SYMNASSEMELER

Synapse

l? _x ~

Syriassembler by SYNAPSE SOFTWARE

An Adaptation by Steve Hales
of the S.C. Assembler 11 - Version 4.0

SynAssembler (c) 1982
SYNAPSE SOFTWARE

SYNASSEMBLER

INDEX
S SssSsSEs=======s========
Introduction..useiviiiiiiiieiirnnnesnennnernnsane veseas 1
Commands....coeue tesessesiseeretentaransernne Ceresssnants 4
Editing commands-Overview.........ccvuuus secanssansrnss 4
Editing commands-Detail...... Cetessesesencnrrraastnensa é
DOS commands....eeornnneernnnrnennnss teecseseeranns eenlé
Monitor commands......... tersertserarareranns verseanes 19
Source Program Format.....cvvvniiiiiiniinninnnnnress e 23
Directives.iievearnninnss Cerrerirenass tesreces . eee29
Labels.....usse teemsestrerssnsusnan cevesnas cesenns cenesadd
Hemory Usage..ssevssiienerenss tesesseerranerettsestasens 34
Operand Expressions..iceesescsceess resesasenns reaesiaras 36
Decimal and Hexidecimal Numbers cersenans 37
L 0 - 38
Addressing Modes....uveuens teeecernasaans Cetesassausasts 39
Editing Features...cceieriieiniiineninceinensseanernscnes 43
Debugging Programs.......cceueu Crresesasaintas ceveres .44
Stepicesniiiniiinianian Seseesessseateesisantranasens 45
Traceieeeesraenaenns cerenens Sesrsreseanesinrrassaanns 44
Examine and Change Registers......... tasessascsnnsnsns 44
APPENDIX
Monitor Tricks.....vvvunss teressrserrasasaanes Appendix...l
Hemory Map..ceeiiarnircneiiareannees seseeneassAppendix.. Il
Converting Atari Assembler/Editor Source...... Appendix. 111
Bibliography..ivevisiirainiireieiarenerennenas Appendix’ lU

Instruction Code Table..csrereiarrinniierannns Appendix...\V

INTRODUCTION

SYNASSEMBLER is a converiert and powerful tool for software
development on the Atari computer system. The assembler uses
standard 6302 mnemonics and syntax, and includes many useful
features for creating, editing, assembling and testing your
assembly language programs. Now assembly language
programming is almost as easy as programming in BASIC.

Here is a summary of the most exciting features:

¥ Full use of the standard Atari Screen Editor

¥ Tab stops for opcode, operand, and comment fields

¥ Fast parametrized renumber and delete command

¥ Uses BASIC like commands for files (eq.LOAD, SAVE, BLOAD etc.)

% Labels up to 32 characters long (lowercase letters and . accepted
X English ERROR messages

¥ Ability to append source programs from tape or disk

¥ Display of memory usage

¥ Multiple source files, using .IN directive

X Store object code directly to disk file, using the .TF directive
¥ Listing to screen option using .LI ON and .LI OFF

% Assembles 4588 lines/minute

¥ Local labels

¥ Offending line is listed after an ERROR occurs

¥ Value of .EQ and address of .BS are printed on listing

¥ ASSEMBLER, DOS, HARDWARE, and 0S locations protected during assembly
¥ ATASCII literals in address expressions

% Symbol table printed in alphabetical order

Synassembler requires 48K of RAM and one -disk drive to
operate. Very large programs carn now be developed, using the
"INCLUDE" and "TARGET FILE" capabilities. These allow the
assembly of multiple source files, and direct storage of object
code on binary files.

We have included several sample programs to illustrate the use
of the SYANASSEMELER as well as being useful routires. These
include:

1. HARSH SCROLL :A utility to coarse scroll the Atari screen
display

2. FINE SCROLL .:A utility to fine scroll the Atari screen
display

3. PM HOVER:A utility to move players and missles on the
on the screen.

4. BELL:Ring the bell using Atari sound
generators.

Blarks are compressed in source files to conserve memory and
save space on disks. The compression algorithm replaces any
string of consecutive blarks with a sirgle code byte. Also, Atari
assembler files are compatable and only require minar
modification to assemble correctly. (See APPENDIX for further
detail). Synassembler uses a memory-efficient method of storing
the symbol table, with variable lerigth eritries. The symbol table
1s maintained in alphabetical order, using a high speed hashing
scheme. The symbol table is maintained ir memory until a riew
assembly is started or the NEW command is typed. This allows
the RUN and VAL commarids to be more useful ard effective.

-3-

Assembler error messages are printed on the Screen ard
accomparied by a pleasant bell like tore on the speaker. (At
least as pleasant as an ERROR message can be). After an
assembly error is detected the offerdirig line is listed to the
screen automatically, in a position for easy editing.

COMMANDS

There are three types of commards in the SYNASSEMEBLER:
EDITING commands, DOS commands and MONITOR commands.
The EDITING commands are used to control the Editor arnd the
assembler. Commands are typed immediately after the prompt
symbol, which looks like this [Ok.].

EDITING COMMANDS
There are seventeen editing commands in the SYNASSEMELER.

All editing commands may be abbreviated to the first three
letters if you so desire.

ASM ..eiees ceeeee Assemble source program, put object program
into memory, and produce assembly listing.
COPy...... terirsenns Duplicates specified lines
in the source.
DELete ..ivviicncnss Delete specified line.
FINDd covevvnvennenen List all lines containing the

specified string.

HIDe cievvrvennncacs Changes the HIMEM pointer to
*hide" current source code
prior to a MERge command.

INCrement Set the line # increment for

automatic line numbering

[£:1 .. List the source program or
specified lines of source code.

MEMory ovevecane .+... Display the beginning and ending address
MERgene veese. Use with HiDe to join source programs

MIVE vovvvevcrsnnnnse Moves a line of source code from one
specified location to another

NEW sovvvecrnannanans Delete the entire source program

RENumber ...ceeveenns Renumber all or specified lines of
source code

REPlace cesenass Replace a specified string with another
specified string

REStore ..c.evevavens Restores HIMEM pointer after HlDe and
MERge.

RN covinnvrnncnnnnns Begins execution of your object program

VAL cesesnsss Evaluates an operand expression and prints

the value in hexidecimal

MON coeveevcnanannnns Exit the editor and enter the monitor

EDITING COMMAND DETAIL

The SYNASSEMELER editor combires the powerful Atari screen
editing features with a BASIC-like line editor. Source programs
are ertered and edited in almost exactly the same way you would
enter and edit an Atari BASIC program.

ASM command:

SYNASSEMBLER is a two pass assembler. The ASM command
initiates assembly of your source program. During the first pass
it builds a symbol table with the definition of every label that is
used in your program. During the second pass the assembler
stores the object code into memory or disk and produces an
assembly listing. At the end of the second pass a list, in
alphabetical order, of all the labels and their definitions is
produced.

1f any errors are detected during either pass, an error message
will be printed as well as the offending line. The error message
will briefly explain the type of error encountered and the lire
will be positioned for easy editing. All of these messages abort
the assembly process, so that as soon as you correct the error
condition you may immediately restart the assembly.

If you are listing the assembly to the screen you may use the
CCTRL1+[1] control to start and stop your listing. You may
abort the assembly process by hitting the [BRREAK] key in pass
two of the SYNASSEMBLER.

COPy L1 L2

This command places a copy of line L2 just before Li in the
source. The new line is assigned line number Li. The old line L2
remains in the source. This command should if there are multiple
lines with the same line number ir the source.

COPyLiL2L3

This commard places a copy of lines L2 through L3 just before
line L1 in the source. The old lires are assigred lime rumber L1i.
The old lime L2 through L3 remain in the source. This command
should be followed by a rerumber command 1f there are any
multiple lires with the same line number in the source.

DELete command:

Deletes a lire or a range of lines from vour source program.
Another way to delete a single line is to type it's line #,
tollowed immediately by a carriage return.

HIDE AND MERGE

These two commands, whern used with the LOAD command allow
you to join a program from disk or tape to a program that is
already in memory.

HIDE temporarily charges the HIMEM pointer so that it appears
as if there were no source program in memorv. To remind vou that
vou are HIDE-irg, the prompt svymbol charges to [HJ] ok. After
HIDE-irg a program, vou can load arnother one from disk or tape.
Theri you type MERGE to join the two programs together.

Atter this sequence of commands, the program which was already
in memory will follow after the program just LOADed. I the lire
numbers are not already as you wish them to be, you can use the
RENUMEER commard to assign rew ores.

For example, suppose that we have 2 source programs on the disk
named "PART{" ard "PARTZ". We want to join them together so
that "PART!" precedes "PART2".

ok,

L0AD "D:PART1"

k.

LIST

86318 % PROGRAM NUMBER ONE
80823 MAIN JSR SUBROUTINE

26038 RTS

oK.

LOAD "D:PART2"

0.

LIST

a0aie x PROGRAM NUMBER TWO
88828 SUBROUTINE

98038 LDA BOAT.LOC
48040 ASL

88856 ASL

ad840 RTS

oK.,

HIDE

[HY O,

LOAD "D:PART1"

[H Ok.

LIST

gee18 x PROGRAM NUMBER ONE
28820 MAIN JSR SUBROUTINE
80938 RTS

(H} Ok.

HERGE

Ok.

INCrement

Sets the increment used for automatic line rumber gereration.
The increment is normally 10, but vou may set it to any value
between @ and 7999.

INC &
FINd

The FIND command allows you to search through vour source
program for a given text string, and list all the lines that
cortain that string. The correct procedure for use of this
command is as follows: Type FIND, followed by a space, and then
the string for which vou are searching. Every character you type
betweer the space and the carriage return is part of the search
key. (NOTE: vyou may append or prefix spaces to any string to
perform label searches.)

LIStLi L2

Lists & single lire, a range of lines or your entire program. It
works just like the list commarnd in BASIC. While a program or
rarige of lines is listing vou cam use the standard Atari pause
cortrol CCTRL1I, to start and stop the listing to the screen.
You may abort the listing by pressing the CEREAK] key.

16

MEMory

Displays the beginnirg ard erding memory address of the source
program and of the symbol table.

Source program: $9B99-9CIF
Source length: $8884
Symbol table: $1F@e-1iFee

Memory between the top of the symbol table and the bottom of
the source program is free to be used without clobbering
anything.

MERge

SEE "HIDe ard MERge"

MOVe L1 L2

This command places a copy of lire L2 just before Li in the
source. The new line is assigned line number Li. The old line L2
is removed from the source. This command should be followed by
a renumber command if there are multiple lines with the same
line number in the source.

MOVe L1 L2113

This command places a copy of lines L2 through L3 just before
line L1{ in the source. The new lines are assigned line number L1{.
The old lines L2 through L3 are removed from the source. This
command should be followed by a renumber command if there are
multiple lines with the same lire number i the source.

11

RUN

Begins execution of your object program. Arn expressiorn MUST
follow the RUN command to define the place to begin execution
of the program. For example, "RUN BEGIN" will cause execution
to begin at the point in your program where the label BEGIN is
defired. Your program will return to SYNASSEMELER by using
an RTS instruction in your program. You may abort your program
by hitting the [RESETJ key. Or, you may use the [EREAK] kev to
break and fall back to the moritor.

NEW

This command acts just like it‘s BASIC counterpart. It deletes
the current source program from memory and re-starts
SYNASSEMELER just as though you were to re-boot the program.

NOTE: A source program must, of course, be assembled into
memory before it can be executed with the RUN commard.

RENumber

Rerumbers all or part of the lires in vour source program with
the specified starting line number ard increment. There are three
optional parameters for specyfying the lire number to assign the
first renumbered line (base), the increment, and the place in vour
program to begin rerumbering (start). There are four possible
forms of the command:

REN Renumber the whole source program:
BASE=1088, INC=18, START=0

REN # Renumber the whole source program:
BASE=#, INC=18, START=8

REN #1,42 Renumber the whole source program:
BASE=#1, INC=#2, START=0

REN #1,H2,#3 Renumber all lines from #3 through
the end.
BASE=#1, INC=#2, START=43

_12-

The last form above is useful for opening up a "hole" in the line
rnumbers for eritering a new sectior of code.

0K.

LIST

80088 ¥ A RENUMBER EXAMPLE
88083 START LDA 4108

80013 STA $95
80858 LDA 498
88103 STA $AD
98110 RTS

oK.

REN

0K.

LIST

88018 X A RENMUMBER EXAMPLE
80620 START LDA 4168

00038 STA 495
80848 LDA 499
20058 STA $AQ
88840 RTS

oK.

REN 168

OK.

LIST

90188 X A RENUMBER EXAMPLE
88118 START LDA 4100

98129 STA $95
8813d LD& ¥98
#0148 STA $A8
88150 RTS

0K.

-{3-

REN 20649 ,4

OK.

LIST

82008 X A RENUMBER EXAMPLE
82004 START LDA #1680

02008 STA $95
02012 LDA #90
02014 STA $A8
92620 RTS

OK.

REN 3006, 18,2009

OK.

LIST

82808 X A RENUMBER EXAMPLE
82884 START LDA #1080

93484 STA $95
83818 LDA $98
83028 STA $A8
83038 RTS

REPlace dS1dS2d

This commard replaces all occurerces of string S1 with string 52
in the source. d is a delimiter and must be a non—space printable
character that does not appear in either Si or S2.

-{4-

REPlace dS1dS2d,P

This command causes a search to be made for string Si. The
search starts at the beginning of the source. Whenever S1i is
tound, the line cortairing it is listed and the user is prompted
for 1 of 3 actions:

Y or [RETURN)-replace S1 with
S2 and continue.

N-do not replace St with S2
and continue search.

X-do not replace S1 with S2
and stop search.

d is a delimiter and must be

a non-space, printable character
not appearing in either Si

or S2,

REStore

Restores the root source program if ar assembly is aborted while
inside an "included" module.

The "root source program" is the source program that is in
memory at the time the "ASM" command is issued. If this source
program uses the ".IN" directive to include additional source
files, it is possible that assembly might be abortrd either
marually by typing a (BREAK) key during the listing phase, or .
automatically due to an error in the source program.

_15..

If the assembly is aborted during the time that the root program
is hidder, the prompt character changes from "Ok" to "[1] Ok".
The RESTORE command will reset the memory pointers so that
the root program is rio longer hiden, and change the prompt
character back to "0Ok". '

You do riot have to use the REStore command after an abort
unless you wish to get back to the root source program for
editing purposes. If you type the ASM command, the assembler
automatically restores before starting the assembly.

I+ an assembly aborts due to ar error in a source line, vou may
correct the source line, SAVE the module on the appropriate file,
and type ASM to restart the assembly.

VALue

The VAL command will evaluate any legal operand expression,
and print the value in hexadecimal. It may be used to quickly
corvert decimal numbers to hexidecimal, to determire the ASCII
code for a character, or to find the value of a label from the last
assembled program.

EXAMPLE

VAL ‘T

$0854 20984
OK.

UAL 3493 + $3493
$4238 14952
0K.

VAL START + S12
$4200 16894

OK.

16

DOS commands:

LOAd and SAVe

These commards are used to store your source files onto Disk or
Tape in the internal compressed form. This saves disk space and
speed.

EXAMPLE: LOAd "D:GAME1.TXT" or SAVe *D:MISC.SRC®

BLOAd and BSAVe commands:
These commands are used to load ard save RINARY files to disk.

NOTE: BLOAd and BSAVe function in the same marner as the L
and K options in Atari DOS 11.

EXAMPLE: BlLOad *D:GAME.OBJ".
(This will load the binary file called
GAME.OBJ into memory at the address where
where it was saved.)

BlLOad "D:GAME.OBJ",$2000
(this will load GAME.OBJ starting
at HEX 2008, not at the address where
it was saved.)

EXAMPLE: BSAve "D:GAME.0BJ,$2000,$4000
{This saves a binary file called GAME.OBJ
from Hex location $2608 to $4804.

NOTE: the ¢ always must precede a hexidecimal number.
SYNASSEMBLER assumes a decimal number if the $ sign is not

..17_

ENTer

This command allows you to enter ASCII text directly from tape
or disk. It functions like the ENTER command in Atari BASIC.
You can use this command to ENTER Atari assembler source files
and then convert them to SYNASSEMBLER format.

EXAMPLE: ENTer "D:ATARIFIL.SRC* or ENTer"C:".

TYPe

The TYPE command is used to save your source to any device in
full ASCII format.

EXAMPLE: TYPe "D:MYSOURCE.TXT"
(This command saves the full ASCII source under
the MYSOURCE.TXT file, to disk drive 1)
TYPe “P:* ... sends the source file to the printer.

DIRectory

The directory command is used to examine the conterits of vour
diskettes.

EXAMPLE: DIR by itself will show you the catalog for disk drive 1
DIR "D:%.0BJ" will show anything in the catalog on drive 1 with
an 0BJ extender.
DIR "D2:X.TXT* will show anything in the catalog on drive 2 with
an 0BJ extender.

-{&-

DOs

The DOS command jumps from SYNASSEMELER into the resident
DOS in your system.

OUTput

The OUTput command is used to redirect the output of
SYNASSEMBLER to another device;eq. printer,disk,screer etc.

EXAMPLE: OUT "P:"

After changing the output you may use the ASM commard to send
assembled listings to the device specified. To cancel the
re-direction simply type OUTput without a filespec.

EXAMPLE: OUTput.

..19_

LYNAPSE MONITOR

The IYNAPSE monitor in SYNASSEMBLER allows you to
examine,change,move,and verify memory. You may read and write
to disk and cassette, dis-assemble machire-larguage programs;
execute programs; perform hexidecimal arithmetic; read and write
sectors directly to and from disk; and monitor program execution
for debugging purposes.

MONITOR COMMANDS

DISPLAY MEMORY: adrsi.adrs2 [RETURN]

This command allows you to display the memory from addressi to
address 2.

EXAMPLE: 2008.4008 and [RETURN)

CHANGE MEMORY: adrs;data data

In order to change data at a particular address enter the address
(in HEX of course), and then a semi-colon(;) after which you may
enter as musch data as you wish making sure that each byte is
seperated by exactly one space.

EXAMPLE: 2808;4C 88 9D

After having entered and address, you may just use a semi-colon
to indicate the rext location for your next data entry.

EXAMPLE: 2008;4C
;68
;90
This example has the same effect as the previous example.
DIS-ASSEMBLING MEMORY: adrsL
This command allows you to dis-assemble 20 instructions

starting at the specified address. By typing L L again the next
20 instructions will be dis-assembled.

ADDITION AND SUBTRACTION (HEX): data+data or data~data
You may add or subtract data (in HEX) simply by erntering data
and pressing LRETURN].

MOVING MEMORY: adrsi<adrs2.adre3M

You may easily move data from one part memory to another. You
first specify the address into which you wish to move, and then

the range of memory that is to be moved.

EXAMPLE: 2008(3FF8.4008M

VERIFY MEMORY: adrsi<adrs2.adrs3V

If you wish to compare two blocks of memory, you can easily do
so by specifying the starting address of the block you wish to
compare and ther the rarge that you wish it compared to.

EXAMPLE: 20808<3FF@.4008v

DISK (READ and WRITE): adrs<{seci.sec2r (READ)
adrs<{seci.sec2w (WRITE)

This unique feature of the ZYNAPSE monitor allows you to
access the disk directly. The first parameter is the starting
address of the buffer in which you wish to store the contents of
the seci through sec2. Note:The READ ard WRITE commards are
lowercase. (CAUTION: BE EXTREMELY CAREFUL WHEN
ACCESSING THE DISK DIRECTLY. YOU CAN EASILY
OVERWRITE THE CONTENTS OF YOUR DISK.)

EXAMPLE: 2808<1.4r (reads sector 1 through 4 into
buffer starting at 20840)
2000(1.4w (writes the contents of buffer
starting at 2088 to sectors 1
through 4.)

RESTORING NORMAL MODE: N

This commard tells the assembler to restore the original screen
color and tab stops to the power-up specifications.

OTHER COMMANDS

These commards are mainly used for execution and debugging
assembly language programs.

EXECUTE

The G commard is used to execute a program from the moritor, by
typing the program address and the G command.

[#] Ok

4000G

This will execute a program at 4000,

After having entered and address, you may just use a semi-colon
to indicate the next location for your rext data entry.

EXAMPLE: 2008;4C
;68
390

This example has the same effect as the previous example.

DIS-ASSEMBLING MEMORY: adrsL

This command allows you to dis-assemble 20 instructions
starting at the specified address. By typing L L again the next
20 instructions will be dis-assembled.

ADDITION AND SUBTRACTION (HEX): data+data or data-data
You may add or subtract data (in HEX) simply by erntering data
and pressing LRETURN1.

MOVING MEMORY: adrsi<adrs2.adre3M

You may easily move data from one part memory to another. You
first specify the address into which you wish to move, and then
the range of memory that is to be moved.

EXAMPLE: 2608(3FF8.4088M

VERIFY MEMORY: adrsi<adrs2.adrs3V

1f you wish to compare two blocks of memory, you can easily do
so by specifying the starting address of the block you wish to
compare and ther the rarge that you wish it compared to.

EXAMPLE: 20888(3FF0.4000V

DISK (READ and WRITE): adrs<{seci.sec2r (READ)
adrs<{seci.sec2w (WRITE)

This unique feature of the IYNAPSE monitor allows you to
access the disk directly. The first parameter is the starting
address of the buffer in which you wish to store the contents of
the sec! through sec2. Note:The READ and WRITE commands are
lowercase. (CAUTION: BE EXTREMELY CAREFUL WHEN
ACCESSING THE DISK DIRECTLY. YOU CAN EASILY
OVERWRITE THE CONTENTS OF YOUR DISK.)

EXAMPLE: 2008{1.4r (reads sector 1 through 4 into
buffer starting at 2688)
2008{1.4w (writes the contents of buffer
starting at 2808 to sectors 1
through 4.)

RESTORING NORMAL MODE: N

This command tells the assembler to restore the original screen
color and tab stops to the power-up specifications.

OTHER COMMANDS

These commands are mainly used for execution and debugging
assembly language programs.

EXECUTE

The G command is used to execute a program from the mornitor, by
typing the program address and the G command.

[#] Ok

4000G

This will execute a program at 4000.

22

EXAMINE and MODIFY registers

The R command allows you to examire and modify the 6502
registers (A,X,Y,P,)5).

[#] Ok
R
A=05 X=10 Y=50 P=30 S=F7

They can now be modified with the ";" command

STEP and TRACE (see also DEBUGGING)

The § and T commands are for single stepping your assembly
larguage program but the T repeats the S commard indefinitely.
The S command will execute one instruction:

(¥) Ok
40885

4908: A7 87 LDA 4383
A=03 X=80 Y=08 P=98 S=F8

At this poirt you may modity the register.

The T command will do the same thing as the S command except it
will just repeat it forever. To get out of this mode, just tap the
[BREAK] key.

QuIT

The O command will return you to the assembler.

-23-

SOURCE PROGRAM FORMAT

Source programs are ertered a line at a time, with a five digit
line number identifying each line. The line numbers may run from
00000 through 63999. Source program line numbers are kept
sorted in line-number order; the numbers are used for editing
purposes, just as in BASIC. A blark must always follow the line
number. After the blank, there are four fields of information: the
label, opcode, operand, and comment fields. Adjacent fields must
be separated by at least one blank.

Although the fields are not restricted to begin in any particular
columns, it is convenient to enter them in in this way for
reatrness. Therefore tab stops are built in to the
SYNASSEMBLER at columns 9, 13, and 21.

LABEL FIELD:

May be left blank, or may contain a label of from one to 32
characters. The first character of a label must be a letter;
remaining characters may be either letters or numbers. Labels
are used to name places in your program to which you will branch,
as well as constants and variables.

The standard tab settings leave enough room for only 9 character
labels; however, you can go ahead and use 32 characters as long
as there is at least one space between the label and the opcode.
1¥ you like, you may type labels on a separate line, with the
opcode and the following fields left blank. The label will be
defired as the current value of the location counter. There are
some examples of this in various listings throughout the manual,
and in the example source code on the disk.

OPCODE FIELD:

Contains a three-letter machire language mremonic opcodes or
assembler directive. However, opcodes may begin in any column
after at least one blank from a label or two blarks from a line
number.

OPERAND FIELD:

Usually contains an operand expression of some sort. Some of
the 4502 instructions have no written operand, such as NOP,
BRK, DEX, and others. In these cases the comment field may be
started right after the opcode. Four of the opcodes (ROL, ROR,
ASL, ard LSR) may be used both with and without an operand. 1f
no operand is present, you must type at least TWO blanks before
a comment with these four opcodes.

COMMENT FIELD:

Comments are separated from the operard field by at least ore
blank. Actually, comments may begin earlier or later on the line,
just so at least ome blark separates them from the operand
expression.

COMMENT LINES:

Full lines of comments may be entered by typing an asterisk (¥
or a semi-colon ;) in the first column of the label field. This
type of comment is useful in separating various routires from
each other, and labeling their contents. It is analogous to the
REM statement in BASIC.

-25-

DIRECTIVES

Twelve assembler directives are available through
SYNASSEMBLER.

AS (stores ASCII literals.)

AT (stores ATASCII literals)

.BS [expression] . (RESERVE [expression] bytes at the current
DA [expression] enter data

.EN ENd of source, optional)

.EQ Cexpression] (EQuate labels)

HS (define Hex data)

.LI OFF (Turn off the assembly listing.)

L1 ON (Turn on the assembly listing.)

.IN [filename] .(Include a source program the specified file.

.OR [expression] Indicates the originating address of your
assembled code.

.TA expression (Target Address)

.TF [filename] --Put the object program on the specified file.

26
ASCII STRING: .AS daaa...ad

The .AS directive stores the binary form of the asc ii characters
"aaa...a" in sequential locations beginning at the current
location. 1f a label is present, it is defined as the address
where the first character is stored. The string"aaa...a" may
coritain any number of printing ASCII characters. You indicate
the beginning and end of the string, by using any delimiter ("d" in
the example), that you choose.

ASCII character codes are seven bit values. The .AS directive
riormally sets the high order bit (2th), to zero. Some people like
to use ascii codes with the high order byte set to one, so
SYNASSEMELER includes an option for this.

.AS daaa....d sets the high order bits = 9
AS ~daaa...d cets the high order bits = {

This syntax restricts the choice of the delimiter slightly, in that
the delimiter can be any printing character other than a space or
a minus sign. Since the Atari inverse characters are set with the
high order bits to zero, you merely put the minus sign before the
string and you will get the characters in inverse mode.

ATASCII STRING: .AT daaa...ad

This is the same as .AS except that output is in ATARI ASCII.

BLOCK STORAGE: .ES exp

Reserves a block of {exp> bytes at the current location in the
program. The expression specifies the rumber of bytes to
advance the location counter. If there is a label, it assigned the
value at the beginning of the block.

The address of the beginning of the block will be printed in the*
address column of the assembly listing. If the object code is
being stored directly into memory, no bytes are stored for the
.BS directive. However, if the object code is being writter on a
file using the .TF directive, the .BS directive will write {exp>
bytes on the file. All the bytes written will have the value of
$00.

-27-

DATA ...cceeeeest label .DA expression (two bytes, LSB first)
DA #expression (one byte, LSB of expression)
DA /expression (one byte, MSB of expression)

Creates a constant or variable in your program. The value of the
expression, as one or two bytes, is stored at the current
location. If a label is present, it is defined as the address
where the first byte of data is stored.

4000: 84 00 44

4003: 00 E8 @3

4084 18 27 80020 DEC.NUM .DA 19,100, 1008, 16009

4808: 44 96038 VALUE DA #1908

4809: FB 800848 VAL? DA #-5

400A: FF 20858 VAL3 DA H$FF
--- Symbol table ----

4800: DEC.NUM

4889: VAL2

490A: VAL3

4908: VALUE

END OF PROGRAM .: .EN

This defires the end of the source program. You would rormally
make this the last lire, but you may place it earlier in order to
assemble only a portion of the source program. If rio .EN is
present anywhere in your program, the assembler will assume
you mearit to put this the last lire.

23

EQUATE: label .EQ {expression>

Defires the label to have the value of the expressior. If the
expression is not defined, an error message is printed
(UNDEFINED LAREL), and the offerding line is listed out. If
you neglect to use a label with an equate directive, an error
message (UNDEFINED LAREL), is printed. In either case, the
assembly is aborted so that you can correct the error. All page
zero references must be made before they are used or all labels
defined after that reference will be off by {.

EXAMPLE
98820 .OR %80
eege: 80838 NUM1 .BS 1
#6881 88048 NUM2 BS 1
2082: 80858 TABLE] BS 1
88E4: 80848 ADR .BS 188
20876 .0R %4800
80888 % main program ¥
--- Symbol table ---
88ES: ADR
8888: NUM1
8881: NUM2

8082: TABLE!
HEX STRING: label .HS hhh...h

Converts a string of hex digits (hhh...h) to binary, two digits per
byte, ard stores them starting at the current location. If a label
is present, it is defined as the address where the first byte is
stored. If you do riot have an even riumber of hexadecimal digits,
the assembler aborts with an error message, (BAD ADDRESS),
and lists the offerding line. NOTE: Unlike hexidecimal numbers

used in the operand expressions, you must NOT use a dollar sign
with the .HS directive.

-29-

LISTING CONTROL .: .L1 OFF and .LI ON

This pair of directives turns the assembly listing on and off. If
.L1 OFF is put at the beginning of the source program, and ro .LI
ON is used, no listing at all will be produced. The program will
assemble much faster without a listing, as most of the time is
consumed putting the characters on the screen, and scrolling the
screen up.

If you put .LI OFF at the begirning of your source program, and
.L1 ON at the end, only the alphabetized symbol table will print.

You may also use this pair of directives to bracket any portion
of the listing you may wish to see or not see.

INCLUDE: - .IN [file name)

Causes the contents of the specified source file to be included in
the assembly.

The program which is in the memory at the time the ASM command
is typed is called the "root" program. Only the root program may
have .IN directives in it. If you attempt to put .IN directives in
an included program, the "NESTED INCLUDE FILE" error will
print.

Wher the .IN directive is processed, the root program is
temporarily "hidden" and the included program is loaded.
Assembly then cortinues through the included program. Wher the
end of the included program is reached, it is deleted from memary
and the root program is restored. Assembly then contirues with
the next line of the root ptogram.

-3@-

The .IN directive is useful in assembling extremely large
programs which canrot fit in memory all at orice. It is also useful
for connecting a library of subroutines with a main program.

The [filemame] portion of the directive is in standard FILESPEC
format.

20828 X START OF PROGRAM

#ed3e .0R $5000
90048 JIN "D:PARTH"
89058 JIN *D:PART2"
20848 .IN *D:PART3"
#0870 N

ORIGIN: .OR <{expression>

This sets the program origin and the target address to the value
ot the expressior. Program origin is the address at which the
object program will be executed. Target address is the address
is the memory address at which the object program will be stored
during the assembly. The .OR directive sets both of these
addresses to the same value, which is the normal way of
operating. If vou do not use the .OR directive the assembler will
set both the program origin and the target address to $4000. If
the <expression: is not defined durin SYNASSEMBLERS pass 1
prior to it's use in the .OR directive, an error message is printed
and assembly is aborted. The error message that appears is
"UNDEFINED LAREL" and the offending lire is listed for easy
editing.

-31{-

TARGET ADDRESS: .TA {expression>

Sets the target address at which the object code will be stored
during assembly. The target address is distinct from the
program origin (which is either set by the .OR directive or
default at $4900). The .OR directive directive as we have seen,
" sets both the origin and target address. The .TA directive
allows the added control of setting ontly the target address.
Object code is produced and ready to rum at the program origin,
but is stored starting at the target address.

TARGET FILE: .TF [filename]

Causes the object code generated to be stored on a binary file
rather than in memory. Only the code which follows the .TF
directive will be stored on the file. Code will be stored on the
file urtil aother .TF directive is encountered, or until a .TA or
.OR directive is encountered. The [filenamel format is the
standard ATARI filespec format.

32

When vou wish to assemble a program which will execute at an
address normally occuppied by the assembler ($7Ce@ through
$C000) or a already resident source program, you need to use the
.TA and the .OR directives. Set the origin first, using the .OR
directive and then set the target address to a safe value using
the .TA directive. It is always safe to start the target area at
$4000.

06819 * SAMPLE PROGRAM TO [LLUSTRATE
80020 ¥ THE .TA DIRECTIVE

89030 .OR 41009

00048 .TA %4000
1908: AD oC 18 08658 MAIN LD& TEMP.A
1803: AE 6D 18 @040 LDX TEMP.X
1886: AC OE 18 00870 LDY TEMP.Y
1869: 4C 96 18 00090 JMP MAIN
1e6C: 32 00898 TEMP.A DA #50
108D: 44 20108 TEMP.X .DA #100
188E: 22 88118 TEMP.Y DA #34

--- Symbol table --—-
1068: MAIN

100C: TEMP.A

188D: TEMP.X

188E: TEMP.Y

As you can see in the example, the assembly language listing
looks as though the program was stored at $10@@. However, the
object code is actually stored at $4090, which is the target
address set in the .TA directive. If we disassemble memory
starting at $4000, we see:

ok

MON

Zynapse monitor
(X1 Ok

LLLLTR

4888: AD OC 16 LDA $188C
4003: AE 6D 18 LDX $188D
4884: AC OE 18 LDY $180E
4809: 4C 0@ 18 JMP 1008

400C: 32 ”?
498D: 44 27?
400E: 22 m
400F: 40 BRK
4018: @8 BRK
4811: 98 BRK
4912: 98 BRK

After the assembly ic complete, there are several ways to
position the code in memory where it really should be. You can
save the object code on cassette or disk from its current
location, and reload it at the correct location for executior. Be
sure riot to reload it while executing the assembler, or vou may
clobber it.

Another method is to enter the monitor ard use the monitor move
command (addri addr2.addr3M). This command will move the
block of memory from addr2 through addr3 to the area beqgirring
at addri.

LABELS:

There are two types of labels used i SYNASSEMELER: rormal
labels and local labels.

34.

NORMAL LABELS:

The first character of a normal label must be a letter;
subsequent characters may letters, digits, or the period
character ("."). The period is useful for making lorg labels
readable. For example, the subroutine used to read the next
source lire might be named "read.fext.source.lire".

Tab stops are set up within the editor assuming that most of
your labels will be 9 characters or less. However, sirce the
assembler is relatively free-format, you may type any length
label followed by a blarnk and the opcode, operand, ard commerit
fields. Or, if you wish, you may type the long label on a line all
by itself. In this form the label is assigred the current value of

the location counter, just as if you had appended ".EQ #" to the
lire.

01088 X SAMPLE PROGRAM WITH LONG LABELS
81218 SOURCE.LINE.POINTER .EQ $13 AND $14
81628 CHAR.POINTER .EQ $12

91438 ¥
81848 READ.NEXT.CHAR.FROM,LINE
21058 LDY CHAR.POINTER
CRLLL] LDA (SOURCE.LINE.POINTER) ,¥
81878 INC SOURCE.LINE.POINTER
81088 RTS

LOCAL LABELS:

SYNASSEMELER introduces a rew kind of label called "local
labels". the main purpose for the local labels is to make
programs more readable by reducing the rumber of label riames
you must invent. As a side effect, local labels save considerabl”
space in the symbol table during assembly; they orly reqire two
bytes each. The use of local labels also encourages structured
programming habits.

-35-
Local labels have a period as the first character, followed by one
or two digits. Any label from .0 through .99 may be used.

The local label must be within a page of the normal label or an
error will result.

Since each set of local labels is associated with a particular
normal label, you may re~use the same local label

Here is ar example of three little routires in the same source
program using normal and local labels:

91880 PRINT .MESSAGE

g181e PHA SAVE A-REGISTER

81828 .1 JSR PRINT .CHARACTER

81830 INY

81849 LDA MESSAGES,Y

81850 BNE .1 =8 FOR END OF MESSAGE
81049 PLA RESTORES A-REGISTER
21878 RTS

01089 X

81899 GET .NEXT .CHARACTER

81160 LDY CHAR.POINTER

a111e LDA INPUT .BUFFER,Y

81120 CMP SRETURN

01138 BEQ .1 END OF LINE

81148 INC CHAR.POINTER

91150 .1 RTS

81168 %

81178 GET .NEXT .NONBLANK . CHAR
81188 .1 JSR GET.NEXT.CHARACTER

21198 BEQ .2 END OF LINE
81209 0P #BLANK
81210 BEQ .1

91228 .2 RTS

36

MEMORY USAGE

The SYNASSEMBLER program is about €980 bytes long, ard
occupies $7C00 through $BCiF in memory. The screen begins at
$RCI{F ard goes through $BFFF, while the source program begins
at the top of DOS and goes to $9Ce4@.

During source program entry or editing, memory usage is
monitored so that the source program does not grow so large as
to overlap the symbol table. Overlapping will cause the
"MEMORY FULL" error message to print. During assembly,
memory required by the symbol table ic monitored, to prevent the
symbol table from overlapping the source program. Overlapping
will gererate the "MEMORY FULL" error message and abort the
assembly.

In addition, memory usage by the object program is monitored, so
that it will not destroy the source program, DOS, the Operating
System, and hardware. Therefore, if the object program bytes are
directed at any memory protected addresses, the "MEMORY
PROTECT" error message will be printed and assembly.

OPERAND EXPRESSIONS

Operand expressions are written using terms and operators. The
valid operators are + and -. Terms may be decimal numbers,
hexidecimal, labels, or an asterisk (#). The first term in an
expression may be preceded by a + or a - sign.

-37-
DECIMAL NUMBERS

Any number in the range from @ through 65535, written in the
normal way.

HEXIDECIMAL NUMBERS:

Any number in the range from $@ through $FFFF. Hexidecimal
rumbers are irdicated by a preceding dollar sign ($), and may
have from one to four digits. Beware of leaving out the dollar
sigr; the assembler may be quite satisfied to thirk of your
hexidecimal number as a decimal one if you omit the ($). In some
cases even a number with letters in it, such as 23AR, may be
acceptable; it may be interpreted as decimal 23 and a comment

IIABII . .
BINARY NUMBERS

Any rumber in the rarge from 0000000 to 11i111111. Rinary
numbers are indicated by the preceding percent (%) sign.

. NUMBERS EXAMPLE:

Ok.
88018 X A DECIMAL NUMBER

40e8: F1 80020 NUM1 DA
80839 X A HEX NUMBER

4801: E3 00848 NUM2 DA #$E3
80850 X A BINARY NUMBER

4002: D4 80848 NUM3 DA #.11018110
80679 EN

--- Symbol table ---

4800: N1

4081: N2

4983: NM3

LABELS:

Ore to nire characters; the first character must be a letter,
while the others may be either letters or digits. Labels must be

-38-

defined somewhere in the program if they are to be used in an
expression. In some cases they must be defired prior to usze in
expressions to prevent an undefined or ambiguous location
couniter. For example, if the expression ir the operand field of an
origin (".0R") directive is not defined prior to use, the assembler
will riot know how to define any subsequent labels.

A problem can occur if you postpone the definition of page-zero
variables unitil after thier use irn operand expressions. 1§ these
labels are used with instructions which could assume both
absolute and zero-page address modes, a discrepancy in the
location count will occur between pass | and pass 2, of the
assembler. This discrepancy carnot be detected by the present
design of the assembler, so make it a habit to always define your
page-1erc variables at the begirning of your program.

ASTERISK [#1:

Stands for the current value of the location courter. This is
useful for storing the length of a string as a constant in a
program.

889a- 0B 1878 GT .DA ¥QTSZ ¥ BYTES IN MSG
880B- 41 4E 39

888E- 20 4D 45

8811~ 33 53 41

8814~ 47 45 1088 +AS /ANY MESSAGE/

1898 QTSZ .EQ ¥-GT-1 # BYTES IN MSG
0814~ @0 0@ 1188 VARW .DA @ 2-BYTE VARIABLE
#818- @@ 1118 UARB .DA 48 1-BYTE VARIABLE

1128 HERE .EQ ¥

It is considered VERY POOR programming practice to include
brarich instructions in your program with operard expressions in
the form "#-5" or "#+7". 1f you value your sanity and time, avoid
them like the plague! They breed bugs that can be very difficult
to find. Dont’t be afraid to use arother label or two, no matter
how silly the names might sourd.

-39~

ADDRESSING MODES

The MOS Techriology 6562 microprocessor used in the ATARI has
many great features; one of the greatest is its variety of
addressing modes. There are thirteen differert modes in all,
though no single opcode can use every one of them. The chart in
the apperdix shows which modes car be used with each opcode.
But first, here is a chart showing an example of each mode and
the way it is written in assembly lanquage.

MODE

Implied
Accumulator
Relative
Immediate

Zero Page
Absolute

Zero Page,X
Absolute X
Zero Page,Y
Absolute,Y
(Zero Page,X)
(Zero Page) ,Y
(Absolute)

EXAMPLE

DEX at least two
ROL blanks before
BNE expr comments begin
LDA #Hexpr

LDA /expr

LDA expr

LDA expr Assembler uses
LDA expr,X Zero Page form
LDA expr X if possible;
LDA expr,Y if not, it uses
LDA expr,Y Absolute form.
LDA (expr,X)

LDA (expr),Y

JMP (expr)

For a full explanation of the modes arnd how to use them, I refer
you to the MOS Tecnology Hardware and Programming Maruals,
as well as the other references mentioried in the bibliography ir

Appendix D.

_40-

SYNASSEMBLER has one syntactical addition. The immediate
mode may be irdicated by either a pound sign (#) or a clash (/).
The "#" means that the legst significant byte of the 14-bit
expression value should be used.

The "/" means that the most significant byte should be used.

Ore use for this feature is im setting up the address of a
subroutine or a buffer in a pointer. (A pointer is a pair of bytes
contairing an address which “points” at a subroutine or into a
buffer.) For example:

4630 88818 ADR .EQ $28

49808: A9 4D 88028 START LDA #50UND

4802: 85 80 90830 5Tk ADR

4884: A9 40 00048 LD& SOURD

q884: 85 81 80859 STR ADR4 1

4803: A8 8¢ CEERE LDY 4@

498¢4: B1 g8 #0679 LDA (ADR) Y

408C: 99 CLRET BRK

408D: 10 28 58 60673 SOUND .HS 182650

4018: 26 49 99 @p49 HS 264498
---Symbol table ---

8030: ADR

488D SOUND

4808: START

4800 SOUND

Trying to comprehend and remember thirteer different
addressing modes can be very difficult; therefore it is
convenient to try to aroup them irto cateqgories. You may wish to
consider the following breakdown: implied mode, relative mode,
and other modes. "Other" modes riow includes elevern modes, so.
you can break it down further: accumulator, immediate, direct,
arnd indirect. Each of direct and irdirect modes can be either
indexed or rnot indexed, and either Zero page or Absolute. The
following outlire will give you a better idea of what has been
described:

I. Implied
IT. Accumulator
[TI. Direct
A. Not Indexed
1. Zero Page
2. Absolute
B. Indexed by X-register
1. Zero Page,X
2. Absolute,X
C. Indexed by Y-register
1. Zero Page,Y
2. Absolute,Y
IV, Indirect
A. Not Indexed - (Absclute)
B. Indexed by X-register
(Zero Page X)
C. Indexed by Y-register
(Zero Page)

IMPLIED MODE

In this mode, the address is implied by the nature of the
instruction; the operand field is left blark. All of the opcodes in
this class are only byte long. They are:

BRK DEX PHA RTS TAY
CLC DEY PHP SEC TSX
CLD INX PLA SED TXA
Ll INY PLP SEl ™S

Cw NOP RTI TAX TYA

RELATIVE MODE

This mode is used only by the conditicnal branch instructions.
The expressicn is converted to a sigried offset from the location
following the branch instruction. The result must be in the range
from ~-128 through +127 to be legal. All of these instructions
occupy two bytes. They are:

BCC/BGEX BEQ BNE BvC
BCS/BLTX Bl BPL BUS

% you may use either form for greater than/less than branches.

OTHER MODES

Usage of the other eleven modes is much more complex. The table
in the appendix shows which modes are defined for each of the
remaining opcodes. These irmstructions occupy orie byte in the
accumulator mode, two bytes in any 1ero page modes, and three
bytes in ary of the absolute modes. They are:

ADC AND ASL BIT P
CPx cry DEC EOR INC
LDA LDX LDY LSR O0RA
ROL ROR SBC STA STY
STX JMP JSR

You might notice ecpecially that only four opcodes are usable in
the accumulator mode (ASL, LSR, ROL, ROR); that only two
opcodes use the "IP,Y" mode (LDX arnd STX); and that only cre
opcode uses the indirect absolute nor—indexed mode (JMP).

43
EDITING FEATURES

Any time the cursor is at the beginring of a lire, typing [TAE]
will cause the next line number to be generated. Immediately
after loading, the "riext lire number" will be 10. The number will
be displayed as five digits abd a trailing blank. The cursor will
be in a position for the first character of a label, or the asterisk
for a comment line, or a semi-colon.

The "next line number" is always the value of the previously
entered line number plus the current "increment". The increment
is normally 10, but you can set it to any reasonable value with
the INCREMENT command.

1f you type the [TAE] in any other position than the begirrirg of
a line, it will cause a "tab" to the next tab stop.

TAB STOPS

The standard tab stops have been changed to allow for a nire
character label before the opcode. Of course, you may use any
lenigth label from { to 32 characters, followed by a blark ard an
opcode; but the use of the tab stops make for nicer looking
programs. (Lorger labels look rmicer if left on a line by
themselves.)

CURSOR CONTROL

SYNASSMELER allows continued use of the ATARI cursor
controls by pressing the [CTRLJ key plus one of the four arrow
keys on the right side of the keyboard. In addition,
SynAssembler makes full use of the ATARI screen
editor.

-44-

DEBUGGING PROGRAMS

Each step ("S") command decodes, displays, and executes ore
instruction at a time, and the trace ("T") command quickly steps
through a program, stopping whern a BRK instruction is executed.

Each step command causes the monitor to execute the instruction
in memory pointed to by the program poirter. The instruction is
displaved in its disassembled form, then executed. The contents
of the 65%02's internal registers are displayed after the
instruction is executed. Then the program counter is bumped up
to point to the next instruction in the program.

Here‘s what happens when you list and then step through a
sample program:

ok.

MO

Zynapse moni tor

[x) Ok.

4800L

4p88: A7 @5 LDA #4865
4002: @A ASL
4883: @A ASL
4984: 8D 08 20 STA $2064
4897: 08 BRK
4988: 0@ BRK
4815: 09 BRK
4816: 08 BRK

(¥1 Ok.

-45-

STEP EXAMPLE:

[#) Ok.

40005

4606: A705 LDA #$05
A=05 X=00 Y=00 P=30 S=FD
[#] OK.

S

4002: QA ASL

A=0A X=00 Y=00 P=30 S=FD
[#] QK.

200

0200: 90

[#] OK.

5

4003: QA ASL

A=14 X=00 Y=00 P=30 S=FD
[*) OK.

S

4004: 2D 00 20 STA

A=14 X=00 Y=0@0 P=30 S=FD
[#] OK.

2000

2000: {4

[#] QK.

5
4007: 00 ERK

4007: A=14 X=00 Y=00 P=30 S=FD
[#] OK.

-44-

TRACE EXAMPLE:

Ok.

MON

lynapse monitor

[#] Ok.

4000T

4000: A9 @5 LDA #405
A=0% X=00 Y=00 P=30 S=FD
4982: 23A ASL

A=0A X=00 Y=00 P=30¢ S=FD
4003: 0A ASL

A=14 X=00 Y=08 P=30¢ S=FD
4004: 3D 00 20 STA #%2000
A=14 X=00 Y=00 P=3@ S-FD

4907: 00 BRK
40907: A=14 X=00 Y=09 P=30 S=FD
C*] Ok.

EXAMINING AND CHANGING REGISTERS

The EXAMINE command is invoked by pressing "R" which tells
the monitor to display the coriterits of the five 6502 registers on
the screen. To change these values, type the semi~-colon and the
rnew values:

[#] Ok.

R

A=0A X=FF Y=D%& P=E0 S=F%&
#;B0 @2

R

A=Be® X=02 Y=D& P=RO S=F¢

APPENDIX 1

MONITOR TRICKS

There are few tricks that you can use in the 7Y NAPSE morator.
These will gererally make your life easier and programming less
ot a chore,

All monitor commards may be put on a single lire if you separate
the commands with a space.

EXAMPLE: D@iF D@IF DaiF
Thic will display memory location D3{F 3 times.

Some commands are only ore letter long, so vou reednr’t separate
them with a space.

EXAMPLE: 28@8LLLL
Thic will disassemble 88 instructions

Sometimes you may rieed to utilize certain commards repeatedly.
You can do this by typirg the command mary times, or tvpe 1t
once and tell the monitor to repeat it for vou.

EXAMPLE: N 2FC AD:8N
This will display location 2FC until
[BREAKT or [SYSTEM RESET] is pressed.

APPENDIX II

SYNASSEMBLER Memory Map

(assumes 48K memory)

0000-09EF : 0.5. and Assembler zero page usage.
06FB-80FF : Free space

8180-81FF : 45082 hardware stack

0200-82FF : Operating System vector table
0308-03FF : I0CB vector table

8488-847F : DOS usage area

0480-84FF : Assembler usage

8500-85FF : Assembler input buffer

8408-84FF : Free space (if REPlace not used)
8768-1D6@ : DOS II

1D08-9BFF : Free space for source, symbol table,
and object code

9C88-BCIF : SYNASSEMBLER

BC28-BFFF : Screen display list and data

APPENDIX 111
CONVERTING ATARI ASSEMBLER FILES

In order to convert vour ATARI Assembler/Editor files to
SynAssembler format follow these simple instructions:

.Read the ATARI editor/assembler files into the SyrnAssembler
using the ENTer command.

.Save the file back to the disk using the SAVe commard. This will
store youe file in compacted format.

.Make the following chariges to your source code:
i. Remove all references to "A". For example, in the instruction
LSR A, the "A" should be removed, since SynAssembler assumes

the "A" reference.

2. SynAssembler has no multiply or divide, so these must be put
in by long hand.

3. To get the Hi and Lo bytes, make the following chariges:
Atari Assembler

LDA #PLACE/256 high byte
LDA #PLACE&255 lo byte

SynAssembler
LDA /PLACE high byte
LDA #PLACE 1o byte

4, All of the Atari directives must be changed to the
SyriAssembler equivalents.

Now that you have your file in SynAssembler format, you may use
the local labels and long 32 character labels.

APPENDIX 1V

BIBLIOGRAPHY

Publishers have begun to release some good technical resource
books for learning to program the 6502 micropracessor.

The ATARI Assembler, Don Inman & Kurt Irman.RESTON
Publishing Company, 1981. Designed for the begirner to
irtermediate, this book has 270 pages ircluding many
illustrations, diagrams and examples.

6502 Software Design, Leo J. Scanlon. Ore of the Blacksburg
Continuing Education Series, published by Howard W. Sams &
Co., 1760, 270 pages, paper, $10.50.

6502 Assembly Language Programming, Lance A. Leventhal.
Osborre/McGraw Hill, Inc., 1979, over &0 programming examples.

Programming and Interfacing the 6502, with Experimerts, Marvin
L. DeJorg. Ore of the Blacksburg Contirwing Education Series,
published by Howard W. Sams & Co., 198@. 414 pages, paperback.

6502 Software Gourmet Guide and Cookbook, Robert Findley.
Scelbi Publications, 1979. 204 pages, paperback. Includes listings
ot corversion routires, search and sort routires, and floating
point routires.

6502 Games, Rodney Zaks, SYREX. The third in the SYREX series
or programming the 65@2. Includes listings of games in assembly
language.

Practical Microcomputer Programming: the 6502, W.J. Weller,
Northern Technology Books, 173@. 459 pages, includes a listing
of & 6582 assembler and a debuggirg package.

APPENDIX V

ACCUM- IMMED- DIRECT INDIRECT
ULATOR IATE INDEXED INDEXED

blank #expr expr expr,X expr,Y (expr) (expr,X) (expr),Y
/expr 2P/ABS ZP/ABS ZP/ABS

AL - R VZ S e S -- 81 7
A - ¥ W WD -/ - 21 31
AL BA - B4RE WIE /- - -- --
BIT - - WA /- /- - -- -
P - ¢ CS/CD DS/DD /D9 - c1 D1
X - B EMEC /- /- - - -
Y - o Y e o - - --
EC - —~ CHCE DAE /- -- - -
ER - 49 454 S/ /59 -- 41 51
NN - — EYEE F4FE /- - -- --
A - A9 AS/AD BS/BD /B9 -- At B
X - A2 AWAE -—/-- B4/BE - - --
o - M MW BB /- -- -- --
SR 4A —- G SE /- - - --
L 89 e/eD 1D /19 - 01 1
RL 2 —- WE WE /- - -- --
RR 4A — I WE /- - -- --
| - B9 EVED FS/FD --/F9 - 3| Fi
ST — —- /8 YV /%9 - 81 91
X -- — BBE /- 9%/ - - --
sy - —- e /- /- -- - --
w» o - L T 6 - -

JR - e T e - -- --

Warranty

SYNAPSE SOFTWARE warrants to the original consumer/purchaser that this
SYNAPSE SOFTWARE program cassette/diskette (not including the computer
programs) shall be free from any defects in material or workmanship for a period of
90 days from the date of purchase. If a defect is discovered during this 90 day
warranty period, and you have timely validated this warranty, SYNAPSE
SOFTWARE will repair or replace the cassette/diskette at SYNAPSE SOFTWARE'S
option, provided the cassette/diskette and proof of purchase is delivered or mailed,
postage prepaid, to SYNAPSE SOFTWARE.

This warranty shall not apply if the cassette/diskette (1) has been misused or shows
signs of excessive wear, (2) has been damaged by playback equipment, or (3) if the
purchaser causes or permits the Cassette to be serviced or modified by anyone
other than SYNAPSE SOFTWARE. Any applicable implied warranties, including
warranties of merchantability and fitness, are hereby limited to 90 days from the
date of purchase. Consequential or incidental damages resulting from a breach of
any applicable express or implied warranties are hereby excluded.

Notice

All SYNAPSE SOFTWARE computer programs are distributed on an “as is” basis
without warranty of any kind. The entire risk as to the quality and performance of
such programs is with the purchaser. Should the programs prove defective follow-
ing their purchase, the purchaser and not the manufacturer, distributor, or retailer
assumes the entire cost of all necessary servicing or repair.

SYNAPSE SOFTWARE shall have no liability or responsibility to a purchaser,
customer, or any other person or entity with respect to any liability, loss or damage
caused or alleged to be caused directly or indirectly by computer programs sold
through SYNAPSE SOFTWARE. This includes but is not limited to any interruption of
service, loss of business or anticipatory profits or consequential damages resulting
from the use or operation of such computer programs.

The provisions of the foregoing warranty are subject to the laws of the state in which
the Cassette is purchased. Such laws may broaden the warranty protection avail-
able to the purchaser of the Cassette.

SYNASSEMELER

Whether you are an experienced assembly language programmer
or a novice, the SYNASSEMBLER offers more features and ease
of use than any other package. SYNASSEMELER'’s incredible
speed and convenient editor makes it an ideal tool for all
development work orn the ATARI computer. Here are just a few
of the features:

Multiple source files

Object code can be stored directly to disk/cassette file

Dis-assembles to screen/printer

Reserve a block of storage

Labels up to 32 characters (7 character TAR)

Labels may include lower case and periods

Local labels

50 to 100+ times faster than Atari‘'s ASM/ED(6500 lines/min)
"English" error messages

Full Atari editing features

Easy conversion for existing Atari Editor/Assembler files

Complete morator/debugger

Automatic line numbering/renumbering

Listing on/off option when assemblirg

0S5, HARDWARE, DOS, and ASSEMBLER protected during assembly
Append source programs from disk or tape

Many,many other convenient features

SYNASSEMELER is without a doubt the easiest to use, most

powerful ASSEMBLER/EDITOR for the ATARI system. Learn and
use the best!

REQUIREMENTS:

Atari 500 or 400 computer
43K memory

Disk Drive

Price: $47.95 Disk Special order ROM version $27.75

SYNASSEMELER is a trademark of SYNAPSE SOFTWARE
ATARI is a trademark of Atari;inc.

