Input / Output Commands

#INPUT ., . ¢

#DIR

#PROTECT and UNPROTECT
#*ERASE

#*RENAME

#PRINT USING

#TAB (as a statement)
#BPUT

#BGET

#RPUT

#RGET

— e S ——— ——— e t— —— ——— w— -

— e e s o S o e e

14
14
14
14
14

D e T A ——

—.——-———--—.—_—————-——.——————_-—————.——_-——.-

..._.._._._—..—————-._.—-.—_.—-.—._-——_..._———————-—————--—

Arithmetic Functions 33
ABS 33
cLoe 33
EXP 33
INT 33
LOG 34
RND 34
SGN 34
SGR 34

Trigonometric Functions 34
ATN 34
cos 34
SIN 35
DEG / RAD 35

Special Purpose Functions 35
ADR 35
FRE 35
PEEK 35
POKE 35
USR 36

#Advanced Functions 36—-A
#*DPEEK / DPOKE 36-A
#ERR 36—-A
#TAB 346-B
7 STRINGS

ASC 37

CHR$ 37

LEN 38

STR$ 38

VAL 38

String Manipulations 39

#*Advanced Strings 40-A

#Substrings 40-A
*#F IND 40-B

.___...__-_-.—_—_—_————_—_——__—__—_——_—_—.——_—__——_—._.—_——————-—..——_

—__._—_——.——....——.-——.——-———.—.————_——_—-—_.._.—..—_.—__-—_———_-—.—_-...-_—_

___._.——-—-—-—.-—-—_-———_———_-—-—_—————_——.——_—_—.————

GRAPHICS 45
Graphics Modes 45

Mode O 46

Mode 1 and 2 44

Modes 3, 5, and 7 47

Modes 4 and 6 48

Mode 8 47
COLOR 48
DRAWTO 48
LOCATE 48
PLOT 49
POSITION 49
PUT / GET (as applied to graphics) 49
SETCOLOR 50
XIO0O (special FILL application) 54
Assigning Colors to Text Modes 54
Graphics Control Characters 56

___—————_———.———————_—.-...—_.__._._——.-——_—_——.—.—————-—-—-—_———.—————._—-—

SOUND S7
PADDLE o9
PTRIG 99
STICK 59
STRIG 60
#Advanced Game Control 6£0—-A
#HSTICK L&0—-A
#VSTICK 60—-A
#PEN &0—-A

S e S e et S s Gt 0 D N s s o s e S o ——— — o~ — o= S — — —

.—_.—————-—_—.—-—-———.——-——————_————-—-——_—_—_———————.——.—_——_——-——-———.

Memory Conservation 61
Programming in Machine Language 63
#Numbers (BASIC A+ numeric representation) &8—-A

e e e e s e e . e S e o o Gt S S S ——— —— — v

s o s oo s s e o " —— — ——— — —

o o o o o o e o e s s 22 e e e e . e e s e S s S S e e . e e S o e e e o s S oo s S S — = — b ———

#SET and SYS 69
#MOVE 71

e o o o o o e o e e s o .t . e s . s s e e e e 2

—_.-_..—_.-...———--—-———-—-————-——.-_——-——-—.—_—-——————_—

#An Overview
#Conventions
figures PMG~-1 and PMG-2
#*The PMG Statements
#PMGRAPHICS
#PMCLR
#PMCOLOR
#PMWIDTH
#PMMOVE
#MISSILE
#The PMG Functions
#*PMADR
#*BUMP
#PMG Related Statements
*POKE and PEEK
#MOVE
#BGET and BPUT
#USR
*Example Player/Missile Graphics PROGRAMS

72
73
74
75
75
75
76
76
77
78
79
79
79
80
80
80
81
81
82

APPENDIX B ¥ Error Messages

APPENDIX C ATASCII Character Set

T i i e o S e s o D e S W S — S — — — ——" —— —t——— o> ot T e S

APPENDIX D * Atari 400/800 Memorg fep

S G o s S o e e S S S S S — T —— — — G F— S S —— ot =

S e e S S S e o - ——— — - — — = —— — " —

T 0 i e e e s e e e T e > o ——— ——— v ——— — ——— - " 20 e S > W s e e e - WS S ————— — ————— o~ ——

_...__—_—————-————————_—_———_—————_—_———-——_——————_———_—_——_—

____.-_-———-—_———_———-———_—_—_————_—_——————.——_——_—_——_——_—-—-

————— v > T o o 0 (0 1 (e (o o . o e e e o e i e e . S o . . s e o S e 2 o o . S S o o S o e S

.___.—_--——-——..——.._—.——.————_——_—————_—_-——_—.—_—.——.——.——_-—.——.——_——.—.

ABOUT THIS MANUAL

This BASIC A+ manual is intended as an "add-on" or appendix
to the "“BASIC REFERENCE MANUAL" supplied by Atari, Inc.

Make sure that your BASIC REFERENCE MANUAL is Atari part
number C-015307, REV. 1 ‘! ‘

GETTING STARTED

To use BASIC A+ with OS/A+:

Place the OS/A+ master disk in drive 1 and turn an

the power in the same manner used to boot an
Atari disk.

In response to the 0OS/A+ prompt “Di:"“, simply type
in “BASIC [returnl"” and BASIC A+ will load and run.

If you exit from BASIC A+ to 0S/A+ (via DOS or CP
commands or via the RESET key), you may return

to BASIC A+‘s warmstart point by simply entering

RUN to OS/A+. NOTE: see 0S/A+ manual for circumstances

under which this does not work. If necessary,
you may use ‘RUN addr’ from OS/A+ to enter at BASIC A+’s
coldstart or warmstart address. See table below for

those addresses.

To use BASIC A+ with Atari‘’s DOS:

Boot an Atari master diskette. and enter the Atari
menu DOS.

Put the diskette with BASIC A+ in a disk drive and

use the Atari LOAD BINARY FILE from the menu to load
BASIC A+.

Use the Atari RUN AT ADDRESS menu command to do a
“coldstart" of BASIC A+. The address to use depends
upon the amount of free RAM in your system.

If you exit BASIC A+ (via the DOS or CP commands).
you may return without losing any program currently
in memory by using the Atari menu RUN AT ADDRESS
command to do a "warmstart". Again, the warmstart
address depends upon the amount of free RAM.

size aof free RAM 32k 40k 48k
coldstart address 4400 6400 8400
warmstart address 4403 6403 8403

SPECIAL SUPPLEMENT TO

GETTING STARTED

for

0SS BASIC A+

USING BASIC A+ WITH ATARI DOS.

You have purchased the 0SS BASIC A+ package without CP/A. The
diskette in your package contains the 0SS file “BASIC.OBJ" as
well as the ATARI DOS (version 2S5, including DOS. SYS and DUP. SYS).

The First thing you should do is make a working copy of your disk.

To do this, simply use the duplicate disk MENU command of Atari’s
DOS. You may follow these steps:

1. If you have 48K bytes of RAM (and we recommend this
amount), remove all cartridges from your computer.

2. Turn disk drive(s) power on; insert your 0SS diskette
into drive 1.

3. Turn computer power on. After a few moments, the disk
will boot and display the Atari DOS 2S5 "menu"“. Use
the LIST DIRECTORY option to verify that the diskette
contains the appropriate files.

4. Use the MENU to format a new disk. Then use DUPLICATE
DISK to copy your 0SS disk to this new (working) disk.

S. Use the MENU to create MEM. SAV on the working disk.

You now have a working disk set up and are ready to use BASIC A+.

BASIC.0OBJ is a standard Atari-format load—-and—go file, so you may
load and run BASIC A+ from DOS 2S5 by simply using the LOAD BINARY
FILE menu command (respond with BASIC. OBJ when asked for the load
file name). BASIC A+ will take a few moments to load, after which
an 0SS message will be displayed, and you may start using the system.

You may return to DOS via the DOS comand (though you should have
less reason to now, since the more commonly used DOS menu functions
are available as BASIC A+ statements). In general, you will then
have to reenter BASIC A+ via the "coldstart" entry point (see the
BASIC A+ manual for the specific address) by using the RUN AT
ADDRESS command from the MENU. Note: however, that the load—and-go
startup process places a jump to BASIC A+‘s warmstart in location
630 (hex), which may be useful under some circumstances.

If you purchase CP/A at a later date, simply copy the file BASIC. OBJ
from you Atari DOS disk to a file called BASIC.COM on the CP/A disk.

You may then simply type “BASIC" at the CP/A command level to use
BASIC A+

CAUTIONS

The BASIC A+ marual is intended as 3 set of changes arnd addends to
the Atari RASIC Refererce Marusl. FLEASE be sure to use them to
urdate vour marnusl as soorn as Fossibless it will make looking ue

informatiorn much easiers since the chandes fit into logical rlaces
in the Atari manual.

ALSO bq sure to read the riotes shout budgsy errorss etc.y» below. Fay
srecial attention to our Arrerndix J.

......_.‘....-_—...-.————.——-——-——--.—-—._—._—._—._.—_-.—.—_—._—.—_———.-——.-.—.._-..—————-—.——-———.-—_——

Frobablg rno software srroduct will ever be released that is totzslly
free of busgss arnd RASIC A+ is ro excertion, However, we have what

we hore is 3 relstively rairless method of dealing with buss, 0On
Hour disk sou will find 3 file riamed "EASIC300,COM" (or *RASIC390.0RJ"
if wou rurchssed BASIC A+ orlw). This file is actusalls our firstys
originsl released version of EASIC A+ (krniown irnexrlicably as version
3.00), For a3s long as rracticables we internd to distribute this
original versioni in this wavs 311 our customers start from the same
common basery and 3ll fixes sernt out arrly to all customers,

HOWEVERy on wour disk wou will azlso firnd 3 file rnamed *RASIC.COM®" (or
"RASIC.ORJ") . This file is the most recent version of RASIC A+ it

is sctuslly s ratched cory of version 3,00y and the ratch was made
under the control of the esrodgram kriown as "EFATCH.SAV* (which is azlso
on sour disk). So wou can load and rum EASIC from wour disk krowirng
that wou have the most recents bug-free version. And therns whern the
buds arreary we will sernd 31l redistered software licernsees a list of
lirnes to be sdded to RFATCH.SAV: wou enter a8 few simerle lires of codes

run 8 Frogramy and wou once asain have 3 bug-free rrodgram (until the
rext time),

This is the version wou will find orn sour disk., With this relesse we
heve tried to eliminate all kriown incomratibilities betweer Atari RBASIC
srnd RASIC A+. In earlier versiorss we had offered some "imrrovements®
to the lansusge whichy unfortunatelys had the effect of mskins some
Frosrsms (rarticulasrly those desling with RS-232 1/0) do strardge and

rssty things to the comruter., We would stilly howevers like to c3zll
sour zttention to Arrerndix J.

FLEASEs FLEASE c311 us if wou discover other incomratibilities and/or
busgs that we ousht to krow sbout, We reslly do want to hels wou.

AROUT EFATCH.SAV

On the following rades is the listing for EFATCH.SAV, our EASIC A+
ratching rrodgram (mentiored sbove). The listindg is ircluded here

in case wou don’t have 3 rrinter! whern we send out future ratches
to be intedgrated into EBASIC A+ via this rrodrams it will be much
easier on gou if wou can refer to 3 listing, In any cases if

rothing elsesr this srogram shows that wou CAN write serious utilities
irn BASIC A+,

.._.—.-_-.-_-.—_.——._——_.——.————————--——_—._...--—-—-..._...-—._.--....—.——._-—.-.-_—-——_——_—————.-.—

OF TIONAL?

You will rote that whern wou LIST 3 rrosgram with control
structures (IF..,ENIIFy WHILEs FOR)s EKASIC A+ sutomaticallw indents
eacn level of control structure. If wou would like to save room on

8 disk LISTindg by eliminating the irnderntationss wou may use the
following =atch. The ratch to restore inderting is also siver.

memsize 32k 40k 43k,

no indentation droke 29484,2788 deoke 336746,2768 cdroke 4186892748
tndentastion droke 25484,82464 droke 3387698244 droke 41848,8244

CUTE TRICK?

Find out how much totsl ram (in K butes) wou have by the
following rrogram segment?

FMG., 1 ! FRINT 1 + FMADR(0)/1024 ; * K Eutes " { FM3. 0O

___.__———_—_——-———-—_———————-————__-._———-———_.—_.——___.—__—_——_.—-———__————_—

DIFFERENT VERSIONS

Two versions of BASIC A+, version 3.00., have been distributed. For
persons NOT also ordering CP/A, the file BASIC. OBJY is sent on an Atari
DOS 2S diskette. With CP/A, the filename is BASIC. COM . BASIC. OBJ may
be used on a CP/A system without difficulty by simply RENAMing it, but
BASIC.COM is clumsy and difficult to use under Atari DOS. The patches
listed below are for BASIC.COM, but the minor changes needed for

BASIC. OBJ are given after the main listing.

____.__—__—_.—————...——.—.-..__.._.__..__________...__.___..__-_——_—_-_—_-

10 R
20 R
30 R
40 R
100
110
120
130
200
210
220
300
310
320
330
400
410
500
510
520
330
540
55
700
710
720
730
740
7350
800
810
820
830
840
8350
890
1000
1020
1030
1040
1050
1490
1500
13519
1520
1540
1549
1550
1551
1560
1570
1571
1599
1600
1620
1621
1622
1623

EM BEFATCH -- FROGRAM TO FATCH EBASIC A+

EM

EM THIS LISTING CONVERTS REV 3.00 TO REV 3.04
EM

REM xxx ESTAELISH MEMORY SIZE, ENSURE FATCH FROGRAM WILL WORK
FMGRAFHICS 1:ADDR=FMADR(0)/1024+1:FMCRAFHICS 0
ADDR=(ADDR-32)x1024¢!REM LINE 110 SET ADDR = NUMEER OF K EYTES
FOKE 28343+ADDR,7:{FOKE 28350+ADDR,11:REM WORKS ON ALL SIZES
REM xxxxx FIRST, OFEN FILES, ETC. XXXXX
DIM FIX$(2000)
OFEN #1,4,0,"D!EASIC300.COM"I0OFEN #2,8,0,"DIEASIC.COM"
REM xxxxx MOVE AND CHANGE RELOCATER AND EBIT MAF XXXXX
EGET #1,ADR(FIX$),267 tEFUT #2,ADR(FIX$),267
CURRENT=0$GOSUE 700:REM THUS ACTING ON EIT MAF
EGET #1,ADR(FIX$),1701-CURRENTIEFUT #2,ADR(FIX%$),1701-CURRENT
REM xxxxx MOVE ACTUAL FROGRAM, BASIC A+ XXXXX :
CURRENT=174083:G0SUE 7Z00!REM THIS DOES THE REAL WORK
TRAF 530:FRINT "CLEAN UF"
WHILE 13GET #1,BYTEIFUT #2,EYTE

ENDWHILE $(REM LOOFS FOREVER...UNTIL ERROR QCCURS
IF ERRC0) <136 IFRINT "UNEXFECTED ERROR # "jERRC0)

ELSE (CLOSE #1:CLOSE #ZIFPRINT "NORMAL END"

ENDIF (END
REM xxxxxxx ACTUAL READ AND CHANGE ROUTINE XXXXXXX
READ ADDRIREIM JUST TO GET THE LOOF STARTED
WHILE ADDRIREAD MEMNEW,MEMOLD:!SHKIF=ADDR-CURRENT

FRINT "ADDR "3ADDR,"SKIF "j;SKIF

WHILE SKIF>1000:SKIF=5KIF~1000

BEGET #1,ADR(FIX%$),10003EFUT #2,ADR(FIX$), 1000 ENDWHILE
WHILE SKIF!SKIF=SKIF-1
GET #1,BYTEIFUT #2,BYTEIENDWHILE

GET #1,EYTE!REM EYTE TO BE FATCHED, SHOULD MATCH DATA

IF BYTE<H>MEMOLD THEN FRINT "OQUT OF SYNC"ISTOF

FUT #2, MEMNEWICURRENT=ADDR+1 {READ ADDR

ENDWHILE
RETURN

REM xxxxxxxx DATA FOR EIT MAF CHANGES XXXXXXXXXX

DATA 1422.4,0

DATA 1423,9,0

DATA 1424,32,0

DATA 1425,36,0

DATA O
REM xxxxxxXxX DATA FOR FROGRAM CHANGES XXKXXKXXKXKX
REM . VERSION NUMEER

DATA 17453,52,48

DATA 17564,96,169

REM FATCH ‘LVAR’
DATA 20974,112,98

DATA 20975,135,91

DATA 23273,204,193

DATA 24034,232,45

DATA 24035,93,116

REM . ERROR 137
DATA 27764,140,113

DATA 28077,234,232

DATA 28078,234,232

DATA 28103,75,76

DATA 28107,189,157

1629 REM . FATCH “STATUS’
1630 DATA 28238,76,32
1631 DATA 28239,120,127
1632 DATA 28240,112,116
1640 DATA 28327,112,148
1641 DATA 28328,112,116
1660 DATA 28343,7,4
1661 DATA 283%50,11,8
1670 DATA 28409,11,8
1680 DATA 28506,7,4
14689 REM . FATCH “MOVE”
1690 DATA 28645,1465,56
1691 DATA 28646,212,165
1692 DATA 28647,133,212
14693 DATA 28648,162,233
1694 DATA 28649,73,1
1695 DATA 28650,255,133
1696 DATA 28651,168,162
1698 DATA 28654,234,233
1699 DATA 28655,234,0
1700 DATA 28B686,136,73
1701 DATA 28687,152,255
1740 DATA 28784,32,0
1741 DATA 28785,81,0
1742 DATA 28786,218,0
1743 DATA 28787,76,0
1744 DATA 28788,148,0
1745 DATA 28789,116,0
1749 REM . FATCH “STATUS”
1750 DATA 28792,1469,0
1751 DATA 28793,13,0
1752 DATA 28794,32,0
1753 DATA 28795,170,0
754 DATA 287%96,116,0
1755 DATA 28797,32,0
1756 DATA 28798,127,0
1757 DATA 28799,116,0
1758 DATA 28800,76,0
17359 DATA 28801,177,0
1760 DATA 28802,116,0
1769 REM . FATCH ‘LVAR’
1770 DATA 28808,32,0
1771 DATA 28809,92,0
1772 DATA 28810,98,0
1773 DATA 28811,76,0
1774 DATA 28812,213,0
1775 DATA 28813,102,0

1879 REM . FOR GTIA CHIF
1880 DATA 29188,173,141
1899 REM . FATCH ‘EBUMF”’

1900 DATA 29705,234,141
1901 DATA 297046,234,30
1902 DATA 29707,234,208
1990 DATA 30287,223,221
1999 DATA O

>

CHANGES NEEDEI! FOR EASIC.OERJ

e M e e e e e e es wwe Wve e e s s e e e et mve wew vews tee s e even sae cepe

Only two lirnes differ from the rrosram divern above!

220 orern #1+4,0,"[!RASIC.ORJ" ¢ orern #2y8,0y°"[!RASIC303,0RKJ"

310 bdet #1lsadr(fixs$),281 ! brut #¥2sadr(fin$),»281

IF YOU DIDN’T RBUY 0S/A+

Are sou serious sbout assembly langusse srodramming? [o wou like the
ides of having sour softwsre in RAMs where the busgs car be ratched?
Can wou make use of s rrofessiornal orerating sustem? O0S/A+ is a3
logicsl comranion to RASIC A+ and we hore to be sble to offer marw
more comeatible rroducts in the Tuture., Ask wour dezaler for more
information. Or ask us for s brochure and 3 list of 05S dezlers.

SOFTWARE AUTHORS

We are interested in cuality software which is comratible with 0S/A+
snd/or BASIC A+, We can offer customized versions of EASIC A+ which
offer tetter rrodrsm security,. This service is avazilable onm a3 rouslty
n3sls to outside suthorss or it can be included with srodrsme which

we distribute for vou, Flesse call or write for more informatior.

CONT
(CON.)

Format: CONT
Example: CONT
100 CONT

In direct mode, this command resumes a program after a STOP
statement or BREAK key abort or any stop caused by an error.

Caution: Execution resumes on the line following the halt.

Statements on the same line as and following a STOP or error
will not be executed.

In deferred mode, CONT may be used for error trap handling.

Example: 10 TRAP 100
20 OPEN #1,12,0, "D: X"
~—» 30

| ..
!_ 100 IF ERR(0)=170 THEN
OPEN #1.8,0, “D: X": CONT

In line 20 we attempt to open a file for updating. If the
file does not exist, a trap to line 100 occurs. I# the
"FILE NOT FOUND" error occured, the file is opened for output

(and thus created) and execution continues at line 30 via
"CONT™.

LET)

Format: CLET1 avar=aexp
CLET] svar=sexpl,sexp... 1
Exapmle: LET X=3. 5

LET LETTERS$="a"
AS="%", A%, A%, AS, AS, AS

Normally an optional keyword, LET must be used to assign a

value to a variable name which starts with (or is identical
to) a reserved name.

String concattenation may be accomplished via the for shown

in the last example above . Note that a concatenation of the
form

A$=B%,C$

is exactly equivalent to
A$=B%
AS(LEN(AS$)+1)=Cs

Examples: DIM A%$(100),B$(100)

A%$="123"
B$="ABC"
A$=A%, BS, AS

(At this point, A$= “123ABC123ABC")
A$(4,?)="X", STRE(3#7), "X"

(At this point, A$="123X21X23ABC")
AS(7)=A%(1,3)

(Finally, A$="123X21123")

10 - A

TRACE

ADVANCED PROGRAM DEVELOPMENT COMMANDS

TRACEDFF

LVAR

LOMEM

Formats: TRACE
TRACEOFF

Examples: 100 TRACE
TRACEQOFF

These statements are used to enable or disable the line
number trace facility of BASIC A+. When in TRACE mode.

the line number of a line about to be executed is displayed
on the screen surrounded by square brackets.

Exceptions: The first line of a program does not have its
number traced. The object line of a GOTO or

GOSUB and the looping line of FOR or WHILE
may not be traced.

Note: A direct statement (e.g., RUN) is TRACED as
having line number 32768.

Format: LVAR filename
Example: LVAR "E:

This statement will list (to any file) all variables currently
in use. The example will list the variables to the screen.

Strings are denoted by a trailing ‘$’, arrays by a trailing
i S

Format: LOMEM addr
Example: LOMEM DPEEK(128)+1024

This command is used to reserve space below the user‘s program
space. The user then might use the space for assembly
language routines. The usefulness of this may be limited,

though:, since there are other more usable reserved areas
available.

Caution: LOMEM wipes out any user program currently in memory.

12 - A

DEL

Format:

Example:

DEL linel,linel
DEL 1000, 1999

DEL deletes program lines currently in memory.
numbers are given (as in the example), all lines between the
two numbers (inclusive) are deleted. A single 1
deletes a single line.

Example:

100

110

120

1000
1010
1020
1030
1040
1920
1999

DEL
SET

1000, 1999
?.1: TRAP 1000

ENTER "D: OVERLAY1L"

REM
REM
REM
REM
REM
REM
REM

THESE LINES ARE DELETED BY
LINE 100

PRESUMABLY THEY WILL BE
OVERLAID BY THE ENTERED PROGRAM
SEE 'ENTER’ AND ‘SET’ FOR

MORE INFO

If two line

ine number

12 - B

ADVANCED PROGRAM CONTROL

BASIC A+ adds Structured Programming capability with
two new Program Control Structures.

IF. . ELSE.. ENDIF

Format: IF aexp: <statements>
[ELSE: <statements> 1
ENDIF
Examples: 200 IF A>100:PRINT "TOO BIG"
210 A=100
220 ELSE: PRINT "A-0OK“
230 ENDIF

1000 IF A>C : B=A : ELSE : B=C : ENDIF

BASIC A+ makes available an exceptionally powerful cond-
itional capability via IF...ELSE...ENDIF

In the format given, if the expression evaluates non-zero
then all statements between the following colon and the
corresponding ELSE (if it exists) or ENDIF (if no ELSE
exists) are executed; if ELSE exists, the statements
between it and ENDIF are skipped.

If the aexp evaluates to zero, then the statements (if any)
between the colon and ELSE are skipped and those between
ELSE and ENDIF are executed. If no ELSE exists, all state-—
ments through the ENDIF are skipped.

The colon following the aexp IS REGUIRED and MUST be followed
by a statement. The word THEN is NOT ALLOWED in this format

There may be any number (including zero) of statements and

lines between the colon and the ELSE and between the ELSE
and the ENDIF.

The second example above sets B to the larger of the values

of A and C.
Note: IF structures may be nested.
Example:

100 it A>B : REM SO FAR A IS BIGGER
110 IF ADC : PRINT "A BIGGEST"
120 ELSE : PRINT “C BIGGEST"“

130 ENDIF

140 ELSE

150 IF B>C : PRINT “B BIGGEST“
160 ELSE : PRINT “C BIGGEST"“

170 ENDIF

180 ENDIF

22 - A

WHILE
ENDWHILE

Format:
Example:

WHILE aexp : <statementsd> : ENDWHILE
100 A=3

110 WHILE A: PRINT A
120 A=A-1 : ENDWHILE

With WHILE, the BASIC A+ user has yet another powerful
control structure available. So long as the aexp of WHILE

Temains non-zero, all statements between WHILE and ENDWHILE
are executed.

Example:

Example:

Caution:

Note:

Note:

WHILE 1 .
The loop executes forever

WHILE O .
The loop will never execute

Do not GOTO out of a WHILE loop or a nesting error

will likely result. (though POP can fix the stack
in emergencies.)

The aexp is only tested at the top of each passage
through the loop.

As with ALL BASIC A+ control structures, WHILEs may
be nested as deep as memory space allows.

22 - B

INPUT

DIR

ADVANCED INPUT/OUTPUT

Format: INPUT string—literal, varl,var..]
Example: INPUT "3 VALUES >>",V(1),V(2),V(3)

BASIC A+ allows the user to include a prompt with the INPUT
statement to produce easier to write and read code. The
literal prompt ALWAYS replaces the default (“?") promp¢t.
The literal string may be nul for no prompt at all.

Note: No file number may be used when the literal prompt
is present.

Note: In the example above, if the user typed in only
a single value followed by RETURN, he would be
reprompted by BASIC A+ with “7?7?v, But see chapter

12 for variations available via SET.

Format: DIR filespec
Example: DIR “D:s# COM"

List the contents of a directory to the screen. Action is
similar to DS/A+ DIR command, but there are no default file

specifications. The example above would list all COMmand
files on drive 1.

PROTECT

UNPROTECT

ERASE

RENAME

Format: PROTECT filespec
UNPROTECT filespec
Examples: PROTECT *“D: #*. COM“

100 UNPROTECT "D2: JUNK. BAS

PROTECTing a file implies that the file cannot be erased or
written to. UNPROTECT eliminates any existing protection.
Similar to OS/A+ PROtect and UNProtect, but there are no
default file specifications. In the examples, the first
would protect all command files on drive 1 and the second
would unprotect only the file shown.

Format: ERASE filespec
Example: ERASE “D: #. BAK

Erase will erase any unprotected files which match the given
filespec. The example would erase all .BAK (back-up) files

on drive 1, Similar to 0S/A+ ERAse, but there are no default
file specifiers.

Format: RENAME <filespec, filename>
Example: RENAME “D2: NEW. DAT, OLD. BAK"

Allows renaming file(s) from BASIC A+. Note that the comma

shown MUST be imbedded in the string literal or variable
used as the file parameter.

Caution: It is strongly suggested that wild cards (# and ?)
NOT be used when RENAMing.

32 - B

PRINT USING

Format: PRINT C#fn; JUSING sexp,exp [,exp...]
Example: (see below)

PRINT USING allows the user to specify a format for the output
to the device or file associated with “fn" (or to the screen).
The format string "sexp" contains one or more format fields.
Each format field tells how an expression fraom the expression
list is to be printed. Valid format field characters are:

& * + -9, Lt/

Non-format characters terminate a format field and are printed
as they appear.

Example 1) 100 PRINT USING “## ###X#", 12, 315,7

2) 100 DIM AS(10) : AS="H## HHH#X#"
200 PRINT USING A%, 12,315,7

Both 1) and 2) will print

12 315X7

Where a blank separates the first two numbers and an
X separates the last two.

NUMERIC FORMATS:

The format characters for numeric format fields are:
2% #*¥ + - % ,

DIGITS (# &)

Digits are represented by:
& *

— Indicates fill with leading blanks
% — Indicates fill with leading zeroes
— Indicated fill with leading asterisks

If the number of digits in the expression is less than the
number of digits specified in the format then the digits are

right justified in the field and preceded with the proper
£ill character.

NOTE: In all the following examples b is used to represent a
blank.

Example:
Value Format Field Print Out

32 - C

1 2.2 bb1l

12 #4644 b12
123 #4464 123
1234 #44 234
12 2.8 % o012
12 336 3% *#12

DECIMAL POINT(.)

A decimal point in the format field indicates that a decimal
point be printed at that lacation in the number. All digit
positions that follow the decimal point are filled with digits.
If the expression contains fewer fractional digits than are
indicated in the format, then zeroes are printed in the extra
positions. It the expression contains more fractional digits
than indicated in the format, then the expression is rounded

so that the number of fractional digits is equal to the number
of format positions specified.

A second decimal point is treated as a non-format character.

Example:
Value Format Field Print Out
123. 456 HiH. #4 123. 46
4.7 HH#4. #4 bb4. 70
12. 35 #4. H#. 12. 35.
coMMA (,)

A comma in the format field indicates that a comma be printed
at that location in the number. I# the format specifies a
comma be printed at a position that is preceeded only by fill

characters (O b #) then the appropriate fill character will be
printed instead of the comma.

The comma is a valid format character only to the left of the
decimal point. When a comma appears to the right of a decimal
point, it becomes a non-format character. It terminates the
format field and is printed like a non-format character.

Example:
Value Format Field Print Out
5216 #, 44 b9, 216
3 #¥, 444 bbbbb3
4175 %, 3+ % #*#4, 175
3 2%, %% 000003
42. 71 ##&. #4, 42. 71,

SIGNS (+ =)

A plus sign in a format field indicates that the sign of the
number is to be printed. A minus sign indicates that a minus
sign is to be printed if the number is negative and a blank

32 - D

if the number is positive.
Signs may be either fixed, floating or trailing.

A fixed sign must appear as the first character of a format
field.

Example:
Value Format Field Print QOut
43. 7 +H#H # +b43. 7
-43. 7 +a%, # -b43. 7
23. 58 —ReRl. &2 b023. 58
-23. 58 ~2 & & && —-023. 58

Floating signs must start in the first format position and
occupy all positions up to the decimal point. This causes
the sign to be printed immediately before the first digit

rather than in a fixed location. Each sign after the first
also represents one digit.

Example:
Value Format Field Print Out
3.75 ++++. ## bb+3. 75
3.75 ————. #¥% bbb3. 75
-3.75 ————. ## bb-3. 75
A trailing sign can appear only after a decimal point. It

terminates the format and prints the appropriate sign (or
blank}.

Example:
Value Format Field Print Out
43. 17 HHR HH4 #43. 17+
43. 17 R, L&— 043. 17b
-43. 17 HH#4. 4 b43. 17—

DOLLAR SIGN ($)

A dollar sign can be either fixed or floating, and indicates
that a ¢ is to be printed.

A fixed dollar sign must be either the first or second character

in the format field. If it is the second character then + or -
must be the first.

Example:
Value Format Field Print QOut
34. 2 SHE HE $34. 20
34.2 +EHE. H# +$34. 20
-34.2 +EHHNE. H# -% 34. 20

Floating dollar signs must start as either the first or second
character in the format field and continue to the decimal point.
If the floating dollar signs start as the second character then

+ or — must be the first. Each dollar sign after the first also
Tepresents one digit.

32 - E

Example:

Value Format Field Print Out
34.2 $$35S. 44 bb$34. 20
34. 2 +$$S5S. ##& +bb$34. 20
1572563. 41 $3, $$%, $$%. %+ $1, 572, 563. 41+
NOTE: There can only be one floating character per format
field. .
NOTE: +: = or % in other than proper positions will give

strange results.

STRING FORMATS:
The format characters for string format fields are:

% — Indicates the string is to be right Justified.
' — indicates the string is to be left justified.

If there are more characters in the string than in the format
field, than the string is truncated.

Example:
Value Format Field Print Out
ABC LLL4 bABC
ABC AN ABCb
ABC A A AB
ABC 11 AB

ESCAPE CHARACTER (/)

The escape character (/) does not terminate the format field
but will cause the next character to be printed, thus allowing

the user to insert a character in the middle of the printing
of a number.

Example: PRINT USING "“###/—-###%", 2551472 prints
255-1472
Example: 100 AREA = 408

200 NUM = 2551472
300 PHONE = (AREA®*1E+7)+NUM
400 DIM F$(20)

300 F$ = “(H##/)HER/—HENR"
600 PRINT USING F$, PHONE
700 END

This program will print
(408)255-1472

NOTE: Improperly specified format fields can give some very
strange results.

NOTE: The function of ", " and "“;" in PRINT are overridden in

32 - F

the expression list of PRINT USING, but when file
number "fn" is given then the following ", " or ";" have
the same meaning as in PRINT. So to avoid an initial
tabbing:, use a semicolon (;).

Example: PRINT #5; USING As.,B

Will print B in the format specified by AS

to the file or device associated with file
number 5.

Example: PRINT USING “## /% #=###",12,5, 5#12
12 # 5=60
Example: PRINT USING "TOTAL=##. #+", 72 68

TOTAL=72. 7+

Example: 100 DIM A$(10) : A$="TOTAL="
200 DIM F$(10) : F$="!11111 144 H#+"

300 PRINT USING F$, As, 72. 48

TOTAL=72. 7+

NOTE: IF there are more expressions in the expression list

than there are format fields, the format fields will
be reused.

Example: PRINT USING "XX##", 25, 19,7 will print
XX25XX19XXb7

WARNING:

A format string must contain at least one format field. If

the format string contains only non-format characters, those

characters will be printed repeatedly in the search for a
format field.

TAB

Format: TAB C#fn,] aexp

Example: TAB #PRINTER, 20

TAB outputs spaces to the device or file specified by fn (or
the screen) up to column number “aexp". The first column is
column O.

NOTE: The column count is kept for each device and is reset

to zero each time a carriage return is output to that

device. The count is kept in AUX2 of the IOCB. (See
0S documemtation).

NOTE: I# "aexp" is less than the current column count, a

carriage return is output and then spaces are put aut
up to column "“aexp".

32 - G

BPUT

BGET

RPUT

Format: BPUT #fn, aexpl, aexp2
Example: (see below)

BPUT outputs a block of data to the device or file specified by

“£no. The block of data starts at address "aexpl" for a length
of "aexp2".
NOTE: The address may be a memory address. For example, the

whole screen might be saved. Or the address may be the
address of a string obtained using the ADR function.

Example: BPUT #S5, ADR(AS), LEN(AS)

This statements writes the block of data
contained in the string A% to the file or
device associated with file number 5.

Format: BGET #fn, aexpl, aexp2
Example: (see below)

BGET gets "aexp2" bytes from the device or file specified by
“fn" and stores them at address "aexpl®.

NOTE: The address may be a memory address. For example, a
screen full of data could be displayed in this manner.
Or the address may be the address of a string. In this
case BGET does not change the length of the string.
This is the user’s responsibility.

Example: 10 DIM A%$(1025)
20 BGET #5, ADR(AS$), 1024
30 A$(1025) = CHR$(0O)

This program segment will get 1024 bytes from
the file or device associated with file number
S and store it in AS. Statement 30 sets the
length of AS$ to 1025.

NOTE: No error checking is done on the address or length so
care must be taken when using this statement.

Farmat: RPUT #fn, exp L[,exp...1
Example: (see below)

RPUT allows the user to output fixed length records to the

device or file associated with "¢n"“. Each "exp" creates an
element in the record.

32 - H

RGET

NOTE: A numeric element consists of one byte which indicates

4 numeric type element and & bytes of numeric data in
floating point format.

A string element consists of one byte which indicates

a string type element 2 bytes of string length, 2 bytes
of DIMensioned length, and then X bytes where X is the
DIMensioned length of the string.

Example: 100 DIM A$(6)
200 A% = "Xy"
300 RPUT #3,B.A%,10

Puts 3 elements to the device or file
asscoiated with file number 3. The first

element is numeric (the value of B). The
second element is a string (A%$) and the third
is a numeric (10). The record will be 26

bytes long, (7 bytes for each numeric, 5
bytes for the string header and 6 bytes
(the DIM length) of string data).

Format: RGET #fn, {svar) [, {svar)...]
{avar) [, {avar)>. .. 1
Example: (see below)

RGET allows the user to retreive fixed length records from the
device or file associated with file number "fn" and assign the
values to string or numeric variables.

NOTE.: The type of the element in the file must match the type

of the variable (ie. they must both be strings or both
be numeric).

Example: 1) RPUT #5. A
2} RGET #1,AS

If 1) is a statement in a program used to
generate a file and 2) is a statement in another
program used to read the same file, an error
will result.

NOTE: When the type of element is string, then the DIMensioned

length of the element in the file must be equal to
the DIMensioned length of the string variable.

Example: 1) 100 DIM A$(100)

800 RPUT #3., As

32 - 1

NOTE:

Example:

2) 100 DIM X$(200)

800 RGET #2, Xs$

I#+ 1) is a section of a program used to write a
file and 2) is a section of another program used
to read the same file, then an error will occur
45 a result of the difference in DIM values.

RGET sets the correct length for a string variable (the
length of a string variable becomes the actual length

1100 DIM A$(10)
200 A$ = "ABCDE"
860 RPUT #4, As

2)100 DIM X$(10)
200 X$ = "HI*

800 RGET #&, X3
700 PRINT LEN(X$), X$

If 1) is a section of a program used to create
a file and 2) is a section of another praogram
used to read the file then it will print:

9 ABCDE

32 - J

DPEEK
DPOKE

ERR

ADVANCED FUNCTIONS

Format: DPEEK(addr)
DPOKE addr. aexp
Examples: PRINT "variable name table is at"; DPEEK(130)

DPOKE 741, DPEEK(741)-1024

The DPEEK function and DPOKE statement parallel PEEK and
POKE. The difference is that, instead of working with
single byte memory locations, DPEEK and DPOKE access or
change Double byte locations (or “words"“). Hence, DPEEK
may return a value from O to 65535; and DPOKE’s aexp may
be any expression evaluating to a like range.

The primary advantage of DPEEK over PEEK is illustrated
by the following two exactly equivalent program fragments:

100 A=PEEK(130)+256#PEEK(131)
100 A=DPEEK(130)

In the second example at the head of this section, the top

of memory is lowered by 1k bytes in a single, easy-to-read
statement.

Format: ERR(aexp)
Example: PRINT “ERROR"; ERR(QO); “OCCURRED AT LINE";,ERR(1)

This function—--in conjunction with TRAP, CONT, and GOTO
allows the BASIC A+ programmer to effectively diagnose and
dispatch virtually any run—-time error.

ERR(O) returns the last run—time error number
ERR(1) returns the line number where the error occurred

Example:
100 TRAP 200
110 INPUT "A NUMBER. PLEASE >>“, NUM
120 PRINT "A VALID NUMBER" : END
200 IF ERR(O)=8 THEN GOTO ERR(1)
210 PRINT “UNEXPECTED ERROR #": ERR(O)

36 - A

TAB

Format: TAB(aexp)
Example: PRINT #3; "columns:"; TAB(20); 20; TAB(30); 30

The TAB function’s effect is identical with that of the
TAB statement (page 32-A+). The difference is that., for
PRINT statements, an imbedded TAB function simplifies
the programmers task greatly (see the example)

TAB will output ATASCII space characters to the current
PRINT file or device (#3 in our example). Sufficient
spaces will be output so that the next item will print

in the column specified (only if TAB is followed by a
semi—colon, though). I# the column specified is less than
the current column, a RETURN will be output first.

Caution: The TAB function will output spaces on some device
whenever it is used; therefore, it should be used
ONLY in PRINT statements. It will NOT function
properly in PRINT USING.

36 - B

ADVANCED STRINGS

SUBSTRINGS:
A destination string is one that is being assigned to.
Any other string is a source string. In

READ X$

INPUT Xs$

X$=Y$

X% is the destination string, Y$ is the source string.

Substrings are defined as follows:

STRING definition when definition when
destination string spurce string

Ss$ the entire string from 1st thru LEN
1 thru DIM value character

S$(n) from nth thru from nth thru
DIMth character LENgth character

S$(n,m) fraom the nth thru from the nth thru
the mth character the mth character

It is an error if either the first or last specified
character (n and m, above) is outside the DIMensioned size.
It is an error if the last character position given

(explicitly or implicitly) is less than the first character
position.

Example: Assume: DIM A$(10)
A$ = “VWXyz“

1) PRINT As$(2) prints:
WXYZ

2) PRINT A$(3, 4) prints:
XY

3) PRINT A$(5,5) prints:
Z

4) PRINT A$(7)
is an error because A$ has a length of 5.

NOTE: Refer to the LET statement, page 10-a, for examples of
BASIC A+ string concatenation.

40 - A

FIND

Format: FIND(sexpl, sexp2, aexp)
Example: PRINT FIND ("ABCDXXXXABC", "BC", N)

FIND is an efficient, speedy way of determining whether
any given substring is contained in any given master string.

FIND will search sexpl, starting at position aexp, for sexp2.
If sexp2 is found, the function returns the position where it

was found, relative to the beginning of sexpl. If sexp2 is
not found:, a O is returned.

In the example above, the following values would be PRINTed:

2 if N=0 or N=1
? i+ N>2 and N<10
O if N>=10

More Examples:
10 DIM AS$(1)
20 PRINT “INPUT A SINGLE LETTER:
30 PRINT “"Change/Erase/List"
40 INPUT “CHOICE 7?"“.A$
50 ON FIND("CEL"“, A$,0) GOTO 100, 200, 300

An easy way to have a vector from a menu choice

100 DIM A$(10): A$="ABCDEFGHIJ"
110 PRINT FIND (AS$,“E", 3}
120 PRINT FIND (A$(3), "E")
Line 110 will print “S5" while 120 will print "“3". Remember,

the position returned is relative to the start of the
specified string.

100 INPUT "20 CHARACTERS, PLEASE: ", A$

110 ST=0

120 F=FIND(AS, "A", ST): IF F=0 THEN STOP

130 IF AS(F+1,F+1)="B" OR A$(F+1,F+1)="C"
THEN ST=F+1:G0T0 120

140 PRINT "FOUND ‘AB‘ OR ‘AC’"

This illustrates the importance of the aexp’s use as a
starting position.

40 - B

Note:

HSTICK
VSTICK

PEN

ADVANCED GAME CONTROL

See also chapter 13, PLAYER/MISSILE GRAPHICS.

Faormats: HSTICK(aexp)
VSTICK(aexp)
EXAMPLES: IF HSTICK(0)>0 and VSTICK(0)<O

THEN PRINT "“DOWN, TO THE RIGHT"

If the numbering scheme for STICK(O) positions dismayed
you, take heart: HSTICK and VSTICK provide a simpler
method of reading the joysticks.

VSTICK(n}) reads joystick n and returns:
+1 if the joystick is pushed up
-1 if the joystick is pushed down
O if the joystick is vertically centered

HSTICK(n) reads joystick n and returns:
+1 if the joystick is pushed right
-1 if the joystick is pushed left
O if the joystick is horizontally centered

Format: PEN(aexp)
Example: PRINT "light pen at X=“;pen(0)

The PEN function simply reads the ATARI light pen registers
and returns their contents to the user.

PEN(O) reads the horizontal position register
PEN(1) reads the vertical position register

60 - A

NUMBERS

All numbers in Basic are in BCD floating point.

RANGE:

Floating point numbers must be less than 10E+98 and
greater than or equal to -10E-98.

INTERNAL FORMAT:

Numbers are represented internally in & bytes. There is a 9
byte mantissa containing 10 BCD digits and a one byte exponent.

The most significant bit of the exponent byte gives the sign
of the mantissa (O for postive, 1 for negative). The least
significant 7 bits of the exponent byte gives the exponent in

excess &4 notation. Internally, the exponent represents powers
of 100 (not powers of 10).

Example: 0.02 =2 # 10~~2 = 2 # 100"-1
exponent= -1 + 40 = 3JF
0.02 = 3F 02 00 00 00 00

The implied decimal point is always to the right of the first
byte. An exponent less than hex 40 indicates a number less

than 1. An exponent greater than or equal to hex 40 represents
a number greater than or equal to 1.

Zero is represented by a zero mantissa and a zero exponent.

In general, numbers have a 9 digit precision. For example,
only the first 9 digits are significant when INPUTing a
number. Internally the user can usually get 10 significant
digits in the special case where there are an even number
of digits to the right of the decimal point (0,2,4...).

68 - A

12

ADVANCED SYSTEM FEATURES

SET and SYS

Formats:

Examples:

SET aexpl, aexp2
SYS(aexp)

SET 1,5

PRINT SYS(2)

SET is a statement which allows the user to exerices
control over a varity of BASIC A+ system level functions.
SYS is simply an arithmetic function used to check the
SETtings of these functions. The table below summarizes

the various SET table parameters. (Default values are
given in parentheses.)

aexpl aexp2
PARAMETER # LEGAL VALUES meaning
O, (0} O —-BREAK key functions normally
1 —User hitting BREAK cause an
error to occur (TRAPable)
128 —BREAKs are ignored
1, (10} 1 thru 127 —-Tab "stop" setting fort the
comma in PRINT statements.
2, (63) O thru 255 -Prompt character for INPUT
(default is "?"}.
3, o) o —FOR. .. NEXT loops always execute
at least once (ala ATARI BASIC).
1 —FOR loops may execute zero times
(ANSI standard)
4, 0o -0On a mutiple variable INPUT,
if the user enters too feuw
items, he is reprompted (e. g.
with "?22")
(1) 1 —Instead of reprompting, a
TRAPable error occurs.
S, 0 —~Lower case and inverse videoa

(1)

characters remain unchanged
and can cause syntax errors.
1 —For program entry ONLY, lower
case letters are converted to
upper case and inverse video
characters are uninverted.
Exception: characters between
quotes remain unchanged.

69

6, 0} o —Print error messages along with

error numbers (for maost erroars)
1 -Print only error numbers.

7, (0) o] -Missiles (in Player/Missile-
Graphics), which move vertically
to the edge of the screen,
roll off the edge and are lost.

1 —Missiles wraparound from top to

bottom and vise versa.

8, o —Don’t push (PHA) the number of
parameters to a USR call on the
stack [advantage: some assembly
language subroutines not expect-
ing parameters may be called by
a simple USR(addr) 1.

(1) 1 —-DO push the count of parameters
(ATARI BASIC standard).

?, (0) o —ENTER statements return to the
READY prompt level on completion
1 —-If a TRAP is properly set, ENTER

will execute a GOTO the TRAP line
on end—of—-entered—-file.

Note: The SET parameters are reset to the system defaults
on execution of a NEW statement.

Note: System defaults may be changed either temporarily or
permanently (by SAVEing a patched BASIC A+ via 0OS/A+)
by POKEing the locations noted in the memory map.

Examples:
1) SET 1,4 : PRINT 1,2,3,4

THe number will be printed every four columns

2) SET 2,ASC(“>")

Changes the INPUT prompt from “?“ to "“>"

3) 100 SET 9.1 : TRAP 120
110 ENTER “D:OVERLAY.LIS"

120 REM execution continues here after entry of
130 rem the overlay

4) 100 SET 0,1 : TRAP 200

110 PRINT “HIT BREAK TO CONTINUE"
120 GOTO 110

200 REM come here via BREAK KEY

S) 100 SET 3.1
110 FOR I =1 TO O

120 PRINT " THIS LINE WON‘T BE EXECUTED"
130 NEXT I

70

MOVE

Format: MOVE from-addr, to—addr, len
CMOVE aexp.aexp,aexpl

Example: MOVE 13#4096, 8B%#4094, 1024

Caution: Be careful with this command.

MOVE is a general purpose byte move utility which will move
any number of bytes from any address to any address at
assembly language speed. NO ADDRESS CHECKS ARE MADE!'!

The sign of the third aexp (the length) determines the
order in which the bytes are moved.

I# the length is postive:
(from} -> (ta)
(from+1) -> (to+1)

(from+len—-1) -> (to +len-1)
It the length is negative:
(from+len—-1) -> (to+len-1)

(from+len—-2) -> (to+len—-2)

(from+1) -> (to +1}
(from) -> (to)

The example above will move the character set map to BASIC

A+’s reserved area in a 48K RAM system (it moves from $D0OOO
to $8000).

71

13

PLAYER / MISSILE GRAPHICS

This section describes the BASIC A+ commands and
functions used to access the Atari’s Player-Missile Graphics.
Player Missile Graphics (hereafter usually referred to as
simply "PMG") represent a portion of the Atari hardware
totally ignored by Atari Basic and Atari 0OS. Even the screen
handler (the "S:" device) knows nothing about PMG. BASIC A+
goes a long way toward remedying these omissions by adding
six (&) PMG commands (statements) and two (2) PMG functions
to the already comprehensive Atari graphics. In addition,
four other statements and two functions have significant uses
in PMG and will be discussed in this section.

The PMG statements and functions:

PMGRAPHICS PMCOLOR PMCLR
PMMOVE PMWIDTH MISSILE
BUMP (.. .) PMADR(. ..)

The related function and statements:

MOVE BGET BPUT
POKE USR(...) PEEKC. . .}

AN OVERVIEW

For a complete technical discussion of PMG, and to learn
of even more PMG “"tricks" than are included in BASIC A+, read

the Atari document entitled “"Atari 400/800 Hardware Manual®"
(Atari part number CO146555, Rev. 1 or later).

It was stated above that the “S: " device driver knouws
nothing of PMG, and in a sense this is proper: the hardware
mechanisms that implement PMG are, for virtually all purposes,
completely separate and distinct from the "playfield" graphics
supported by "S:". For example, the size, position, and color
of players on the video screen are completely independent of
the GRAPHICS mode currently selected and any COLOR or SETCOLOR
commands currently active. In Atari (and now BASIC A+)
parlance, a "player" is simply a contiguous group of memory
cells displayed as a vertical stripe on the screen. Sounds
dull? Consider: each player (there are four) may be “"painted"
in any of the 128 colors available on the Atari (see Setcolor
for specific colors). Within the vertical stripe, each bit
set to 1 paints the player’s color in the corresponding pixel,
while each bit set to O paints no color at all! That is, any

O bit in a player stripe has no effect on the underlying
playfield display.

72

Why a vertical stripe? Refer to Figure PMG-1 for a rough
idea of the player concept. If we define a shape within the
bounds of this stripe (by changing some of the player’s bits
to 1’s), we may then move the stripe anywhere horizontally by
a simple register POKE (or via the PMMOVE command in BASIC A+).
We may move the player vertically by simply doing a circular
shift on the contiguous memory block representing the player
(again, the PMMOVE command of BASIC A+ simplifies this process).
To simplify:

A player is actually seen as a stripe on the screen 8
pixels wide by 128 (or 254, see below) pixels high. Within
this stripe, the user may POKE or MOVE bytes to establish what
is essentially a tall, skinny picture (though much of the
picture may consist of O bits, in which case the background
"shows through"). Using PMMOVE, the programmer may then move
this player to any horizontal or vertical location on the
screen. To complicate:

For each of the four players there is a corresponding
"missile" available. Missiles are exactly like players
except that (1) they are only 2 bits wide, and all four
missiles share a single block of memory, (2) each 2 bit
sub—-stripe has an independent horizontal position, and (3)

a missile always has the same color as its parent player.
Again, by using the BASIC A+ commands (MISSILE and PMMOVE,

for example), the programmer/user need not be too aware of
the mechanisms of PMG.

CONVENTIONS

1. Players are numbered from O through 3. Each player has
4@ corresponding missile whose number is 4 greater then
that of its parent player, thus missiles are numbered
4 through 7. In the BUMP function, the “playfields" are
numbered from 8 through 11, corresponding to actual
playfields O through 3. (Note: playfields are actually

COLORs on the main GRaphics screen, and can be PLOTted,
PRINTed, etc).

2. There is some inconsistency in which way is “UP", PLOT,
DRAWTO, POKE, MOVE, etc are aware that 0,0 is the top
left of the screen and that vertical position numbering
increases as you go down the screen. PMMOVE and VSTICK,
however, do only relative screen positioning, and define

“+" to be UP and "—-" to be DOWN. LIf this really bothers
you please let us know'].

3. “pmnum" is an abbreviation for Player-Missile NUMber and

must be a number from O to 3 (for players) or 4 to 7 (for
missiles).

73

Graphic

FIGURE

PMG-1

Representation of Player/Missile Displays vs. Playfield

Rela+iy e

Kl

Vor+i@
Positian ¥F\-TV SCREEN
(~ ———— et —_——— ‘ Playfield Area —
2+ | I portion of screea you
o l HogizonTAL I g ean PRINT and PL_OT) ete.
"
'-.‘5’ ' (Approx.) }
(N Are
s 80&—# !
(9
st ! M‘7 [
v | [
+ ‘ I A P}a\/ey— aha e -
t:‘l | | any “on” (}) bits w'll a(«‘sp(ay
. ! ; color selected Ly PMcoLoR
f. | —-,v-‘q.—-,‘('l gi—a e :
3 | ’
¢ |
< L I
- J T ' v Y of wi
% ndicates prxel (ca or clocks) of widthe
DoubleLine| | Single Live Assumes PMWIDTH =, |
127 L
Ver+ical Pos/n®
FIGURE PMG-2
Memory Usage in Player/Missile Graphics
NOTE: assumes 48K system. Adjust addresses downward
8K or 16K for 40k or 32K systems.
Resolution: single line double line
Top of RAM $C000 £C000
Player 3 $BFFF $BFFF
$BFQO $BF80
Player 2 $BEFF $BF7F
$BEQO $BFOO
Player 1 $BDFF $BEFF
$BDCO $BESO
Player O $BCFF $BE7F
$BCOO $BEQO
Missiles (all) $BBFF +BDFF
$BBOO $BD8O

THE PMG STATEMENTS

FMGRAPHICS

(PMG.)

PMCLR

Farmat: PMGRAPHICS aexp
Example: PMG. 2

This statement is used to enable or disable the Player-—

Missile Graphics system. The aexp should evaluate to O,
1, or 2:

PMG. O Turn off PMG
PMG. 1 Ernable PMG, single line resolution
PMG. 2 Enable PMG: double line resolution

Single and Double line resolution (hereafter refered to
as "PMG Modes") refer to the height which a byte in the
player "stripe" occupies - either one or two television
scan lines. (A scan line height is the pixel height in

GRaphics mode 8. GRaphics 7 has pixels 2 scan lines high,
similar to PMG. 2)

The secondary implication of single line versus double
line resolution is that single line resolution

requires twice as much memory as double line, 256 bytes
per player versus 128 bytes. Figure PMG-2 shows PMG
memory usage in BASIC A+, but the user really need not be
aware of the mechanics if the PMADR function is used.

Format: PMCLR pmnum
Example: PMCLR 4

This statement “clears" a player or missile area to all

zero bytes, thus "erasing" the player/missile. PMCLR

is aware of what PMG mode is active and clears only the

appropriate amounts of memory. CAUTION: PMCLR 4 through
PMCLR 7 all produce the same action —— ALL missiles are

cleared, not just the one specified. To clear a single
missile, try the following:

SET 7,0 : PMMOVE 4; 255

75

PMCOLOR
(PMCO.)

Format: PMCOLOR pmnum, aexp, aexp
Example: PMCOLOR 2,13, 8

PMCOLORs are identical in usage to those of the SETCOLOR
statement except that a player/missile set has its color
chosen. Note there is no correspondence in PMG to the

COLOR statement of playfield GRaphics: none is necessary
since each player has its own color.

The example above would set player 2 and missile & to a
medium (luminace 8) green (hue 13).

NOTE: PMG has NO default colors set on power-up or
SYSTEM RESET.

PMWIDTH
(PMW.)

Format: PMWIDTH pmnum, aexp
Example: PMWIDTH 1,2

Just as PMGRAPHICs can select single or double pixel heights,
PMWIDTH allows the user to specify the screen width of

players and missiles. But where PMGRAPHICs selects resolution
mode for all players and missiles, PMWIDTH allows each

player AND missile to be separately specified. The aexp used
for the width should have values of 1,2, or 4 —-— representing
the number of color clocks (equivalent to a pixel width in
GRaphics mode 7) which each bit in a player definition will

occupy.

NOTE: PMG. 2 and PMWIDTH 1 combine to allow each bit of a
player definition to be equivalent to a GRaphics
mode 7 pixel —— a not altogether accidental occur-
ence.

NOTE: Although players may be made wider with PMWIDTH, the
resolution then suffers. Wider "players" made be

made by placing two or more separate players side-—
by—-side.

76

FMMOVE

Format: PMMOVE pmnum(, aexpll; aexp]
Example: PMMOVE O, 120; 1

PMMOVE 1,80
- PMMOVE 4; -3

Once a player or missile has been “"defined" (via POKE, MOVE,
GET. or MISSILE), the truly unique features of PMG under
BASIC A+ may be utilized. With PMMOVE, the user may position

the player/missile shape anywhere on the screen almost in-
stantly.

BASIC A+ allows the user to position each player and missile
independently. Because of the hardware implementation,

though, there is a difference in how horizonal and vertical
positioning are specified.

The parameter following the comma in PMMOVE is taken to be
the ABSOLUTE position of the left edge of the "stripe" to be
displayed. This position ranges from O to 235, though the
lowest and highest positions in this range are beyond the
edges of the display screen. Note the specification of

the LEFT edge: changing a player’s width (see PMWIDTH) will

not change the position of its left edge, but will expand
the player to the right.

The parameter following the semicolon in PMMOVE is a RELATIVE
vertical movement specifier. Recall that a "stripe" of
player is 128 or 256 bytes of memory. Vertical movement must
be accomplished by actual movement of the bytes within the
stripe — either towards higher memory (down the screen) or
lower memory (up the screen). BASIC A+ allows the user to

specify a vertical movement of from -255 (down 255 pixels) to
+255 (up 255 pixels).

NOTE: The +/—- convention on vertical movement conforms to
the value returned by VSTICK.
Example: PMMOVE N; VSTICK(N)
Will move player N up or down (or not move him) in
accordance with the joystick position.

NOTE: SET may be used to tell PMMOVE whether an object

should "wraparound" (from bottom of screen to top

of screen or vice versa) or should disappear as it
scrolls too far up or down. SET 7,1 specifies wrap-
around. SET 7,0 disables wraparound.

77

MISSILE
(MIS.)

Format: MISSILE pmnum,aexp, aexp
Example: MISSILE 4,48,3

The MISSILE statement allows an easy way for a parent player
to “"shoot" a missile. The first aexp specifies the absolute
vertical position of the beginning of the missile (O is the

top of screen), and the second aexp specifies the vertical
height of the missile.

Example: MISSILE 4.,64,3

Would place a missile 3 or & scan lines high (depends
on PMG. mode) at pixel &4 from the top.

NOTE: MISSILE does NOT simply turn on the bits corres-
ponding to the position specified. Instead, the bits
specified are exclusive-or‘ed with the current missile

memory. This can allow the user to erase existing
missiles while creating others.

Example: MISSILE 5,40, 4
MISSILE S5,40,8

The first statement creates a 4 pixel missile at
vertical position 20. The second statement erases the
first missile and creates a 4 pixel missile at
vertical position 24.

78

PMG FUNCTIONS
PMADR

Format: PMADR (aexp)
Example: PO=PMADR(0O)

This function may be used in any arithmetic expression and
is used to obtain the memory address of any player or missile.
It is useful when the programmer wishes to MOVE, POKE, BGET., etc.

data to (or from) a player area. See next section on “PMG
RELATED STATEMENTS" for examples and hints.

NOTE: PMADR(m) —- where m is a missile number (4 through 7)
returns the same address for all missiles.
BUMP
Format: BUMP (pmnum, aexp)
Examples: IF BUMP(4,1) THEN ..

B=BUMP (0, 8)

BUMP is a function which can be used in any arithmetic ex-—
pression. BUMP accesses the collision registers of the ATARI
and returns a 1 (collision occured) or O (no collision
occured) as appropriate for the pair of objects specified.
Note that the second parameter (the aexp) may be either a
player number or playfield number (8 through 11).

Valid BUMPs: PLAYER to PLAYER (0-3 to 0-3)
MISSILE to PLAYER (4-7 to 0-3)
PLAYER to PLAYFIELD (0-3 to 8-11)
MISSILE to PLAYFIELD (4-7 to 8-11)

NOTE: BUMP (p,p), where the p’s are O through 3 and
identical, always returns O.

NOTE: It is advisable to reset the collision registers

it a relatively long time has occurred since they
were last checked. ’

TOU MUST CLEAR THE COLLISION REGISTERS Via
FORKE 5327850

79

NOTE:

PMG RELATED STATEMENTS

See also decriptions of these statements in preceding

sections. The discussions here pertain only to their
usage with PMG.

POKE and PEEK

MOVE

One of the most common ways to put player data into a player
stripe may well be to use POKE. In conjunction with PMADR,
it is easy to write understandable player loading routines.

Example: 100 FOR LOC=48 TO S2

110 READ N: POKE LOC+PMADR(O),N
120 NEXT LOC

700 DATA 255, 129, 255, 129, 255

PEEK might be used to find out what data is in a part-
icular player location.

MOVE is an efficient way to load a large player and/or move
a player vertically by a large amount. With its ability to
MOVE data in upwards or downwards movement, interesting

overlap possibilities occur. Also, it would be easy to have

several player shapes contained in stripes and then MOVEd
into place at will.

Examples: MOVE ADR(AS$), PMADR(2), 128

could move an entire double line resolution player from A%
to player stripe number 2.

POKE PMADR(1), 255
MOVE PMADR(1),PMADR(1)+1, 127

would fill player 1’s stripe with all "on" bits, creating a
solid stripe on the screen.

80

BGET and BPUT

USR

As with MOVE. BGET may be used to fill a player memory
quickly with a player shape. The difference is that BGET
may obtain a player directly from the disk!'

Example: BGET #3, PMADR(0), 128

Would get a PMG. 2 mode player from the file opened in
slot #3.

Example: BGET #4,PMADR(4), 254#5

Would fill all the missiles AND players in PMG. 1 mode ——
with a single statement!

BPUT would probably be most commonly used during program

development to SAVE a player shape (or shapes) to a file
for later retrieval by BGET.

Because of USR’s ability to pass parameters to an assembly
language routine, complex PMG functions (written in assembly
language) can be easly interfaced to BASIC A+.

Example: A=USR (PMBL INK, PMADR(2), 128)

Might call an assembly language program (at address PMBLINK)
to BLINK player 2, whose size is 128 bytes.

81

EXAMPLE PMG PROGRAMS

1. A very simple program with one player and its missile
100 setcolor 2,0,0 : rem note we leave ourselves in GR.O
110 PMGRAPHICS 2 : rem double line resolution
120 let width=1 : y=48 : rem just initializing
130 PMCLR O : PMCLR 4 : rem clear player O and missile O
135 PMCOLOR 0O, 13,8 : Tem a nice green player
140 p=PMADR(0O) : rem gets address of player
150 for i=p+y to p+y+4 : rem a 5 element player to be defined
160 read val : rem see below for DATA scheme
170 poke i,val : rem actually setting up player shape
180 next 1
200 for x=1 to 120 : Tem player movement loap
210 PMMOVE O, x : rem moves player horizontally
220 sound O, x+x,0,15 : rem just to make some noise
230 next x
240 MISSILE O, y. 1 : rem a8 one—high missile at top of player
250 MISSILE O, y+2,1 : rem another, in middle of player
260 MISSILE O, y+4,1 : rem and again at top of player
300 for x=127 to 255 : rem the missile movement loop
310 PMMOVE 4, x Tem moves missile O
320 sound O.255—x,10,15
330 IF (x &% 7)) = 7 : rem every eighth horizontal position
340 MISSILE 0,y,3 : rem you have to see this to believe it
350 ENDIF : rem could have had an ELSE, of course
360 next x
370 PMMOVE 0,0 > rem so width doesn’t change on screen
400 width=width»2 : rem we will make the player wider
410 if width > 4 then wxdth =1 : rem until it gets too wide
420 PMWIDTH O, width . rem the new width
430 PMCLR 4 : rem no more missile
440 goto 200 : rem and do all this again
500 rem THE DATA FOR PLAYER SHAPE
510 data 133 : rem $99 # #¥ #»

520 data 189 > rem $BD H* OHHEF B
530 data 255 : rem $FF 33336 3 3 W
540 data 189 : tem $BD LA S LS
550 data 153 : rem $99 # ¥ #

CAUTION : do NOT put the REMarks on lines 510 thru 550 !ttty
(DATA must be last statement on a line !)

Notice how the data for the player shape is built up..
draw a picture on an 8-wide by n-high piece of
grid paper, filling in whole cells. Call a
filled in cell a ‘1’ bit, empty cells are ‘O°.
Convert the 1’s and O‘s to hex notation and
thence to decimal.

This program will run noticably faster if you use multiple

statements per line. It was written as above for
clarity, only.

82

100
110
120
130
140
150
160
200
210
220
230

240
300
310
320
330
340
350
360
370
380

390
400
410
420
430
440

200
510
220
930
540
550
560
570
580
9?0
600
610
620
&30
640
&50
&60

A more complicated program: sparsely commented.

dim hex$(135), t$(4) : hex$="123456789ABCDEF"

graphics O : rem not necessary, Jjust prettier
PMGRAPHICS 2 : PMCLR O : PMCLR 1

setcolor 2,0,0 : PMCOLOR 0,12,8 : PMCOLOR 1,12,8

pO = PMADR(O) : p1l = PMADR(1) : rem addr‘s for 2 players
vO = 60 . vold = vO :rem starting vertical position

hO =

for loc =vO0-8 to vO+7 : rem a 16-high double player

read t$. rem a hex string to t$

poke pO+loc, 16#FIND(hex$, t$(1,1),0) + FIND(hex$, t$(2,2),0)
poke pl+loc, 16#FIND(hex$, t$(3,3),0) + FIND(hexs, t$(4,4),0)
: vem we find a hex digit in the hex string; its decimal
value is its position (becuz if digit is zero it is
not found so FIND returns O !)

next loc
rem ANIMATE IT
let radius=40 : deg : tem ‘let’ required, RAD is keyword
WHILE 1 : rem forever !!'!
c=int(16#rnd(0)) : pmcolor 0,C,8 : pmcolor 1,C,8
for angle = O to 355 step 5 : rem in degrees, remember
vnew = int(vO + radius # sin(angle))
vchange = vnew — vold : rem change in vertical position
hnew = hQO + radius # cos(angle)

PMMOVE O, hnewi vchange : PMMOVE 1, hnew+8; vchange
rem move two players together
vold = vnew
sound O, hnew, 10,12 : sound 1,vnew, 10,12
next angle
rem just did a full circle
ENDWHILE

Tem we better NEVER get to here !

110 . rem starting horizaontal positian
|
|
|
|
\
|

rem the fancy data ! 8421842184218421
DATA 0Q3CO 33634 3%

DATA 0C30 *3% *3
DATA 1008
DATA 2004
DATA 4002
DATA 4E72
DATA B8AS51
DATA BE71
DATA 8001
DATA 2009
DATA 4812
DATA 47E2
DATA 2004
DATA 1008
DATA 0OC30
DATA 03CO

¥ % % X%

3#* 336 3% 36 %% ¥*

¥*3¢ 3¢
3 3 33

- wm mm mm mm me @e = @m wm me e W @@ ma we

*
%
¥
%
*
%

% % % %

Notice how much easier it is to use the hex data. With FIND,
the hex to decimal conversion is easy, too.

The factor slowing this program the most is the SIN and COS

being calculated in the movement loop. If these values were
pre—calculated and placed in an array this program would maove'!

83

ERROR NUMBER DECRIPTION

BREAK KEY ABORT

While SET O.1 was specified, the operator hit the BREAK

key. This trappable error gives the BASIC A+ programmer
total system control.

MEM FULL

All avaiable memory has been used. No more statements

can be entered and no mare variables (arithmetic, string
or array) can be defined.

VALUE

An expression or variable evaluates to an incorrect value.

Example: An expression that can be converted to a
two byte integer in the range O to 65235
(hex FFFF) is called for and the given
expression is either too large or negative.

A = PEEK(-1)
DIM B(70000)

Both these statments will produce a value
error

Example: An expression that can be converted to a one
byte integer in the range O to 255 hex(FF) is

called for and the given expression is tao
large.

POKE 5000, 750

This statement produces a value error.

Example: A=SQR(-4) Produces a value error.

TOO MANY VARS

No more variables can be defined. The maximum number of
variables is 128.

STRING LEN

A character beyond the DIMensioned or current length of a
string has been accessed.

Example: 1000 DIM A%(3)
2000 A$(5) = A"

This will produce a string length error at
line 2000 when the program is RUN.

10

11

12

READ, NO DATA

A READ statement is executed but we are already at the
end of the last DATA statement.

LINE #/VAL > 32747

A line number larger than 327467 was entered.

INPUT/READ

The INPUT or READ statement did not recieve the type of
data it expected.

Example:

Example:

DIM

Example:

Example:

EXPR TOO COMPLEX

INPUT A

If the data entered is 12AB then this ervor
will result.

Running

1000
2000
3000
4000

this

READ A
PRINT A
END

DATA 12AB

program will produce this error.

A string or an array was used before it
was DIMensioned.

A previously DIMensioned string or array
is DIMensioned again.

1000
2000

This

DIM A(10)
DIM A(10)

program produces a DIM error.

An expression is too complex for Basic to handle.

The solution is to break the calculation into two or
more Basic statements.

OVERFLOW

The floating point routines have produced a number
that is either too large or too small.

NO SUCH LINE #

The line number required for a GOTO or GOSURB does
not exist.

The GOTO may be implied as in:

1000 IF A=B THEN 500

13

14

15

The GOTO/GOSUB may be part of an ON statement.
NEXT. NO FOR

A NEXT was encountered but there is no infaormation
about a FOR with the same variable.

Example: 1000 DIM A(10) J
2000 REM FILL THE ARRAY
3000 FOR I = O TO 10
4000 A(I) =1
9000 NEXT I
6000 REM PRINT THE ARRAY
7000 FOR K = 0 TO 10
8000 PRINT A(K)
000 NEXT I
10000 END

Running this program will cause the following output:

o
ERROR- 13 AT LINE 9000

NOTE: Improper use of POP could cause this error.

LINE TOO LONG

The line just entered is longer than Basic can handle.
The solution is to break the line into multiple lines
by putting fewer statements on a line, or by evaluating
the expression in multiple statements.

LINE DELETED

The line containing a GOSUB or FOR was deleted after

it was executed but before the RETURN or NEXT was
executed.

This can happen if, while running a program: a STOP is
executed after the GOSUB or FOR, then the line containing
the GOSUB or FOR is deleted, then the user types CONT

and the program tries to execute the RETURN or NEXT.

Example: 1000 GOSUB 2000
1100 PRINT "RETURNED FROM SUB"
1200 END
2000 PRINT “GOT TO SuB“
2100 STOP

2200 RETURN

If this program is run the print out is:

GOT TO SuB

STOPPED AT LINE 2100

Now if the user deletes line 1000 and then types CONT
we get

16

17

18

19

20

ERROR- 15 AT LINE 2200

RETURN., NO GOSUB

A RETURN was encountered but we have no information
about a GOSUB.

Example: 1000 PRINT "THIS IS A TEST"
2000 RETURN

If this program is run the print out is:

THIS IS A TEST
ERROR- 16 AT LINE 2000

NOTE: improper use of POP could also cause this error.

BAD LINE

If when entering a program line a syntax error occurs,
the line is saved with an indication that it is in
ervor. If the program is run without this line

being corrected, execution of the line will cause
this error.

NOTE: The saving of a line that contains a syntax
error can be useful when LISTing and ENTERing
programs.

NOT NUMERIC

If when executing the VAL function, the string argument

does not start with a number, this message number is
generated.

Example: A = VAL("ABC") produces this error.
LOAD, TOO BIG

The program that the user is trying to LOAD is larger
than available memary.

This could happen if the user had used LOMEM to change
the address at which Basic tables start, or if he is

LOADing on a machine with less memory than the one on
which the program was SAVEdJ.

FILE #

If the device/file number given in an I/0 statement is

greater than 7 or less than O, then this error is issued.

Example: GET #8. A

will produce this error.

21

22

23

24

25

26

NOT SAVE FILE

This error results if the user tries to LOAD a file
that was not created by SAVE.

‘USING‘’ FORMAT

This error occurs if the length of the entire format
string in a PRINT USING statement is greater than 255.
It also occurs if the length of the sub-format for one
specific variable is greater than or equal to 60.

‘USING’ TOO BIG

The value of a variable in a PRINT USING statement is
greater than or equal to 1E+50.

‘USING’ TYPE

In a PRINT USING statement, the format indicates that a
variable is a numeric when in fact the variable is a

string. Or the format indicates the variable is a string
when it is actually a numeric.

Example: PRINT USING "###"“, AS
PRINT USING “%%Z%Z". A

Will produce this error.

DIM MISMATCH

The string being retreived by RGET from a device (ie. the
one written by RPUT) has a different DIMension length than
the string variable to which it is to be assigned.

TYPE MISMATCH

The record being retreived by RGET (ie. the one written by
RPUT) is a numeric, but the variable to which it is to be

assigned is a string. Or the record is a string, but the
variable is a numeric.

27

29

30

31

32

INPUT ABORT

An INPUT statement was executed and the user entered
cntl-C (return).

NESTING

The end of a control structure such as ENDIF or ENDWHILE
was encountered but the run—-time stack did not have the

corresponding beginning structure on the Top of Stack.
Example:

10 While 1 : Rem loop forever
20 gosub 100
100 ENDWHILE

Endwhile finds the GOSUB on Top of Stack and
issues the error.

PLAYER/MISSILE NUMBER

Players must be numbered from 0-3 and missiles from 4-7.

PM GRAPHICS NOT ACTIVE

The user attempted to use a PMG statement other than
PMGRAPHICS before executing PMGRAPHICS 1 or PMGRAPHICS 2.

FATAL SYSTEM ERROR

Record circumstances leading to this error and report it
to us immediately.

END OF ‘ENTER’

This is the error resulting from a program segment such as:

SET 9,1 : TRAP line# : ENTER filename
when the ENTER terminates normally.

AFPENDIX J

COMPATIBILITIES

The following incompatibilities are between Atari Basic and
BASIC A+ are known to exist:

1. BASIC A+ and Atari Basic SAVEd program files are NOT
COMPATIBLE '!! However, the LISTed form of all Atari
Basic programs IS compatible with BASIC A+.

Solution: use Atari cartridge to LOAD all SAVEd programs,

then LIST these programs to a diskette, then
go to BASIC A+ and ENTER them and (optional)
then SAVE them in BASIC A+ form.

2. Various documented RAM locations do not agree. The only
three locations known ta be of any significance are
now deemed to be too volatile to document. Instead.

alternative methods of accessing their purposes are
provided:

STOPLN —-- contained line # where a program stopped or
found an error —-—- NOW accessible via ERR(1).

ERRSAV —— contained the last run—~time error number —-—
NOW accessible via ERR(O).

PTABW -—- the ‘tab’ size used by PRINT when ‘tabbing”’

for a comma —— NOW accessible via SET 1, <ptabw>.

3. By default, BASIC A+ allows the user to enter program text
in lower case, inverse video, or upper case characters.
Atari Basic allowed only upper case (non-inverse video)
characters. Normally, this is not a problem: however,
REMarks and DATA statements ENTERed which contain inverse
video and/or lower case characters will find that these
characters have been changed to normal video. upper case.
Reason: BASIC A+ changes all inverse or lower case char-—
acter strings NOT ENCLOSED IN QUOTES.

Solutions:

a. Put quotes into REMarks and DATA statements
as needed.

b. SET 3,0 —- this will disable entering of
lower case and inverse characters; but if
you are ENTERing an Atari Basic program,
there will be none of these anyway.

4.

L$)
y
a,
Thie sargdrzeh goes not zerly to version 3.04
——————— row comestible with Atari RBASIC ---- :q
?
Jjse

these bytes at all, so unless you have custom drivers
the difference is unnoticable.

Similarly exotic: When OPENing a file, &r- (usually)
dummy parameter normally set to ze~"
OPEN #file,mode,Q,FLS$). A-

er, AS
WELL AS THE MODE par-- 1 Atari
Basic. With »°° 'es.
In Ata=* econd
p ' in
A o 3000 in,
tt ers? to
Lo 7 o

re :';‘F’F"l‘5 .‘;\’31(—: B
NO e DOV wpatt BT ux2
th T B = n doe o 3 L e ne
exo e A “.myatibla -ble
via " aow &8 rollow this
exan B

-«al,FILES$

-e+t256%#special, O, FILES

Agair -y Situation to have occur. The
BASIC .-a> chosen because of its compatibility with
some . al capabilities.

ATARI vs. APPLE 1II: If you are a software author, there are
obvious advantages in having one BASIC A+ which will run
programs unchanged on two machines. Excepting for GRaphics
capabilities, Player/Missile Graphics, SOUND, and some game
controls: BASIC A+ is completely compatible on the two
machines. Even graphics are compatible to some degree, but
see the Apple II BASIC A+ manual for more details.

Cartridge convenience: If you did not purchase 0S/A+ (why not?)

BASIC A+ may seem a little awkward to use, what with having ¢to
LOAD it via the DOS menu, etc. Partial solution: after
duplicating the 0SS master disk, RENAME the file BASIC.COM to
AUTORUN. SYS on any Atari DOS version 2S5 or 2.8 master disk.

Then, when you turn on the power, DOS will boot and immediately

run BASIC A+. Of course, you must still use RUN AT ADDRESS
to return to BASIC A+ after going to DOS, but you should need
to do that less frequently now that BASIC A+ gives you sa
many extended DOS-like commands. Good luck. And try OS/A+
soon —— remember it INCLUDES (at NO extra charge) an Editor/

Assembler/Debug package upward compatible with Atari‘s
cartridge (sound familiar ?)

APPENDIX K

SYNTAX SUMMARY AND KEYWORD INDEX

All keywords, grouped by statements and then functions, are
listed below in alphabetical order. A page number reference

is given to enable the user to quickly find more information
about each keyword.

STATEMENTS

page syntax

32-H #BGET #fn, addr, len

32-H #¥*BPUT ##fn, addr, len

? BYE

24 CLOAD

26 CLOSE #¢n

43 CLR

48 COLAOR aexp

? CONT

25 #CP

24 CSAVE

28 DATA <ascii data>

35 DEG

12-B #DEL line [, linel

41 DIM svar(aexp)

41 DIM mvar(aexpf,aexpl)

32-A #DIR filename

25 bDos

36-A #DPOKE addr. aexp

48 DRAWTO aexp,aexp

22-A #ELSE <{see IF)

? END

22-A #ENDIF {see IF}

22-B #ENDWHILE

25 ENTER filename

32-B #ERASE filename

15 FOR avar=aexp TO aexp [STEP aexpl

28 GET #fn, avar

16 GOSUB line

17 GOTO line

45 GRAPHICS aexp

18 IF aexp THEN <stmts>

18 IF aexp THEN line

22-A #IF aexp : <stmts>
ELSE : <stmts>
ENDIF

32-A #INPUT “. .. ", var [,var...]

25 INPUT C#fn.,1 var [,var...]

10-A *[LET] svar=sexp [,sexp..]

10-A [LET] avar=aexp

10-A [LET] mvar=aexp

10 LIST C(filenamel

10 LIST C(filename,1 line C,linel
26 LOAD filename

48 LOCATE aexp,aexp,avar

12-A #*LOMEM addr

26 LPRINT C[exp Ciexp...1 C,exp...3 1
12-A *LVAR filename

78 #*MISSILE pm. aexp, aexp

71 *MOVE fromaddr, toaddr, lenaexp

10 NEW

15 NEXT avar

26 NOTE #fn, avar,avar

20 ON aexp GOTO line [,line...]
20 ON aexp GOSUB line [,line...]
26 OPEN #fn, mode, avar, filename

49 PLOT aexp,aexp

75 #PMCLR pm

76 #PMCOLOR pm, aexp, aexp

75 #PMGRAPHICS aexp

77 *PMMOVE pmC, aexpl [;aexpl

76 #*PMWIDTH pm, aexp

28 POINT #fn, avar,avar

35 POKE addr.aexp

20 POP

49 POSITION aexp,aexp

28 PRINT [#fnl

28 PRINT exp [Ciexp...1 C,exp...1 1 C;1]
28 PRINT #fn [Ciexp... 1 C,exp... 3 1 Ci1
32-C #PRINT [#fn,] USING sexp , LexpL,exp...1 1
32-B #PROTECT filename

28 PUT #fn, aexp

35 RAD

28 READ var [,var...]

10 REM <any remark>

32-B #RENAME filenames

21 RESTORE [linel

16 RETURN

32-1 #*RGET ##n, asvar [,asvar... 1]
32-H *RPUT #fn, expl,exp... 1

11 RUN Lfilenamel

29 SAVE filename

&9 #SET aexp,aexp

50 SETCOLOR aexp.aexp,aexp

57 SOUND aexp,aexp, aexp.,aexp

29 STATUS #fn, avar

15 STEP {see FOR)

11 STOP

32-6¢ #TAB C#fnl, avar

18 THEN {see IF)}

15 TO {see FOR)

12-A #TRACE
12~-A *TRACEOFF

22 TRAP line

32-B #UNPROTECT filename

22-B *WHILE aexp

30 XI0 aexp, #fn, aexp, aexp, filename
28,32-C 2 {same as PRINT)

page

33
35
37
34
79
37
33
34
36—-A
36—-A
33
40-B
35
60-A
33
38
34
59
&0—-A
79
59
35
34
34
395
34
99
60
38
&9
36-B
36
38
60-A

exp
aexp
sexp
var

avar
svar
mvar

fn

FUNCTIONS

syntax

ABS(aexp)
ADR(svar)
ASC(sexp)
ATN(aexp)
#*BUMP (pmnum. aexp)
CHR$(aexp)
CLOG(aexp)
COS(aexp)
#DPEEK (addr?}
#*ERR(aexp)
EXP(aexp)
#FIND(sexp, sexp, aexp)
FRE(O)
#HSTICK (aexp)
INT(aexp)
LEN(sexp)
LOG(aexp)
PADDLE(aexp)
#PEM(aexp)
#PMADR (pm)
PTRIG(aexp)
PEEK (addr)
RND(O)
SGN(aexp)
SIN(aexp)
SGQR(aexp)
STICK(aexp)
STRIG(aexp}
STR$(aexp)
#S5YS(aexp)
#*TAB(aexp)
USR(addr [, aexp... 1)
VAL (sexp)
#*VSTICK(aexp)

EXPLANATION OF TERMS

EXPression
Arithmetic exp
string exp
VARiable
Arithmetic var
String var
Matrix var

(or element)
File Number

line - line number (can
be aexp)
pm - Player/Missile number
(aexp)
Cxxx] xxx is optional
Cxxx...1 xxx is optional, and

may be repeated
addr — ADDRess aexp, must be
0 - &5535

<stmts> one or more statements

NOTE: keywords denoted by an asterisk (#) not in Atari Basic.

APPENDIX L

—————— — — —— t—— ——

"BASIC A+ MEMORY USAGE

This section describes memory usage INTERNAL to the BASIC A+
interpreter, in what was ROM in the Atari Basic cartridge.

See the memory map (appendix D) and memory locations (appen—
dix I) for RAM locations.

Throughout this section, hex addresses are used exclusively.
Whenever three addresses are given together separated by

slashes

(e.g.., 4000/6000/8000) they represent the three

values associated with systems which have 32K, 40K, and 48K
bytes of free RAM available.

CHARACTER GRAPHICS RESERVED AREA 4000/6000/8000

1K bytes of memory are reserved for character
graphics. By reserving this memory at fixed
locations (at least for any given machine size),
the task of writing character set manipulators
is greatly reduced.

P.S.: You can find the address of this area via
the following subterfuge:

Charactergraphicsaddress = (PMADR(0O)-9000)%(14%#4096)

NOTE: if you do not intend to use character graphics,

you can use this area for assembly language routines,
etc.

COLDSTART 4400/6400/8400

Where BASIC A+ comes upon loading from disk. Entering
at this address performs the equivalent of a NEW.

WARMSTART 4403/6403/8403

JUMP TO

Equivalent to where Atari Basic goes when the RESET

key is used. Does not destroy any program, but does
close files, etc.

TEST FOR BREAK 4406/6406/8406

BASIC A+ checks for the user’s use of the BREAK key

at the end of executing each line. Exotic driver’s
might make use of this fact to cause pseudo—interrupts
to BASIC A+ at this point. Write for more details., but
otherwise don’t touch this.

THE SET/SYS() DEFAULT VALUES 4409/640%9/8409

CURRENT

Upon execution of NEW, the set of 10 default byte values
(SET O through SET 9) are moved from this location to
‘RAM ‘. If you would like to change a default, POKE these
default values and then save BASIC A+ via OS/A+.

4409 (etc.) is SET O, 440A is SET 1, etc.

TOP OF BASIC A+ approx. 7800/2800/B80Q0O
But we expect to add features, so if you wish to customize
BASIC A+ in this area we suggest you work from the next

DEFINED

address(es) down:

TOP OF BASIC A+ 7B00/9B0O0O/BB0OO

This is where Players from Player/Missile Graphics start in
PMG. 1 mode. Also, the area from 7C00/9C0O0/BCOO up is used
by Atari‘s OS ROM upon RESET and power up to initialize the
graphics screen.

