
(ATARI pilot EXTERNAL SPECIFICATION , REVISION E 27^Cct-8£)

ATARI PILOT EXTERNAL SPECIFICATION

Preliminary release (23-AUG-79)
Revision A (06-SEP-79)
Revision E (18-SEP-79)
Revision C (22-OCT-79)
Revision D (25-FEB-80)
Revision E (27-OCT-80)

Prepared by: Harry B. Stewart





(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E — 27-Oct-SC)

ATARI PILOT EXTERNAL SPECIFICATION

1.0 Introduction

2. 0 Design Goals

3. C PILOT Operating Modes
3.1 Immediate mode
3.2 Run mode
3.3 Auto-number input

4.0 PILOT General Statement Syntax
4.1 Line Number
4.2 Statement Label
4. 3 PILOT Command
4.4 Condition
4.5 Field Delimiting
4. 6 Comment
4.7 Command Continuation

5.0 PILOT Data Types
5.1 Numeric Data

5.1.1 Numeric Constants
5.1.2 Numeric Variables
5.1.3 Random Number
5.1.4 Atari Controller Sense
5.1.5 Special Variables
5.1.6 Pointer
5.1.7 Numeric Expression

5.2 Text Data
5.2.1 Text Literal
5.2.2 Named Strings
5.2.3 Text Expression
5.2.4 String Indirection

5.3 Explicit Delimiting

6.0 PILOT Commands and Syntax
6.1 PILOT run/immediate mode commands

6.1.1 TYPE Commands (T, Y & N)
6.1.2 ACCEPT Command (A)
6.1.3 MATCH Command (M)

6.1.4 MATCH (Producing) STRINGS Command (MS)
6.1.5 COMPUTE Command (C)
6.1.6 REMARK Command (R)
6.1.7 JUMP Command (J)

6.1.8 JUMP on MATCH Command (JM)
6.1.9 USE Command (U)

6.1.10 END Command (E)

6.1.11 NEW VARIA3LES Command (VNEW)
6.1.12 GRAPHICS Command (GR)
6.1.13 SOUND Command (SO)
6.1.14 PAUSE Command (PA)
6.1.15 CASSETTE TAPE Command (TAPE)
6.1.16 CASSETTE TAPE SYNC Command (TSYNC)
6.1.17 I/O Commands (READ, WRITE & CLOSE)
6.1.18 POSITION CURSOR Command (PCS)
6.1.19 TRACE Command (TRACE)
6.1*. 23 DUMP Command (DUMP)



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION

6.1.21 LOAD Command (LOAD)
6.1.2 2 CALL Command (CALL)

6.2 PILOT immediate mode only commands
6.2.1 LIST Command (LIST)
6.2.2 RUN Command (RUN)
6.2.3 SAVE Command (SAVE)
6.2.4 DOS Command (DOS)
6.3.5 NEW Command (NEW)
6.3.6 AUTO-NUMBER Command (AUTO)
6.3.7 RENUMBER Command (REN)

7.0 PILOT Message Responses
7.1 Syntax Errors
7.2 Run- time Errors
7.3 Informative (non-error) Messages

Appendix A — PILOT DATA SYNTAX SUMMARY

Appendix B — PILOT COMMAND SUMMARY

ix C — PILOT I/O ERROR CODES

Appendix D — SIGNIFICANT MEMORY ADDRESSES

Appendis E — MODE CHANGE BEHAVIORS

Appendix F — ATARI CONTROLLER CHARACTERISTICS

Appendix G — APPLICATION NOTES



(ATARI PILOT EXTERNAL SPECIFICATION
, REVISION E — 27-Oct-SB)

I

•

Z Introduction

This document provides an external specification of tne Atari^ PILOT language and operating environment. The operating modes
of the PILOT interpreter, the syntax for the language elements
and commands, and the behavior of the system in response to
commands will all be discussed. The specification was prepared
as an implementation aid for the implementor and as a design
review document for Atari. Accordingly, the presentation is
somewhat formal and brief, rather than tutorial, in nature.

5



2. 0 Design Goals

The primary design goals associated with this implementation of

Atari PILOT are:

Make the behavior of the system as consistent and easy to learn
as possible

.

Maintain compatibility with the core PILOT definition ('Guide to

3 080 PILOT, Version 1.1 ') as written by John A. Starkweather.

Allow a reasonable amount of access to the Atari system
capabilities, but not at the expense of having a small, clean,
and easy to learn language.

Provide as much information to the user as possible, in a form
that is easy to use. For example: error messages instead of

error numbers, many debug features, etc.

Maintain compa tabil i ty with Atari BASIC where it does not

directly conflict with the PILOT language.



4

(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E — 27-Oct-80)

3.0 PILOT Operating Modes

PILOT is always in one of three operating modes, eitner
immediate mode, run mode or auto-number input mode. In
immediate mode, the interpreter reads and executes command lines
from the Screen Editor; while in run mode, the interpreter
executes a program from the deferred program storage area; and
wnile in auto-number input mode, the interpreter reads PILOT
statements from the Screen Editor and saves them for deferred
execution.

3.1 Immediate Mode
—

The system initializes to immediate mode and signals that it is
ready to accept a PILOT input line by issuing a prompt message
1 READY 1 to the screen and displaying a visible cursor (white
box) at the beginning of the following line. The operator then
has three choices: either enter a PILOT statement for immediate
execution, enter a PILOT statement for deferred execution, or
delete a deferred PILOT statement. The mechanism for making the
choice is an optional line number at the beginning of the input
line, as shown below:

T : HELLO Immediate execution (no line number)

.

100 T : HELLO Deferred execution (line number).
100 Delete line 100 (no statement).

The system remains in immediate mode until one of the commands
shown below is entered for immediate^ execution , at which time
the system changes mode.

Command New mode

Run Run
Jump Run
End Run
Use Run
Auto-number Auto-number
Dos Leaves PILOT environment

3.2 Run Mode

In run mode the PILOT interpreter is executing the program
residing in the program storage area; the program will execute
until one of the following conditions occurs:

The operator presses the BREAK key (preferred to RESET because
BREAK produces an orderly stop)

.

The operator presses the RESET key (potentially dangerous
because PILOT could be in the process of altering the string
variable list; the interruption would leave the list in an
unusable state) .

The program runs out of statements to execute.



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E — i'/-Oct-8-tf)

A PILOT End command is executed in the program with the Use
stack empty (the normal termination technique) .

,

A run-time error is encountered, such as a jump to a non-
existent label.

When the deferred program ceases execution due to one of the
above stated events, the system will return to immediate mode.
In most cases, a message will be generated to indicate why. See
Appendix E for a table showing the differences between these
ways of terminating run mode.

3.3 Auto-number Input Mode

In auto-number input mode, the PILOT interpreter is reading
PILOT statements from the Screen Editor, syntax checking the
statements, and if correct then appending an internally
generated line number and storing the statement in the program
storage area. When a totally blank line is input by the
operator, or if an invalid line number is generated, PILOT
returns to immediate mode.



( ATAKi ¥ i LUT tATLKNAL bFfcX I f 1CATION , KiiVlblUN Z /-UCC-tf ISJ

4.0 PILOT General Statement Syntax

The syntax specifications contained in the body of this document
are similar to 3NF , except that square bracket pairs w

[ ... ]
"

are used to delimit optional fields.

<PILCT input line> : := [<line #>][<PILCT statement) ] <EOL>
<line #> ::= <numeric constant)
<PILOT statement) : := [<label>] [<command>] [<comment>]
<label> *<label name)
<label name) ::= <a lphanumer ic character) [ <label name)]
<command> : := f<command name)] [ <condi tion) ] : [<command

parameters)]
<command name) A I T I M I C I J I U I E I R I Y I N i RUN

I LIST t DUMP I NEW I VNEW

i

READ I WRITE I
CLOSE I MS |JM I GR I SO I PA I POS I TAP£

I

LOAD I
SAVE I DOS I TS YNC I AUTO I REN I TRACE

<condition> : := [YIN] [ ( <nexp> )

]

<command parameters) : as defined for each command in Section 6

<comment> [<any character other than EOL)
<EOL> : <end-of-line character (9B hex) supplied by the

Screen Editor on every line.)

Some examples of PILOT input lines with valid syntax follow:

100 T: HELLO, HOW ARE YOU TODAY?
20 A:
30
8 00 0 *START
T: HELLO THERE.
160 :

9 99 *LOOP C:#A=#A+1 [ INCREMENT THE LOOP COUNT.
8 4 TY : VERY GOOD I

60 J(#A>1) :*MORE

The elements of a PILOT input line are described in the
following paragraphs:

4.1 Line Number

The optional line number must be within the range of 0 to 9999 f

when entered.

4.2 Statement Label

The statement label may be of any length (as governed by the
longest input line allowed) and all characters in the label are
significant and are retained. There is no test made for
duplicate labels; if there are two statements with identical
labels, the one wich the lower line number will be the target of
Jump and Use commands. The label is delimited by the first non-
alphanumeric character found.

4.3 PI XT Command



( ATAK1 FiLUT tAT uKWA L oftiLitTLATlUN, KiViSiUlN ti ~ I /-UCC-OBj

The PILOT command must be spelled precisely as there are no
short forms or long forms supported. For example: " TYPEN :

"

would be interpreted as TY<junk>: rather than T< ignor ed>N : . The
Atari PILOT commands are specified in Section 6.

4.4 Condition

The optional condition field allows for the selective execution
of any and all PILOT statements. There are two criteria for the
selection: the Match result flag tests, Y and N, and/or the
arithmetic test ( <numeric expression> ) . When both tests
are part of the condition, both must be true for the statement
to execute.

If Y is the condition, the statement is executed only if the
most recent Match command found a match; conversely, if N is the
condition, the statement is executed if the most recent Match
command did not find a match.

For the arithmetic test, if the expression within parens has a

value greater than zero, the statement is executed; if the value
is less than or equal to zero, the statement is not executed.

4.5 Field Delimiting

All fields are delimited by the first occurrence of a character
which is not valid for that field. For example, the line number
field is delimited by the first non-numeric character, which may
be (but is not required to be) a blank. 31anks are ignored to
the left of the 1

:
f

, except to delimit fields, so they may be
used liberally to format a PILOT input line; note, however, that
in deferred execution statements, the blanks do use up storage
space (one byte per blank). Some examples of valid input lines
(without and without blanks) are shown below:

100T:THIS IS VALID.
100*LOOP A:
1 0 0J ( #1 - 3) : *LOOP
100 J(*I-31 :*LOOP

The comma is a general purpose operand delimiter (to the right
of the 1 :

'
) and commas and blanks may be used interchangeably

in that context. Note that any consecutive string of commas
and/or blanks is treated as a single separator, except within
the Match commands.

<sep> <space>
I , I <sep><sep>

For example the statements shown below are all equivalent:

LIST:100 200
LIST: 100, 200
LIST: 103
LIST: 100, , ,

200
t t t , ,200

Sinale snacs as seDarator.
Single comma as separator.
Multiple spaces as separator
Multiple commas and spaces.

-3-



( A'rAKi PILOT EXTERNAL SPECIFICATION , REVISION E -- 27-Oct-80j

4 . 6 Comment

The optional statement comment is delimited at the beginning by
the square left bracket character ('[') and at the end by the
EOL character; any character may appear inside a comment.

4.7 Command Continuation

There is one special case not yet described, and that is command
" continuation" , in which the command name and condition result
are used from the most recently seen statement. This option is
specified by having the command name and condition field both
absent from the statement, as shown in the examples below:

1 00 T(#A>40)

:

105 : THE RESULT IS TOO LARGE

.

110 -.PLEASE TRY AGAIN.

which is equivalent to:

100 T(#A>40)

:

105 T(#A>40):THE RESULT IS TOO LARGE.
110 T(#A>40) :PLEASE TRY AGAIN.

Continuation is allowed only after the Type commands (T, Y & N)
and the Remark command when in run mode? a continuation after
any other command will result in a run-time error, which will
stop the execution of the offending program. Continuation is
allowed after any command when in immediate mode.

The default continuation command at power-up is Type; that same
default is also established after the following conditions:
RESET, an error of any kind and transition from run mode to
immediate mode.



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION £ — 27-OCC-80)

5.0 PILOT Data Types

PILOT allows the user to manipulate two distinct types of data:
numeric data and text daea.

5 • 1 Numer ic Data

Numeric data is maintained internally as 16-bit signed integers
with a range of -32768 to +32767. All operations upon numeric
data will produce integer results, truncated to 16 bits, with
numbers in the range of 32763 to 65535 being treated as negative
numbers in the range -32763 to -1 (standard two's complement
arithmetic) . A result of this convention is that the positive
number domain wraps into the negative number domain, e.g. 32767

-32768. Note that this is not considered an error by
PILOT.

The specifications for language elements that represent numeric
data of various types <xre given below:

5.1.1 Numeric Constants — Numeric constants consist of one or
more numeric digits, terminated by any non-numeric character.
Numbers may have any (non-zero) number of digits, with the
resultant value being truncated to a 16-bit signed number. In
most, but not all, contexts a unary minus sign is allowed to
precede the first digit.

<numeric constant) ::= [-](<numeric constant) ] <digit>

Examples

:

1

32767
30000000000023
345698765243621864
-475

5.1.2 Numeric Variables -- Numeric variables are specified by
the prefix delimiter ' #

f followed by one of the letters 'A'

through f

Z
!

. There are 26 numeric variables that can be
accessed by the language, #A through |2,

(numeric variable> : := #<alphabetic character)

Examples

:

#L
#J

5.1.3 Random Number -- A hardware generated random number may be
used anywhere a numeric expression is allowed; the '?' character
is used to specify that a random value is to be selected.

-1 3-



( ATARI PILOT EXTERNAL SPECIFICATION, REVISION E — 27-Oct-Hli)

Examples

:

J (?) :*SOMETIMES
C:#A»?
GR : TURN ?

Toss of the coin Jump.
#A takes on a random value.
Rotate theta by random amount.

5.1.4 Atari Controller Sense — The Atari paddle controllers,
joysticks, lightpen and their associated trigger inputs may be
sensed as numeric data using the following constructs:

< joystick sense) %J<select>
<paddle sense) : := %P<select>
<trigger sense) ::= %T<select>
<lightpen sense) %H I IV I %L
<select> <number constant) I <numeric variable) I <pointer>

The sense constructs are recognized anywhere a numeric constant
is allowed and in text expressions. See Appendix F for more
information regarding the controllers and the sense values.

Examples

:

J (%T0) :*TRIGGER

C :#J=%J#I
C :#H = %H

Jump if trigger set.
Read Paddle #1 to numeric variable.
Read Joystick specified by #1.
Read lightpen horizontal value.

5.1.5 Special Variables — In addition to the controller sense
variables, there are several other special "read only" variables
which may be sensed (as if numeric constants) using the
following, constructs:

<f ree memory) : := %F
< graphics x-coordinate>
<graphics y-coordinate>
<graphics theta angle)
<graphics data value) :

<Match result) : := %M

%X

:= %A
= 12

See section 6.1.12

See section 6.1.4

The special variables are recognized
is allowed and in text expressions.

anywhere a numeric constant

Examples

:

T : FREE MEMORY =

J (%M=5) : *CASE5
GR.-GOTO #X,%Y
J (%X>*80) :*OUTX

%F. Displays the amount of unused memory
Jump on Match result.
Goto computed x, without changing y.
Test for graphics cursor out window.

5.1.6 Pointer — A pointer is the specification of the memory
address of a numeric quantity, the data at the specified address
being one or two bytes in length. A pointer may be used
anywhere a numeric variable is allowed.



(ATAK1 P ILvJT EXTERNAL SPECIFICATION, REVISION £ — Z/-OCt->jtf)

The syntax for the pointer specification is shown below:

<word pointer > : :* (§<address>
<byte point.er> :: = @E<address>
<address> f:« <numeric constant) I <numeric variable> I <wocd pointer)

The , 3 t is an optional modifier which specifies that the pointer
points to a memory byre. If the f B ! is not present the pointer
is assumed to point to the l.s.b. of a two-byte word, where the
next higher memory location contains the m.s.b. of that word.
The 5502 has no inherent word organi zat ion , so words may start
on either even or odd addresses.

In a multi-level indirect pointer reference the 1 B 1

, if present,
may only be placed at the outermost level, as shown below:

C:#A « @@B4096
is valid.
is not valid

Examples:

Content of location 4096 (& 4097)
Content of location 5300 (•& 5001)
Content of location 4103 (& 4104)

5000
4103
5160

C:#A =*

C : tA =

C:*A =

4096
(§4096
§@4096

#A m 4096
#A 5000
#A = 5160

C:#A = 3B4096
C:*A = 9B4097 #A •

Note

136 (lsb of value 5000).
19 (msb of value 5000).
that 5000 » (19 * 256) + 136.-

The PILOT equivalents of the BASIC PEEK function and POKE
command are shown below:

PEEK (<addr>)
POKE <addr> , <data>

§B<addr>
C :@B<addr> <data>

Since the internal storage for all numeric quantities within
PILOT is as word quantities, the following transformations will
occur when byte pointers are used:

3yte value as target. the l.s.b. of
is stored and the m.s.b. is not used,
byte above the byte target is neither

tne integer source value
The next higher memory
accessed nor altered.

3yte value as source the l.s.b. of the integer result is
set to the value of the referenced byte and the m.s.b. of the
integer result is set to zero. The next higher memory byte
above the byte source is not accessed.

When a pointer is used as a target for a numeric assignment, the
byte or word is always read before it is written to; this may
cause problems when writing to some types of hardware devices,
such as a PIA, where the hidden read may clear a status bit
before it is read by the program.

-I 2-



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E 27-Oct-83)

5.1.7 Numeric Expression A numeric expression (<nexp>) is a
list of one or more numeric elements separated by numeric or
logical operators, as in an algebraic formula. Numeric
expressions are evaluated from left to right, with no operator
precedence rules; parentheses are allowed (encouraged?) to
either clarify the formulae or to alter the left to right
evaluation scheme. Any number of redundant parens are"allowed
(those that don f t alter the evaluation order) and up to 2 levels
of nested non- redundant parens are allowed.

<nexp> : : = <operand> [ <oper ator ><nexp> ] I
(<nexp>) |-<nexp>

<operand> <numeric constant) I <numer ic variable>|?l
<pointer> I Controller sense) I <special variable)

<o?erator> : := + I
-

I

*
I / I \ I > |< I » |<= | >= |<>

The operators have the following meanings:

+ is the numeric addition operator.
is the numeric subtraction operator.

* is the numeric multiplication operator.
/ is the numeric division operator (truncated result, as

opposed to the floor value or rounded result)

.

\ is the modulus operator (result is always positive)

.

The relational operators all have the characteristic that they
compare the term on their left with the term on their right and
generate a boolean result based upon the results of the
comparison. A value of 1 is generated when the comparison is
true, B when false.

> is the "greater than" operator (test for left greater than
right)

.

< is the K less than" operator (test for left less than right)

.

» is the "equal to" operator (test for left equal to right).
<= is the "less than or equal to" operator (left not greater

than r ight ) .

is the "greater than or equal to" operator (left not less
than right)

.

<> is the "unequal to" operator (test for left not equal to
right)

.

Examples

:

#A+ 4

((((7)))) Extra (redundant) parens don't matter
l+(142/(#J/6)

)

1+2+3+4+5+6+7+8+9
(1+2+3+4+5+6+7+8+9)
*J/-3
#V<3
(#A<3) * (#B=#C) Logical "and" of two relations.
(*D<>5) + (#2/2=1) Logical "or" of two relations.
§#?>%F

5.2 Text Data



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E — 27-OCt-b0)

Text data comes in two flavors, text literals and named strings.
Unlike most languages, PILOT does not require quotes or any
other kinds of delimiters for text literals; within the command
context, anything that cannot be identified as being otherwise
is assumed to be a text literal.

5.2.1 Text Literal — All textual data that is not explicitly
identified as being otherwise, is assumed to be a text literal.
Text literals may contain any ATASCII character except for the
following:

$ — this is the string variable name prefix delimiter. *

# — this is the numeric variable name prefix delimiter. *

% — this is the controller sense/special variable prefix
delimiter. *

@ — this is the pointer specifier. *

[
— this is the comment prefix delimiter.

<EOL> — this is the end of line delimiter.

* Note: these characters may be used as literals if the
character that follows does not start a valid data variable
specification; a space is always suitable for this purpose.
Some other possibilities are shown below:

T:YOUR WEIGHT IS 30#. the makes the literal.
T:#X%, ARE YOU SURE? the 1 makes the literal.
T : THE COST IS $#V. the 1 *' makes the ' $' literal.

See Appendix G, item 11 for a further discussion of using and
generating key words in text expressions.

Examples:

HERE IS SOME TEXT
THIS St THAT. AND SOME MORE,
a t t t » « n n

t . o o rj i

BLANKS ARE SIGNIFICANT TOO!

5.2.2 Named Strings A named string is a dynamic data element
that consists of a name portion and a data portion. Just as a

numeric variable has both a name (#A) and a value (-45), a

string variable has a name ( $B IRTHPLACE) and a value (SAN JOSE)

;

however, for a string variable, both the name and value are
text. A string variable name consists of the prefix delimiter

followed by at least one alphanumeric character (but up to
254 total). All characters in the string name have significance
and are retained. String variable data consists of a single
text literal of from zero (null string) characters up to 254
ATASCII characters. The data portion never includes an <EOL>
character

.

<string variable name) ::= $ <alphanumer i c character)
[<alphanumeric characters)]

Examples

:

1 4



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION E 27-«ct-8P)

SHAME
SUESPONS

E

$3 IRTHPLACE
SSI
$6

- SA

5,2.3 Text Expression A text expression is a list of one or
more textual elements which are concatenated to form a textual
result. A text expression is scanned from left to right, with
all data assumed to be literal text unless it is first delimited
by '#', 1

' %' or in which case it is then assumed to be a

numeric variable (if '#'), a string variable (if % $'), a

controller sense or special variable (if 1 %*) or a numeric
pointer (if 'Q'). If a string variable is undefined, its name
is substituted for the missing value. At the end of a variable
name, scanning resumes assuming literal text once again. An
optional underscore (• if present as the last character of
the text expression, will be converted to a blank as part of the
evaluation of the text expression; this features allows trailing
blank(s) to be part of text expressions, which the Atari Screen
Editor would otherwise not allow.

<texp> : <oper and> [ < t exp> ] [_]
<operand> <text 1 iteral> I <str ing ,var iable> I <numer ic

variable> I controller sense) I <special variable)

I

<pointer>

Examples:

THIS IS TEXT
HELLO $NAME
YOUR AGE IS #A.
HERE IS A TRAILING BLANK_
FREE MEMORY IS NOW %F BYTES.
THE VALUE IS @5003.

Text expression are evaluated into an internal buffer before
being used as data for a PILOT command; the buffer size is 254
characters and if a text expression exceeds that size it is
truncated .without, a warning message or error being generated.

5.2.4 String Indirection String indirection is a special
syntactic form in which the data portion of one string is made'
to specify the name of another string. Just as the value of
text literal ABC is 1 ABC 1

, and the value of $ABC is the data
portion of the string named ABC, so the value of $$ABC is the
data portion of the string whose name is the data portion of the
string named ABC. As many ,

$
t s as desired may precede the name

portion, and this form may be used wherever a string variable is

allowed. If the indirection cannot be carried to the number of
specified levels, because of undefined string names, the result
will be the same as that obtained by specifying a simple
undefined string name. The examples below may clarify string
i nd i rection

:



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION E -- 27-Qct-30)

S LADDER-JANE
S JANE-ATARI
SATARI»LUNC

H

existing named strings.

T : SLADDER
T : $ SLADDER
T : $ S SLADDER
T : $$$$LADDER

will produce 'JANE',
will oroduce 'ATARI',
will produce 1 LONCH 9

.

will produce ' SLUNCH'

Note that '$'s are not expected to be part of the string data in
order to do indirection; in fact, if they are present, they will
cause the indirection to fail, as they are not valid characters
in a string name. In other words, all indirection is specified
at the outer (command) level; no additional indirection is
obtained via f $'s in the strings being scanned.

String indirection is allowed anywhere a simple string variable
is allowed. See Appendix G, item 3 for one possible use for
string indirection.

5.3 Explicit Delimiting

Note that there may be up to four separate PILOT entities based
upon a single alphabetic letter, let us use the letter 1 F 1 for
an example:

F — the text literal
^F — the numeric variable
$F — the string variable
*F — the statement label

The PILOT system will not be confused, as all but the text
literal are explicitly delimited.



(ATAK1 F1LUT LXTLKNAL S PfcC if 1CAT ION , REVISION E —

6.0 PILOT Commands and Syntax

This section specifies the syntax of each of the commands that
are implemented in Atari PILOT. . First the commands that are
exe :uted in either run mode or immediate mode are defined,
followed by those that are executed only in immediate mode.

6.1 PILOT run/immediate mode commands

The commands described in this section may be executed from the
console while in immediate mode or may be entered to the program
storage area to form a program. The same syntax checking and
semantic processing is applied in either mode, so no special
rules have to be remembered. Immediate mode command execution
accesses the same data base as run mode command execution, so
the user may interact with his program's data as an aid in
debugging

.

6.1.1 TYPE Commands (T, Y or N) — These commands output
information to the text screen. The data to the right of the
1

:
1 is evaluated as a text expression (as described in section

5.2.3) and then output to the 'screen. Logic within the Type
command processor assures that no word will be broken at the
right margin of the text screen, unless that word's length
exceeds the 'defined screen width. Every physical line output is
terminated Dy an <EOL>, so that logical and physical lines are
synonymous, except when the last character to be output is a
f V# in which case the '\' and the <EOL> are both suppressed.

There are two alternate names provided for the Type command: 1 Y 1

is an abbreviation for 1 TY 1 and ! N f is an abbreviation for 1 TN '

;

note that the command forms 1 YY 1

,
1 YN 1

,
1 NN 1 and 1 NY 1 are

syntactically proper under this implementation, but are either
redundant (as in 'YY') or result in statements that will never
execute (as in 1 YN 1

) .

<type operand> = <texp> [\]

Examples

:

T : $N AME IS #A YEARS OLD
will produce JACK IS 10 YEARS OLD if $NAME=JACK & #A=10,
or $NAME IS 0 YEARS OLD if $NAME is undefined & #A = 0.

T:
will produce an empty line ( <EOL> only).

6.1.2 ACCEPT Command (A) — The Accept command allows the user
to enter data from the text screen to an internal storage area
known as the accept buffer. The Accept command allows one or
two optional operands to the right of the ' :'. If a string
variable name is the first operand, then the accepted data is
stored in that variable as well as in the accept buffer. If the
first operand is a numeric variable, then if the accepted data



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E 27-Oct-3fl)

contains a numeric constant anywhere in the text, the value is
stored in the variable or if the accepted data is totally non-
numeric then the value will be zero (no error message will be
generated). The input of an empty line ( <EOL> only) will result
in a numeric variable being set to zero, and a string variable
being set to the null (empty) value; note that null strings are
not the same as undefined strings.

If an , » l operator is present, then the text expression
right of the 1=1 will be assigned to the accept buffer,
than having PILOT go to the console to get accept data.

to the
rather

All accepted data goes through the following transformation as
it goes to the accept buffer (but not to the optional string
variable)

:

A space is inserted at the beginning of the accepted data.

A space is inserted at the end of the accepted' data.

All lower case alpha characters are converted to upper case.

All multiple spaces are converted to a single space.

The accept buffer is 254 characters in length and if the
accepted data exceeds that length the tail end of the data will
be truncated.

<accept operand> [<numeric var iable> I <str ing variable>]
[=<texp>]

Examples

:

A:
A:#A
A : SNAME
A—SLEFT
A: SWHAT=HI SNAME

Accepts data to the accept buffer only.
Sets £A to the numeric value entered.
Assigns to SNAME the text literal entered.
Assigns the value of SLEFT to accept buffer
Complex assignment to buffer and variable.

If the user program requires that numeric data be input when
asked for, the code sequence shown below will suffice:

*NUMIN A:#N [ ACCEPT A NUMBER.
M: 0,1, 2, 3, 4, 5 , 6,7, 8 ,

9

TN:Please enter a number.
JN:*NUMIN

6.1.3 MATCH Command (M) — The Match command scans the current
content of the accept buffer, trying to find an exact match with
one of the Match command fields. The operand is a text
expression which will evaluate to one or more match fields
separated by commas or, optionally, vertical bars. As always,
blanks have significance in text expressions. If a match is
found, the internal match flag is set true ( = 1 to n, where n is
the ordinal number of the match field producing the match); if
no match is found, the match flag is set false (= 0). This flag
is the one that is tested by the statement: conditional operators
1 Y 1 and f N f

, is used in evaluating the Jump match command, and

-13



lA*AKi P1LUT fcXTtSKNAJL SPECIFICATION, REVISION £ 27-Oct-8B)

also generates the value for the special variable 1 %M 1

.

<match operands> ::= [<vertical bar > ] [ <sk ip> ] <match list>
[<field sep>]-

<skip> : := <right arrow) | <skip><r ight arrow)
<match list> ::= <match f ield>

I

<match listxfield sepxmatch field>
<field sep> <contTna>

I <vertical bar>
<match field> [<ATASCII characters, not including the

field separator or EOL character)]

If the first character of the operand is a vertical bar (M*)f
then that character will be the field separator for the match
list, instead of a comma. If the first character of the operand
is anything other than a vertical bar, then the field separator
will be a comma. There is no situation in which both the
vertical bar and comma may be field separators at the same time.'

Cursor right characters (ESC CTRL-*) appearing at the beginning
of the operand (they may start after the optional vertical bar)
will cause pattern matching to start at the n+lth character of
the accept buffer, where n is the number of right arrows
specified. A single right arrow is used to allow pattern
matching to start after the omnipresent leading blank character
in the acceDt buffer.

Examples:

M: YES , YEAH , SUR£_ Tries to match words (note blanks).
M: YES , YEAH , SURE , Functionally identical to above.
M : YE , SURE A less precise matching of character

substrings within words.
M:$VERBLIST Uses a string variable containing

the match fields.
M: I . I ; I , I : Matching for punctuation marks,

including a comma.

The scan algorithm used in the Match command scans the accept
buffer to find a possible occurrence of the first specified
match field, if none is found then the accept buffer is scanned
to find an occurrence of the second specified match field, etc.
until a match is found or there are no more match fields.
Several special cases are shown below:

Null operand is not allowed.
Will match anything (null match)

.

Will match anything (null match).

M:
M: ,

M: THIS, THAT, , OTHER

6.1.4 MATCH (Producing) STRINGS Command (MS) — The Match
Strings command behaves exactly the same as the Match command,
and also produces three named strings as a result of any
successful match. SLEFT will have a value equal to everything
to the left of the match, SMATCH will have a value equal to the
match data, and $RIGHT will have a value equal to everything to
the right of the match. Any of these strings may have null
values, depending upon where the match occurred within the
accept buffer data. If the attempted match is unsuccessful, the
three strings will retain the values they had prior to the



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E — 27-Oct-80)

command execution.

When Cright a::ow> operands are specified, and a successful
match is made, the value of SLEFT does not contain the Accept
buffer characters skipped over by the <right arrow>s.

Cmatch operands> : : = (same as for the Match command)

Example:

A:=THIS IS A TEST.
MS: IS , WAS , WILL 3E ,

SLEFT =*
1 THIS 1

5MATCH = 1 IS 1

5RIGHT = 'A TEST. '

MS:^_ Match first imbedded blank.

A: -WHAT WILL HAPPEN?
MS:»»»_
SLEFT = 'AT'
SMATCH = '

'

5RIGHT = 'WILL HAPPEN? '

6.1.5 COMPUTE Command (C) — The Compute command assigns the
value of a numeric expression to a numeric variable or assigns
the value of a text expression to a string variable.

<compute operand) ::= <numeric var iable>=<nexp>

I

<string var iable>=<texp>

Examples

:

C:#L=^L-1 Decrements variable #L.
C:#C = 1 Assigns the value 1 to #C
C:#A=314*#R*#R/100 #A = 3.14 * #R**2.
C:#j = #J-(#A/2) Assigns new value to *J.
C :SADDRESS«#N SSTREET GILROY Assigns to $ADDRESS the

concatenation of the value of #N converted to
ATASCII, followed by the value of the string
SSTREET followed by the text literal GILROY.

C:$STEMP = SRIGHT String indirection O.K.

6.1.6 REMARK Command (R) — The Remark command allows for the
insertion of remarks into the body of a PILOT program. The
condition field result has no effect upon the action of this
command, except for slight variations in the time to execute.
That is to say, 1 R ' ,

1 RY ' and ' RK 1 are all equivalent.

<remark operand) :
: = <anything>

Examples

:

*



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION S — 27-Oct-SS

R:* *

R:* PILOT PROGRAM " TEACHER" *

R:* *

R:* 21-AUG-79 *

R:* *

6.1.7 JUMP Command (J) — A run mode Jump command allows the
running program to alter its normal linear flow by continuing
execution at the statement with the specified label. An
immediate mode Jump will cause PILOT to enter run mode and start
program execution at the specified label; contrary to Run
command execution, no initialization of variables, Use stack,
accept buffer or the screen will take place. If two or more
statements have the specified label, the one with the lowest
line number will be the target of the Jump.

<jump operand> = <label>

Examples

:

J:*L00P1
J : ^BEGINNING

6.1.8 JUMP (on) MATCH (JM) — The Jump on Match command allows
the running program to jump to one of several labeled
statements, depending upon the result of the most recently
executed Match command. Each of the labels specified as an
operand, corresponds to a Match field; if the match was
successful with the nth match field, the nth operand label will
be used for the jump. If the prior Match was unsuccessful, or
if there is no nth operand label, no jump will be executed.
Immediate mode execution of a Jump on Match command is as
described for the Jump command.

<jump match operand> : := <label> [ <sep>< jump match operand>]

Examples:

JM:*L1 *L2 *L3
JM : *HERE , *THERE , *EVERYWHERE

6.1.9 USE Command (U) The Use command corresponds to the
BASIC GOSUB command. It allows the program to alter the linear
flow to invoke a subroutine, and when the subroutine is done,
control is returned to the statement following the Use command.
Up to eight (8) Uses may be nested before the system responds
with an error message. Immediate mode execution of a Use
command is as described for the Jump command, with the
exception that the Use stack is cleared.

<use operand> : := <label>

-21-



(ATARI PILOT EXTERNAL SPECIFICATION # REVISION £ -- 27-Oct-80)

Example

:

U : *GETDATA
.
0:*SQRT

6.1.10 END Command (E) — The End command tells the interpreter
to return to the statement following the most recently executed
Use command, or to stop the execution of the program if there is
no Use return stacked. This command, as all others, may be
conditional, and there may be any number of them in a program
and/or subroutine. Immediate mode execution of an End command
is as described for the Jump command, with the exception that
execution starts at the statement at the top of the Use stack.
If the Use stack is empty, PILOT immediately reverts to
immediate mode.

<end operand> : <null>

Examples:

EY:
EN:
E :

6.1.11 NEW VARIABLES Command (VNEW) — The New variables command
allows the selective clearing of the numeric variables and/or
the string variables. If the operand is null then both variable
types are cleared, and if the operand is l

$
l or 1 # •

, then the
string or numeric variables (respectively) are cleared. Note
that when the string variables are cleared, any currently active
READs or WRITES are closed.

<vnew operand> :: = [5 It]

Examples

:

VNEW:$ Clears the string variables.
VNEW:# Clears the numeric variables.
VNEW: Clears both the numeric & string vars

6.1.12 GRAPHICS Command (GR) — The Graphics command allows the

user to move a cursor around the graphics screen and to draw
line segments and plot points of various colors. There is one
PILOT command provided to handle all of the graphics
capabilities, as the operand field actually contains graphic sub-
commands that do the graphic manipulations. The graphics sub-
commands constitute a language within the PILOT language and
differ syntactically from core PILOT; for example: multiple sub-
commands may appear in one line, there is an iteration
construct, etc.

<graphic operand) ::= <graphic sub-command> [ ; <gr aphic operand>]l
<iterate count) ( <gr aphic operand) ) I

< iterate countxgr aphic sub-command)

-22-



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E -- 27-Cct-8fl)

<iterate count) ::= <numeric constant) I <numeric variable)

For example: GR : GOTO 0,0;TURNTO 0 ; 4 (DRAW 10;TURN 90) draws a
square with the lower left corner at the screen center.

Note that the iterate count must be specified as a positive
integer that will be decremented until zero is reached; thus
iterate counts may range from 0 to 65535.

PILOT supports two drawing systems, a cartesian system of X,Y
points and a polar system of R, THETA vectors (turtle graphics)

.

3oth systems are available at all times , and there is no problem
in mixing sub-commands that deal with both systems. The
coordinate directions and reference points are listed below:

X=0, Y=0 is at the center of the graphics screen.
Increasing X goes to the right.
Increasing Y goes upward.
THETA=0 is straight up.
Increasing THETA is clockwise.
Increasing R is in the direction of THETA.

The inside left edge of the graphics screen is X = -79.
The inside right edge of the graphics screen is X = 79.

The inside top edge of the graphics screen is Y * 47.
The inside bottom edge of the graphics screen (top of text window)
is Y = -31.

The inside bottom edge of the graphics screen (bottom of text
window) is Y * -47. Although the graphics data in the region
-47<Y<-31 is not visible to the user, it may be sensed by the
program (using the %Z special variable).

If, when a Graphics command is executed, the screen is not in
the graphics mode, the screen is put into the graphics mode and
cleared, the cursor is put at home position, THETA is set to
zero and the pen color is set to YELLOW. This same
initialization of the graphics parameters will occur also upon
the following conditions:

Power-up

.

RESET or return from DOS.
Run command.

For all commands that draw lines or set the graphics cursor, if
the cursor or line leaves the bounds of the visible graphics
screen, the position will be maintained within a + /- 32767 s-e^^t
address space; whenever the cursor and/or oJ i net re-enters the
visible graphics screen, drawing will resume. The graphics sub-
commands will be described in the paragraphs that follow:

PEN — Pen color select.

Sets the drawing pen to one of the five options provided.

< sub-command) ::= PEN <color>
<color> RED

I
YELLOW | BLUE I ERASE I UP



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION £ 27-Oct-3

Example: PEN RED

QUIT Quit graphics mode.

Returns the screen to the text screen

<sub-command> :: = QUIT

Example: QUIT

GOTO — Move cursor to X,Y without drawing line.

Moves the cursor to the specified X,Y coordinate and plots a
point at that coordinate in the current pen color. If the pen
is UP, then no point will be plotted.

<sub-coramand>
< x-coordinate>
<y-coordinate>

GOTO < x-coord inateXsep> <y-coordinate>
i <nexp>
i <nexp>

Examples: GOTO #J+3,2S
GOTO 40,-10 Note that the 1 is required as

'40 -10* would be processed as a
single expression yielding a value of
30.

DRAWTC — Move cursor to X,Y while drawing a line.

Moves the cursor to the specified X,Y coordinate while drawing
line of the current pen color. If the pen is UP, then no line
will be drawn. THETA will remain unchanged.

<sub-command> : : = DRAWTO <x-coordinate><sep><y-coordinate>
< x-coord inate> ::- <nexp>
<y-coordinate> : :- <nexp>

Example: DRAWTO #1 *J/2

FILLTO Move cursor to X,Y while drawing a line artd filling.

Moves the cursor to the specified X,Y coordinate while drawing
line of the current pen color; in addition, blank regions to
the right of the line being drawn are filled with the current
pen color also. If the PEN is UP, then no line or fill will be
d r awn

.

<sub-command> : := FILLTO <x-coordinateXsepXy-coord ina te>
< x-coord ina t e> : : <nexo>
<y-coordinate> : : = <nexp>

Example: FILLTO 40,-10

-24-



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E 27-Oct-S£

TURNTO Sec polar angle to value in degrees.

Sets the polar angle THETA to the value of the expression,
modulo 360.

<sub-command> ::= TURNTO <angle>
<angle> : : = <nexp>

Example: TURNTO 9 0

GO — Move the cursor forward by n units.

Moves the cursor forward (along the direction specified by
THETA) the number of units specified and then plots a point in
the current pen color at the end point. If the pen is UP, then
no point will be plotted. If the number of units specified is
negative, the cursor will move backward instead of forward along
THETA.

<sub-command> : := GO <units>
<units> : := <nexp>

Example: GO 20

DRAW Moves the cursor forward (along the direction specified
by THETA) the number of units specified, while drawing a line of
the current pen color. If the pen is UP, then no line will be
drawn. If the number of units specified is negative, the cursor
will move backward instead of forward along THETA.

<sub-command> : := DRAW <units>
<units> : := <nexp>

Example: DRAW #L

FILL — Moves the cursor forward (along the direction specified
by THETA) the number of units specified, while drawing a line of
the current pen color; in addition, blank regions to the
right of the line being drawn are filled with the current pen
color also. If the PEN is UP, then no line of fill will be
drawn. If the number of units specified is negative, the cursor
will move backward instead of forward along THETA.

<sub-command> : FILL <units>
<units> : : = <nexp>

Example: FILL 33

TURN — Increments the oolar angle by the number of degrees
specified: THETA = (THETA + increment) MOD 36G.

<sub-command> ::= TURN <angle>



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E 27-Oct-80)

<angle> : : * <nexp>

Examole: TURN 30

CLEAR Clear the graphics and text screens.

Clears both the graphics screen and the text screen window

<sub-command> : := CLEAR

Examole: CLEAR

There are four special "read only" variables (as mentioned in
section 5.1.5) associated with the Graphics command? the
attributes of these variables are discussed in the paragraphs
that follow:

%X returns the current value of the x-coordinate of the
graphics cursor, rounded to an integer value.

%Y r.e turns the current value of the y-coordinate of the
graphics cursor, rounded to an integer value.

IZ returns the current numeric equivalent of the screen color
at the current graphics cursor location. The numeric
equivalents are shown below:

ERASE (background) * 0

RED = 1

YELLOW = 2

BLUE 3

If the cursor is outside the bounds of the graphics screen, or
if the screen is not in graphics mode, a value of 0 is

returned.

%A returns the current value of the graphics THETA angle.

-26-



(ATAKi PILOT EXTERNAL '6 PEL i F I CAT I ON , REVISION E 2/-Oct-bW)

6.1.13 SOUND Command (SO) The Sound command enables or
disables the sound generating facilities within PILOT. The
operands, of which there may be up to four, specify the numeric
variable(s), pointer(s) and/or numeric constants which are to be
selected to produce sounds. The sound generation is
accomplished by assigning a specific note on a chromatic scale
to each integer value between 1 and 31, and silence to the value
0 , where

:

1 = C below middle C
2 = C# below middle C
3 D below middle C
.

13 * middle C
.

25 - C above middle C

31 F# above C above middle C

When the value exceeds 31, the value modulo 32 is used.

Since the hardware sound generation circuitry will support four
voices in parallel, up to four voices may be specified. The
hardware sound registers are updated after the excution of every
PILOT statement. At that time the current value of the
variables and pointers are obtained and converted to tones, with
the tones changing as the variables (and pointed to data)
change; the numeric constants select constant tones, as would be
expected. Note that due to the nature of the implementation,
pointers to addresses above 32767 will produce static tones.

<sound operands>

<sound variable>

:= [<sound variable) [<sep><sound variable)
[<sep)<sound var iable>
[<sep><sound variable)] ] ]

]

<numeric var iable) ! <pointer>

I

<numeric constant)

If no variables are present, the sound generation will be
d isabled

.

Examples

:

SO:#A
SO:#D #G #K
SO:
SO:(§4096,§B764,@#P
SO: 1,5, 8, 13

Generate sounds using variable #A
Generate sounds using 3 variables
Disable sounds.
Generate sounds using pointers.
Generete constant tones.

6.1.14 PAUSE Command (PA) — The Pause command delays the
indicated number of 1/60S of a second before executing the next
command. This command is used to synchronize music and
graphical presentations to some fixed time base as the delay is
accomplished by examining the hardware generated timer rather
than by a software delay loop.

<pause operand) ::= <nexp>

Examples

:

27



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E 27-Oct-80)

PA : 60

?A:#D

PA: 0

PA: 3

PA: 2

Delays one second.
No delay.
Delays to the next clock tick.
Delays to the next clock tick + 1.
Delay specified by variable £D.

6.1.15 CASSETTE TAPE CONTROL Command (TAPE) — The Tape command
turns the Cassette peripheral motor on or off as indicated by
the supplied operand, which must be either 'ON 1 or 'OFF*.

<tape operand> ONIOFF

Examples

:

TAPE:OH Turns the Cassette peripheral on.
TAPE :OFF Turns the Cassette peripheral off.

6.1.16 CASSETTE TAPE SYNC Command (TSYNC) — The Tape Sync
command allows a PILOT program to synchronize itself to a
specially prepared cassette tape which has an audio track plus
synchronization information on the digital track, such as the
'Invitation to Programming' tape. The Tsync command checks the
cassette motor drive status and if the motor is not on, then the
command is done. However, if the motor drive is on (probably
as a result of a prior ' TAPE :ON 1

) then the Tsync command will
read the cassette digital track and wait for a MARK (1) to SPACE
(0) transition.

<tsync operand> : := <null>

6.1.17 I/O Commands The I/O commands (READ, WRITE & CLOSE)
provide the ability to read data from and write data to any of
the peripheral devices. The syntax and behavior of each of these
commands will be described in the paragraphs to follow, but
first a discussion of their common points would be in order.
All three commands require a device specification as the first
command parameter; this specification may be in the form of a

text literal (e.g. P or C or D:ELIZA)'or may be a string name
(e.g. SDEVICS or $F1 or SPRINTER) where the value of the string
is a valid device/filename. There is no explicit OPEN type of
command provided; the first use of the name in an READ or WRITE
command will attempt to OPEN the device (subject to available
internal resources and the legality of the device/filename).
The number of devices which may be accessed in parallel is 4 and
there are no restrictions as to the mix of input and output
types.

<device spec) : : = <text 1 i ter al> I <s t r ing variable>

The evaluation of <device soec> must oroduce a valid Atari

Example

:

TSYNC

:

-28-



4 3 0/800 <device/f ilename>

.

READ Command (READ) — The Read command allows data to be read
from one of the attached peripheral devices to the accept
buffer, with the data transformation rules being applied as
described for the Accept command (section 6.1.2). Optionally,
data may be read to either a numeric variable or a string
variable as well.

<read operand> : :* <device spec) (<sepxinput variable>]
<input variable> : :* <numeric var iable> I <str ing variable>

Examples

:

READ:C , SDATA
READ: $FlLEl , *N

If a device end-of-file status is read, the Read command will
return null data.

WRITE Command (WRITE) — The Write command allows data to be
written to one of the attached peripheral devices. The data to

be written will be the evaluation of a text expression.

<write operand> : :« <device specXsepxtexp)

Examples

:

WRITE :C , JOE IS #A YEARS OLD.
WRITE :?DEVICE #N
WRITE :P,SJ32 *C ABCD.

CLOSE Command (CLOSE) — The Close command is the equivalent of
CLOSE in most languages. Internally, the IOCS associated with
the named file is freed for use by another named file, and for
some peripherals (such as the disk) special termination actions
are initiated.

<close operand> ::» <device spec)

Examples:

CLOSE :C
CLOSE:D:STAR
CL0SE:$DEVICE4

Advanced I/O discussion — The next few paragraphs discuss
special aspects of the Atari PILOT I/O subsystem.

I/O Errors — Any I/O error will normally cause termination of

running program and will also cause the file in error to be

closed. An error message will be generated which will inform



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E 27-Oct-80)

the user of the type of error, as shown in Appendix C.

However, all of the above activities may be inhibited (in run
mode) by setting location $ 0500 (1280 decimal) to any non-zero
value. The status of the prior READ, WRITE or CLOSE command may
then be checked by examining location 500E4 (228 decimal); a
valueoT^oei indicates that the operation was normal, and values
128-255 indicate I/O errors as shown in Appendix C. On READ
errors, an EOL character is returned; WRITE and CLOSE errors are
simply ignored. The inhibit flag is ignored in immediate mode
and all immediate mode I/O errors will produce an error
message.

The inhibit flag is set to zero by PILOT upon the following
conditions:

?ower-up.
RESET.
Any reported error.
Return to immediate mode from run mode.
Immediate mode EREAK.

End-of-file — End-of-file status is not considered to be an
error, and will result in null data being read. Since the I/O
status is not easily accessible via a PILOT construct, the user
should write some extra data at the end of any file to be read
by PILOT, to indicate the EOF to the program doing the reading
of the file. See the program example below:

1 00 C :SFILE=C Set filename to Cassette.
110 C :#L-1 Initialize loop count.
1 20 *L00P1
130 WRITE:SFILE,#L Output numeric data from
1 40 C : #L=#L+1
1 50 J ( *L<=1 00) : *L00P1 ... to 100.
1 60 WRITE : SPILE,*** EOF *** Write user EOF data.
170 CLOSE : SF ILE Close the file.

200 C :SFILE=C Set filename to Cassette.
210 *LOO?2
220 READ : SF I LE , #N Read numeric data.
230 M:*** EOF *** Check for EOF.
240 TN: NUMBER SN. Print data if not EOF.
250 JN:*LOOP2 Loop back if not EOF.
260 CLOSE:SFILE Close the file.
270 E : End of program.

Bi-directional I/O — Atari PILOT I/O is inherently
unidirectional? there is no OPEN command and the direction is
determined by the initiating I/O command (READ or WRITE)

.

However, some devices are bi-directional, such as the screen
editor (E) ; and the user may want to perform concurrent reads
and writes when using this class of device. This is done by
specifying synonyms for the device/filename, e.g. f E', 1 E

:

1

,

'El', and 'El:' are all valid ways of specifying the Screen
Editor. Note that each synonym is treated as a separate device
by the PILOT I/O subsystem.

-.30-



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION E -- 27-Oct-SC)

List of open files PILOT maintains a list of currently open
files; this list is comprised of string variables, where the
string name is the device specification appended to 'fa' and the
string value is a single character which indicates the internal
IOCS assignment. These strings are of no interest to the PILOT
user except that zhey appear in the string variable list
produced by the Dump command, and clearing the string variables
using the Vnew command has the effect of closing all files. An
example of these special strings is given below:

$@C= f @' Cassette is assigned to I0C3 4.
SSDrELIZA-'P' Disk file 1 ELIZA 1 on IOCB 5.

Note that '@' is I0C3 4, 'P' is IOCB 5, is IOCB 6 & 'p' is
I0C3 7.

Graphics conflict error There is a check that prevents I/O
operations that would destroy the graphics screen. If the user
desires to READ from or WRITE to the Screen Editor ('E') or the
Display handler ('S 1

) when the screen is in graphics mode, the
first READ/WRITE (with its implied OPEN and screen clear) must
occur before establishing the graphics screen, then subsequent
READ/WRITE operations will be allowed.

IOCB AUX1 & AUX2 control — Normally PILOT establishes the
values for AUX1 and AUX2 of each IOCB at OPEN time, as shown
below:

Command AUX1 AUX2

READ 4 0

WRITE 8 0

LOAD 4 0

SAVE 8 0

The advanced user may force other values for these variables by
writing a byte into location 1373 (decimal) for AUXI and into
location 1374 (decimal) for AUX2. PILOT will then "inclusive-
or" the user supplied byte with the constant shown in the table
above, and use the result in the IOCB at OPEN time. The two
user controllable bytes are reset to zero as shown below:

Power-up

.

RESET

.

After every usage (OPEN)

.

6.1.18 POSITION CURSOR Command (POS) — The Position command
allows the user to control the position of the cursor while in
the text screen, just as the GOTO sub-command controls the
cursor for the graphics screen. The two Position operands
specify a column number ranging from 3 to 39 and a row number
ranging from Z to 23; the upper left corner of the text screen
being 3,0.

When the screen is in graphics mode, the specified column number
applies to the text window and the row number is ignored.

31



{ ATARI PILOT EXTERNAL SPECIFICATION , REVISION E 27-Oc t- 8

)

<oosition ooerand) ::= <column><seo><row>
<column> ::= <nexp>
< r ow> : : = <nexp>

Examples

:

POS:40,2
?CS:*C,#R

6.1.19 TRACE Command (TRACE) — The Trace command allows the
user to monitor the execution of the program while in run mode.
When turned on, the trace will print to the screen each
statement scanned, prior to its execution. Conditional
statements will be printed whether or not the condition is
true. Every trace line is preceded by the four characters 1 — >'

in order to make the trace lines stand out from Type, Accept,
Read and Write data on the screen.

<trace operand> : := ONIOFF

Examples

:

TRACE :0N
TRACE : OFF

A typical trace output to the text screen is shown below:

10 T: HELLO, WHAT IS YOUR NAME?
HELLO, WHAT IS YOUR NAME? _
--> 20 A: SHAME
JACK
--> 3 0 T: GOODBYE SNAME.
GOODBYE JACK.— > 40 E:

READY

6.1.20 DUMP Command (DUMP) — The Dump command is used to list
to the text screen the contents of the string variable list.
Shown below is an example of Dump command output:

SNAME= 1 JOE 1

*SRES?ONSE= 'NO '

SSTRING1='I LIKE TO PLAY BALL 1

$STRING 2- 'GREEN 1

$NULL= »
1

6.1.21 LOAD Command (LOAD) The Load command allows the user
to read a previously saved PILOT program to the stored program
area (see section 6.2.3 for information on how to save a

program). The required operand is a text literal, that specifies
the device/filename. V 5*1*1*3 va^b^

<load ooerand> = <device/f ilename)

32



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION E 27-Oct-80)

Examples

:

LOAD:C Loads a program from the cassette.
LOAD : D : SQUARE Loads the file 'SQUARE 1 from Disk #1.

If the Load command is executed in immediate mode, the stored
program area is not cleared prior to the loading; if a program
is in the storage area prior to a load, the two programs will
be "merged*.

If the Load command is executed in run mode, the stored program
area is cleared prior to the loading of the specified program
(and the Use stack is cleared) . If the load process encounters
no errors (file I/O or statement syntax) the newly loaded
program will be executed without any ini ti tialization of the
program environment, except that the Use stack is cleared.

Load reports any syntax errors encountered during the load
process and continues loading until either an I/O error or end-
of-file is encountered. Any statement with a syntax error is
not stored in the deferred program storage area.

6.1.22 CALL Command (CALL) The Call command allows the PILOT
user to execute 6502 machine language code by having the PILOT
interpreter execute a J3R to a user specified address. The
6502 code starting at that address need only execute an RTS to
return to the PILOT environment. The 6502 A, X, Y and P
registers are available to the called routine and need not be
saved and restored. The PILOT interpreter will enable IRQ
interrupts and clear decimal mode immediately upon return.

<call operand> : := <nexp>

Examples

:

CALL: 4096 JSR to location 4096 decimal.
CALL : #A JSR to location specified by value of #A.
CALL:@4096 JSR indirectly through location 4096.



6,2 PILOT immediate mode only commands

This section describes those commands that may only be executed
while the system is in immediate mode; that is, they are
restricted to use by the operator.

For the immediate mode only commands, the condition field
delimiter (':') may be omitted if desired. Thus, for example,
either 1 RUN 1 or 'RUN: 1 will be accepted as a legal form of the
Run command. In addition, the following run/immediate mode
commands have this same feature: TRACE, VNEW, DUMP and LOAD.

6.2.1 LIST Command (LIST) — The List command is used to list to
the text screen the current contents of the program storage
area. Screen control characters will.be displayed rather than
being interpreted. The List command will display either the
entire program area or a selected portion thereof (if beginning
and ending line numbers are provided).

<operands> (<line #>[<sep><line #>]]
<line $> : := <numeric constant)

Examples:

LIST Lists all of the program area.
LIST 100 200 Lists lines 100 through 200.
LIST 500 Lists line 500.

6.2.2 RUN Command (RUN) The Run command changes the operating
mode from immediate to run; execution starts at the lowest
numbered line in the program storage area. Before the stored
program is started, the Use return address stack is cleared, the
accept buffer is cleared, all variables are cleared, the screen
is cleared and the Match result flag is set to false.

<run operand) : := <null>

Example

:

RUN

6.2.3 SAVE Command (SAVE) — The Save command allows the user to
save all, or portions of, the current PILOT deferred program to
a specified external device. r; i e required first operand is a
text literal that specifies the device/filename; the optional
operands specify line numbers which have the same function as
for the List command (see Section 6.2.1).

< save operands) : : = <dev ice/f i lename> [ < 1 ine #>[<sep><line #>]]
<line #> (numeric constant)

Examples:—

SAVE ? Prints the program co the Printer.

34



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION E 27-Oct-SP)

SAVE C Saves the program to the Cassette,
SAVE P, 200, 300 Prints program lines 200 through 330.

6-2.4 DCS Command (DOS) — The Dos command allows the user to
leave the PILOT environment and enter the environment of the
Disk Operating System Utility. If the DOS is not resident,
control will be passed to the Blackboard program. PILOT may be
resumed by use of the DOS '3* command or by pressing the RESET
key. The return to PILOT finds PILOT in the same state as after
the RESET key has been pressed, even if the 'B' command is used
to return.

<dos operand> <null>

Example

:

DOS

6.2.5 NEW Command (NEW) — The New command allows the user to
delete the program stored for deferred execution, to remove
all string variables from storage and to zero the numeric
variables; the Use stack is also cleared in the process. The
memory. that was used to store the program and strings is then
available for any use.

<new operand> : := <null>

Example

:

NEW

6.2.6 AUTO-NUMBER INPUT Command (AUTO) — The Auto-number Input
command allows the user to enter the auto-number input mode. In
that mode PILOT statements are entered from the screen and those
that are error free are appended to an internally generated line
number and stored to the deferred program area. The line
numbers start with the number specified by the optional first
operand of the command and are thereafter incremented by the
value of the optional second operand. The operands, if not
specified, default to the value 10.

The text screen changes from white characters on a blue
background to black characters on a dark gold background when
auto-number input mode is active, and reverts to the normal
colors when the mode is inactive. The entry of an empty line,
or the generation of an invalid line number, terminates the
mode and causes a return to immediate mode.

<auto operands) [<line # > [ <sep>< i ncr ement> ]

]

<line #> : : » (numeric constant)
<increment> : : = (numeric constant)

Examples

:



AUTO Enter auto-number input mode,
AUTO 10,13 Same as above.
AUTO 100 Start with line 100, increment by 10.
AUTO 100,20 Start with line 100, increment by 20.

5.2.7 RENUMBER Command (REN) The Renumber command allows the
user to renumber the PILOT program statements in the program
storage area. The new line numbers start with the value of the
optional first operand and are thereafter incremented by the
value of the optional second operand. The operands, if not
specified, default to a value of 10.

If during the course of the renumber process an invalid line
number is generated (outside of range 0-9999) , an error message
is generated and the renumber process stops. The stored program
is never reorganized by the Renumber command, so this condition
can be easily corrected by renumbering again with different
operand values. Note that if a partially renumbered program is
SAVEd and then LOADed , the program will be reorganized at load
time and a simple recovery will be impossible.

< renumber operands> ::= [<line #>[ <sep> < increment) ]

]

<line #> : := (numeric constant)
(increment) :: = (numeric constant)

Examples:

Renumbers the program.
Same as above.
Renumbers to: 100, 110, 120, 130, ...
Renumbers to: 230, 200, 400, 503, ...

REN
REN 10,10
REN 103
REN 200,100



(ATARI PILOT -EXTERNAL SPECIFICATION, REVISION E — 27-Oct-8P)

7.0 PILOT Message Responses

Atari PILOT produces two types of messages, informative (non-
error) messages and error messages. The display format for both
types is similar. Atari PILOT responds to errors by displaying
the statement in error, color inverting the character at (or
just beyond) the source of the error, and generating a message
explaining the error. There are two classes of errors: syntax
errors, which are detected by scanning the PILOT statement when
it is entered, and run-time errors, which are only detected as
the statement is executed. Informative messages do not invert a
character in the statement, because there is no error to point
out. The rest of this section itemizes the Atari PILOT messages
and elaborates on them somewhat.

7.1 Syntax Errors

WEAT'S THAT — Indicates one of the error conditions specified
below.

The condition field is improperly specified or the 1

:
1 is

missing from the statement.

After a specific command has been completely scanned, there are
additional characters present in the statement.

The statement command name (or Graphics sub-command field) does
not specify an Atari PILOT command.

The indicated character or word has no meaning to Atari PILOT
within the context of the statement being examined:

not followed by alphanumeric character (string var?).
1

#
1 not followed by alphabetic character (numeric var?).
not followed by alphanumeric character (label?).

' @
! not followed by numeric data (pointer?).

1

%
f not followed by recognized character (special var?).

An unrecognized special character outside of a text literal.

The command operand flagged has one of the following problems:

Out of range value.
Incorrect data type.
Missing operand where one is required.

The numeric expression has been incorrectly specified and has
one of the following errors:

Too many levels of nested parentheses.
Unmatched left paren.
Unmatched right paren.
Non-numeric operand.
Missing or incorrect numeric operator.

The Graphics sub-command operands have been scanned and one of
the following conditions has occurred:

Mi ssing 1

;
1

.

Unmatched left paren.



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION S -- 2 7-Oct-

Too many or too few operands for a sub-command.

30

LINE #? -- The statement line rrumber specified is n^-fM^
toi lowing conaitions:

immediate mode entry of a statement for deferred execution.

Auto-number input mode entry of a statment.

Renumbering a program.

IMMEDIATE ONLY — The command specified is allow-d only inimmediate mooe and cannot be entered for deferred e?ecutiSn.

7.2 Run-time Errors

JS£!i.?]S7? " Indicates an ^ a command operand that is
error, such as an out

str"S
g
?ndT;ction?

r

eL^
e

' »' of data to an invalid

?^0
? k

XX
I"

X " the COUrse of Performing an I/O ooeration
SJi ? ^

ubsystem detected an error and returned the statusindicated. See Appendix C for a list of I/O error codes.

o°rS™„rK IndiCat
fu

th3t the ^quested operation could not beperformed oecause there was not enough free memory. The creation
I/O Si2f.IKi

a
Sj*'if

ntry ° f deferred ^ecution statements, anSI/O initiation may all generate this message.

)?™*fL" Indicates.that the target label for a Use or Jumpcommana aoes not exist in the program storage area.

?ommands
EEP " prograra has exceeded 8 levels of nested Use

^."JEL^0
! " Indicat * s that there was an attempt to o-rformmore than 4 concurrent READ/WRITE operations. " P

a
I

Iiv!siIn
0

br 2iro!
R^Ute C °mmznd jUSt attem? tsd to perform

OOPS -- An I/O operation involving the 'E' or 'S' device h*<*been aborted because it would deslroy the graphics screen "d
Hit erro? *

PIL°T
'

See SeCti ° n 6 ' 1 ' 17 f
°"
r a ^ to ^iTl

7.3 Informative (non-error) Messages

READY — Indicates one of the following conditions:

An Bad command was executed with no corresponding Use returnaa^ress m the Use stack (normal program termination).

38



( ATAKi P.1LUT tiX'l'LMNAL b PfcL i f 1C AT I ON , REVISION £ — 2/-JCt-*i;

The last line in the program storage area was executed and it
was not an End or a Jump command, therefore there was no next
program statement to execute.

The operator has pressed the BREAK key; when this occurs while
a PILOT program is running, the message is surrounded by 1 *** 1

The statement printed when a running program is stopped is the
last to be executed or partially executed.

One of the immediate mode only commands has just finished
execution (or VNEW or LOAD while in immediate mode)

.

The operator pressed the RESET key.

A PILOT program has just generated a run-time error; the error
message precedes the READY message.



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION E — 27-GCC-S0)

Appendix A — PILOT DATA SYNTAX SUMMARY

This appendix lists the Atari PILOT data types and operators,
giving an abbreviated version of the expected syntax for each.

Sab-group Name Syntax Section

Statement Line # <0-9999> 4.1
Label *<alphanumer ics> 4.2
Comment [<text literal><EOL> 4.6

Numeric Variable #<alpha> 5.1.2
data Constant f-]<digits> 5.1.1

Random num ? 5.1.3
Po inter 8 [B] < constant I variable! pointer> 5.1.6
Controller % <alpha> [ <number > ] 5.1.4

joystick %J<0-3> App F
paddle %P<0-7> - App F

trigger %T<0-11> App F
lightpen %H, IV, %L App F

Special %<alpha> 5.1.5
free mem %F
match %M 6.1.3
graphics %X, %Y, 12, %A 6.1.12

Expression 5.1.7
nexp <numeric entity> [ <oper ator ><nexp>

]

unary - - <nexp>
eval (<nexp>)

Text data

Operator

$<alphanumerics>
<any ATASCII character)

Var iable
Li ter al
Expression
Indirection $<text variable)

Ar i thmetic
add
subtract
multiply
d iv ide
modulus

Log ical
equal to
not equal <>
gtr than
gtr/eq
less than
1 ess/eq

<numeric><operator> <numer ic>
+

/
\
<numeric><operator><numeric>

>

> =

<

< =

5.2.2
5.2.1
5.2. 3

5.2. 4

5.1.7

5.1.7

40



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E 27-Oct-8G)

Appendix B — PILOT COMMAND SUMMARY

This appendix lists the Atari PILOT commands, giving an
abbreviated form of the operand syntax. The complete command
descriptions are to be found in Section 6. The type indicates
whether the command is executed in immediate mode only (I) or
both run and immediate modes (R/I). The core PILOT commands are
listed first, followed by the Atari extensions; note that only
the core PILOT commands have one character names.

Command Function Operand syntax Note Type Section

T Type <text expression) 1 R/I
#•

f*»\J . 3 1

Y Type if match <text expression) 1 R/I 6

.

1 , 1•A

N Type if no match <text expression) 1 R/I 1

A Accept f<var>] [=<texp>] R/I 6

.

1 . 2

M Match <match list) 1 R/I 6

.

1 .—• • 3

C Compute <nvar >=*<nexp> R/I 6

«

1 . 5

<svar (texp)
R Remar k <comment> R/I 6

.

1 .•* • 6

J Jump <label> R/I 6

.

1

.

7

U Use <label>
_____ j —

R/I 6. l

.

9

E End <null> R/I 6

.

1 . 1 0

JM Jump on match <label list) R/I 6

.

1 .—» • sW

MS Match Strings <match list) 1 R/I \j . — . 4

VNEW New variables [# l$] R/I W a 3

GR Graphics <sub-commands> R/I J . 1 1 2

SO Sound <vars> 1 <pntrs> 1 <consts) R/I 6\j . 1 1 3

PA Pause <nexp> R/I 6. 1 # 1 4

TAPE Cassette control ONIOFF R/T 6. i

.

15
TSYNC Cassette synch. <null> R/I 6. i

.

16
READ I/O input <dev i ce> [ <var > ] 3 R/I 6. i

.

17
WRITE I/O output <device)<texp> 3 R/I 6. i

.

17
CLOSE I/O complete <dev ice) 3 R/I 6. i

.

17

PCS Position cursor <column)<row> R/I 6. i

.

1 8

TRACE Trace execution ON | OFF R/I 6. i

.

1 9

DUMP Dump string vars <null> R/I 6. i

.

23
LOAD Load stored prog <device) 3 R/I 6. i

.

21

CALL Call assy program <nexp> R/I 6. i. 22

LIST List stored prog <1 ine# ><line#> 2 I 6. 2. 1

RUN Run stored prog <null> I 6. 2

.

2

SAVE Save stored prog <device><#><#> 2 I 6

.

2. 3

DCS Go disk utility <null) I 6. 2. 4

NEW Clear stored prog <null> I 6. 2. 5

AUTO Auto-number input <line#Xline#> 2 I 6. 2. 6

REN Program renumber <1 ine# ><line# > 2 I 6. 2. 7

Notes :

1. The entire operand is evaluated as a text expression before
command scanning of the parameters commences.

2. Line numbers must be numeric constants only.

4 1



(ATARI PILOT EXTERNAL SPECIFICATION, REVISION E — l«

)

The Graphics command sub-commands and operand syntax are shown below

PEN Pen color select RED I YELLOW 1 BLUE 1 ERASE 1 UP
QUIT Quit graphics mode
GOTO Move cursor <x-coord><y-coord>
DRAWTO Draw line <x-coord><y-coora>
F iLLTO Draw line & rill <x-coord> <y-coor a>
TURNTO Ro tate <angle>
GO Move cursor relative <uni ts>
DRAW Draw line relative <uni ts>
FILL Fill line relative <uni ts>
TURN Rotate relative <angle>
CLEAR Clear screen

-42-



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION E 27-Cct-8C)

Appendix C PILOT I/O ERROR CODES

This appendix lists the Atari 400/800 system I/O error codes
within the context in which they will be seen in Atari PILOT.
Not all of the the system codes are presented here, because
some of them cannot occur within the PILOT environment.

130 A non-existent device was specified.

131 A READ command followed a WRITE command with the same device
specified. -

135 A WRITE command followed a READ command with the same device
specified.

136 End of file condition.

138 Device timeout; device doesn't respond. (Note 1)
0

139 Device NAK. (Note 1)

140 Serial bus framing error. (Note 1)

141 Screen cursor out of range (READ from or WRITE to 'S 1

).

142 Serial bus data frame overrun. (Note 1)

143 Serial bus data frame checksum error. (Note 1)

144 Device DONE error. (Note 1)

145 Disk read after write compare error. (Note 1)

146 Function not implemented for device (e.g. OUT:K).

147 Insufficient RAM for operating the graphics screen.

160 Disk drive # error.

161 Too many concurrent disk files being accessed.

162 Disk is full (no free sectors).

163 Fatal system data I/O error.

164 File # mismatch. (Note 1)

165 Disk file naming error.

167 Disk file locked.

169 Disk directory full (64 files).

170 Disk file not found in directory.

Note 1 — These errors indicate problems over which the user has
no direct control; they are due to hardware problems and should
seldom be seen.

-43-



( ATAKi PiLOT EXTERNAL SPECIFICATION, REVISION E 27-Oct-b'/)

Appendix D — SIGNIFICANT MEMORY ADDRESSES

This appendix provides the addresses of many of the Atari PILOT
interpreter's internal variables, buffers, pointers and stacks.
The knowledgeable user may be able to play some interesting
tricks using these elements. For more information regarding the
implementation of the Atari PILOT interpreter see the ATARI
PILOT INTERNAL SPECIFICATION.

Ada r ess Address Length Content
decimal hex (bytss)

1 44 0090 1 Use stack index (1 byte pointer)

.

mm '

1 291 050B 16 Use stack.

1 307 051B 52 Numeric variables (#A to #Z) •

1 82 0 0B6 2 Var i able/pointer address

.

1 84 0 0B8 2 Numeric item value.m» m ^mm m — » ^m ^m* ^mw m mm w ^mmt mm» ^mm mmw mw

1 47 0G9 3W *mf 4* W 2•* Expression value.mmm* mm *mW W *m. mm* "mm* mm » * V mm* *mm *mm* W

174 00AE 2 Pointer to start of program area.
176 0 0B0 2 Pointer to end of program area.— m¥

1 32 0084 4* Pointer to next statement to
execute (run mode)

.

178 0 0B2 2 Pointer to start of string list.
1 30 0 034 2 Pointer to end of string list.
1 90 00BE 4* String NAME oointer.

m* mt

194 00C2 .
4* String VALUE oointer.

1 40 008C 4* Pointer to text expression buffer
1 399 0577 255 Text expression evaluation buffer

1 28 0080 4* Pointer to command input buffer.
1654 0676 123 Command line input buffer.
1 36 0088 4* Pointer to accept buffer.

1 280 0500 1 I/O error disable flag.
223 00E4 1 I/O status byte.

1 373 055D 1 User AUX1 byte.
1 374 055E 1 User AUX2 byte.

3 36 3 0553 ] Graphics pen color.
J GmxpUics screen **od £ -

1778 06r^ 1 + Spare bytes for user.

The 4-byte pointers flagged with above have an internal
format as shown on the following page:

44-



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION E 27-Oct-8S)

Atari PILOT interpreter 4-byte pointer format:

7 0
+ +

I
base I

byte 0

+- - +

I
pointer I 1

+ 1 +

I
start offset I 2

+ f.

I end offset ( + 1)1 3
+ +

Atari PILOT interpreter string list & program list format:
*

+ +

I
1st item I low memory address,

I
2nd item I

+ +
I

*
I

S 3

I I

+ *

I last item | high memory address.
+ h

Where each item has the format shown below:

7 0

+ +
I item size I

The item size is also used as
+ - -+ a relative pointer to the next
| | item in the list.
+ +

I
name size I

(Always 2 for program list) .

+

I
name value I

(Contains the binary line
| |

number in inverted form for
= 1 to 254 = the program list, and ATASCII
I

bytes I
characters for the string list).

I 1

+ +
I data size I

+ +

I data value I

j | Contains ATASCII characters.
0 to 254 =

I bytes I

i I



(ATAK1 PiLCT EXTERNAL SPECIFICATION, REVISION E 2/-OCt-bW)

Aooendix E — MODE CHANGE BEHAVIORS

This appendix describes the changes in the PILOT environment
that may occur as the result of various events of consequence

Event

POWER-UP

RESET &

WARMSTART
from DOS

3REAK

I/O ERROR

RUN:

U : ( imraed

)

J: (immed)

E : end
E: (immed)

GR : QUIT

NEW:

VNEW:$
VNEW:

#

VNEW:

Quit Close
Graphics RD/WRT
mode? files?

YES

YES

NO

NO

NO

NO

NO

NO
NO

Program off
end NO

Run-time err NO

YES

NO

NO
NO
NO

LOAD (immed) NO
LOAD (run) NO

Line insert/
delete NC

Note 1

Note 1

Note 2

Note 3

YES

NO

NO

YES
Note 4

NO

NC

NO

YES

YES
NO
YES

NO
NO

CI ear
Vars?

YES

NO

NO

NO

YES

NO

NO

NO
NO

NO

NO

NO

YES

$ only
# only
YES

NC
NO

Clear Clear
Program? screen?

YES

NO

NO

NO

NO

NO

NO

NO
NO

NO

NO

NO

YES

NO
NO
NO

NO
YES

YES

YES

NO

NO

YES

NO

NO

NO
NO

NO

NO

YES

NO

NO
NO
NO

NC
NO

^O NO NO NO

Note 1 All READ/WRITE files are terminated, but not formally
closed; in some cases, information (or complete files) may be
lose .

Note 2 If the EREAK causes an I/O error, then the affected
file will be closed; if the BREAK does not cause an I/O error,
then the file will not be closed.

Note 3 Only the file causing the error will be closed.

Note 4 — YES if Use stack is empty, else NC.

4£-



[ A'i'AKl F i LvJT tXTtiKNAL 5 FLL 1 r 1 LAT 1 UN , REVISION hi ^ /-UCt-buj

Event

POWER-UP

RESET &

WARMSTART
from DOS

BREAK

I/O ERROR

RUN:

U: (immed)

J: (immed)

E : end
E: (immed)

Program off
end

Run-time err

GR: QUIT

NEW:

VNEW : $

VNEW : #

VNEW:

LOAD (immed)
LOAD (run)

Line insert/
delete

Clear
a ccep

t

buffer?

YES

YES

NO

NO

YES

NO

NO

NO
NO

NO

NO

NO

NO

NO
NO
NO

NO
NO

NO

Clear
Match
flag?

YES

YES

NO

NO

YES

NO

NO

NO
NO

NO

NO

NO

NO

NO
NO
NO

NO

CI ear
Use
stack?

YES

Stop Clear
Cassette sounds?
motor?

NO

NO

NO

NO

YES

YES

NO

NO
NO

NO

NO

NO

YES

NO
NO
NO

NO
YES

YES

YES

YES

YES

YES

NO

NO

NO

YES
Note 2

YES

YES

NO

NO

NO
NO
NO

NO
NO

NO

YES

YES

YES

YES

Note 1

NO

NO

YES
Note 2

YES

YES

NO

Note 1

NO
Note 1

Note 1

NO
NO

NO

Note 1 -- Does not clear sound selects, but does zero the numeric
variables, which may make sounds silent.

Note 2 -- YES if the Use stack is empty, else NO.

The Trace flag is cleared only by TRACE OFF, power-up and RESET



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION S 27-Oct-80)

Appendix F ATARI CONTROLLER CHARACTERISTICS

This appendix describes the manner in which the Atari
controllers are sensed in Atari PILOT.

Paddles There are up to eight paddles that can be sensed (%P0
through %P7) ; each paddle yields a numeric value from 3 (for
full counterclockwise rotation) to 227 (for full clockwise
rotation) .

Joysticks There are up to four joysticks that can be sensed
(%J0 through %J3); each joystick yields a numeric result,
depending upon the joystick position, as shown below:

1

5 9

4 0 8

6 10

2

Triggers There are twelve triggers that can be sensed, eight
paddle triggers (%T0 through %T7) and four joystick triggers
"(%T8 through %T11); each trigger yields a value of 0 if not
pressed or 1 if pressed.

Lightpen — A single lightpen may be sensed using the three speci
variables shown below:

%H 3 lightpen horizontal position.
%V - lightpen vertical position.
%L lightpen trigger (0 if not pressed, 1 if pressed).

Any executed reference to one of the lightpen special variables
will change the background (ERASE) color from black to light
gray so as to allow the lightpen to operate at all regions of
the screen.

See Appendix G, item 7 for more information regarding the Atari
lightpen

.

-48-



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION E — 27-Oct-80)

Appendix G — APPLICATION NOTES

This document contains a collection of techniques and tricks
that enable the user to perform functions that might not
otherwise appear possible in Atari PILOT, This is by no means
comprehensive, but merely represents the solutions to some of the
problems that have been encountered.

1. DISPLAYING THE CONTENT OF THE ACCEPT SUFFER

To display the content of the Accept buffer while in immediate
mode, enter the following commands:

MS : ,

DUMP

The string named BRIGHT 1 will have as a value the then current
content of the Accept buffer and the Accept buffer will remain
unaltered

.

2. SAVING AND RESTORING THE ACCEPT BUFFER

The Accept buffer may be saved and restored using the techniques
shown below:

*SAVEACCEPT
MS: ,

C :$ASAVE=$RIGHT
E:

*RESTOREACCEPT
A:»$ASAVE
E:

3. USING STRING ARRAYS

While string arrays are not a separate syntactic element within
Atari PILOT, they may be simulated by using string indirection.
Strings may be created which are the concatenation of text and
numbers and then if those strings are used as the names of
other strings, the function of string arrays will be provided.
One advantage for many applications is that the amount of space
allocated corresponds to the total of the sizes of each
individual string stored to the array, rather than to the
subscript range and/or to the maximum string length; a definite
advantage for sparse array and variable length string
applications

.

C:#S=5
C : $NAME=STRING#S
C :$$NAME=DATA PORTION

The result of this sequence will be to produce a string
named 1 STRINGS 1 which "will have the value 1 DATA PORTION 1

.

4. CONVERSION OF TEXT/NUMERIC DATA

The Compute statement allows the data type assignments shown

^3Q



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION E 27-Oct-6«)

below:

C : <numer ic variable)=<numeric expression)
C:<string variable)=<text expression)

The Accept statement allows the data type assignments shown
below:

A:<numeric variable)=<text expression)
A:<string var iable)=<text expression)

Thus, between the two statements, the four combinations of data
assignments shown below are possible:

NUMERIC TO NUMERIC

C:#A»#B+1 source may be a numeric expression.
A:#A=#B source may be numeric variable or constant.

TEXT TO TEXT

C:SABC=YOUR NAME IS SHAME.
A:$ABC=YOUR NAME IS $NAME.

NUMERIC TO TEXT

C:$VALUE=#X source may be numeric variable or constant.
A:$VALUE=#X source may be numeric variable or constant.

TEXT TO NUMERIC

A:#V=$VALUE source contains a number as part of text.

5. NUMERIC/TEXT STACK SIMULATION

A numeric stack may be simulated by concatenating numeric data
to a string; depending upon whether the new data is concatenated
to the beginning or the end of the string, either a LIFC stack
or FIFO buffer may be simulated.

First we shall examine a LIFO stack simulation. Shown below are
three routines which perform initialization, push and pop
operations, using the string named 'STACK* as the simulated
stack, and the numeric variable #D for the stack data. A period
('.') will be used to terminate each stack entry, an exclamation
point ('!') will terminate the stack for overflow detection
purposes and the Match Flag will be false when an attempt is
made to pop data from an empty stack or when the stack
overflows.

*INITSTACK
C : $STACK=

I

E:

*PUSH
A : $STACK=#D . S3TACK
M : !

TN : STACK OVERFLOW.
E:



( AlAKi PiLUT EXTERNAL SPECIFICATION, REVISION E 27-Oct-dfc)

*POP
A:=$STACK
MS : .

TN: STACK UNDERFLOW.
EN :

A:#D=SLEFT
C :SSTACK=SRIGHT
E:

Next we shall examine a FIFO buffer simulation. The very same
techniques are used here as for the LIFO example, although the
subroutine and string names have been changed. " The only logic
differences are to be found between the *PUSH and the *WRITEFIFO
routines.

*FIFOINIT
C :$FIFO=!
E:

*WRITEFIFO
A:=$FIFO
MS : !

CY:SFIFO=$LEFT#D. I

MY:!
TN : FIFO OVERFLOW.
E:

*READFIPO
A^SFIFO
MS : .

TN : FIFO EMPTY.
EN:
A : #D=SLEFT
C : SFIFO^SRIGHT
E:

Buffer/s tacks of non-numeric data may be handled in a similar
manner using string names or string data in place of the numeric
variable ID. Stacking the string names is preferable, where
the string value is static once assigned, assuming that the name
is shorter than the value, because the stack may then contain
more entries before overflow occurs than when the string values
are stacked.

6. TOKENIZING A TEXT STRING

A text string may be broken up into words (tokens) by a left to
right scanning technique as shown below; the sample program will
accept any text, and then print out the individual words within
the text (in single quotation marks).

T:Please enter a line of text.
A:
*LOOP
MS:> [ skip over 1st blank and match on 2nd.
EN: [ nothing left all done.
T :

1 SLEFT *
( this is the next word.

A : =SRIGHT [ put the remainder to the acc. buff ...

J:*LOOP f ... and continue scanning.



(ATAKi r li*UT HXTiiKNAL 5 PEC i f I CAT 1 UN , REVISION hi — ^/-<Jcc-dtf)

A text string may be broken up into single characters (excluding
blanks) by a scanning technique shown below:

T:Please enter
A :

MS : ,

A : SRIGHT!
"LOOP
MS :

,

EN:
MS :$RIGHT
C :$SAVE=$MATCH
A:=$LEFT
MS : >

T: 1 SLEFT 1

A : =$S AVE
J:*LOOP

a line of text.

get accept buffer to 5RIGHT, ...
append ! to end & store back....

skip over blank and char of interest,
nothing left — all done.
SLEFT will contain blank and single char,
save remainder as we will clobber acc. buff
accept buffer contains blank, char, blank,
skip 1st blank & match on 2nd (last) blank,
ahai here is our character,
restore the accept buffer ...

and continue scanning.

7. READING THE LIGHTPEN

A subroutine to read the lightpen and convert the position to
PILOT graphics coordinates is shown below:

*GETPT J (%L-0) :*GETPT
C : #H»%H

* C : #X«#H-152
C (#H<6) : #X=#X+227'
C : #Y»64-%V
E:

S. SIN/COS VALUES

The SINE and COSINE functions can be derived from the* graphics
screen capabilites, as shown below:

T : ?1 ease enter an angle (in degrees).
A: »A
GR : GOTO S,S; TURNTO »A ; DRAW 10000
T:Sine(%A) = %X E-4.
T:Cosine(%A) - 4Y E-4.
E :

9. PEEK/POKE MAGIC

The following examples show interesting things that can be
performed using PILOT pointers.

- M

The pen color can be altered without using the GR : PEN xxx
command by storing a byte value to location 1363 (decimal)

0:981363=0 is equivalent to GR : PEN ERASE.
C:(§B1 36 3 = 1

n " " GR : PEN RED.
C:@B1 363=2 " " " GR : PEN YELLOW.
C:8B1 363=3 " " " GR : PEN BLUE.
C:§B1363=4 " H

" GR : PEN UP.
C:@E1363=?\4 is a random pen color selection.
C :§B1 36 3 =<3B1 363+1X4 selects the next color.



(ATARI PJLLUT LXTLRNAL S> FECI F iCATiON , REVISION E — ^/-UCt,-ei3)

reassigning color registers

The actual colors assigned to each pen color name may be altered
by poking a byce value to one of four color registers.

C:@B7]2=xx changes the color assigned to ERASE

.

C:@B708«xx " 11
" " RED.

C:@B709=xx " " " " YELLOW.
C:§B710=xx " " " " BLUE.

The form of the color register byte is shown below:

7 6 5 4 3 2 1 0

H 1 1 1 1— H
I

1-—

h

I
color I

lum |0|
H 1— H

1 1 1 1 h—

H

color lum

0 gray 0 minimum luminance
1 light orange 1 m

1

2 orange . 2 1

3 red orange 3 ( increasing
4 pink 4 luminance)
5 purple 5 1

6 purple-blue 6 1

7 blue 7 maximum luminance
8 blue
9 light blue

1 0 turquoise
I 1 green-blue
12 green
1 3 yellow-green
1 4 orange-green
1 5 light orange

A color register value can be calculated as shown below:

C:@B708 = (#C * 16) + (#L * 2) [ #C « color, #L = lum.

finding free space for pointer work

The unused RAM memory within the Atari PILOT environment is

defined by two addresses: 1) the lowest free memory address is

contained in the word at location 176 (decimal) and 2) the
highest free memory address is contained in the word at location
178 (decimal). Note that Atari PILOT adds stored program
statements to the low memory region (causing the address at
location 176 to increase) and adds named strings to the high
memory region (causing the address at 178 to decrease). Since a

PILOT program can add to the string storage requirements, but
can't alter the program size (except through the use of LOAD),
the low memory region is the safer area from which to start
allocating.

C:#L=@176 [ free memory low address to #L.

C:#H = <?178 [ free memory high address to IB.

s too execution from within a Use routine



(ATARI PILOT EXTERNAL SPECIFICATION , REVISION E — 27-Oct-8H)

If it is desired to immediately stop execution from within a Use
routine, the following sequence may be employed:

C:@S144=0
E :

Storing a zero to byte 144 (decimal) has the effect of clearing
the Use stack, thus making the E: that follows appear to be an
outer level Exit,

changing the screen margins

The left and right text screen margins may be altered as shown
below :

C:@B82=0 left margin =» 0.
C:@B83=»39 right margin » 39*

The default values for the left and right margins are 2 and 39,
respectively, but other values may be set at the user's
discretion.

10. READING THE KEYBOARD

The console keyboard may be read directly using the program
shown below:

*WAIT J (QB764-255) :*WAIT [ wait for a keystrike.
C:#C = §B764 [ save the keycode.
C:@B764 255 [ clear the code just read.

The keycode read by this program is not ATASCII and cannot be
readily converted to ATASCII by an algorithmic process. If
conversion is required, a lookup technique (using the Match
command or a pointer) would do the trick. The keycodes may be
obtained empirically or by referencing the ATARI PERSONAL
COMPUTER SYSTEM O.S. USER 1 S MANUAL or the ATARI PERSONAL
COMPUTER SYSTEM HARDWARE MANUAL.

11. GENERATING KEYWORDS IN TEXT EXPRESSIONS

Some difficulty may be experienced in generating certain text
literals within an operand that is evaluated as a text
expression, for example in a Type command. There are a couple
of tricks that will allow the user to generate just a£out
anything, based upon the fact that: all "keywords" in PILOT are
two or more characters in length (except for ' ?• which is not
evaluated in a text expression anyway)

.

Technique #1 « The first technique is to insert into the
keyword an innocuous set of screen control characters, such as
<cursor up> followed by (cursor down)

.

T:#4|^A Will put 1 #A 1 to the screen.
T:$^HNAME Will put 1 $NAME 1 to the screen.

Technique # 2 — The second technique is to create one or more
named strings that contain portions of the keywords to be
generated. These strings may then be concatenated with text
literals or other named strings to generate the keywords.



( ATA Kl PiJLUT SXT1SKNAL S FkiC i fc" iCAT 1 UN , REVISION fel — 2/-UCt-tf»)

(3 : $A=A
T:#$A Will put ' #A 1 to the screen.

Technique S3 — String variables names will be generated
automatically just by being undefined.

T : SNAKE Will put ' $NAME 1 to the screen, if the
variable has never been defined.

12. WRITING LARGE CHARACTERS TO THE SCREEN

Using facilities explained in section 6.1.17, and in the
PERSONAL COMPUTER SYSTEM USER f S MANUAL, large characters may be

written to the screen as shown below:

C:@B1373 m 16 [ split screen select to AUX1

.

C:@B1374 « 2 ( screen mode 2 to AUX2.
WRITE ; S , LARGE LETTERS.
WRITE:S, large letters.
T:Press return to continue.
A :

E:

13. READING A DISK DIRECTORY

Using facilities exDlained in section 6.1.17, and in the
PERSONAL COMPUTER SYSTEM USER'S MANUAL, a disk directory may be
read as shown below:

C:$DIR=D:*.* [ wildcards to read all filenames.
C:@B1373 * 2 [ read director select to AUX1.
*LOOP
READ : SDIR 5FNAME [ read directory information.
J (§B228-1 36 ) : *DONE [ exit loop on EOF status.
T: SFNAME [

type directory information.
J : *LOOP
*DONE CLOSE :?DIR
E:

14. USING ATARI CONTROLLERS WITH PILOT GRAPHICS

The Atari contollers can be used to interactively control
graphics presentations as shown by the progrm segment shown
below. The example assumes that a pair of Paddle Controllers is

inserted into the first controller port.

*LOOP
GR (%T0) :CLEAR
C:@B708=%P1

<graphics program body>

PA:%P0/102 I
variable delay.

J:*LOOP

[ clear screen on paddle 0 trigger
[ reassign color of PEN RED.



ATARI PILOT PROGRAM OPTIMIZATIONS 1 5-A?r il-8

]

This memorandum describes two techniques which a PILOT
programmer may wish to consider in order to increase the
execution speed of an Atari PILOT program,

1. String operation optimization.

The assignment of a value to a named string causes a prior
occurrence of that named string to be deleted and the" new
occurrence to be inserted. Since strings are stored in memory
in name collation order, the time to perform this operation is a
linear function of the amount of string data which precedes the
new named strings. The user may optimize string handling by
using naming conventions, utilizing the following rules:

a. If large numbers of strings are to be created, and the
names are to be generated algor i thmical ly , create the
strings such that the names are generated in reverse
collation order (e.g. SS99, SS93, $SS7 .... $310).

b. If Match String (MS:) is to be used extensively, and
ether named strings are to be present, make tne names of
tnese other strings higher in tne collation sequence than
$RIGHT (the higher of $LE?T , SMATCH and SRIGHT)

.

2. Jump/Use optimization.

The PILOT interpreter always searches for a label definition
starting with tne lowest numbered PILOT statement and working
upward. The execucion speed of a program which has many
references to a subroutine label or loop label may be increased
by positioning that label (and associated code) nearer to tne
beginning of the program. The use of this optimization should
be balanced against the possible loss of readability of the
resultant orogram (however, Pascal programmers may find this
technique perfectly reasonable)

.


