
Atari Version 1.1

Revised 2016/2017 by GBXL

Latest Edit: 14 February 2020

This manual was created using:

Linux Mint 19.3 Cinnamon 64 bit
Open Office Writer 4.1.7 for Linux
GIMP 2.8.10 for Linux
Fonts: Ubuntu Mono, Arial

Named after Blaise Pascal (1623-1663) Pascal is available in a variety of
versions for A8 machines. Pascal from Kyan Software is not just another
programming language but a full featured programming environment. It
comprises Editor, Compiler and, in a later version, an Assembler.

Kyan Pascal Version 1.0

V. 1.0 surfaced in early 1985 on a singled sided, medium density disk.
Because of user feedback it was changed to distribution on double sided,
single density disk as it was not possible to use it with a stock Atari 810.

Kyan Pascal Version 1.1

Version 1.0 seems to be lost. Version 1.1 comes on a doubled sided, single
density disk without visible changes in the manual. Then in early 1986 an
updated version 1.3 appeared and two toolkits, 'Programming Utility' and
'Advanced Graphics', were issued with it. 6 months later version 2.0 came to
market and version 1.x was soon forgotten. From all versions known to exist
just V. 1.1 was recovered. The manual up to V. 1.3 seems to be the same
having 108 pages.

As courtesy to all A8 users this manual comes with the intention to keep the
knowledge about a great product from former Kyan Software within the Atari
community alive.

Even after more than 30 years it is fascinating to discover the power of the
language and the machine in a setting which matches a state of the art home
computer in the mid eighties of the 20th century.

Scanned & Re-Edited in 2005/2006 - revised in 2016/17 as A8 only manual.

Have fun and may your A8 always be with you.

 GoodByteXL, February 2020

Note about Status of kyan software

California Secretary Of State Business Registration, updated 8/27/2015

Kyan Software, Inc. is a California Domestic Corporation filed on October 7,
1985. The company's filing status is listed as Suspended and its File Number
is C1187971.

The company has 1 principal on record. The principal is Thomas E. Eckmann
from Seattle, WA.

Dear Friend:

 Thank you for purchasing Kyan Pascal. We believe you will find it to be
the most powerful and complete Pascal implementation available for the Apple
II and ATARI family of computers. This manual is intended to help you learn
the Pascal language and master the many features and functions of your Kyan
Pascal compiler.

 Kyan Pascal includes all the sophisticated Pascal functions needed to
develop professional quality programs. The built-in assembler, linking/chain-
ing functions, and other advanced features enable you to write very large
Pascal programs and run them at the maximum speed possible on the Apple/ATARI
6502 microprocessor. We believe you will find that Kyan Pascal can satisfy
all of your programming needs.

 Kyan Pascal is not copy-protected and we recommend that you make and use
back-up copies of the software. We also allow you to copy and use Kyan's
Pascal library in any software you develop with no fee or separate license
agreement. The only requirement is that you acknowledge Kyan's copyright on
this software on your magnetic media and in your documentation. This is all
explained in more detail by the enclosed license agreement.

 Thanks again for purchasing this software from Kyan. If you have any
questions or suggestions for improvement, please let us know. We are always
striving to improve our software and we welcome comments (both good and bad)
from our customers. We hope to hear from you.

Sincerely,

Thomas E. Eckmann
President
Kyan Software

TEE/sk

kyan software 1850 union street #183 san francisco, california 94123 (415) 775-2923

COPYRIGHT NOTICE

Kyan Software believes you should be aware of your rights under the U.S.
Federal Copyright Law. We quote for you the provisions of Section 117 of the
Copyright Law, which contains limitations on the rights of copying and
adaptation given to owners of computer programs:

"Not withstanding the provisions of Section 106, it is not an
infringement for the owner of a copy of a computer program to make or
authorize the making of another copy or adaptation of that computer
program provided:

(1) that such new copy or adaptation is created as an essential step in
the utilization of the computer program in conjunction with a machine
and that it is used in no other manner, or

(2) that such new copy or adaptation is for archival purposes only and
that all archival copies are destroyed in the event that continued
possession of the computer program should cease to be rightful.

Any exact copies prepared in accordance with the provision of this
section may be leased, sold, or otherwise transferred, along with the
copy from which such copies were prepared, only as part of the lease,
sale, or other transfer of all rights in the program. Adaptations so
prepared may be transferred only with authorization of the copyright
owner."

SUBJECT TO THOSE LIMITATIONS, KYAN SOFTWARE GRANTS THE PURCHASER OF THIS
PRODUCT A LICENSE TO USE THIS SOFTWARE UNDER THE TERMS DESCRIBED IN THE
FOLLOWING LICENSE AGREEMENT.

LICENSE AGREEMENT

When you purchase and use Kyan Pascal, you acknowledge that:

A. Kyan Software Inc. has a valuable proprietary interest in this Program
and documentation; you are receiving a limited, non—exclusive license to use
the Program and documentation; and, Kyan Software Inc. retains title to the
Program and documentation.

B. You may not copy or reproduce the Program or documentation for any pur-
pose other than to make backup copies as provided for under U.S. Federal
Copyright Law.

C. You, your employee and/or agents may not distribute or otherwise make the
Program or documentation available to any third party.

D. If the Runtime Library or any other portion of this Program is merged
into or used in conjunction with another program, it will continue to be the
property of Kyan Software Inc. However, Kyan Software Inc. hereby grants you
a non-exclusive license to merge or use portions of the Program in conjunc-
tion with your own programs provided that you acknowledge Kyan Software's
copyright and ownership of these portions in a prominent location on the mag-
netic media and in the written documentation for your software. (Please con-
tact Kyan Software Inc. for more information).

E. This license is effective until terminated. You may terminate it at any
time by destroying the Program and documentation with all copies, modifica-
tions and merged portions in any form. It will also terminate if you fail to
comply with any term or condition of this Agreement. You agree upon such ter-
mination to destroy the Program and documentation together with all copies,
modifications and merged portions in any form.

Table of Contents I

CONTENTS

PREFACE ... 1

INTRODUCTION .. 3

EDITOR AND COMPILER INSTRUCTIONS .. 5
Creating a File, an Example .. 5
End of Editing ... 6
Files and File Names ... 6
Cursor Movement .. 7
Delete Commands .. 7
Find String and Change String (Search and Replace) 8
Edit at Line Number #n ... 9
Including a File ... 9
Block Move Commands .. 9
Editing HELLO, an Example ... 10
Compiling a File .. 10
Compiler Options .. 10
Running Files and File Name Extensions 11
Printing a Program .. 12
Compiler Error Messages, an Example 12
To Halt a Program While It Is Running 13
RAM Disk .. 13
Atari DOS 2.5 ... 13
HELP .. 14
List of Editor Commands ... 15
List of Compiler/Assembler Commands 15
Other Commands .. 15

PART I: SAMPLE PROGRAMS .. 17

EGO PROGRAM .. 17
Program Statement and Reserved Words 17
Declaration and Program Body .. 17
Analysis of Ego ... 18

CONSTRUCTION PROGRAM ... 19
Analysis of Construction .. 19
Algorithm ... 20
Identifiers ... 20
Write and Read Commands ... 20
Input and Output and Printing the Output 20
Readln .. 21
CONST ... 21

PROGRAM TO FIND THE AVERAGE .. 23
Readln and Writeln .. 23
Real and Integer Data Types ... 24
Trunc, Round and Maxint ... 25
Arithmetic Operators .. 25

SOCIAL SECURITY PROGRAM .. 27
Relational Operators .. 27
The IF-THEN Statement ... 28
The Assignment Statement .. 28

ALPHABETIZE PROGRAM .. 29
FirstWord Algorithm ... 29
String and Char Types ... 30
WHILE ... 30

II Kyan Pascal V. 1.1

FACTORIAL PROGRAM .. 33
Analysis of Program ... 33
FOR Loops and Loop Control Variable 34

BOOLEAN PROGRAM .. 35
Boolean Data Type ... 35
DIV and MOD Operators ... 35
Boolean Operators ... 36
Operator Precedence ... 36

MULTI-DIGIT HEXADECIMAL CONVERSION 37
Algorithm ... 38
REPEAT UNTIL .. 38
Scalar Types and Boolean Variables 38
Subrange Types .. 39
CASE OF ... 39
The Functions Ord, Pred, Succ, and Chr 40

PART II: PROGRAMMING TECHNIQUES .. 41

PROCEDURES ... 41
Declaring and Executing PROCEDURES 41
Parameter Lists, Actual and Formal 42
Variable and Value Parameters ... 43
Correspondence Between Actual and Formal Parameters 43
Functions ... 44
Declaring Functions ... 44
The Function Odd .. 45
Global and Local Variables .. 45
Nesting of Functions and Procedures 46
Global and Local Types .. 48
Forward References .. 48
Unconditional Branch: GOTO .. 49

ARRAYS ... 51
Arrays of Arrays and Multidimensional Arrays 52
Adding Two Multidimensional Arrays 52
The Array As a Parameter .. 53
Program Example1 .. 54
Program Example2 .. 55
End of Line ... 56
Recursive Procedures and Functions 57
Copying Arrays .. 57

RECORDS .. 59
Copying a Record .. 59
Program Absolute .. 60
Program ElapsedTime ... 60
Arrays of Records ... 61
WITH .. 63
Variant Records ... 63

SETS ... 65
Operations on Sets .. 66
Using Sets to Examine the Members of an Array 67

FILES .. 69
File Declaration .. 69
Writing to a File ... 70
Program Store (List) .. 70
Reading a File .. 71

Table of Contents III

Text Files .. 72
Files of Records .. 72
Random Files .. 73

POINTER VARIABLES AND LINKED LISTS 75
Pointers and Nodes .. 75
New ... 75
Peek and Poke ... 76
Linked Lists and NIL .. 77
Dispose ... 78
How to Include Procedures and Functions from Other Files 81
Including Files, Other Applications 81

THE ASSEMBLED PROGRAM AND ITS USES 83
Assembly Language Routines .. 83
Assembler Directives .. 83
How to Use Assembly Routines to Access Pascal Variables 84
Predefined Labels ... 86
Passing Parameters through Chain 86
How to Chain Source Code Files .. 86

STRING MANIPULATION .. 87
String .. 87
Length .. 87
Concat .. 88
Index ... 88
Substring ... 88

APPENDIX A: COMPILER, ASSEMBLER, AND RUN-TIME ERROR MESSAGES 89
Compiler Error Messages ... 89
Assembler Error Messages .. 89
Run Time Error Messages ... 90
Atari File Error Messages ... 90

APPENDIX B: QUICK GUIDE TO KYAN Pascal 91

APPENDIX C: SPECIFICATIONS ... 93
Kyan Pascal ... 93
ATARI Memory Map .. 94

INDEX .. 95

SOFTWARE MEDIA LIMITED WARRANTY .. 97

Kyan Pascal V. 1.1 1

PREFACE

Pascal, A Programming Language provides beginning programmers with a step-by-
step introduction to Pascal, and advanced programmers with a convenient
reference to the language.

The chapter, EDITOR AND COMPILER INSTRUCTIONS, explains how to enter, edit,
and compile a Pascal program. This material must be read prior to actual
programming.

Readers with no previous experience with Pascal should read the chapters in
order. It is recommended that the example programs be entered, compiled, and
run. It is not essential that every line be duplicated from these programs.
In fact, rewriting the example programs not only is instructive but also can
improve them.

Programmers who are already familiar with Pascal need only read the sections
on topics they wish to review. Appendix B provides a quick review of Pascal
vocabulary.

Kyan Pascal V. 1.1 3

INTRODUCTION

The history of Pascal goes back to the late 1960s, when Niklaus Wirth, a
professor of computer science, decided that a new approach ― a new language ―
was needed for teaching programming. Wirth introduced Pascal as a formal
language in 1971.

The two principal aims of Pascal are "..to make available a language suitable
to teach programming as a systematic discipline based on certain fundamental
concepts clearly and naturally reflected by the language.." and "to develop
implementations of this language which are both reliable and efficient on
presently available computers" (Jensen and Wirth, "Pascal User Manual and
Report").

Pascal has become a widely used language for both elementary and advanced
programming. Its popularity derives from the clarity of programs written in
it and the efficiency with which it can be implemented within the computer.

Kyan Pascal is especially efficient in this regard, because the run time code
and the compiler itself are written in assembly language, the language of the
microprocessor integrated circuit. Unlike some other compiled languages, Kyan
Pascal includes the necessary tools for advanced programmers who wish to
include assembly language routines in their Pascal programs.

Pascal is a self-documenting and self-structuring language. Top-down program-
ming and modularization are natural outgrowths of its features. These
features include, among others, user-defined functions and procedures of
which modules are built.

Separation of the declaration section from the program body also enforces
good programming technique. All the information on constants, types of
variables, and names of variables and constants appears in a single section
rather than being spread throughout the program.

Kyan Pascal provides features that help the programmer to find the syntax
errors that account for over 90% of the errors in programming. Over 30 error
messages for syntax are in the compiler. These not only tell the programmer
what types of errors were made but also on which lines the errors occurred.

Kyan Pascal does not stop looking for errors or lose synchronization when an
error is found. Instead, although compilation halts, error detection contin-
ues and all the errors are displayed at one time.

One final reason for using Pascal is its portability. Pascal, one of today's
most popular languages, is implemented on nearly every computer on the
market. Kyan Pascal is compatible with standard Pascal. Programs and program
modules written in Kyan Pascal (using standard procedures and functions) will
run on a multitude of computers: a programmer can develop software on a home
computer, transport it to many other machines, and run the programs imme-
diately.

Kyan Pascal V. 1.1 5

EDITOR AND COMPILER INSTRUCTIONS

Kyan Pascal consists of two programs: the editor program (ED) and the
compiler/assembler program (PC). When your Atari1 is booted (to boot the
Atari, push the <OPTION> key during power-up) with a Kyan Pascal disk in the
drive the following will be displayed:

 KYAN PASCAL VERSION 1.1
 COPYRIGHT 1985 BY KYANSOFTWARE
 1850 UNION STREET, SUITE 183
 SAN FRANCISCO, CA 94123

FOR HELP TYPE: D1:HELP

>

The prompt symbol (>) is a signal from the program, in this case from Kyan
Pascal that the computer is waiting for your command. Unless instructed
otherwise, you should always press <RETURN> when entering commands into the
computer. Typing D1:HELP brings up a help screen.

All commands that require disk access, must have the prefix "D1:" which
stands for disk drive #1. If you have more than one disk drive, this prefix
can change to D2:, D3:, ... , Dn: depending on the used DOS and its
capacities. Atari DOS 2.5 by default uses D1:, D2: and D8: (RAMDisk).

To start transfer the editor program from disk to memory by typing:

>D1:ED

Your Atari computer will search for the editor and load it. When loading is
completed the following message will be displayed:

"EDITOR VERSION 1.1"
COPYRIGHT 1985 BY KYAN SOFTWARE

FILE NAME?

Creating a File, an Example

Suppose the name of your program is TRIAL enter:

FILE NAME? D1:TRIAL

Because the program trial is new the editor will prompt:

FILE NOT FOUND
PRESS ANY KEY

When you press any key the screen will become blank. Notice that there is no
prompt. All entries that you make will become part of your program text file
(TRIAL) just as you see them on the screen.

1 Trademark of Atari Inc. (Out of business)

6 Kyan Pascal V. 1.1

Enter a string of six X:

XXXXXX

Follow the instructions in the next section to save TRIAL.

End of Editing

The first step in ending editing is to press the <ESC> key. This will put you
in a mode in which you can use the "special editor functions." A help menu
will be displayed. To leave this mode and resume normal editing press the
<ESC> key again.

If you wish to save TRIAL (the example program above) type <ESC> S. This is
one of the three ways to end editing:

<ESC> S (Save and Resume)
<ESC> Q (Quit without Save)
<ESC> X (Save and Exit)

If you typed <ESC> S you saved the program you were editing and have returned
to the editor so that you could add more lines.

If you typed <ESC> Q none of the changes or entries you did were saved. You
just quit and left the file in the state it was before you started editing.

If you typed <ESC> X the prompt (>) reappeared because you saved your
changes, left the editor to edit a different program (or to compile).

Remember before creating or saving programs, you should make backup copies of
your Kyan Pascal disk.

You can re-enter the editor by typing "!" and <RETURN> after the prompt.

Files and File Names

Programs such as the TRIAL program above are stored in separate text files.
Each program added to the disk must have its own file name. A file name
consists of D1: followed by an 8 character name followed by a 3 character
extension (e.g., D1:XXXXXXXX.YYY). Spaces are not permitted within file
names.

Pascal names, i.e., names of variables, types, etc., in a Pascal program are
not the same as DOS 2.5 file names!

To change the name of the file you are working with, type <ESC> P and the
computer will prompt:

NEW FILE NAME (BLANK TO QUIT)?

Enter the new file name, e.g. "ACCOUNT", followed by <RETURN> and hit <ESC>:

D1:ACCOUNT<RETURN> then <ESC>
It should be noted that the new file name will be entered immediately after
<RETURN>. The final <ESC> causes the computer to leave the special functions
mode.

EDITOR AND COMPILER INSTRUCTIONS 7

Cursor Movement

Kyan Pascal includes an easily learned, full-screen, insert mode editor.
Anywhere you move the cursor, a letter, a number, a space, or even a new line
break may be added. This greatly facilitates editing your program.

All cursor movement commands are a combination of the [CNTL] key (Note: ^ is
a shorthand notation for [CNTL] so [CNTL]-S is the same as ^S), and another
key. The combinations are:

^S move the cursor back 1 space (left)
^D move the cursor forward 1 space (right)
^E move the cursor back 1 line (up)
^X move the cursor forward 1 line (down)
^A move the cursor back 1 word (left)
^F move the cursor forward 1 word (right)
^R move the cursor back 20 lines (up)
^C move the cursor forward 20 line (down)
^T move the cursor to the top of the file
^V move the cursor to the bottom of the file

You may also use the cursor (arrow) keys to move the cursor right or left one
space and up or down one line, or the respective function keys F1-F4.

If you hold the cursor or F keys pressed down the cursor movement will be
repeated until you release the keys.

Delete Commands

To delete a letter, word or line use the following commands:

^G delete the letter coincident to the cursor
^Q delete the letter to the left of the cursor
^Y delete the line in which the cursor is positioned

The delete key accomplishes the task as ^Q.

8 Kyan Pascal V. 1.1

Find String and Change String (Search and Replace)

A string is a combination of characters (letters, numbers, and symbols) and
spaces. A string may be a certain word or a group of words. Upper and lower
case are recognized by this function.

Sometimes you may wish to find a certain string within a program. Or you may
wish to replace a string with another string:

<ESC> enter the special editor functions

A set "A" (designate the string to be found)

B set "B" (designate the replacement string)

C change "A" string to "B" string

^W search from cursor back to beginning of file

^Z search from cursor forward to end of file

To find the occurrence of any string enter <ESC> A and the editor will
prompt:

A:

Next enter the string to be found. For example, if "look out" is to be found,
enter "look out" followed by a carriage return:

A:look out <RETURN>

The final two steps are to leave the special editor functions mode by typing
the <ESC> key and then typing ^W or ^Z. The cursor will go to the first
occurrence of "look out" ahead of the present cursor position. To find the
second occurrence, enter ^Z again. This process can be repeated until all
occurrences of "look out" have been found.

Maximum string size is 40 characters.

To substitute a new string for any string both the old ("A") string and the
new ("B") string must be designated. Use the "A" and "B" commands listed
above. The "A" string consists of the words or lines the way they are before
the substitution. The "B" string consists of the new words or lines that will
take their place.

When both strings have been set, type the "C" command. The editor will
prompt:

CHANGE ALL STRINGS OR SOME (A/S/Q)?

FOR SOME (Y,N,Q)

Choose "A" to replace all strings in the file. Choose "Q" to quit without
making any substitutions.

Choose "S" to have the editor stop at each possible string and and let you
decide whether or not to make that substitution by "Y" = YES or "N" = No, or
by "Q" = QUIT to leave this function.

Substitutions always start at the top of the file and continue to the end.

EDITOR AND COMPILER INSTRUCTIONS 9

To replace the string "first" with the string "# 1" everywhere in the file
follow these steps:

1. Type: <ESC> A
2. Prompt appears: A:
3. Type: first <RETURN>
4. Type: B
5. Prompt appears: B:
6. Type: # 1 <RETURN>
7. Type: C
8. Prompt appears: CHANGE ALL STRINGS OR SOME (A/S/Q)?
9. Type: A

Edit at Line Number #n

To edit a specific line use the command:

<ESC> G

When the editor will prompts "LINE NUMBER" enter the number of the line,
which you wish to change. For example, if the compiler indicates that you
have an error in line 3, enter 3 after the prompt:

LINE NUMBER: 3 <RETURN>

Remember, if you add or delete lines before the one you are searching for,
then the line number of that line will be increased or decreased,
accordingly.

Including a File

If you wish to include one file in another use the <ESC> I command. When you
enter <ESC> I the editor will prompt:

FILENAME OF FILE TO INSERT

If you enter the file name of an existing file it will be inserted at the
cursor position into the file you are editing. Remember to include disk
prefix. Pressing <RETURN> without any input quits.

Block Move Commands

You may take any section of the program, and save it as a block. To mark a
block: 1) Move the cursor to the character or space that is at the beginning
and type ^O. Notice how the entire block is displayed in inverse video as you
move the cursor. 2) Go to the last character or space in the block. Type ^O
to mark the end of the block.

Then entire block will seem to disappear. Actually, it is saved in memory so
that it can be moved to any location you choose.

Move the cursor to the position where you wish the block to be inserted.

Type ^P and the block will be "pasted" in the new position. These commands
are sometimes called cut and paste. As many copies as you wish may be pasted.

10 Kyan Pascal V. 1.1

The block move commands are:

first ^O marks the start of block
second ^O marks end of block and puts block into memory (cut)
^P insert the block (paste)

Editing HELLO, an Example

Enter: D1:ED
FILENAME? D1:HELLO

Next enter the following program:

PROGRAM HELLO;

BEGIN
 WRITELN('Hello, world')
END.

Save the program to disk and follow the instructions in the following two
sections to run the program, HELLO.

Compiling a File

Before a Pascal program can be run, it must be compiled and translated into
machine language. Compiling the file is the first part of this process. The
second part is called assembling. The result of compiling your Pascal (source
code) file is called the assembly code file. This must further be translated
into numerical code by the assembler and its result is called the object
code. These terms will be used below.

To compile and assemble a program, exit the editor using <ESC>X. Enter the
compiler/assembler program by typing:

>D1:PC <RETURN>

The compiler/assembler program will be loaded showing

"PASCAL COMPILER/ASSEMBLER VER. 1.2"
COPYRIGHT 1985 BY KYAN SOFTWARE

and the PC prompt will appear:

PC>

To leave the compiler press <RETURN> to get back to the system prompt.

To re-enter the compiler type "!" and <RETURN> after the exit prompt.

Compiler Options

Enter the name of the Pascal program you wish to get ready to run followed by
the compiler options you choose:

PC> D1:ProgramName-L-E-O <RETURN>

EDITOR AND COMPILER INSTRUCTIONS 11

The "L" option tells the computer whether you want a listing of the assembly
language program and where it is to go. If you do want an assembly language
listing you must use "L" or "LP." When L is chosen the listing will go only
to the CRT screen. If LP is chosen the listing will go to the screen and
printer.

The "O" option allows you to not generate an object file or to specify its
name. 1) If you do not specify "-O" the object file will be generated with
the same file name as the source file. 2) If you want a different file name
than the source file specify "-O file name." 3) The object file will not be
generated, if the "O" option is included without a name. An object file is
necessary if you wish to run the program.

The "E" option tells the computer where you want the list of errors to be
sent. Errors may occur, for example, when you leave off some necessary Pascal
punctuation. If there are errors, they will be counted and listed, and the
program cannot be run.

When the <RETURN> key is typed, the compiler/assembler will start working. If
there are no errors and an object file was generated, then the program can be
run immediately after the prompt (>) appears signaling the end of compilation
and assembling.

Compile HELLO and save the results on your floppy disk. As an example of
using compiler options, suppose you wished to send the assembly code and
error listing to Atari slot #1, which is the usual slot for the printer:

1. Prompt: >
2. Type: D1:PC
3. Prompt appears: PC>
4. Type: D1:HELLO-L-E <RETURN>

Follow the instructions in the next section to run HELLO.

Running Files and File Name Extensions

Look at the file directory; if you have followed the instructions in the
examples it should now include HELLO and HELLO.O. The Pascal file is HELLO,
and HELLO.O is the object code file which is also the system file. You may
now make copies of HELLO.O and run these using without Kyan Pascal.

Enter the file name of the program with the object code extension after
compilation and assembly.

>D1:FileName.O

A system file is also a stand-alone file in that a compiled and assembled
Pascal program can be run without using the Kyan Pascal disk. There is one
important precaution: The Kyan Pascal library file "LIB" must be in the same
directory as the file you are going to run.

Run the program from the last example, "HELLO.O:"

>D1:HELLO.O

The result should appear on your screen:

Hello, world

12 Kyan Pascal V. 1.1

Printing a Program

Any Pascal source code file may be printed using PRINT. For example, to print
the program HELLO enter:

>D1:PRINT

When PRINT has loaded, the computer will prompt FILENAME?. Enter the name of
the file to be printed. Your program will be sent to the screen and to the
printer at the same time.

Compiler Error Messages, an Example

Use the cursor control keys to go to the end of the line "WRITELN('Hello,
world')". Then add a period to the end of the line.

Now move the cursor to the space after Hello, in the same line. Next enter
the special command <ESC> I. Add the file called TRIAL created earlier
(Creating a File, an Example):

1. Type: ESC I
2. Prompt Appears: FILE NAME:
3. Type: D1:TRIAL <RETURN>

Notice that the string of six X (from TRIAL) has been added:

WRITELN('Hello, XXXXXXworld').

You have now entered two changes in the program HELLO and are ready save the
new version.

4. Type: <ESC> X

Try to compile and assemble the edited version of HELLO.

PC>D1:HELLO <RETURN>

Because of one of the changes you made, there will be an error. The error
listing will appear on the screen:

0004 WRITELN('Hello, XXXXXXworld').
 1
(1) ";" OR "END" EXPECTED

The line with the error is displayed with its line number. The "1" underneath
the line indicates where the error occurred. A description of the error is
also displayed.

Sometimes, a single error in a program (such as a missing semicolon after a
VAR declaration) will generate multiple errors following it.

There may be too many errors to display at one time on the screen. To see
them all, send the error listing to the printer.

Go back to the edit mode and correct the error you introduced. Try
compilation again. Now there should be no error message. (However, a program
with no errors on compilation may still be faulty. For example, programming
the area of a circle to be "r*r" instead of "3.14*r*r" is an error the
compiler will not detect.)

EDITOR AND COMPILER INSTRUCTIONS 13

To Halt a Program While It Is Running

If a program is in an endless loop or if you simply want to stop it press
<BREAK>. The stack containing the return addresses will be displayed followed
by the processor status and the accumulator contents.

RAM Disk

Atari 130XE computers include a 64 KiB RAM disk.2 Because this area of memory
appears to the operating system as a disk drive, it may be used to store the
files you will be using during compilation and assembling. The main reason to
move these files from a floppy disk to RAM disk is that it will greatly
increase the speed of compilation and assembling.

Under Atari DOS 2.5 the disk number is D8. It can be used as any other disk
except it can contain only 64 KiB bytes of data and data is lost on power
down.

To move your source code from a disk file to the RAM disk, use the COPY
command. You can also move the library file (LIB), Compiler, and editor file
(ED) to the RAM disk. (Remember, to execute your program from the RAM disk,
there must be a copy of the LIB file in D8.) When you are ready to compile,
your files will be on Drive 8.

Caution: Don't forget to copy back to disk the last version of your program
source and object files.

Atari DOS 2.5
Kyan Pascal includes DOS 2.5, a powerful operating system developed for use
with Atari 65O2 based personal computers. (Please refer to the warranty
section for limitations of the use of this licensed copy of DOS 2.5.)

DOS 2.5 is available at any time the prompt (>) is present. To access DOS 2.5
type "DOS" after the prompt. The DOS 2.5 menu will appear.

To exit DOS 2.5, first type "L" followed by a carriage return; then type
"D1:B" followed by another carriage return.

To make a backup copy of Kyan Pascal (duplicate a disk), enter DOS 2.5 and
select option "J" from the menu. Then, simply follow the instructions on the
screen. (Note: DOS 2.5 will automatically format the disk.)

To convert files from DOS 2.5 to Atari DOS 3.0, use the convert utility on
the DOS 3.0 disk. All Kyan Pascal program will run under DOS 3.0 when
converted using this utility.

Kyan Pascal uses the DOS 2.5 load facility but we have moved it to a new
location to conserve user program space. The new location is from $480 to
$6FF. This load facility automatically loads the Kyan Pascal library files
when required by the Pascal object files.

To build programs in AUTORUN.SYS format, it is necessary to append the Kyan
Pascal library to the program. The Atari DOS 1.0, 2.5, and 3.0 contain a COPY
command with an append option which enables you to do this. When chaining
programs in an AUTORUN.SYS environment, only the first program loaded needs

2 Memory upgrades in other Atari 8-bit computers need to be XE (DOS 2.5) compatible.

14 Kyan Pascal V. 1.1

the library appended (this greatly speeds the chaining process during
execution).

It is beyond the scope of this manual to describe all the features of Atari
DOS 2.5. We encourage you to consult a DOS 2.5 manual for more information.

HELP

Kyan Pascal includes a help file that may be called by typing:

D1:HELP

Note by GBXL: There may be effects by some other keys or key combinations
as the ones described in the manual. Be careful especially
with <BREAK> as it causes the program text in the editor to
be lost.

EDITOR AND COMPILER INSTRUCTIONS 15

List of Editor Commands

Note: ^ is equivalent to CONTROL Key)

ED enter - the editor program

^S move the cursor back 1 space (left)
^D move the cursor forward I space (right)
^E move the cursor back 1 line (up)
^X move the cursor forward I line (down)
^A move the cursor back 1 word (left)
^F move the cursor forward 1 word (right)
^R move the cursor back 20 lines (up)
^C move the cursor forward 20 lines (down)
^V move the cursor to the bottom of the file
^T move the cursor to the top of the file

^Q delete the letter to the left of the cursor
^G delete the letter or keystroke coincident to the cursor
^Y delete the line in which the cursor is positioned

^W find string backward direction
^Z find string forward direction

^O mark/cut block
^P paste block

Special Editor Functions Mode:

<ESC> enter/leave special functions mode
S remain in editing with save
Q exit from editing without save
X exit from editing with save
A designate string to be found
B designate replacement string
C set search/replace options
I include file
P set file name
G go to line
H get help menu

List of Compiler/Assembler Commands

PC Enter the compiler and assembler programs

-O Omit object code
-E Send error listing to screen only
-EP Send error listing to screen and printer
-L Send assembly listing to screen only
-LP Send assembly listing to screen and printer

Other Commands

<BREAK> - Stops program during run time
 - Performs a cold exit of the editor; contents will be lost.

Kyan Pascal V. 1.1 17

PART I: SAMPLE PROGRAMS

EGO PROGRAM

The first program shows how to print a message.

PROGRAM Ego(Output);

BEGIN
 Writeln;
 Writeln;
 Writeln('My name is Sam Smith.')
END.

This program will put the message "My name is Sam Smith" on the screen.

Program Statement and Reserved Words

The name of the program is Ego. It appears after the word PROGRAM. To end the
statement, which names the program, we use a semicolon (;). If we did not use
the semicolon, the computer might think that the next statement, "BEGIN," was
part of the program name.

Pascal has a precise vocabulary. Part of this vocabulary consists of words
that cannot be used by the programmer as names within his or her program.
PROGRAM and BEGIN are two such "reserved" words. It would be illegal to use
the word "program" for the name of the program. Reserved words will be
written in capital letters when they appear in programs in this manual.

As a general rule, do not use any of the vocabulary of Pascal for the name of
anything within the program. In addition to reserved words, this includes
predefined words such as Integer, Read, and others whose meaning is
consistent from one implementation of Pascal to another. In this manual, all
predefined words will be written with only the starting letter capitalized
(except EOF and EOLN, which are acronyms for "end of file" and "end of
line").

Of course, comments (*which appear between parentheses and asterisks like
this*) and literals ('which appear between parentheses and single quotes like
this') are not restricted.

Declaration and Program Body

Every Pascal program has two main parts: the declaration and the program
body.

The above program begins with a statement of the name of the program. Some
programs also include lists of constants and variables. The naming of the
program, constants and variables constitutes the declaration part of the
program.

After the declaration is the portion of the program where computations,
input, and output can occur. It is denoted by the word BEGIN and is called
the program body. The word END followed by a period lets the computer know
where the program body ends.

18 Kyan Pascal V. 1.1

The indentation of statements in Ego and other programs in this manual is
intended to help clarify the program structure; it is not recognized by the
compiler.

Analysis of Ego

The first statement declares the name of the program, which is Ego.

The next line, BEGIN, tells the computer the following statements are part of
the program body.

The third and fourth statements (Writeln, short for "write line") create two
blank lines on the screen before the message.

The fifth statement causes the message to appear on the screen:

My name is Sam Smith.

Kyan Pascal V. 1.1 19

CONSTRUCTION PROGRAM

The second program we are going to run will calculate the cost of
constructing an apartment building, given the hours worked, the rate of pay,
and the cost of materials.

PROGRAM Construction(Input,Output);
(*Dollar units are thousands*)

CONST
 Material = 325.0;

VAR
 Hours, Rate, Labor, Total : Real;

BEGIN
 Writeln ('Enter hours worked and rate of pay');
 Readln (Hours, Rate);
 Labor := Hours * Rate;
 Total := Labor + Material;
 Writeln ('Labor = $', Labor : 8:3, ' Total = $', Total : 8:3)
END.

Analysis of Construction

The objective of the program is to calculate the Labor cost and Total cost
for the construction project. The calculation of these costs will depend on
the Hours worked and the Rate of pay during those hours.

The first part of the program gives the names of the program, the constants,
and the variables. In Pascal, user-defined names are called identifiers.

The fixed cost of the materials is given by the identifier Material and is
$325,000.

Notice how the variables are listed after the reserved word VAR. "Real",
although not a reserved word, is predefined and specifies that all the
variables that precede it are Real numbers.
The first statement in the program body writes the following line on the
screen:

Enter hours worked and rate of pay

The second statement reads the values for Hours and Rate, which the user
enters on the keyboard. Separate the input of the values values by <SPACE> or
<RETURN>. Once these values are known, the Labor and Total costs can be
calculated by the third and fourth statements in the program body.

The final statement in the program body writes the Labor and Total costs on
the screen.

20 Kyan Pascal V. 1.1

Algorithm

Step 1: Get the values of hours worked (Hours) and rate of pay (Rate).

Step 2: Multiply Hours times Rate to get the cost of the labor (Labor).

Step 3: Add Material to Labor to get the total cost (Total).

Step 4: Output the Labor and Total costs.

Identifiers

An identifier is a name. It can be the name of a Pascal program or program
subsection, or it can be the name of some quantity that is used in a Pascal
program. Just as in algebra we can define a constant, C = 5, in Pascal we can
say:

CONST
 C = 5

The rules for constructing an identifier are: (1) it must start with a letter
(A - Z or a - z), and (2) any combination of letters and numbers may follow.
Although more than 8 characters may be used; only the first 8 will
distinguish one identifier from another. The compiler does not distinguish
between upper- and lowercase letters.

Write and Read Commands

Write, Writeln, Read, and Readln (short for "read line") commands pass
information to and from the computer. Read and Readln enter data from the
keyboard into the computer; Write and Writeln send data to the screen or
printer.

The terms Input and Output should appear in parentheses after the program
name to tell the compiler that data will be transferred into and out of
memory.

Input and Output and Printing the Output

After the program "Construction" was named, the two standard Pascal terms,
Input and Output, appeared in parentheses. Technically the compiler sees
these terms as identifying files:

PROGRAM Average(Input,Output);

Files allow information to go to and from places outside the directly
addressable memory space of the computer. In this implementation of Pascal,
information input at the keyboard goes into the Input file, and information
output to the CRT goes into the Output file.

It is also useful to be able to define the output as the printer. The non-
standard Kyan Pascal procedures PRON and PROFF are used. Include PR.I which
contains these procedures in the declaration part of the program. For example
in the preceding program:

CONSTRUCTION PROGRAM 21

PROGRAM Construction(Input, Output);

CONST Material - 325.0;

VAR Hours, Rate, Labor, Total : Real;

#i PR.I (*include file to redirect Output*)

BEGIN
 Writeln ('Enter hours worked and rate of pay');
 Readln (Hours, Rate);
 Labor := Hours* Rate;
 Total := Labor + Material;
 PRON; (* redirect Output to printer *)
 Writeln ('Labor = $', Labor :8:3, ' Total = $', Total :8:3);
 PROFF (* redirect Output back to CRT screen *)
END.

Readln

When data is read from the keyboard using Readln, more than one variable may
be input as in:

Readln (Hours, Rate);

Data entered at the keyboard must include spaces or <RETURN> to distinguish
the variables. In the examples below, Hours would get the value 10000 and
Rate would be set to 14.20:

Example A: 10000 14.20 <RETURN>

Example B: 10000 <RETURN> 14.20 <RETURN>

CONST

Use of constants, CONST, makes programs easier to read and maintain. Suppose
next year the cost of materials rises to $330,000. Also suppose that we had
not used the constant, Material, and instead had said the total cost was:

Total := Labor + 325.00

In order to change the materials cost we would have to reanalyze the program,
because in many programs a constant appears more than once. We would have to
find every occurrence of 325.00. Then, we would have to make sure each time
that it wasn't some other constant, such as Taxes.

The declaration of the constant Material 325.00 at the start of the program
obeys three rules of good programming: 1) Top-down structure, 2) provides
documentation, and 3) accommodates changes easily.

Note: "8:3" in the write statement causes the real numbers "Labor" and
"Total" to be displayed in decimal notation and will be explained
later.

Kyan Pascal V. 1.1 23

PROGRAM TO FIND THE AVERAGE

The following program finds the average of two numbers.

PROGRAM Average(Input,0utput);
(*Computes the average of two numbers*)

VAR
 X1, X2, Average : Real;

BEGIN
 (*Read the two numbers*)
 Write ('First number = ');
 Readln (X1);
 Write ('Second number = ');
 Readln (X2);

 (*Compute Average*)
 Average := (X1 + X2)/2;

 (*Print Average*)
 Writeln ('Average = ', Average : 9:2)
END.

The following is a sample run of Average:

First number = 12
Second number = 8
Average = 10.00

In this book, data entered on the keyboard will be underlined.

Readln and Writeln

"Write ('First number =')" causes "First number =" to appear on the screen.
The user then enters the first number, which in the above example is 12. If
the program had used "Writeln('First number =')", there would have been a
<RETURN> and the user would have had to enter 12 on the line below the
prompt.

"Readln (X1)" enters data from the keyboard into the computer. The entire
line is read, up to and including the <RETURN>. However, the data that is
assigned to X1 depends on what type X1 is. For example, suppose the data
entered at the keyboard is "123 RALPH <RETURN>" and that X1 is Char type.
Then X1 equals 1. The remaining characters and <RETURN> are lost. If X1 is of
the type ARRAY[1..9] OF Char, then X1 equals 1,2,3, ,R,A,L,P,H; only the
<RETURN> is lost. Finally, if X1 is of the type Integer, then X1 equals 123,
and the remaining characters and the <RETURN> are lost.

Note: The preceding data types will be fully discussed in later sections of
the manual.

Suppose we wish to assign the input data 123 and RALPH be assigned to two
variables, X1 and X2, respectively. Let X1 be of type Integer and X2 be an
array [1..6] of type Char. Then "Read (X1)" followed by "Read (X2)" will
accomplish this task. The Read statement differs from the Readln statement in
that any input data not of the type of the variable in parentheses is left
over for the next Read or Readln statement.

24 Kyan Pascal V. 1.1

Because the remaining characters up to and including the <RETURN> are not
cleared after "Read (X2)" above, the <RETURN> will be read as the first entry
in the next Read or Readln statement. In most programs this is not desirable.
This problem could be corrected by changing the statement to "Readln(X2)". An
alternate method of assigning data to these variables would be "Readln
(X1,X2)".

Real and Integer Data Types

Real numbers in Pascal are positive or negative numbers represented in
scientific (floating point) or decimal notation. Examples are 12.8,
3.456E+11, and -2.5555E+4. A number in decimal notation must have at least
one digit before and one digit after the decimal point. Very large or very
small numbers are best handled in scientific notation.

The statements following the declaration of the variable Z are equivalent:

VAR
 Z : Real;
BEGIN
 Z := -345.55;
 Z := -3.4555E+02
END.

In the program to find the average, X1 and X2 were declared to be of the type
Real. The range of values that may be assigned to X1 or X2 is from
+9.9999999999E-99 to +9.9999999999E+99.

Suppose we wish to declare an Integer variable, En. A declaration statement
for En would be written as:

VAR
 En : Integer;

Integer numbers must be within the range -32768 to +32767.

If arithmetic expressions are formed by mixing Integer and Real types, the
result will be expressed as a Real type.

When a Real or Integer number is written, the format specifies how many
spaces are reserved for it and other details of how it will appear in print
or on the screen. Notice in the Writeln statement that the size of the space
reserved for the Real number is 9:2. This means that the number is to be
printed in decimal notation. If the format were simply 9, the number would be
printed in scientific notation. The format for Integers never needs to be
larger than "5" because of the range limitation.

The format 9:2 reserves nine spaces total. This includes one space for the
sign and one space for the decimal point. Finally, two spaces are reserved
for the digits following the decimal.

If a number has fewer digits than the number of spaces reserved for it, the
correct number will appear, but the compiler will fill in the extra spaces
with blanks or zeroes. If a number in decimal format has more digits than the
number of spaces reserved for it, a run-time error will occur. Programmers
must think ahead when using the decimal format.

PROGRAM TO FIND THE AVERAGE 25

Run-time errors also occur when a number is out of range. For example, if X
is an Integer that has the value -32800, an error will occur.

Real numbers are limited to 13 significant digits. Writing a format that
reserves more than 13 spaces for a Real number will not make the number more
accurate. The computer will present the correct number, with the digits
beyond 13 filled in with blanks or zeroes. On the other hand, calling for
fewer than 13 digits does not take advantage of all the accuracy available.

Trunc, Round and Maxint

The truncate function (Trunc) takes a decimal or floating point number and
disposes of the non-Integer portion, leaving an Integer value. Round gives
the integer value closest to the floating number by adding 0.5 before
truncating. For example:

Trunc(5.9) = 5; Round(5.9) = 6;
Trunc(75.3E-01) = 7; Round(75.3E-01) = 7;

The maximum size of any Integer number is 32767 or -32767. Trunc or Round
will cause an error if either operates on a Real number larger than + or
-32767.

Maxint is the standard Pascal constant whose value is the maximum Integer
size. In this edition of Pascal, Maxint = 32767. It will vary with different
computers and compilers.

Arithmetic Operators

Pascal uses the following arithmetic operators for Real and Integer data:

Add +
Subtract -
Multiply *
Divide /

Multiplication and division are performed before addition and subtraction.
For example:

6 + 8/2 = 10, not 7.

Kyan Pascal V. 1.1 27

SOCIAL SECURITY PROGRAM

The following program calculates the amount of social security tax to be
deducted from each paycheck.

PROGRAM SocialSecurity(Input,Output);

CONST
 TaxRate = 0.075;
 TaxMaximum = 4275.0;

VAR
 Hours, Rate, TaxNow, TaxToDate : Real;
BEGIN
 (*Read hours, rate, and tax to date*)
 Writeln;Writeln;
 Write ('Hours worked = ');
 Readln (Hours);
 Write ('Hourly rate = $');
 Readln (Rate);
 Write ('Soc Sec tax paid to date = $');
 Readln (TaxToDate);

 (*Compute Soc Sec Tax for this period*)
 TaxNow := Hours*Rate*TaxRate;

 (*Test: IF TaxToDate + TaxNow is > Tax-Maximum THEN TaxNow must be
recalculated*)
 IF TaxToDate + TaxNow > TaxMaximum THEN
 BEGIN
 TaxNow := TaxMaximum - TaxToDate;
 TaxToDate := TaxMaximum
 END (*IF true*)
 ELSE (*IF false*)
 TaxToDate := TaxNow + TaxToDate;

 (*Write Results*)
 Writeln ('Soc Sec Tax This Pay Period = $',Taxnow :8:2);
 Writeln ('Soc Sec Tax To Date = $',TaxToDate :8:2)
END.

Relational Operators

There are six relational operators that may be used to decide which of two
branches will be taken within a program. One branch is taken if the
relationship is true, the other if it is false. The six relational operators
are:

= equal to
<> not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

In the program Social Security, IF the condition is true, THEN the tax for
the present pay period, TaxNow, must be recalculated. Otherwise, the program
skips the recalculation steps.

28 Kyan Pascal V. 1.1

The IF-THEN Statement

Notice in the program above that there are two program steps following the IF
statement. These are grouped between a BEGIN-END pair so that both will be
performed when the IF statement is true. (Otherwise, only the first
statement, TaxNow, would be associated with IF-true, and the second
statement, TaxToDate, would be outside IF-THEN control and would be performed
regardless.)

For program clarity, the comment (*IF true*) has been placed to signify the
end of the program branch that will be executed if the condition is true.

Sometimes it is necessary to include some program statements for when the IF
condition is False. These are added after the reserved word ELSE:

IF TaxToDate + TaxNow > TaxMaximum THEN
 BEGIN
 TaxNow := TaxMaximum - TaxToDate;
 TaxToDate := TaxMaximum
 END (*IF true*)
ELSE (*IF false*)
 TaxToDate := TaxNow + TaxToDate;

The statement following ELSE will only be executed if "TaxToDate + TaxNow >
TaxMaximum" is false.

There is no semicolon after END (*IF true*) above. It is incorrect to
terminate the statement preceding ELSE with a semicolon.

The Assignment Statement

Although the equal sign was listed above as a relational operator, the
difference between equal (=) and the assignment operator (:.) might not be
clear. If we examine an assignment statement from another program, the
difference becomes clear:

AgeNow := Birthdays + AgeNow;

This statement is meant to recalculate the variable, AgeNow. The old value of
AgeNow is on the right and the new value of AgeNow is on the left. In
general, when the assignment symbol (:=) is used, the result is on the left.

The equal operator is used almost exclusively to determine which of two
branches will be taken following a conditional statement. The only time the
equal operator is used like an assignment statement is in a CONST
declaration.

Kyan Pascal V. 1.1 29

ALPHABETIZE PROGRAM

This program illustrates the use of data in the form of words. It finds the
alphabetically first word on a list and counts the total words in the list.
Since the size of the list is not known in advance, a signal word, stop, is
used to indicate the end of the list.

PROGRAM FirstWord(Input,Output);
(*This program selects the alphabetically first word and counts the
total words tested*)

CONST
 Signal - '+';

TYPE
 String = ARRAY [1..15] OF Char;

VAR
 Word, LeastWord : String; LoopCount : Integer;

BEGIN
 (*Each time through the loop, increment the counter, LoopCount,
 and save the least word*)

 Write('Enter a word or "+": ');
 Readln(Word);
 LeastWord := Word;
 LoopCount := 0;
 WHILE Word[l] <> Signal DO
 BEGIN
 IF Word < LeastWord THEN
 LeastWord := Word;
 LoopCount : LoopCount + 1;
 Write('Enter a word or "+": ');
 Readln(Word)
 END; (*WHILE LOOP*)
 Writeln;
 Writeln;
 Writeln(LoopCount:5, ' words were entered.');
 Writeln(LeastWord, ' is alphabetically first.')
END.

FirstWord Algorithm

Step 1: Input the first word on the list to be alphabetized.

Step 2: Initialize variables: LeastWord = Word, LoopCount = 0

Step 3: Begin WHILE loop. Exit WHILE loop when Word = "+".

 Step 3a: (WHILE loop) Input the next Word.

 Step 3b: Increment LoopCount.

 Step 3c: IF current Word is alphabetically first, LeastWord = Word.

Step 4: Output LeastWord and LoopCount.

30 Kyan Pascal V. 1.1

String and Char Types

So far only two types of data have been discussed, Real and Integer. Another
type, Char, is a predefined type that denotes a variable, constant, or other
piece of data that is in the form of a single character.

Suppose we define a variable, Digit, to be of the type Char:

VAR
 Digit : Char;

This means Digit will always be a single "printable" character. It may be a
letter, a number, or a symbol. In addition, it could be a space or a
<RETURN>, but control characters such as "<CTRL> Q" are not allowed.

Although digits such as '1' (single quotes are used to denote Char values)
may be of this type, they are not the same as Integers and ordinary
arithmetic may not be performed on them.

Another type of data is called String. Any string of characters and spaces,
such as "is alphabetically first", constitutes a string. When string data are
entered on the keyboard, the end of the string is signaled by <RETURN>.

In Kyan Pascal, the following statement declares a String:

String = ARRAY [1..15] OF Char

Since String is user defined, any number of characters may be specified,
although 15 characters are used in "FirstWord". When a word with fewer than
15 letters is entered in this program, Readln will fill in the remaining
places with blanks. If a word with more than 15 letters is entered, the extra
letters will be ignored.

When String and Char values are assigned in a program statement, quotes are
used:

VAR Word : String;
 Letter : Char;
BEGIN
 Word := 'Help ';
 Letter := 'A';

The number of characters in a String must be correct. Thus, there are 11
blanks in Word, which is defined as a 15—character String. Char is always a
single character.

WHILE

The WHILE loop is repeated as long as the specified condition is true. If
there is more than one statement in the loop, BEGIN and END must be used to
mark the boundaries. Usually indentation is used to clarify the boundaries of
the loop (although indentation has no significance to the compiler).

A program would never exit from the following loop, because Ex1 will never
equal or exceed the test value:

ALPHABETIZE PROGRAM 31

PROGRAM Never;

CONST
 Alpha = 4.6; Pi = 3.14;

VAR
 Ex1,Ex2 : Real;

BEGIN
 Ex1 := Alpha;
 WHILE Ex1 < 5.432 DO
 BEGIN
 Ex1 := Ex1 - 1.00;
 Ex2 := Ex1*Pi
 END (*WHILE*)
END.

Note: Press <BREAK> to stop the endless running program.

Kyan Pascal V. 1.1 33

FACTORIAL PROGRAM

The following program calculates the factorial function of a given number.
The factorial function is used quite frequently in analysis of probabilities.

PROGRAM CalcFact1(Input,Output);
(*This program computes n! where n = Integer*)
(*The result is an Integer*)

VAR
 Number,LoopCount,Factorial : Integer;

BEGIN
 Writeln;
 Writeln;
 Writeln('This program calculates the factorial');
 Writeln('of an Integer, N.');
 Write('Enter a value. N = ');
 Readln(Number);

 Factorial := 1;
 FOR LoopCount := 1 TO Number DO
 BEGIN
 Factorial := Factorial*LoopCount
 END;(*FOR*)

 Writeln;
 Writeln;
 Writeln('N! = ',Factorial : 6)
END.

Analysis of Program

If a number is equal to zero or one, its factorial is defined as one. In all
other cases n! = 1*2*3*...*(n-1)*n.

1. Input N (Number).

2. Initialize N! (Factorial) = 1.

3. Begin FOR loop. Start with LoopCount = 1.
 Increment LoopCount until

 Loop Count = N (Number).

 For each pass through the loop, calculate a new value for Factorial:

 Factorial = Factorial*LoopCount.

4. Output N! (Factorial).

34 Kyan Pascal V. 1.1

FOR Loops and Loop Control Variable

CalcFact1 uses the FOR loop, which increments a loop control variable from
some initial value to some final value. Although the loop control variable is
an Integer, in other uses of the FOR loop it might be an alphabetic character
(Char).

The FOR loop may also decrement the loop control variable if written in the
following form:

FOR LoopCount := Number DOWNTO 1 DO

Kyan Pascal V. 1.1 35

BOOLEAN PROGRAM

PROGRAM DivLesn(Input,Output);

VAR X,W,Z : Integer;
 Ans : Char;
 Correct : Boolean;

BEGIN
 Ans := 'Y';
 WHILE Ans = 'Y' DO
 BEGIN
 Write('Enter an Integer ');Readln(X);
 Write('One of the factors is ');Readln(W);
 Write(X : 3, ' divided by ',W : 3, ' is ');
 Readln(Z);
 Correct := (X MOD W = 0) AND (X DIV W = Z);
 IF Correct THEN
 BEGIN
 Write('Correct! Another? Enter Y or N ');
 Readln(Ans) END (*IF THEN*)
 ELSE
 BEGIN
 Write('Incorrect. Try again? Enter Y or N ');
 Readln(Ans) END (*IF ELSE*)
 END (*WHILE*)
END.

Boolean Data Type

Boolean is a predefined type. Boolean type expressions, variables, and
constants are always in one of two states: they are either in the True state
or the False state.

In the program above, the IF statements are executed only when Correct equals
True. Correct is a Boolean variable which is true when both of the
parenthetical statements following it are true (see DIV and MOD operators
below).

The AND operator means that both equalities in parentheses must be True;
otherwise, Correct will be false and the next two statements will be skipped.

DIV and MOD Operators

The DIV and MOD operators give the quotient and the remainder of a division
problem when the divisor and dividend are both of the type Integer. The
general form is:

Integer1 DIV Integer2 (* = quotient*)
Integer1 MOD Integer2 (* = remainder*)

For example, if Integer1 = 14 and Integer2 = 4, then 14 DIV 4 = 3 and 14
MOD 4 = 2.

36 Kyan Pascal V. 1.1

Boolean Operators

Up to this point we have discussed only the manipulation of Real and Integer
type data. This included the add, subtract, multiply and divide operators.
There are also Boolean operators:

NOT
OR
AND

Boolean operators follow the rules of formal logic and can be diagrammed in
truth tables.

NOT: False = NOT True
True = NOT False

An example of NOT: A coin is flipped. If it is NOT heads (True), it is tails
(False). If it is NOT tails (False), it is heads (True).

OR: True = True OR False
True = False OR True
True = True OR True
False = False OR False

An example of OR: Two cars are racing. The race is over (True) whenever car A
crosses the finish line OR car B crosses. Only one condition has to be True
for the result to be True.

AND: False = True AND False
False = False AND True
True = True AND True
False = False AND False

An example of AND: The environment is clean (True) only. when both the air
AND water are clean. Both conditions have to be True for the result to be
True. AND is also illustrated by the program DivLesn.

Operator Precedence

Operations within parentheses are performed first. For example: 4*(5+1) = 24,
while (4*5)+1 = 21. If parentheses are nested, the operation within the
innermost pair is done first: 3*(2+(6/2)) = 15.

However, it is not always necessary to use parentheses, because operator
precedence is predefined: operations of higher precedence are performed
before operations of lower precedence. If the levels are equal, it does not
matter which is performed first.

The five levels of precedence in Pascal are:

1st - Highest Precedence: ()
2nd - Level of Precedence: NOT
3rd - Level of Precedence: *, /, AND, DIV, MOD
4th - Level of Precedence: +, -, OR
5th - Lowest Precedence: =, <=, >=, >, <, <>

Kyan Pascal V. 1.1 37

MULTI-DIGIT HEXADECIMAL CONVERSION

The following program converts a hexadecimal number into a decimal number.

PROGRAM Hexadecimal(Input,Output);
(*Hexadecimal to base ten*)

TYPE
 YesNo = (Yes,No);

VAR
 Digit, Signal : Char;
 Number, OldNumber : Integer;
 Answer : YesNo;
 Continue : Boolean;

BEGIN
 OldNumber := 0;
 Write('Enter the most significant (far-left) digit ');
 Readln(Digit);

 REPEAT
 CASE Digit OF
 '0' : Number := 0;
 '1' : Number := 1;
 '2' : Number := 2;
 '3' : Number := 3;
 '4' : Number := 4;
 '5' : Number := 5;
 '6' : Number := 6;
 '7' : Number := 7;
 '8' : Number := 8;
 '9' : Number := 9;
 'A' : Number := 10;
 'B' : Number := 11;
 'C' : Number := 12;
 'D' : Number := 13;
 'E' : Number := 14;
 'F' : Number := 15
 END (*CASE*);

 OldNumber := Number + OldNumber*16;
 (*The more significant digit (OldNumber) is a power of 16
 times greater than the next digit (Number) *)

 Writeln('Is there another digit');
 Write('after this one (Yes/No)? ');
 Readln(Signal);
 IF (Signal = 'Y') OR (Signal = 'y') THEN
 Answer := Yes
 ELSE
 Answer := No;
 IF Answer = Yes THEN
 BEGIN
 Continue := True;
 Write ('Enter the next digit ');
 Readln (Digit)
 END (*IF Answer true*)
 ELSE

38 Kyan Pascal V. 1.1

 Continue := FALSE;
 UNTIL NOT(Continue);

 Writeln;
 Writeln;
 Writeln('The decimal equivalent is ', OldNumber : 6)
END.

Algorithm

1. Initialize OldNumber := 0
2. Input the most significant Digit
3. REPEAT
 3a. Convert Digit to decimal Number
 3b. OldNumber := Number + OldNumber*16
 3c. Is there another digit?
 3ca. IF NOT(Continue) = False, input the next most significant digit
4. UNTIL NOT(Continue) = True
5. Output base ten number (OldNumber)

REPEAT UNTIL

The REPEAT UNTIL loop is very much like the WHILE loop discussed earlier. The
statements in the loop are repeated until the specified condition becomes
True. (The WHILE loop continues until the condition becomes False.) It is
important to note that the REPEAT UNTIL condition is tested at the end of the
loop rather than at the beginning like the WHILE condition.

Scalar Types and Boolean Variables

In the program above, Hexadecimal, Answer is a scalar variable. Scalar
variables are used when there is a short list of names, words, numbers, or
other legal identifiers that the variable might be. A "scalar type", which is
user defined, gives the possible values of a scalar variable. Listed below
are two scalar types:

TYPE
 DaysWeek = (Mon,Tue,Wed,Thur,Fri,Sat,Sun);
 PayRate = (Regular,Overtime);

The scalar variables below may take on any of the values listed in the type
declaration, but no others.

VAR
 Day : DaysWeek;
 Rate : PayRate;

The following declaration of PayNames is illegal because the values in a
scalar type cannot be defined in terms of any other type. Because quotes are
used, 'A' and 'B' are of the type Char, and 'Other' is a string. Without
quotes they are simply identifiers, and are therefore acceptable. Characters
or strings cannot be used, nor can integers or real numbers.

TYPE PayNames : ('A', 'B', 'Other');

MULTI-DIGIT HEXADECIMAL CONVERSION 39

The only exception to this rule is explained below in the definition of a
scalar type subrange.

A Boolean variable is much like a scalar variable where the type would be:

TYPE
 Boolean = (True, False);

In the program above, the variable Continue can be either True or False.
Whether Continue is true or false is determined by the assignment statement
where Continue is (:=) True when Answer is (=) Y or y.

Subrange Types

The subrange type is a form of the scalar type where only the first and last
value or item within the range have to be specified. For example, if the
variables Component, IC, and Resistance are to take on a range of values and
each of the possible values is known from the beginning of the program, then
they might be declared as follows:

TYPE
 CompType = (Resis,Cap,Trans,Diode,OpAmp,
 Rgltr,Osc,GateArray,Trnfr,Coil);
 ResRange = 1..100;
 ICrange =OpAmp..GateArray;

VAR
 Component : CompType;
 Resistance : ResRange;
 IC : ICrange;

Both ResRange and ICrange in this example are subrange types. (CompType is a
scalar type.) ResRange is a subrange of the Integer type. ICrange is a
subrange of CompType declared before it.

Although ResRange is an example of a subrange of the type Integer, scalar
types of the type Integer are not permitted. This restriction precludes the
inadvertent redefining of a predefined type.

CASE OF

Sometimes, especially in programs that use scalar type variables, a series of
IF..THEN tests may need to be employed. To take the place of these tests, the
CASE OF statement may be used. The following are equivalent:

CASE Digit OF
 '0' : Number := 0;
 '1' : Number := 1 END;

IF Digit = '0' THEN
 Number := 0 ELSE
IF Digit = '1' THEN
 Number := 1;

40 Kyan Pascal V. 1.1

The Functions Ord, Pred, Succ, and Chr

Scalar type variables are declared in a particular order, or scale. Often the
order of these items is of significance and can be used in a program. This is
made possible by the functions Ord (order) and Pred (preceding), and Succ
(succeeding). One example is the days of the week:

TYPE
 DaysWeek = (Sun,Mon,Tue,Wed,Thur,Fri,Sat);

The items in the list are called the values. Each item is an identifier
(i.e., it must start with a letter followed only by letters or numbers).

The first value in the type Days is Sun. The seventh value is Sat. Thus both
these statements are true:

Ord(Sun) = 0;
Ord(Sat) = 6;

The day succeeding Sun is Mon, and the day preceding Fri is Thur. Both these
statements are true:

Succ(Sun) = Mon;
Pred(Fri) = Thur;

If two scalar types are declared, some of the items in the two lists will
have the same ordinal value. For example, if the days of the week and the
months of the year are declared, both Tue and Mar will have the ordinal
value 2.

There is an ASCII character corresponding to every Integer from I to 128. The
function Chr (Character) gives the ASCII character corresponding to an
Integer specified in parentheses, e.g., "Chr(2)". This Integer may be the
ordinal value of a scalar element. (However, Chr is not the inverse function
of Ord.)

Chr(2) = STX;

STX is a nonprintable ASCII character used in some compilers to mark the
start of a text file. The ordinal values corresponding to the characters 'A',
'B', '1', and '2' are shown below. The quotes around the characters denote
that they are of the type Char and are not undefined variables or Integers.

Chr(65) = 'A'; Chr(66) = 'B'; Chr(49) = '1'; Chr(50) = '2';

Kyan Pascal V. 1.1 41

PART II: PROGRAMMING TECHNIQUES

PROCEDURES

The following section explains a technique for breaking down long programs
into simple and easy to understand modules called procedures. With a little
rewriting, any procedure can be made into a program by itself.

Procedures may or may not communicate with the main program or other
procedures. If they do, a list of parameters is generally declared. In the
following example, the parameters are X1 and X2.

PROCEDURE ExchgVal(VAR X1,X2 : Real);
(*Values of X1 and X2 are exchanged*)

VAR
 Y : Real;

BEGIN
 Y := X1;
 X1 := X2;
 X2 := Y
END;

Declaring and Executing PROCEDURES

The following outline lists the steps necessary in using the procedure
ExchgVal in a program, Demo. The program is divided into three main sections:

The first section, the declaration part of the program, was discussed
earlier.

The second section is the declaration of the procedure (or procedures).

The third section is the body of the program, where the procedure is actually
used.

1. Declaration section of main program, Demo.
 1a. Declare program name.
 1b. If there were program constants or types to declare, they would be in
 this section.
 1c. Declare program variables, A, B.

2. Declare procedure, ExchgVal.
 2a. Declare procedure name and parameters.
 2b. If there were local constants or types to declare, they would be in
 this section.
 2c. Declare procedure local variable, Y.
 2d. Procedure body: the executable statements are declared here, but not
 executed.

3. Main program body.
 3a. Enter two numbers from keyboard: A, B.
 3b. Exchange A and B by executing procedure, ExchgVal.
 3c. Output numbers, A and B, to the screen.

42 Kyan Pascal V. 1.1

PROGRAM Demo(Input,Output);
(*Show results of procedure ExchgVal*)

VAR A, B : Real;

PROCEDURE ExchgVal(VAR X1,X2 : Real);
(*Values of X1 and X2 are exchanged*)
VAR Y : Real;
BEGIN
 Y := X1;
 X1 := X2;
 X2 := Y
END (*Procedure ExchgVal*);

BEGIN (*Demo*)
 Write ('Enter two numbers: ');
 Readln (A,B);
 ExchgVal (A,B);
 Writeln;
 Writeln ('Now first = ', A : 7:2, ' and second = ', B : 7:2)
END.

Suppose the values to be exchanged are 5.8 and 11.15. The screen will show
the following (user entries are underlined):

Enter two numbers: 5.8 11.15

Now first = 11.15 and second = 5.8

Parameter Lists, Actual and Formal

Because a procedure is a program within a program, there must be a way of
getting data into and out of the procedure. In the above example, the
variables X1, X2, A, and B provide this means. These variables are examples
of parameters. Parameters may be variables, constants, and even other
parameters.

When parameters are listed in parentheses after the procedure name in the
declaration part of the program, as are X1 and X2, they are part of the
formal parameter list.

PROCEDURE ExChgVal(VAR X1,X2 : Real);

When parameters such as A and B appear in parentheses after the procedure
name in the body of the program, they are part of the actual parameter list.

ExChgVal(A,B);

Obviously, the formal parameters X1 and X2 are variables of the type Real, as
are the actual parameters, A and B. Real numbers such as 4.3 and 6.7 may also
have been used. Actual and formal parameters must match.

PROCEDURES 43

Although the formal parameter list is written within parentheses, it can be
arranged to look more like the declaration section of a program. The
following are identical:

 PROCEDURE Calculate(A, B : Real; VAR X : Real; Y : Integer);

 PROCEDURE Calculate(
 A, B : Real;

 VAR
 X : Real;
 Y : Integer);

Variable and Value Parameters

Notice that in the following formal parameter list, only some of the
parameters are preceded by VAR. These are the variable parameters (i.e., X1,
X2, Y). Variable parameters are used for both input to the procedure and
output from the procedure. A value parameter, such as Z, is formal parameter
that is not preceded by a declaration such as VAR, and can be used only to
input data to the procedure:

 PROCEDURE OtherVal(VAR X1, X2 : Real; Z : Real; VAR Y : Integer);

Although Z may change value during the execution of the procedure, the new
value of Z is not communicated to the main program.

The following statements might occur within the body of the program when the
procedure OtherVal is to be executed:

 OtherVal(A, B, 5.0, D);
 OtherVal(C, B, A/10.0, E);

Notice that arithmetic operators and values (such as Integers) can appear in
a list of actual parameters if the corresponding parameter is a value
parameter. An error is generated if the corresponding parameter is a variable
one.

Correspondence Between Actual and Formal Parameters

The following rules must always be obeyed:

1) The number of actual parameters in each set of parentheses must be exactly
the same as the number of formal parameters.

2) The parameter types must be consistent. Thus, the main program (which uses
the procedure OtherVal) may declare:

VAR
 A,B,C : Real;
 D,E : Integer;

The names of the variables in a procedure may be the same as names used in
other procedures or in the main program.

44 Kyan Pascal V. 1.1

Functions

Functions are similar to procedures in that both use parameters, but
different in that a function takes the values input (viz., the parameter
values) and returns a single value which is identified by the function name.
For example, the function Sqr(X) returns the value of X squared when given
some value of X. Thus, when X equals 12, Sqr(X) equals 144.

A few of the most commonly used mathematical functions are included in
KyanPascal (X is a Real number or Integer):

Abs(X) = Absolute value of X
Sqr(X) = The square of X
Sqrt(X) = The square root of X
Sin(X) = The sine of X (X is in radians)
Cos(X) = The cosine of X (X is in radians)
Arctan(X) = The arctangent of X (result is in radians)
Ln(X) = The natural logarithm of X
Exp(X) = e raised to the power X

Additional functions can be defined by the user.

Declaring Functions

A user-defined function is a simple procedure that uses only value
parameters. The elements of a function are illustrated below. They include
the function name, Cosine Law (CsLaw), the formal parameter list (A, B, Theta
: Real), the result type (Real), the local declaration (VAR C : Real), and
the function body (BEGIN...END).

PROGRAM Trig(Input,Output);
 VAR
 E,H1,W1,Ang1,AngX : Real;

 FUNCTION CsLaw (A, B, Theta : Real) : Real;
 (*Returns the length of side, C, opposite the angle Theta*)
 VAR
 C : Real;

 BEGIN
 C := A*A + B*B;
 CsLaw := C - 2.0*A*B*Cos(Theta)
 END;(*PROCEDURE*)

BEGIN
 Readln(H1,W1,Ang1,AngX);
 E 1.0 + CsLaw(H1,W1,Ang1)*Sin(AngX)
END.(*PROGRAM Trig*)

Like value parameters in procedures, the parameters of a function do not
change their values outside the function. The function returns only a single
value, the result (CsLaw), whereas a procedure may return as many values as
there are variable parameters listed.

When a function is used in a program, a separate statement to call it up is
not required. For example, CsLaw can be called up by relational or arithmetic
statements such as the following:

PROCEDURES 45

E := 1 + CsLaw(H1,W1,Ang1)*Sin(AngX);

A procedure, however, does require a separate statement [e.g.,
OtherVal(A,B,C,D);]. This is because the identifier of a function has some
value, viz., the result, but the identifier of a procedure does not have a
value.

The Function Odd

The function Odd (parameter) returns the value True when the parameter is odd
or the value False when the parameter is even. It is important that the
parameters used with Odd be of the type Integer.

For example, if the variable Number equals 3, then:

Odd(Number) = True

Thus, this function turns Integer data into Boolean data.

Global and Local Variables

When a variable is declared in the main program, it is called a global
variable. When a variable is declared within a function or procedure, it is
called a local variable. Parameters are neither local nor global variables,
although they are used to pass values of global variables to and from the
procedure.

PROGRAM Alpha(Input,Output);
 VAR A1 : Real;
 A3,A4 : Char;

 PROCEDURE Other (VAR AA1:Real; AA3:CHAR);
 VAR BB1:Integer;
 BEGIN
 A4 := 'Y'; (*A4 is global*)
 BB1 := 5; (*BB1 is local*)
 AA1 := 15.3;
 END;(*PROCEDURE*)

 BEGIN
 Other(A1,A3); (*A1,A3 are parameters*)
 IF A4 = 'Y' THEN
 Writeln('A4 is global');
 IF A1 = 15.3 THEN
 Writeln ('AA1 is a formal parameter')
 END. (*PROGRAM Alpha*)

The statements in the body of a function or procedure manipulate a variety of
variables and parameters. Variables must be appropriately defined in order
for the program to function properly:

1) They can be declared in the global declaration section.

(VAR A1:Real; A3,A4:Char;)

A variable that has been declared in the main program may be used in a func-
tion or procedure in a global manner. The variable A4 is used in this way:

46 Kyan Pascal V. 1.1

A4 = 'Y';

Every time the procedure Other is called, A4 is given the value 'Y' and the
statement in the main program, A4 = 'Y', becomes true.

2) They can be declared in the local declaration section.

(VAR BB1 : Integer;)

A variable declared only in the procedure may be used. The variable BB1 is
used locally in the program:

BB1 := 5;

Because BB1 was not declared in the main program, if the statement "BB1 = 5"
were to appear in the main program, it would make no sense and the compiler
would generate an error message.

3) They can be listed in the formal parameter section.

[Other (VAR AA1 : Real; AA3 : Char);]

Passing values through global variables is not recommended because it makes
it difficult to keep track of incoming and outgoing data: it is better to use
actual and formal parameters.

The following section extends the preceding definitions of global and local
to more general cases where a variable is relatively global or relatively
local. This occurs when there are several functions and procedures sharing
variables.

Nesting of Functions and Procedures

Functions and procedures may be nested within other functions or procedures.
The declaration section of a program is illustrated below with nested boxes
to represent the concept called "scope". The innermost box, Phase1 is within
the scope of both CsLaw and PhaseDis, while CsLaw is only within the scope of
the main program, PhaseDis.

Because of the top-down structure of Pascal, the procedures or functions
declared first have greater scope than those declared later. Identifiers (of
variables and types) in the outer boxes are global relative to the inner
boxes. Identifiers that are declared in procedures of greater scope are
global relative to procedures of lesser scope.

Thus, values of variables may be passed from a procedure of greater scope to
one of lesser scope either by parameters or by global variables of the
procedure of greater scope.

PROCEDURES 47

Notice how the scope of a variable is determined the moment it is declared
and remains in effect until the end of the procedure, function or main
program in which it was declared.

The scope of the variables can be represented more clearly by. Showing only
the declaration sections of the program, functions, and procedures:

 program: PhaseDis
 variables declared: Height1, Width1, Angle1, Angle2, Dist

 function: CsLaw
 variables declared
 (formal parameters): A,B,Theta
 (local variables): C

 procedure: Phase1
 variables declared
 (formal parameters): H1, W1, Ang1, AngX, D
 (local variables): E

In this example, C is global to Phase1. The new value for C is passed to
Phase1 as soon as CsLaw is executed. Use of global variables in this way is
not recommended. Values should be passed to and from functions and procedures
only through parameters.

Compare the following version of the program PhaseDis to the previous one.
The procedure Phase1 is no longer nested within CsLaw. C is no longer global
relative to Phase1 because CsLaw no longer has greater scope than Phase1. The
statement using C in Phase1 had to be dropped, because it would no longer be
syntactically correct.

 PROGRAM PhaseDis;
 VAR Height1, Width1, Angle1, Angle2, Dist : Real;

 BEGIN
 . .
 END.(*PhaseDis*)

 FUNCTION CsLaw(A,B,Theta : Real) : Real; VAR C : Real;

 BEGIN
 C := A*A + B*B;
 CsLaw := C – 2*A*B*Cos(Theta)
 END;(*CsLaw Declaration*)

PROCEDURE Phase1(H1,W1,Ang1,AngX : Real; VAR D : Real);
VAR E Real;

BEGIN
E := 1 + CsLaw(H1,W1,Ang1)*Sin(AngX);
D := 1.22*C
END;(*Phase Declaration*)

48 Kyan Pascal V. 1.1

It is possible, and often desirable, in a long program to reuse names in
several places but with different meanings. As long as the scope of one
definition of such a name does not not encompass another definition, there
will be no conflict.

Global and Local Types

User-defined types such as scalar types may be local or global. The same
rules of scope apply.

Forward References

Calling, i.e., executing, a procedure or function before it has been defined
is called a forward reference. Whenever a forward reference is used in a
Pascal program, it must be declared as shown in the third line of the
following program:

PROGRAM Compute(Input,Output);
 VAR X : Integer; Y : Real;

 FUNCTION Factor(Z : Integer) : Integer; FORWARD;

 PROCEDURE Bisect(Alpha : Integer; Beta : Real);
 BEGIN
 Beta := Beta + Alpha*Factor(Alpha)
 END;(*PROCEDURE*)

 FUNCTION Factor;
 CONST LargeNum = 12345;
 BEGIN
 Factor := LargeNum MOD Z
 END;(*FUNCTION*)

BEGIN
 Write('Enter an Integer ');Readln(X);

PROCEDURE Phase1(H1,W1,Ang1,AngX : Real);
VAR E : Real;
BEGIN
E := 1 + CsLaw(H1,W1,Ang1)*Sin(AngX)
END;(*Phase Declaration*)

FUNCTION CsLaw(A,B,Theta : Real) : Real; VAR C : Real;
BEGIN
C := A*A + B*B;
CsLaw := C - 2*A*B*Cos(Theta)
END;(*CsLaw Declaration*)

PROGRAM PhaseDis;
VAR Height1, Width1, Angle1, Angle2, Dist : Real;

BEGIN
...
END.(*PhaseDis*)

PROCEDURES 49

 Write('Enter a decimal number '); Readln(Y);
 Bisect(X,Y);
 Y := Factor(X)*Y;
 Writeln;Writeln('Answer is ',Y)
END.

The procedure Bisect is able to execute the function Factor because the
latter is declared as a forward reference before Bisect is declared. Notice
that the forward reference declaration includes the formal parameter list;
later, when Factor is fully declared, the parameters and the FORWARD
declaration are not repeated.

Unconditional Branch: GOTO

Although it is not ordinarily done, Pascal statements may be labeled to allow
unconditional branching, such as from a REPEAT UNTIL loop.

A label (i.e., statement number) in Pascal is an Integer followed by a colon
and placed before a statement in a program. The maximum size of a label is
four digits. Labels must be declared just like variables and constants. The
following statements might occur in a program with a forward jump:

PROGRAM Example(Input,Output);
LABEL 22, 35;
VAR A : Integer;

BEGIN
 A := 0;
 22: Writeln('A= ',A :4);
 A := A+1;
 IF A < 5 THEN GOTO 22 ELSE GOTO 35;
 Writeln('Skip Me');
 35: Writeln('The End')
END.

The unconditional jump, which may be either forward or backward in the
program, is written as follows:

GOTO label;

Labels used in a function or procedure must be declared locally. GOTO jumps
can be used to jump forward or backward within a function or procedure, or to
leave a function or procedure to enter the main program, but cannot be used
to jump from the main program to enter a function or procedure.

Kyan Pascal V. 1.1 51

ARRAYS

Most of the types of data that have been discussed so far are limited to
single values. (Integer and Real both imply a single number; Char implies a
single character; and Boolean is either the value True or False.)

However, some kinds of data are not conveniently divided into components.
This is the case with words or strings, which were discussed previously. A
string, such as "butter" is actually a collection of characters. This is the
identifying characteristic of an array: an array is always a collection of
one of the simpler data types.

A vector, such as the direction of a spaceship in flight, is another example
of an array. The clearest and most correct way to handle such data is to put
parentheses around the components (X, Y, Z) to clarify that they represent a
single direction.

Arrays are declared in Pascal as follows:

Array Type = ARRAY [Subscript Type] OF Element Type

1. Array types are always user defined.

2. The subscript type specifies the size of the array and assigns a number
to each of the elements of the array. See examples below.

3. The element type may be any standard or user-defined type. All the
elements in an array must be the same type.

The amount of memory space allocated for an array is determined by the
subscript type. If an array of characters is not filled because the input is
smaller than the array size, the remaining spaces are set to blanks. However,
unused array spaces of other types are not determined.

Example Program:

PROGRAM Graphic;
TYPE
 String = ARRAY[1..15] OF Char;
 CoordnType = (X,Y,Z);
 VectorType = ARRAY[CoordnType] OF Real;
VAR
 Vector : VectorType;
 Word : String;
BEGIN
 Vector[X] := 3.0;
 Vector[Y] := 5.0;
 Vector[Z] := 4.0;
 Word := 'First Point '
END.

The first array, String, may be used to handle words or phrases that have 15
characters, including blanks. Integers (1 to 15) identify the elements of the
array.

The second array declares that each vector consists of 3 numbers. (Each one
is a direction in three-dimensional space.) The elements of this array are
identified not by Integers, but by CoordnType, a user-defined type. Any
scalar type may index an array.

52 Kyan Pascal V. 1.1

Arrays of Arrays and Multidimensional Arrays

If we wished to represent a paragraph that contained up to 50 words, we might
define it as an array of String (i.e., an array of an array):

TYPE
 String = ARRAY[1..15] OF Char;
 Paragraph = ARRAY[1..50] OF String;

Use of the array Paragraph could prove to be a wasteful programming technique
because it reserves a lot of memory space for what might turn out to be a
short paragraph.

The array Paragraph is an example of a multidimensional array. The array
MatxType below is also multidimensional. MatxType is a two-dimensional array
of numbers. (It is not necessary for the dimensions of the matrix to be the
same size, although in this one they are, 3 elements each.)

Two ways of declaring MatxType are:

TYPE
 Row = ARRAY[1..3] OF Real;
 MatxType = ARRAY[1..3] OF ROW;
 (*Each element of MatxType is a row*)

TYPE
 MatxType = ARRAY[1..3, 1..3] OF Real;
 (*Subscripts are row number, column number*)

It is important to recognize which subscript refers to which dimension in
such arrays. The significance of this is illustrated by the following
example, in which a name, i.e., a string, is copied from a list:

TYPE
 String = ARRAY[1..14] OF Char;
 TableType = ARRAY[1..100]] OF String;
VAR
 Table : TableType; Name : String; I : Integer;
BEGIN
 FOR I : = 1 TO 14 DO
 Table[2,I] := Name[I]
 (*Name is written into the second row of table*)
END.

One way to remember which subscript is first is to rewrite the declaration of
the array type. The first subscript type in the declaration below gives the
first subscript, S, in Table[S,P]; the second subscript type gives the second
subscript, P.

TYPE
 TableType ARRAY[1..100] OF ARRAY[1..14 OF Char;

Adding Two Multidimensional Arrays

The following program adds two 3 x 3 matrices. To find the sum of two
matrices, the corresponding elements (those with identical row and column
subscripts) are added to form the elements of the sum matrix. In this
program, the first matrix is entered in matrix form into the computer's

ARRAYS 53

memory. The elements of the second matrix are then added, one at a time, to
the elements of the first matrix. Thus, the sum matrix is formed without the
computer's ever having "seen" the second matrix.

PROGRAM AddMatrix(Input,Output);

TYPE
 MatxType = ARRAY[1..3,1..3] OF Real;

VAR
 Matrix : MatxType;
 SubSRow, SubSCol : Integer;
 (*Subscripts of the matrices*)
 AddEle : Real;
 (*Elements of 2nd Matrix*)

BEGIN
 FOR SubSRow := 1 TO 3 DO
 FOR SubSCol := 1 TO 3 DO
 BEGIN
 Write('Matrix1 element ',SubSRow : 3, SubSCol : 3, 'is ');
 Readln(Matrix[SubSRow,SubSCol]);
 (*Inputs the elements of first Matrix*)
 END;(*FOR*)
FOR SubSRow := 1 TO 3 DO
 FOR SubSCol := 1 TO 3 DO
 BEGIN
 Write('Matrix2 element ',SubSRow : 3, SubSCol : 3, 'is ');
 Readln(AddEle);
 (*Inputs the elements of second Matrix*)
 Matrix[SubSRow,SubSCol] := AddEle + Matrix[SubSRow,SubSCol]
 END;(*FOR loops*)
Writeln;Writeln('The sum of the two matrices is:');
Writeln;
FOR SubSRow := 1 TO 3 DO
 BEGIN
 Writeln;
 FOR SubSCol := 1 TO 3 DO
 Write(Matrix[SubSRow,SubSCol] : 7:3)
 END;(*FOR*)
END.

The Array As a Parameter

In the procedure below (ShOrder), an array (SubArry) is used as a variable
parameter:

PROCEDURE ShOrder(First, Last: Integer; VAR SubArry: NumbArray);

If SubArry were to be passed as a value parameter, VAR would be deleted. (But
this would take twice as much memory space, because an extra copy of the
array would be set up for use in the procedure.)

Individual elements of an array may also be passed as parameters, such as the
third element of Vector, viz. Vector[Z]:

PROCEDURE CheckPoint (Vector[Z] : Real);

54 Kyan Pascal V. 1.1

Program Example1

This program is used to order a small subset of a list of up to 150 numbers.
Beyond six numbers in the subset, the procedure becomes inefficient.

The ordering of the subset is accomplished by the procedure ShOrder, which
works as follows: pairs of elements in the subset are compared, starting with
the first and second elements. If the first element is greater than the
second, they are exchanged. This is repeated for the second and third
elements, etc. As long as any exchanges have taken place anywhere in the
list, this procedure will repeat again for the entire list. When no exchanges
have taken place, the list is in order.

PROGRAM Example1(Input,Output);
 CONST MaxNumbs = 150;
 TYPE NumbArray = ARRAY[1..MaxNumbs] OF Real;
 VAR First, Last, Subscript: Integer; BigArry: NumbArray;

PROCEDURE Exchg(VAR A,B: Real);
 VAR C: Real;
BEGIN (*Procedure Exchg*)
 C := A;
 A := B;
 B := C
END;(*Procedure Exchg*)

PROCEDURE ShOrder(First, Last: Integer; VAR SubArry: NumbArray);
(*Orders a list of numbers, subset of full list*)
VAR NumbIndex : Integer;
 Exchanged : Boolean;
BEGIN
 REPEAT
 Exchanged := False;
 FOR NumbIndex := First TO (Last-1) DO
 IF SubArry[NumbIndex] > SubArry[NumbIndex+1]
 THEN BEGIN (*Exchange if out of order*)
 Exchg(SubArry[Numbindex],SubArry[Numbindex+1]);
 Exchanged := True
 END;(*Exchg,THEN*)
 UNTIL Exchanged = False (*If one of the elements was exchanged, the test
 must be repeated until all elements are in order & Exchanged remains
 False*)
END;(*Procedure ShOrder*)

BEGIN(*Main Program*)
 Writeln('Enter a list of numbers to be ordered.');
 Writeln('After each number press the return key.');
 Writeln('After last number enter 0 and press');
 Writeln('return to stop.');
 Subscript := 0;
 REPEAT
 Subscript := Subscript +1;
 Write('Entry Number ', Subscript: 3, 'is');
 Readln(BigArry[Subscript])
 UNTIL BigArry[Subscript] = 0.0;
 Writeln('Between which "Entry Numbers" should');
 Writeln('this list be ordered? First :');
 Readln(First); Writeln('Last :');
 Readln(Last);

ARRAYS 55

 ShOrder(First,Last,BigArry);
 Writeln;
 FOR Subscript := First TO Last DO
 Writeln(BigArry[Subscript]: 7:3, ',Entry Number', Subscript : 3)
END.

Program Example2

In the following program, the procedure ShOrder is modified to sort a two-
dimensional array. The new procedure ShAlph, is used to alphabetize a list of
6 words, each of which has no more than 15 letters. The procedure Exchg
exchanges the position of two consecutive words in the array.

The two-dimensional word array used in this program can be visualized as
follows:

help
program
difficult
easy
should
be

The first subscript gives the horizontal position of a letter; the second
subscript gives the vertical position. Thus, the "r" in "program" would be
subscripted (2,2), the "d" in "should" would be subscripted (6,5), etc.

PROGRAM Example2(Input,Output);

 CONST MaxLetters = 15; MaxWords = 6;
 TYPE String = ARRAY[1..MaxLetters] OF Char;
 WordArray = ARRAY[1..MaxWords] OF String;
 VAR WordMatrix: WordArray; WordIndex: Integer;

PROCEDURE Exchg(VAR WordMatrix: WordArray; WordIndex: Integer);

VAR C: String;
 BEGIN
 C := WordMatrix[WordIndex];
 WordMatrix[WordIndex] := WordMatrix[WordIndex+1];
 WordMatrix[WordIndex+1] := C
 END;(*Procedure Exchg*)

PROCEDURE ShAlph(VAR WordMatrix: WordArray);
(*Alphabetize word list <= 6 words*)
VAR WordIndex: Integer; Exchanged: Boolean;

 BEGIN
 REPEAT(*Until all words are in order*)
 Exchanged := False;(*All words are in order if none need to be
 exchanged*)
 FOR WordIndex := 1 TO (MaxWords - 1) DO IF
 WordMatrix[WordIndex] > WordMatrix[WordIndex + 1]
 THEN BEGIN (*FOR Loop, Test all in WordMatrix*)
 ExChg(WordMatrix, WordIndex);
 Exchanged := True;
 END;(*IF*)
 UNTIL Exchanged = False

56 Kyan Pascal V. 1.1

 END;(*Procedure ShAlph*)
BEGIN(*Main Program*)
 Writeln('Enter six words, each with a maximum of');
 Writeln('15 letters. After each word press the');
 Writeln('RETURN key. ');
 WordIndex := 0;
 REPEAT
 WordIndex := WordIndex + 1;
 Write('Word number ', WordIndex :3,' is ');
 Readln(WordMatrix[WordIndex])
 UNTIL WordIndex = MaxWords;

 ShAlph(WordMatrix);
 Writeln;
 Writeln('Alphabetized Words: ');
 FOR WordIndex := 1 TO MaxWords DO
 BEGIN
 Writeln;
 Writeln(WordMatrix[WordIndex]);
 END (* for *)
END.

End of Line

The character that terminates a line of data on the keyboard is the end of
line character, EOLN (<RETURN> key). The statements

Read (Letter);
IF EOLN THEN

may be used to control input from the keyboard, because the THEN statement
will only be executed when a <RETURN> is entered. EOLN stays True until
additional data are entered through a Read or Readln statement.

EOLN is used to control data entry below:

Writeln('Enter four words. End each word');
Writeln('with the RETURN key ');
FOR WordIndex := 1 to 4 DO
 BEGIN
 Letterindex := 0;
 WHILE NOT EOLN DO
 BEGIN
 LetterIndex := LetterIndex + 1;
 Read(WordMatrix[WordIndex,LetterIndex])
 END;(*WHILE*)
Writeln('Preceding word had ', LetterIndex :3, 'letters.');
Readln
END;(*FOR*)

The above lines allow words to be entered, one letter at a time, into a list.
Each EOLN signifies the end of a word, i.e., the end of a row in the array
WordMatrix. If WordMatrix is declared to be of the size [1..4,1..15], when a
word has fewer than 15 letters, the unused places will be filled with blanks.
If a word is longer than 15 letters, the excess letters will not be saved.

ARRAYS 57

Recursive Procedures and Functions

A procedure or function that calls itself is said to be recursive. In Program
Example2, it is possible to rewrite ShAlph to make it recursive. Typical of
recursive procedures, ShAlph has fewer statements than before, but in the
compiled machine code it will be longer.

PROCEDURE ShAlph (WordMatrix : Word Array);
 VAR WordIndex : Integer;
 BEGIN
 FOR WordIndex := 1 to MaxWords - 1 DO
 IF(WordMatrix[WordIndex] > WordMatrix[WordIndex+1])
 THEN BEGIN
 ExChg(WordMatrix,WordIndex);
 ShAlph(WordMatrix)
 END
END;(*PROCEDURE*)

As rewritten, ShAlph tests the words from the first word to the last. If any
of the words are out of alphabetical order, they are exchanged and ShAlph
begins again. When ShAlph is called recursively, the index to the array is
reset to the beginning.

There are two uses for recursion: 1) where logical decisions occur
repetitively as above, and 2) when computing a function in the form of some
repetitive function, such as N! = N*(N-1)*(N-2)* ...*[N-(N-1)].

Copying Arrays

If two arrays have the same subscript type and element type, the values of
one may be copied to the other using a simple assignment statement. Notice
that it is not necessary to specify the subscripts when copying.

VAR Matrix1, Matrix2 : ARRAY[1..3,1..3] OF Real;

BEGIN Matrix1 := Matrix2;

Values may be assigned to string array variables by using single quotes
around the characters to be included. This is illustrated in the example
below. Blanks are assigned because the string array size is larger than the
word being put into it:

PROGRAM CopyArrays;
 TYPE String = ARRAY[1..16] OF Char;
 VAR Word1, Word2 : String;

 BEGIN
 Word1 := 'Initial ';
 Word2 := Word1;
 Word2[8] := 's';
 Writeln(Word2)
 END.

In this program, Word2 is given the value "Initials" with eight blanks.

Kyan Pascal V. 1.1 59

RECORDS

Some kinds of data are most conveniently handled as a mixture of several
types. An example of mixed type data is the date: "January 1, 1987" is a
string of characters followed by two Integers. Pascal allows the user to
define mixed data types as records:

TYPE
 DateType = RECORD
 Month: ARRAY[1..10] OF Char;
 Day: Integer;
 Year: Integer
 END;(*DateType*)

VAR
 DateRec: DateType;

DateType is the identifier of a record type with three fields, and DateRec is
the identifier of a variable of the type DateType. The general form of the
declaration of a record and its fields is:

TYPE
 Identifier = RECORD
 field1: type1;
 field2: type2;
 field3: type3;
 etc.
 END;

The last field in a record does not need to be terminated by a semicolon. The
three fields in the record DateType are Month, Day, and Year.

The statement below is one way to refer to a record variable. It uses the
form "identifier.field".

Writeln (DateRec.Year: 5:0);

Another way to refer to record variables is to use the WITH statement:

WITH DateRec DO
 BEGIN
 Readln(Month);
 Readln(Day);
 Readln(Year)
 END; (*WITH DateRec*)

All three record variables are read using the WITH format.

Copying a Record

If two records are of the same type, it is possible to use a simple
assignment to transfer the value of one to the other:

VAR
 DateRec1, DateRec2: DateType;

BEGIN
 DateRec1 := DateRec2;

60 Kyan Pascal V. 1.1

This copies all the fields of DateRec2 into DateRec1 without having to list
them. In this case, the Boolean comparison below would have the value True.

DateRec2 = DateRec1

Program Absolute

Using data in the form of a record, it is easy to write a program to
calculate the absolute value of a complex number. The formula for the
absolute value is the same as that for the distance from a point to the
origin.

PROGRAM Absolute(Input,Output);
(*Finds the absolute value of a complex number*)

TYPE
 ComplexType = RECORD
 RealPart : Real;
 ImagPart : Real
 END(*ComplexType Record*);

VAR
 ComplexNum : ComplexType;
 Abs : Real;

BEGIN WITH ComplexNum DO
 BEGIN
 Write('The real part = '); Readln(RealPart);
 Write('The imaginary part = '); Readln(ImagPart);
 Abs := Sqrt(Sqr(RealPart) + Sqr(ImagPart));
 Writeln;
 Writeln ('Absolute Value = ', Abs: 10:2)
 END(*With*)
END.

Program ElapsedTime

In the program that follows, the approximate time elapsed since January 1,
1980 is computed. All months are assumed to be of equal length, 30 days, and
all years are 365 days long.

PROGRAM ElapsedTime(Input,Output);
(*Since Starting Time*)

 CONST
 StartDay = 1;
 StartMonth = 1;
 StartYear = 1980;

 TYPE
 DateType = RECORD
 Day : 1..31;
 Month : 0..12;
 Year : Integer
 END;(*DateType Record*)

RECORDS 61

VAR
 B: Integer;
 DateRec: DateType;
 InMonth: ARRAY[1..3] OF Char;

BEGIN
 Write ('MONTH (upper case, first 3 lett) = ');
 Readln (InMonth);
 WITH DateRec DO
 BEGIN
 Write ('DAY = '); Readln (Day);
 Write ('YEAR = '); Readln (Year)
 END;(*WITH reads DateRec*)
 DateRec.Month := 0;
 IF InMonth='JAN' THEN DateRec.Month := 1;
 IF InMonth='FEB' THEN DateRec.Month := 2;
 IF InMonth='MAR' THEN DateRec.Month := 3;
 IF InMonth='APR' THEN DateRec.Month := 4;
 IF InMonth='MAY' THEN DateRec.Month := 5;
 IF InMonth='JUN' THEN DateRec.Month := 6;
 IF InMonth='JUL' THEN DateRec.Month := 7;
 IF InMonth='AUG' THEN DateRec.Month := 8;
 IF InMonth='SEP' THEN DateRec.Month := 9;
 IF InMonth='OCT' THEN DateRec.Month := 10;
 IF InMonth='NOV' THEN DateRec.Month := 11;
 IF InMonth='DEC' THEN DateRec.Month := 12;
B := (DateRec.Day - StartDay)+ 30*(DateRec.Month - StartMonth) +
 365*(DateRec.Year - StartYear);
IF DateRec.Month = 0 THEN
 Writeln('Format error in Month') ELSE
 Writeln('Days since Starting Time = ',B: 8)
END.

In this program the record type contains three sets of Integers. Only a
subset of the type Integers is used for Month and Day. In the range of values
for Month, 0 is included to check that a three-letter abbreviation is input
correctly. Error-checking statements are always part of a professionally
written program.

The record field DateRec.Month could have been the scalar type
(JAN,FEB..DEC), but this would not have enabled a direct comparison with the
input, which is in the form of strings: 'JAN', 'FEB'..'DEC'. This is because
'JAN', a string, is not equal to JAN, an identifier.

Arrays of Records

Suppose the quality control department of a company wished to calculate the
failure rate of each of the parts in a gearbox or some other machine.
Although 5000 of these machines were built, only 500 of them have come back
for service. The first step in such a program would be to declare an
appropriate array of records.

To construct an array of records, the following format is used:

TYPE
 Array Type = ARRAY[Subscript Range] OF Record Type;

62 Kyan Pascal V. 1.1

VAR
 Array Variable : Array Type;

A particular element in such an array can be specified as follows:

Array Variable[Subscript].Field

In the program below, "Failures", the array is a set of records consisting of
the serial number (SerialNum), the gear number(Gear), the date of failure
(FailDate) and the date the gearbox was put into service (StartDate).

"Failures" is used to calculate the time between when the unit was placed in
service and when a part failed. SurviveTime is a function similar to the
program ElapsedTime, which was previously discussed.

PROGRAM Failures(Input,Output);
CONST
 GearCount = 50; (*50 parts in gearbox*)
 FailCount = 500;
 MachCount = 5000;

TYPE
 DateType = RECORD
 Month: 0..12; Day: 0..31; Year: Integer
 END;(*RECORD*)

 FailType = RECORD
 SerialNum: Integer; Gear: Integer;
 FailDate: DateType; StartDate: DateType
 END;(*RECORD*)

VAR
 Failure: ARRAY[1..FailCount] OF FailType;

FUNCTION
 SurviveTime(VAR FailDate, StartDate: DateType): Integer;
 BEGIN
 SurviveTime := (FailDate.Day-StartDate.Day) +
 30*(FailDate.Month-StartDate.Month) +
 365*(FailDate.Year-StartDate. Year)
 END;(*FUNCTION*)

BEGIN
 Writeln('The first gearbox to fail lasted ',
 SurviveTime(Failure[1].FailDate, Failure[1].StartDate): 5);
 Writeln('It was serial #', Failure[1].SerialNum: 9)
END.(*PROGRAM*)

The first Writeln statement specifies two fields (FailDate and StartDate) of
the first record of the array Failure:

SurviveTime(Failure[1].FailDate, Failure[1].StartDate)

This statement calls the function SurviveTime, which then calculates the time
to failure of the first machine.

RECORDS 63

WITH

Some programs that use records can be made more compact by using the WITH
statement to access the fields of the array:

PROGRAM Entry;

 TYPE InputType = RECORD
 Money: Real; Name: ARRAY[1..15] OF Char;
 MonDate, DayDate,YearDate: Integer
 END;(*RECORD*)

 VAR InputVar: InputType;

BEGIN WITH InputVar DO BEGIN
 Money := 25.50; Name := 'Full Moon Inc. ';
 MonDate := 4; DayDate:= 30; YearDate := 1952
 END;(*WITH*)

Writeln(InputVar.Name, ' gave ', InputVar.Money: 6:2, ' on ',
 InputVar.MonDate: 2, '/', InputVar.DayDate: 2, '/',
 InputVar.YearDate: 3)

END.

In Kyan Pascal, the WITH statement should be used with record variables, such
as InputVar in the program above. It allows the fields of a record to be
accessed without repeating the name of the record. The WITH statement should
be used with records with simple identifier names; it should not be used with
Arrays.

Variant Records

In many applications of the record type, there are two or more records that
have most, but not all, their fields in common. The variant record is
constructed for such cases.

For example, an auto repair shop owner wishes to keep a record of each repair
in order to bill his customers later. His customers are either individuals or
companies. In both cases, he wants to know the labor and parts used as well
as invoice number and customer's name and address. In the case of companies,
he also wants to know their requisition numbers. The two records are nearly
the same:

TYPE Invoice1 = RECORD
 InvoiceNum, Labor, Parts: Integer;
 CusName,CusAddr: String;
 SocSec: String
 END;(*RECORD*)

TYPE Invoice2 = RECORD
 InvoiceNum, Labor, Parts: Integer;
 CusName,CusAddr: String;
 ReqNum: Integer
 END;(*RECORD*)

64 Kyan Pascal V. 1.1

For. convenience, these may be combined into a single variant record, named
Invoice, by use of the CASE statement:

TYPE
 Invoice = RECORD
 InvoiceNum, Labor, Parts: Integer;
 CusName, CusAddr: String;
 CASE Custmr: Integer OF
 1 : (ReqNum: Integer);
 2 : (SocSec: String)
 END;(*RECORD*)

Suppose a variable of type Invoice is named Bill:

VAR Bill: Invoice;

Then, to refer to the billing number of either an individual or company, the
auto shop would use "Bill.InvoiceNum". To refer to the requisition number of
a company, "Bill.ReqNum" would be used. The latter number does not exist for
individuals.

Kyan Pascal V. 1.1 65

SETS

Another type of data that may be declared in Pascal is the set type. Sets may
have up to 256 members. The general format for the declaration of a set type
is:

Identifier = SET OF Base Type;

The base type must be a scalar type (but not Real).

For example, if the numbers from 10 to 25 are the base type, the prime and
non-prime numbers from 10 to 25 are two possible set variables:

PROGRAM ExSet1(Input,Output);
 TYPE
 NumType = SET OF 10..25;
 VAR
 Prime, NotPrime: NumType;
 N: Integer;

BEGIN
 Prime := [11,13,17,19,23];
 NotPrime := [10,12,14,15,16,18,20,21,22,24,25];
 Write('Enter a number between 10 and 25 '); Readln(N);
 IF N IN Prime THEN Writeln('That is a prime') ELSE
 IF N IN NotPrime THEN Writeln('Not a prime') ELSE
 Writeln('That is not between 10 and 25')
END.

Notice that the declaration does not specify what numbers constitute the set
variables, only that they must be some set of Integers between 10 and 25. The
numbers constituting the variables are assigned in the program as shown.

There are many similarities between a set type and a scalar type. In fact,
the scalar type Numbers has the same range of values for its elements as the
elements (members) of the set type NumType:

TYPE
 Numbers = 10..25;
 NumType = SET OF Numbers;
VAR
 Prime : NumType;
 NotPrime : NumType;
 Prim : Numbers;
 NotPrim : Numbers;

Numbers differs from NumType in that the elements in a scalar type are
ordered, whereas they are not ordered in a set. (This allows the declaration
of sub ranges of scalar types such as TYPE FirstQt : Jan..Mar, a sub range of
TYPE Year.)

The differences between Prime and Prim are twofold:

1. Scalar variables such as Prim can have only one value at a time, whereas
set variables can include 0 to 256 values.

2. The set operations may be applied to Prime but not to Prim.

66 Kyan Pascal V. 1.1

For example, if all the prime Integers and all the non-prime Integers from 10
to 25 were to be listed, the list would be exactly all the Integers from 10
to 25. This is equivalent to the Pascal statement below, where FullSet has
been declared to be of the type NumType:

FullSet := Prime + NotPrime

Operations on Sets

There are three basic operations on sets: Union, Intersection, and
Difference. Consider the following program:

PROGRAM Assign;
TYPE
 Numbers = SET OF 1..9;
VAR
 Prime : Numbers;
 Odd : Numbers;
 Test : Numbers;
BEGIN
 Prime := [1,2,3,5,7];
 Odd := [1,3,5,7,9];

The two sets Prime and Odd may be combined in three ways:

Test := Prime + Odd;(*Union = [1,2,3,4,5,7,9]*)
Test := Prime * Odd;(*Intersection =[1,3,5,7]*)
Test := Prime - Odd;(*Difference =[2]*)

In addition to the three basic set operators, there are seven3 set relational
operators. These result in either a True or a False output and are exactly
parallel to the arithmetic relational operators previously discussed.

Equality Set1 = Set2
Inequality Set1 <> Set2
Subset Set1 <= Set2
Superset Set1 >= Set2
SetMembership Set1 IN Set2

The set membership operator is True if the element is a member of SET1.

It is not necessary to declare a set type to use sets. The following program
uses the set of failing grades : [F,NP].

PROGRAM Finals(Input,Output);
CONST ClassSize = 30;
TYPE
 GradeType = (A,B,C,D,F,P,NP,I);
 StuGrade = RECORD
 StudentID : Integer;
 Grade : GradeType
 END;(*RECORD*)
VAR
 ClassGrades : ARRAY[1..ClassSize] OF StuGrade;
 N : Integer;
 LettGra : ARRAY[1..2] OF CHAR;

3 Probably an error or some information missing.

SETS 67

BEGIN
 FOR N := 1 TO ClassSize DO
 BEGIN Write('Student ',ClassGrades[N].StudentlD,'Enter final grade= ');
 Readln(LettGra);
 IF LettGra = 'F ' THEN ClassGrades[N].Grade:=F;
 IF LettGra = 'NP' THEN ClassGrades[N].Grade:=NP;
 IF ClassGrades[N].Grade IN [F,NP] THEN
 Writeln('Too Bad') ELSE Writeln('Good!')
 END (*FOR*)
END.

Using Sets to Examine the Members of an Array

In the program below, the set operator "IN" is used to examine the members of
an array that contains all of the test scores of a student in a mathematics
class. This process is repeated for all of the students in the class.

By outputting the total number of tests failed or postponed by students in
the class, the program aids in evaluating overall class performance.

PROGRAM TestGrades(Input,Output);
CONST ClassSize 30;
TYPE
 GradeType = (A,B,C,D,F,I,P,NP);
 GradeSet = SET OF GradeType;
 StuGrades = RECORD
 StudentID: Integer;
 Grades: ARRAY[1..25] OF GradeType
 END;(*RECORD*)
VAR
 ClassGrades: ARRAY[1..ClassSize] OF StuGrades;
 N,M,I: Integer;

BEGIN
 (*Statements would be inserted here to input class grades*)
 I := 0;
 GradeSet := [F,NP,I];
 FOR N := 1 TO ClassSize DO FOR M := 1 TO 25 DO
 IF ClassGrades[N].Grades[M] IN GradeSet THEN
 I := I + 1;
 Writeln('In this class ', I:3, 'tests were');
 Writeln('either failed, not passed or put off')
END.

Kyan Pascal V. 1.1 69

FILES

In Pascal, files are the means of input and output of data. A Read or Readln
statement calls for input; a Write or Writeln statement produces output. When
information is entered at the keyboard, it goes into a Pascal file called
Input. When information is output to the display, it is sent to a file called
Output.

Files can also be used by the programmer as a data type. What programmer-
created files have in common with Input and Output files is that they are
sequential and that information is read to them and written from them one
element at a time.

Programmer-created files enable data to be stored on magnetic tape or floppy
discs: a piece of data assigned to a file variable can be saved. In contrast,
when files are not used, values assigned to variables are stored in the
computer's directly accessible memory, which is lost when the power is turned
off.

Since the data in a file is on magnetic tape or a floppy disk, the size of
the computer's directly accessible memory is not a limitation as it is in
other data types: files give the programmer a great deal of extra memory to
work with. However, working with files has the disadvantage of slowing the
access time. This can become critical in real time programs.

Files are unique in that they are the only completely sequential data type.
In fact, data items stored in a file cannot be used in a program until they
are transferred sequentially, one element at a time (first to last), from the
file.

File Declaration

Before a file can be used in a program, it must be declared. The first step
in declaring a file is to specify the file by a name which may be different
than the Pascal file name identifier) name in parentheses after the program
name:

PROGRAM Store(Input, Output, List1);

This tells the computer that at least some of the data used by the program
will come from a file other than Input.

Next, in the variable declaration section, the variable type comprising the
file is specified:

VAR List1 : FILE OF Integer;

Here, the elements of the file List1 are Integers. A file may also contain
characters or Real numbers. Arrays, sets, and records made of Integers,
Characters, or Real numbers are also allowed.

70 Kyan Pascal V. 1.1

Writing to a File

In order to store data in a file, we first must open the file for writing.
This is done by using the Rewrite statement, which also clears the file of
any data previously stored in it.

Rewrite (List1);

Kyan Pascal uses the Pascal file identifier in Rewrite. It may be a string
constant:

Rewrite (List1, 'D1:LST');

or it may be an array of characters:

Rewrite (List1, a);

To actually put data into the opened file, two more statements are necessary:

List1^ := J;
Put(List1);

"List1^" is called a file buffer variable. Before the value of an element can
be Put into a file, it must be temporarily assigned to a file buffer
variable. The first statement above assigns the value J to the file buffer
variable.

The Put statement is used to write the value J from the file buffer into the
file. The first value entered goes to the first element position. The next
value entered goes to the second element position, and so on. It is
impossible to read from or write to a file without starting from the first
position.

The only memory space reserved for file variables is for the file buffer
variable. (If List1 is a file of Integer, List1^ will be assigned two bytes.)
This is because a file exists outside the memory space of the computer.

Program Store (List)

The following program stores the Integers 11 to 45 in a file named List1:

PROGRAM Store(Input,Output,List1);

 VAR
 List1 : FILE OF Integer;
 J : Integer;

BEGIN
Rewrite (List1);
FOR J := 11 TO 45 DO
 BEGIN
 List1^ := J;
 Put(List1)
 END
END.

FILES 71

Reading a File

Before a file can be read, it must be opened for reading. This requires use
of the command Reset:

Reset (List1);

Kyan Pascal uses the Pascal file identifier in Reset. It may be a string
constant:

Reset (List1, 'D1:LST');

or it may be an array of characters:

Reset (List1, a);

The first element read is always the first element that was entered: just as
a file must be written from beginning to end, it must be read sequentially.
In addition, reading requires that the values of the elements be assigned to
a file buffer variable:

J := List1^;

A Get statement must be used to get all elements of the file after the first
one. Thus, if J is the first element of the file, K is the second, and L is
the third, the following statements get the first three elements:

J := List1^;
Get(List1);
K := List1^;
Get(List1);
L := List1^

Usually the number of elements in a file is not known; therefore, to get all
the data from a file, the file should be read until the end of file marker
(EOF) is found. The end of file marker is always at the end of the file
furthest from the first element. The following statements write all the
elements of the file.

Reset (List1);
WHILE NOT EOF(List1) DO
BEGIN
 J := List1^; Writeln(J); Get (List1)
END;

Sometimes a specific element in a file is sought. The following statements
find and write all the elements of the file equal to 77 (List1^ is the file
buffer variable.):

Reset (List1);
WHILE NOT EOF(List1) DO
BEGIN
 IF 77 = List1^ THEN Writeln(List1^ :4);
 Get(List1)
END;

72 Kyan Pascal V. 1.1

Text Files

Because files of characters are so frequently used, Pascal has a standard
type of file, called Text, that is predefined as "Text = FILE OF Char". To
create a file of text, include the file name after the program name and also
declare it as a variable:

PROGRAM WordProc(TextFileName);

VAR TextFileName : Text;

Although the input and output of a text file may be handled in the same way
as the input and output of other types of files, the following
simplifications may be used:

Read(TextFileName, Identifier);

can take the place of

Identifier :=TextFileName^; Get(TextFileName);

Also:

Write(TextFileName, Identifier);

can take the place of

TextFileName^ :=Identifer; Put(TextFileName);

If no text file name is included in a Read or Write statement, the file
accessed will be Input or Output, respectively. (Note: some Pascal compilers
will give an error message if no text file name is given and Input and Output
have not been declared.)

Files of Records

Most files are files of records. In the following example, the status of each
truck in a company's fleet is kept in a file called BigRigFile.

PROGRAM Trucks(Input,Output,BigRigVar);
 TYPE
 String = ARRAY[1..16] OF Char;
 TruckType = Record
 NextSrvc : Integer;
 ID : String;
 Status : (OnRoad, MachShop)
 END;(*TruckType*)
 BigRigFile = FILE OF TruckType;

VAR
 BigRigVar : BigRigFile;
 S1 : String;

BEGIN(*Body of Trucks Program*)
 Reset(BigRigVar);
 WHILE NOT EOF(BigRigVar) DO

FILES 73

 BEGIN
 Writeln;Writeln('Truck #', ID);
 IF BigRigVar^.Status = OnRoad THEN
 S1 := 'On the road '
 ELSE S1 := 'In the shop ';
 Writeln('Status is ', S1, 'Next Service is ', NextSrvc : 7)
 Get(BigRigVar)
 END (*WHILE LOOP*)
END.

Random Files

Although standard Pascal does not include random access files, there are many
instances where a program might wish to access only part of a file and that
part might be in the middle of a file or at the end, making sequential access
very slow.

Most files in Kyan Pascal have been changed from sequential storage to
relative storage to allow random access of the elements in the file. (However
please note that files of Char (text) or files of Boolean, remain sequential
files.)

The function Seek has been included in Kyan Pascal to access parts of
relative files, called elements that might be in the anywhere in a file. This
procedure is used as follows:

Seek(F,N); (* Position the buffer of file F at the Nth element*)
Put(F) (* Put contents of the file buffer into Nth element*)
 (* Either Put or Get follow Seek *)
Get(F); (* Get contents of Nth file element and put in buffer*)

The first element of a file has the element number O. As was stated
previously the first element of a file is the first element put (using the
Pascal procedure Put) into a file. Most often, the elements of a file are
Pascal record types.

PROGRAM SeekDemo;
TYPE String = ARRAY[1..32] OF Char;
VAR F: FILE OF String; C: Char;

PROCEDURE RdRec;
VAR i: Integer;
BEGIN Write('Record Number? '); Readln(i);
 Seek(F,i);
 Get(F);
 IF NOT EOF(F) THEN Writeln(F^) (* EOF is true if element empty *)
END;

PROCEDURE WrRec;
VAR i: Integer;
BEGIN Write('Record Number? '); Readln(i);
 Write('Data? '); Readln(F^); (* assign data to file buffer *)
 Seek(F,i);
 Put(F)
END;

74 Kyan Pascal V. 1.1

BEGIN
 Reset(F,'D1:DATA');
 REPEAT
 Writeln('R-Read W-Write Q-Quit '); Readln(C);
 IF C-'R' THEN RdRec; IF C='W' THEN WrRec;
 UNTIL C='Q'
END.

If it were desired to open a file for the first time, or to clean an existing
file of all data, the procedure Rewrite is used. Instead t Next the above
program uses the procedure Reset to open the file "DATA".

Kyan Pascal V. 1.1 75

POINTER VARIABLES AND LINKED LISTS

Pointers and Nodes

VAR Count : Integer;

BEGIN Count := 54;

If we could examine the computer's memory, we would find that the above
statements put 54 into specific memory locations. Just for the sake of this
discussion, assume that 54 goes into memory locations 12156 and 12157.

Count = 5 12156
 4 12157

There is another way to get 54 into memory and that way is to use pointers:

VAR Locate : ^Integer;

BEGIN New(Locate);
 Locate^ := 54;

If we could now examine the computer's memory, we would again find 54 in
specific memory locations, perhaps 11343 and 11344. We would also find that
the value 11343 is stored in memory:

Locate = 1 11338
 1 11339
 3 11340
 4 11341
 3 11342
Locate^ = 5 11343
 4 11344

Locate is the group of memory locations that point to the place in memory
where 54 is stored. There was no such "pointer" in the first example.

Locate is called a pointer variable, while Locate is called stored data or a
node. The pointer symbol (^) appears on the left side of the Type in the
pointer variable declaration (Locate : ^Integer), but on the right of an
identifier for stored data (Locate^ := 54).

It is also possible to declare pointer types such as:

TYPE LocateType = ^Integer;

New

New is the standard Pascal procedure used to assign memory locations to a
pointer variable. Each time the New statement is executed, a new set of
locations is assigned to Locate.

If we deleted the New statement from the example above, the computer might
put 54 into memory locations occupied by other data. This would probably
cause run time errors.

76 Kyan Pascal V. 1.1

Peek and Poke

Although New allows us to put data into memory, we have no idea where in
memory the data is going. Peek and Poke give us the power to examine or
change the data in specific memory locations.

Peek and Poke are most often used with memory locations that have a dedicated
function such as specifying a character on the screen, the color of a
character, or a sound emitted from the speaker.

Suppose we wish to check what actually is in memory locations 11343 and
11344:

VAR Locate : ^Integer;

BEGIN Assign(Locate, 11343);
 Write(Locate^);
 Assign(Locate, 11344);
 Write(Locate^);

Although "Assign(Locate, 11343)" is not part of standard Pascal, it is
included in Kyan Pascal. When the Assign statement is used with a Write
statement, the result is a Peek.

In standard Pascal it is not possible to decide where in memory to store
data. The compiler makes that decision. However the Kyan Pascal Assign
statement allows us to Poke data into a specific memory location as follows:

VAR Locate : ^Integer;

BEGIN Assign(Locate, 11343);
 Locate^ := 5;
 Assign(Locate, 11344)
 Locate^ := 4;

In Graphics 0 location 40000 maps the first character on the screen. The
screen is 40 characters wide by 24 characters tall. The following program
uses Poke to put the alphabetic characters in the first line at the top of
the screen. Consult your Atari manual for other reserved memory locations.

Some memory locations exceed 32767, the maximum Integer size allowed in Kyan
Pascal. In those cases, the equivalent memory location is a negative number
given by the formula:

Equiv. Mem. Loc. = Mem. Loc. - 65536

See the following example:

PROGRAM Alphabet;
TYPE Screen = ARRAY[0..1023] of Char;
VAR Charmem : ^Screen;
 I : Integer;

BEGIN
 Assign(Charmem, -25536);
 FOR I := 0 TO 25 DO Charmem^[I] := Chr(I + Ord('A'))
END.

POINTER VARIABLES AND LINKED LISTS 77

In the Poke above, an Integer value (-25536) is assigned to a pointer
variable (Charmem). This is where in memory Charmem^[1,1] will be stored. To
Poke 'A' into the specified memory location, we assign it to Charmem^.

The procedure New is not used with a Poke: the next memory location (-25537)
is automatically mapped to the next Charmem^ in the loop. Each element in the
array, Charmem^[I], takes one memory space; thus, the entire array is mapped
into memory locations 40000 to 40025.

Suppose Charmem is defined as above, but now we wish to Peek at the character
displayed at the upper left hand corner of the screen:

BEGIN
 Assign(Charmem, -25536);
 Write(Charmem^[1])
END.

Linked Lists and NIL

In addition to being used with Peek and Poke, pointers are used in linked
lists, which allow a database to be of variable size.

Below is a program that has a pointer variable, Appointm, which points to the
location of a Record, AppointRec (just as Locate pointed to the location of
an Integer). Each record is an appointment including time and person to meet.

PROGRAM Meetings(Input,Output);
 TYPE String = ARRAY[1..15] OF Char;
 TimeType = (Hr,Min,Day,Mon,Yr);
 AppointRec = RECORD
 Person : String;
 Time : ARRAY[TimeType] OF Integer
 END(*RECORD*);
 VAR Appointm : ^AppointRec;

 BEGIN
 New (Appointm);
 Appointm^.Person := 'Ernie ';
 New (Appointm);
 Appointm^.Person := 'Bob ';
 New (Appointm);
 Appointm^.Person := 'Gina ';
 Writeln (Appointm^.Person)
END.

It is important to notice that each time another name is entered, the pointer
is moved to a new location:

New(Appointm);

Although the above sequence of statements inputs three names into memory,
each with a different pointer, it does not provide for retrieval of any of
the names except the last. When Writeln is executed, "Gina" will be printed.

In the example that follows, a pointer type, Appointer, is declared; and the
appointment record includes a pointer, Link, that will link all the records
and thus allow all the data to be retrievable:

78 Kyan Pascal V. 1.1

PROGRAM Pointer(Input,Output);
 TYPE String = ARRAY[1..15] OF Char;
 TimeType = (Hr,Min,Day,Mon,Yr);
 Appointer = ^AppointRec; (*Pointer Type*)
 AppointRec = RECORD
 Link : Appointer;
 Person : String;
 Time : ARRAY[TimeType] OF Integer
 END;(*AppointRec RECORD*)

 VAR
 Appointm, Pt : Appointer; (*Pointer Variables*)

 BEGIN
 Pt := NIL;
 New(Appointm);
 Appointm^.Person := 'Ernie ';
 Appointm^.Link := Pt;

 Pt := Appointm;
 New(Appointm);
 Appointm^.Person := 'Bob ';
 Appointm^.Link := Pt;

 Pt := Appointm;
 New(Appointm);
 Appointm^.Person := 'Gina ';
 Appointm^.Link := Pt
END.

The list of appointments is now retrievable because the "next" pointer (i.e.,
the linking pointer) is included in each record as the pointer field, "Link".

The standard Pascal identifier NIL is used to indicate the last element in
the list. Records are linked backward (first in last out). NIL indicates the
last element to be retrieved:

Pointer^.Link := NIL;

In the program above, Appointm points to the first name to be retrieved,
Appointm^.Link points to the second, and (Appointm^.Link)^.Link (NIL) points
to, the third. The following statements output the names contained in the
three linked records:

WHILE Appointm <> NIL DO
 BEGIN
 Writeln(Appointm^.Person);
 Pt :. Appointm^.Link;
 Appointm := Pt
 END; (*WHILE*)

Dispose

When pointers and lists are created by the procedure New, they remain in
memory even after the list to which they point is no longer used and all the
elements on the list have been removed.

POINTER VARIABLES AND LINKED LISTS 79

The following statement frees the memory location at Appointm^. It must be
used for each of the elements of the list if all the memory locations on the
list are to be freed:

Dispose(Appointm)

Kyan Pascal V. 1.1 81

INCLUDE

How to Include Procedures and Functions from Other Files

Kyan Pascal facilitates the inclusion of a user defined library of procedures
and functions during compilation time. That is, procedures and functions that
are used in many programs may be declared each in a file of its own and
easily included for use in many programs.

To include a function or procedure in a program use the following format:

#i FileName

A pound sign (#) must appear in column 1 and i (for include) in column two.
The name of the file (in which the declaration of the function or procedure
is written) follows.

For example, the program HELLO was discussed in the Editor and Compiler
chapter at the beginning of this book. Written as a procedure the file Hello
would be:

PROCEDURE Hello;
BEGIN
 Writeln('Hello, world')
END;

The file Hello may be be included in any program by using the format just
discussed:

PROGRAM Main;
#i D1:HELLO
BEGIN
 Hello;
END.

Use the same name for the procedure or function as the file name. Although it
is possible to use different names, such would be poor style.

Including Files, Other Applications

Files that are included may be any text file, not just procedures and
functions. It is important to try to visualize the insertion of the lines of
the included file in place of the #i "FileName" line.

Kyan Pascal V. 1.1 83

THE ASSEMBLED PROGRAM AND ITS USES

Assembly Language Routines

Kyan Pascal accepts in-line assembly code, which enables the user to create
many powerful routines and not be limited by the structure of standard
Pascal. In-line assembly routines do have one restriction though: they must
appear in the body of the program, procedure, or function, i.e. they must
appear between the BEGIN and END.

Some distinction must be made if the computer is to tell whether or not to
interpret the lines that follow as assembly language or Pascal. Assembly
language lines are simply left as they are during compilation.

If the lines that follow are to be in assembly language they should begin
with the pound sign (#) in column 1 and the letter "a" in column 2. End the
assembly language lines with the pound sign in column 1. For example the
procedure Delay is written with in-line assembly language:

PROCEDURE Delay;
BEGIN
#a
 LDY #100 (* IMPORTANT !!! *)
WLOOP DEY (* LABELS MUST START IN COL. 1 *)
 BNE WLOOP (* ONLY LABELS START IN COL. 1 *)
#
END;

It is important not to use labels in the assembly language routines that
begin with the letter "L". The compiler uses the labels Lxxxxx (xxxxx is a
number) and if you use labels that begin with L, it is likely to fail.

Assembler Directives

Assembler directives are also known as pseudo-code because they appear in the
assembly language listing of a program but are not part of the language of
the microprocessor. Instead they are part of the language of the assembler.

Kyan Pascal has six assembler directives. (They must not start in column 1
because they would be mistaken for labels.)

ORG origin
EQU equate
DB define byte
DW define word
> least significant byte
< most significant byte

ORG is used to tell the assembler that the following code is to start at the
specified memory location.

When a label is given a value using the directive EQU that value will be
substituted for the label throughout the program when the program is
converted to object code. In other words, EQU defines constants.

DB and DW are used in building tables and strings that reside in certain
parts of the assembly code. When the program executes, the values placed by

84 Kyan Pascal V. 1.1

these directives may be read by setting the index register to the address in
program where the DB or DW statements are, then loading the value at the
index register.

When the > and < operators are used with a label or immediate value in a
program, either the least significant byte or most significant byte is
extracted. For example, the following equalities are true:

>$FF01 = $0001
<$FF01 = $00FF

Parentheses are not allowed in assembler directives. Expressions are
evaluated from left to right. There is no precedence of one directive over
another.

How to Use Assembly Routines to Access Pascal Variables

In the previous example, "Delay", an assembly language routine was inserted
into a Pascal program to cause a delay every time the program came to the
place in which it was inserted. It does not modify any of the values of the
variables in the Pascal program.

In order to use assembly code to modify Pascal variables, the location of
these variables must be known. These locations are never absolute, but always
relative to a pointer maintained by the compiler called LOCAL. The location
of Pascal variables may also be calculated relative to the stack pointer
(SP).

In the example that follows in-line assembly code puts the value of the
Pascal variable "Cee" into the A accumulator of the microprocessor:

PROCEDURE Zen(Alt,Bee,Cee : Integer);
VAR
 m,n : Integer;
BEGIN
#a
 LDY 7
 LDA (SP),Y
#
END;

The first line loads the Y accumulator with 7, the distance that Cee is from
SP. (The first variable declared is the first one on the stack and the one
furthest from SP.) The offset from SP is calculated by adding 3 to the space
taken by variables following the declaration of Cee:

Offset(of Cee above SP) = 3 bytes + Last-in Stack bytes

Since 2 bytes are required for each integer variable and both "m" and "n" are
pushed on the stack after Cee, the total offset is 7 = 3 + 2*2.

The second line of the assembly code loads the accumulator A with the value
in memory that is stored at where SP is pointing plus 7:

THE ASSEMBLED PROGRAM AND ITS USES 85

The offset from LOCAL is simply the total space taken by variables preceding
and including the declaration of Cee:

Offset(of Cee below LOCAL) = First-in Stack bytes + Cee bytes

The offset from LOCAL is 6 bytes, due to the Integer variables Alt and Bee
which are pushed before Cee and 2 bytes for Cee itself.

The 3 bytes added to the value in the stack pointer are 3 bytes preserved at
the top of the stack for stack linkage.

The 6502 X register is used by the compiler as a stack pointer. It is very
important to save and restore the X register if you need to use it.

The following table designates how many bytes of memory each type of variable
or constant is provided on the stack:

Real 8 bytes
Integer 2 bytes
Char 1 bytes
Boolean 1 bytes
Pointer 2 bytes
ARRAY[1..n] OF Char n bytes
ARRAY[1..n] OF Boolean n bytes
ARRAY[1..n] OF Integer 2*n bytes
Value Parameter(Real) 8 bytes
Value Parameter(Integer) 2 bytes
Value Parameter(Char,Boolean) 1 bytes
Value Parameter(ARRAY[n] OF Char,Boolean) n bytes
Value Parameter(ARRAY[n] OF Integer) 2*n bytes
Variable Parameters(All) 2 bytes

Variable parameters are the parameters in the parentheses of the declaration
of a procedure or function. They differ from value parameters because memory
space is not allocated for the value of the variable but only for a pointer
to a variable outside the procedure or function. Since each pointer takes two
bytes, each variable parameter takes two bytes.

In Pascal programs all the declarations come before the body of the program,
function or procedure thus, the location of the variables is easily

n

m

Cee

Bee

Alt

SP ----

LOCAL ----

top of stack

bottom of stack

The stack grows
towards lower memory.

86 Kyan Pascal V. 1.1

calculated. Always calculate the location of the variables relative to the
beginning of the procedure, function, or program in which they appear.

It is inappropriate and misleading to calculate the stack location of
variables based on their relative scope in the program, i.e. based on
variables outside the scope of the ones in—line with the assembly code.

Predefined Labels

The following table gives the absolute locations of SP, LOCAL, and T. SP and
LOCAL contain the addresses of the bottom and top of the Pascal variables
stack, respectively. T is the start of the temporary registers. There can be
up to 16 temporary labels going from T to T+15.

SP EQU 4
LOCAL EQU 2
T EQU 16

Passing Parameters through Chain

Parameters passed from one executable program to another executable program
using Chain are passed by value and are only passed forward; i.e., to the
next file to be run.

The parameters passed are the ones that match type and position in the
declaration section of the program. All parameters that follow any parameter
that does not match cannot pass values through Chain.

PROGRAM Alpha; PROGRAM Beta;
VAR VAR
 A,B,C : Integer; D,E,F : Integer;
 X : Integer; Y : Real;
 P : Char; L : Char;
BEGIN BEGIN
... ...

If program Alpha calls program Beta through file the values of A, B and C are
passed to D, E and F. Y does not match and a value is not passed. Although L
matches P, no value is passed because it follows the mismatch of the
parameters Y and X.

How to Chain Source Code Files

Sometimes a program is broken into sections that are to be loaded from the
floppy disk when and where they are needed. This strategy is called chaining.

To chain files together:

PROGRAM MyExample;
BEGIN
 ...
 Chain('D1:NEXTONE')
 ...
END.

The next statement executed will be the first statement in 'NextOne'.

Kyan Pascal V. 1.1 87

STRING MANIPULATION

String

String is not a predefined Pascal type; however, in order to use the Kyan
Pascal string manipulation functions and procedures it must be declared in
the programs that use it.

As stated in previous chapters a string is simply an array of characters:

CONST
 Maxstring = 10; (* = 10 as. an example *)
TYPE
 String = ARRAY[1..Maxstring] OF Char;

Maxstring must also be declared as a constant to whatever value is
appropriate to the use of String in the program.

To use string procedures and functions in a program, along with the above
declarations, the file containing the specific function or procedure you wish
to use must be included using the #i format in the procedures and functions
declaration section of the program. The three string manipulation functions
and one procedure are Length, Index, Substring and Concat. For example, in
order to use Substring, include the file Substring:

PROGRAM MyExample;
CONST
 Maxstring = 10; (* = 10 as an example *)
TYPE
 String = ARRAY[1..Maxstring] OF Char;
#i Substring.I
BEGIN
 ...

The file containing the string manipulation function or procedure always is
appended with .I as above. All the examples that follow use Maxstring = 10,
although any value up to Maxint may be used.

Length

A string ends with the first blank space or the last character in the array.
Length, a nonstandard function, returns the length of a String. For example,
suppose:

PROGRAM MyExample;
CONST
 Maxstring = 10; (* = 10 as an example *)
TYPE
 String = ARRAY(1..Maxstring] OF Char;
VAR
 s : String;
#i Length.I

BEGIN
 s := 'abcd ';
 IF (Length(s) = 4) THEN Writeln('This is true');
END.

88 Kyan Pascal V. 1.1

The Length function can be used in a Write statement as follows to eliminate
the trailing blanks in a string appearing in the output.

Writeln (S:Length(S));

Concat

Concat is an abbreviation of concatenate which means to put two strings
together to produce a third. If S1 = 'ANY ' and S2 = 'BODY ', then
S3 = 'ANYBODY ' where the program calls:

Concat(S1,S2,S3);

Index

Index is a function that returns the position of one string within another.
If Index is used to find the position of S1 := 'a ' in
S2 := 'baby ' then the following statement is true:

Index(S1,S2) = 2;

If the S1 is not found in S2, then the value of Index = 0.

Substring

Substring extracts part of a string, indicated by its two indices m and n. If
a string of length 1 is to extracted from S1 := 'abcd ' starting at the
second position then the value for Substring would be 'b '.

Substring(S1,2,1) = 'b ' (* This has a true value *)

Kyan Pascal V. 1.1 89

APPENDIX A: COMPILER, ASSEMBLER, AND RUN-TIME ERROR MESSAGES

Compiler Error Messages

 1 syntax error
 2 unexpected end of input
 3 array dimension expected
 4 to or downto expected
 5 type specification expected
 6 ordinal type expected
 7 := expected
 8 : expected
 9 , expected
10 ; or end expected
11 compiler directive expected
12 do expected
13 end expected
14 = expected
15 identifier expected
16 [expected
17 constant expected
18 (expected
19 of expected
20 type identifier expected
21 . expected
22 program expected
23] expected
24) expected
25 ; expected
26 .. expected
27 then expected
28 unsigned integer expected
29 file name expected
30 can't open file
31 illegal file name
32 ; or until expected
33 missing end statement(s)
34 extraneous end statements)
35 ; or case expected

Assembler Error Messages

A addressing mode error
L label required with EQU
M multiply defined symbol
U undefined expression
O unrecognizable opcode
S syntax error
J branch address is out of range
F symbol table overflow

90 Kyan Pascal V. 1.1

Run Time Error Messages

bad subscript
too many active files (Maximum is 5 files)
file not active
set element out of range
heap overflow
bad ln(arguement)
bad exp(arguement)
read past eof (End of File)
out of memory
arithmetic overflow

Atari File Error Messages

Shown below are the known CIO STATUS BYTE values for Atari DOS 2.5.

Hex (Dec) Description

01 (001) -- OPERATION COMPLETE (NO ERRORS)

80 (128) -- [BREAK] KEY ABORT
81 (129) -- IOCB ALREADY IN USE (OPEN)
82 (130) -- NON-EXISTENT DEVICE
83 (131) -- OPENED FOR WRITE ONLY
84 (132) -- INVALID COMMAND
85 (133) -- DEVICE OR FILE NOT OPEN
86 (134) -- INVALID IOCB NUMBER (Y reg only)
87 (135) -- OPENED FOR READ ONLY
88 (136) -- END OF FILE
89 (137) -- TRUNCATED RECORD
8A (138) -- DEVICE TIMEOUT (DOESN'T RESPOND)
8B (139) -- DEVICE NAK
8C (140) -- SERIAL BUS INPUT FRAMING ERROR
8D (141) -- CURSOR out-of-range
8E (142) -- SERIAL BUS DATA FRAME OVERRUN ERROR
8F (143) -- SERIAL BUS DATA FRAME DEVICE CHECKSUM ERROR
90 (144) -- DEVICE DONE ERROR
91 (145) -- BAD SCREEN MODE
92 (146) -- FUNCTION NOT SUPPORTED BY HANDLER
93 (147) -- INSUFFICIENT MEMORY FOR SCREEN MODE

A0 (160) -- DISK DRIVE # ERROR
A1 (161) -- TOO MANY OPEN DISK FILES
A2 (162) -- DISK FULL
A3 (163) -- FATAL DISK I/O ERROR
A4 (164) -- INTERNAL FILE # MISMATCH
A5 (165) -- FILE NAME ERROR
A6 (166) -- POINT DATA LENGTH ERROR
A7 (167) -- FILE LOCKED
A8 (168) -- COMMAND INVALID FOR DISK
A9 (169) -- DIRECTORY FULL (64 FILES)
AA (170) -- FILE NOT FOUND
AB (171) -- POINT INVALID

Kyan Pascal V. 1.1 91

APPENDIX B: QUICK GUIDE TO KYAN Pascal

Predefined Types:
 Integer, Boolean, Real, Char, Pointer,
 (scalar values..)

Predefined File Types:
 Input, Output, Text

Compound Types (Reserved Words):
 ARRAY[..] OF.., RECORD OF..
 SET OF.., FILE OF..

Predefined Functions with Real or Integer Parameters*:
 Abs(Real or Integer), Arctan(Real or Integer),
 Cos(Real or Integer), Exp(Real or Integer),
 Ln(Real or Integer), Round(Real),
 Sin(Real or Integer), Sqr(Real or Integer),
 Sqrt(Real or Integer), Trunc(Real)

Predefined Functions with Other Parameters*:

 (PR, PRON, PROFF are non-standard)
 Ord(scalar), Pred(scalar), Succ(scalar),
 Chr(Integer), Odd(Integer), EOF(file),
 EOLN(Text file), PR(slot number), PRON, PROFF

Predefined File Procedures:
 (Chain are non-standard)
 Reset(file),
 Rewrite(file),
 Get(file), Put(file), Page(file), Read(..), Readln(..),
 Write(..), Writeln(..),
 Chain(file), Seek(file, element number)

Predefined Pointer Procedures:
 New(pointer), Dispose(pointer)
 Predefined Non-standard Pointer Procedures:
 Assign(pointer, integer)

Predefined Constants:
 True, False, Maxint

Value Reserved for Unassigned Pointer:
 NIL

Conditional Instructions (Reserved Words):
 IF-THEN-ELSE, WHILE-DO, REPEAT-UNTIL,
 FOR-TO-DO, FOR-DOWNTO-DO

Operators (Reserved Words):
 Arithmetic Operators: DIV, MOD
 Boolean Operators: AND, NOT, OR, IN

Operators (Reserved Characters):
 Arithmetic Operators: + - * /
 Relational (Comparison) Operators: = < >

 * Allowed parameter types appear in parentheses.

92 Kyan Pascal V. 1.1

Miscellaneous Reserved Characters:
 Punctuation: . , ; : ' () []
 Pointer: ^

Grammatical Identifiers (Reserved Words):
 CONST, FUNCTION, LABEL, PROCEDURE,
 PROGRAM, RECORD, TYPE, VAR,
 BEGIN..END, CASE..OF.., GOTO, WITH..DO..

Pre-Compilation Instructions (Non-standard):
 #i.....# (include file)
 #a.....# (include assembly code)

String Functions and Procedures (Non-standard):
 (String and Maxstring must be declared)
 Length(string), Concat(string,string,string),
 Index(string, string), Substring(string, integer, integer)

Graphics (Non-standard):
 Graphics(integer), SetColor(Register,Hue,Luminance),
 Plot(Horizontal,Vertical,Color), Position(Horizontal,Vertical),
 Locate(Horizontal,Vertical,Data), Drawto(Horizontal,Vertical,Color

Kyan Pascal V. 1.1 93

APPENDIX C: SPECIFICATIONS

Kyan Pascal

Integer: Range of -32768 to +32767
 Maxint = 32767

Real: Range of -1.00E+99 to +1.00E+99
 Precision of 13 decimal digits

Char: Character
 Printable and non-printable ASCII characters
 corresponding to ordinal values 0 to 255

Pointer: Represented by 16-bit Integer

SET: Maximum number of members is 255

Requirements: 1 Disk Drive & 64 KiB memory

Maximum Program Size : 29 KiB

Significant Identifier Length: 8 characters

94 Kyan Pascal V. 1.1

ATARI Memory Map

0

1 FMS *4

*5

2 User Program & Data ───┐

3 HEAP |

4 ↓ |

5 ├── 29K

6 |

7 |

8 ↑ |

9 Stack ───┘ *6

A Library *7

B

C

D

E OS

F

4 File Management System is located from $800 to $2000 and $9400 to $BF00.
5 Stack starts at $93FF and grows toward low memory.
6 User program is loaded starting at $2000.

However, when graphics procedures are included, user program should be reloaded
upward to leave room for graphics starting at $2000. The HEAP starts at the end of
the program and grows upward.

7 The library is located from $9400 to $BBFF. The screen area and display list are
located from $BC00 to $BFFF.

95

INDEX

Actual Parameter.....42
AND..................36
ARRAY................51
Copy............53, 57
Multidimensional52, 57
Of Records..........61

Assembler Directives. 83
Assembly Routines....83
Assign...............76
Assignment...........28
Body (of program)....17
Boolean............35f.
Buffer...............70
CASE OF..............39
Case Selector........64
Chain................86
Char.................30
Chr..................40
Comment..............17
Constant...............
CONST...............21
Declaration.........17
Local...............41

Difference...........66
Dispose..............78
DIV..................35
DOWNTO...............34
Editor................5
Element................
Of ARRAY............51
Of SET..............65

EOF..............17, 71
EOLN.............17, 56
Field................59
Files................69
Input...........20, 69
Output..........20, 69
Random Access.......73

FOR..................34
Formal Parameter.....42

Forward Reference....48
Function.............44
Recursive...........57

Get..................71
Global...............45
GOTO.................49
Identifier...........20
Scope Of............46

IF-THEN..............28
IN...................66
Input................20
Integer..............24
Intersection.........66
Label................49
Link.................77
Local................45
Maxint...............25
Member...............65
Memory Map...........94
MOD..................35
Nesting..............46
New..................75
NIL..................77
Node.................75
NOT..................36
Odd (the function). . .45
Operator...............
Arithmetic..........25
Relational..........27
Sets................65

OR...................36
Ord..................40
Output...............20
Parameter........42, 44
Value...............43
Variable............43

Peek.................76
Pointer..............75
Poke.................76
Precedence...........36

Pred.................40
Print, source file. . .12
Printer..........12, 20
Procedure..............
Recursive...........57

Procedures...........41
Put..................70
Read.................20
Readln.........20f., 23
Real.................24
Record...............59
Array of............61
Copy................59
File of.............72
Variant.............63

Recursion............57
Reset................71
Rewrite..............70
Round................25
Scalar...........38, 65
Scope..............46f.
Seek.................73
Set..................65
Stack............84, 94
String...........30, 87
Subrange.............39
Succ.................40
Text.................72
Trunc................25
Union................66
Value................40
Variable...............
Global..............45
Local...............45

Variant..............63
WHILE................30
WITH.................63
Write................20
Writeln..........20, 23

ATARI COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED
REGARDING THE ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY 0 ITS
FITNESS FOR ANY PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS
NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NO APPLY TO YOU. THIS
WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS THERE MAY BE OTHER RIGHTS
THAT YOU MAY HAVE WHICH VARY FROM STATE T STATE.

DOS 2.5 are copyrighted programs of ATARI Computer, Inc. licensed to Kyan
Software to distribute for use only in combination with Kyan Pascal ATARI
Software shall not be copied onto another diskette (except for archive
purposes) or into memory unless as part of the execution of Kyan Pascal.
When Kyan Pascal has completed execution ATARI Software shall no be used by
any other program.

Kyan Pascal V. 1.1 97

SOFTWARE MEDIA LIMITED WARRANTY

Kyan Software warrants to the original consumer purchaser of Kyan Pascal for
a period of ninety (90) days from the date of purchase that the recording
medium, and only the recording medium, on which the software program is
recorded will be free from defects in materials and workmanship. Defective
media returned by purchaser to Kyan Software during that ninety day period
will be replaced free of charge provided that the returned media has not been
subjected to abuse, unreasonable use, mistreatment, neglect or excessive
wear.

Following the initial ninety-day period, defective media will be replaced for
a $9.50 replacement fee. To qualify for replacement, defective media must be
returned postage paid in protective packaging to:
Kyan Software
1850 Union St. #183
San Francisco, CA 94123

Defective media must be accompanied by (1) proof of purchase, (2) a brief
statement describing the defect, (3) a $9.50 check payable to Kyan Software
(if beyond the ninety day warranty period), and (4) your return address.

THIS WARRANTY IS LIMITED TO THE RECORDING MEDIA ONLY AND DOES NOT APPLY TO
THE SOFTWARE PROGRAM ITSELF WHICH IS PROVIDED "AS IS".

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, WHETHER ORAL OR WRITTEN,
EXPRESS OR IMPLIED. ANY APPLICABLE IMPLIED WARRANTIES INCLUDING WARRANTIES OF
MERCHANTABILITY AND FITNESS ARE HEREBY LIMITED TO NINETY DAYS FROM THE DATE
OF PURCHASE. CONSEQUENTIAL OR INCIDENTAL DAMAGES RESULTING FROM A BREACH OF
ANY APPLICABLE EXPRESS OR IMPLIED WARRANTIES ARE HEREBY EXCLUDED.

Some states do not allow limitations on how long an implied warranty lasts or
do not allow the exclusion or limitation of incidental or consequential
damages, so the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights and you may also have other
rights which vary from state to state.

back cover & spine not available

	PREFACE
	INTRODUCTION
	EDITOR AND COMPILER INSTRUCTIONS
	Creating a File, an Example
	End of Editing
	Files and File Names
	Cursor Movement
	Delete Commands
	Find String and Change String (Search and Replace)
	Edit at Line Number #n
	Including a File
	Block Move Commands
	Editing HELLO, an Example
	Compiling a File
	Compiler Options
	Running Files and File Name Extensions
	Printing a Program
	Compiler Error Messages, an Example
	To Halt a Program While It Is Running
	RAM Disk
	Atari DOS 2.5
	HELP
	List of Editor Commands
	List of Compiler/Assembler Commands
	Other Commands

	PART I: SAMPLE PROGRAMS
	EGO PROGRAM
	Program Statement and Reserved Words
	Declaration and Program Body
	Analysis of Ego

	CONSTRUCTION PROGRAM
	Analysis of Construction
	Algorithm
	Identifiers
	Write and Read Commands
	Input and Output and Printing the Output
	Readln
	CONST

	PROGRAM TO FIND THE AVERAGE
	Readln and Writeln
	Real and Integer Data Types
	Trunc, Round and Maxint
	Arithmetic Operators

	SOCIAL SECURITY PROGRAM
	Relational Operators
	The IF-THEN Statement
	The Assignment Statement

	ALPHABETIZE PROGRAM
	FirstWord Algorithm
	String and Char Types
	WHILE

	FACTORIAL PROGRAM
	Analysis of Program
	FOR Loops and Loop Control Variable

	BOOLEAN PROGRAM
	Boolean Data Type
	DIV and MOD Operators
	Boolean Operators
	Operator Precedence

	MULTI-DIGIT HEXADECIMAL CONVERSION
	Algorithm
	REPEAT UNTIL
	Scalar Types and Boolean Variables
	Subrange Types
	CASE OF
	The Functions Ord, Pred, Succ, and Chr

	PART II: PROGRAMMING TECHNIQUES
	PROCEDURES
	Declaring and Executing PROCEDURES
	Parameter Lists, Actual and Formal
	Variable and Value Parameters
	Correspondence Between Actual and Formal Parameters
	Functions
	Declaring Functions
	The Function Odd
	Global and Local Variables
	Nesting of Functions and Procedures
	Global and Local Types
	Forward References
	Unconditional Branch: GOTO

	ARRAYS
	Arrays of Arrays and Multidimensional Arrays
	Adding Two Multidimensional Arrays
	The Array As a Parameter
	Program Example1
	Program Example2
	End of Line
	Recursive Procedures and Functions
	Copying Arrays

	RECORDS
	Copying a Record
	Program Absolute
	Program ElapsedTime
	Arrays of Records
	WITH
	Variant Records

	SETS
	Operations on Sets
	Using Sets to Examine the Members of an Array

	FILES
	File Declaration
	Writing to a File
	Program Store (List)
	Reading a File
	Text Files
	Files of Records
	Random Files

	POINTER VARIABLES AND LINKED LISTS
	Pointers and Nodes
	New
	Peek and Poke
	Linked Lists and NIL
	Dispose
	How to Include Procedures and Functions from Other Files
	Including Files, Other Applications

	THE ASSEMBLED PROGRAM AND ITS USES
	Assembly Language Routines
	Assembler Directives
	How to Use Assembly Routines to Access Pascal Variables
	Predefined Labels
	Passing Parameters through Chain
	How to Chain Source Code Files

	STRING MANIPULATION
	String
	Length
	Concat
	Index
	Substring

	APPENDIX A: COMPILER, ASSEMBLER, AND RUN-TIME ERROR MESSAGES
	Compiler Error Messages
	Assembler Error Messages
	Run Time Error Messages
	Atari File Error Messages

	APPENDIX B: QUICK GUIDE TO KYAN Pascal
	APPENDIX C: SPECIFICATIONS
	Kyan Pascal
	ATARI Memory Map

	INDEX
	SOFTWARE MEDIA LIMITED WARRANTY

