
Introduction
This language has been designed for the programmer with an in-depth knowledge of ATARI's 8 bit computers. It
may also be useful to know a little 6502 machine code in order to extend the functionality of the language via user
defined functions and procedures.
This language will also be of use to somebody just starting to learn 6502 machine code as small (or large) machine
code routines may be incorporated directly within TCL programs themselves.
The language was written as an exercise for myself but take a look at Enigmatix! for an example of what can be
achieved.
It currently works with DOS XL by just entering TCL and hitting return. It should work with other DOS systems but
it may be necessary to specify the run address yourself. The run address is 0x2600.
There are probably many errors contained within this document since it was last updated long before the last version
of the compiler (1986). I have just updated a few areas I knew were wrong but memories fade and I have probably
missed some bits.
If you have any problems or queries regarding this documentation send an Email message to myself and I'll find the
answer and update this guide.

System Requirements
The minimum system requirements in order to run TCL are as follows:

 An Atari 8 bit computer (e.g. Atari 400, 800, 800XL, 130XE)
 24K of memory
 A Disk Drive

Syntax Conventions
The following conventions are used in this manual when defining the syntax of a command :-

1. Capital letters designate the names of the procedures or functions and must be typed in exactly as shown
(eg. LIST, COMPILE, AND, GOTO etc).

2. Lower case letters specify the type of argument to the commands :-

lno

A label number between 1 and 65535, inclusive.

hxnum

A string of hexedecimal numbers.

dcnum

A positive decimal number.

exp

Any valid expression.

string

A string of ASCII characters enclosed in double quotes (eg. "String of Characters").

adr

http://www.reticuli.demon.co.uk/Enigmatix/Index.html

The address of some data, adr may be an expression.

3. Items enclosed within square brackets denote an optional part of the syntax (eg. exp [,exp...]). When an
optional item is followed by ... the item may be repeated as many times as needed.

BOOT
Purpose: To compile the source program directly to a BOOT Disk
Syntax: BOOT

Description
Before pressing return insert a blank formatted disk in D1: the compiled program will be written to the disk as a
single part boot disk. The disk image can then be copied onto a standard multiboot type menu.

COMPILE
Purpose: To compile the source program.
Syntax: COMPILE [#file1] [,#file2]

Description
This command will call the compiler which will go through the program line by line, converting it into machine
code. If file1 is specified the object code will be created and sent to file1, together with a small runtime package
(about 1.5K). If file2 is specified the listing will be produced and sent to this file2.

DOS
Purpose: To return to the disk operating system.
Syntax: DOS

Description
This command will return you to the disk operating system. The compiler may be re-entered by simply typing RUN
in a memory resident dos, such as Sparta Dos or Dos XL, or by typing RUN 2600.

ENTER
Purpose: To merge source code from file with loaded source code
Syntax: ENTER #filespec

LIST
Purpose: To list a program to a device.
Syntax: LIST [#filespec,][dcnum1 [,dcnum2]]

Description
This command will list the source program to the specified device. If a device is not specified, the screen editor will
be used as default. If only dcnum1 is specified, then only that line will be displayed, but if both dcnum1 and dcnum2
are specified, all the lines between and including dcnum1 and dcnum2 will be listed. When dcnum1 and dcnum2 are
not specified, the complete source program will be listed out to the required device.

Example
This will list all the lines between 2000 and 2050 inclusive to the printer.
 LIST #P:,2000,2050

LOAD
Purpose: To reload a stored source program into memory.
Syntax: LOAD #filespec

Description
This command will first clear the program that currently resides in memory, and will then load the previously saved
source file into memory, from the specified filespec.

NEW
Purpose: To erase program in editors memory.
Syntax: NEW

Description
This command is used to clear an old program out of memory, before starting to enter a new program. Once this
command has been issued, the program cannot be retrieved, and therefore it must be saved to disk if it will be
needed again.

RENUMBER
Purpose: To renumber all line numbers (not labels)
Syntax: RENUMBER [dcnum1] [,dcnum2]

Description
Used to renumber all the editors line numbers (not label numbers). If no dcnums are specified the source program
will be renumbered starting from line 10 in increments of 10. If dcnum1 is specified, this will be taken as the start
lines number, and if dcnum2 is specified, this will be taken as the increment. The renumber command is mainly used
to insert spaces between line numbers, so that lines can be inserted between them.

Example
This will renumber the current program from line 1000 in increments of 10.
 RENUMBER 1000,10

RUN
Purpose: To execute the program without creating an object file.
Syntax: RUN

Description
This command is similar to the COMPILE command, except that no files may be given. When the compile is in run
mode it must perform a third pass on the sourc program to determine a safe place to store the object code.
NOTE: If any errors are detected, the compile program will not be run.

SAVE
Purpose: To save a source program.
Syntax: SAVE #filespec

Description
Used to save a program so that you can resume editing it at a later stage.

SIZE
Purpose: To display remaining memory
Syntax: SIZE

Description
Used to find out how much memory is left for use with the COMPILER. If you start to run out of memory you can
save the current file, and INCLUDE it in the main program, this will give more memory for the compiler to build the
symbol tables.

AFTER
Purpose: After time period, go to address
Syntax: AFTER (exp, adr)

Description
When this command is executed it sets up one of the count down timers to count down from the value of exp. When
the timer reaches zero control will be passed to adr which is an address of some machine code, or commands in this
language. The called routine must execute a RETURN command to resume normal proccessing. If a return is not
used the stack could quickly overflow causing the program to crash. To avoid this you could reset the stack pointer
to $FF (LDX #$FF : TXS), but if this is done, it is the same as the program, being totally restarted from the current
point (all return addresses will have been lost). The time may range from 1 to 65535 where 1 is 1/50th Second.

Example
The following example will switch on the sound channel and continue to process the rest of the program. Then after
10/50th of a second the program will call 'SOUNDOFF' which switches the sound off, and returns back to the main
program.
 SOUND (0,100,10,10)
 AFTER (10,SOUNDOFF)

 REST OF PROGRAM

 POINTER SOUNDOFF
 SOUND (0,0,0,0)
 RETURN

ASCII
Purpose: To include ASCII text in program
Syntax: ASCII string

Description
This command enables ASCII text to be placed in the code, which can be used for filenames etc. The command
must be positioned so that it will never be executed as this will make the program crash. If necessary jump over the
text with a GOTO command.

Example
The following example will store the characters "D:DISKFILE.DAT" in memory. These characters are accessed by
defining a pointer just before them. The program opens the disk file via the pointer.
 GOTO 10
 POINTER FILENAME
 ASCII "D:DISKFILE.DAT"
 10 OPEN (1,FILENAME,4,0)

BEGIN
Purpose: To define the start of the program
Syntax: BEGIN

Description
This command allows you to start the program execution from any point in the source code. There must be one, and
only one BEGIN statement in the program. If at runtime the program reaches the associated END statement the
program will either 1. Return to the language (if RUN command was used), 2. Return to DOS (if loaded from DOS)
or 3. REBOOT (If booted from disk).

CLOSE
Purpose: To close an IOCB channel.
Syntax: CLOSE (exp)

Description
This command will close the specified IOCB, which will allow it to be used again at a later time. The exp must
evaluate to between 0 and 7 although if it is out of range it will be truncated & no error will be issued.

Example
The following code ensures that channel one is closed before you try to re-open it.
 CLOSE (1)
 OPEN (1,FILENAME,4,0)

CODE
Purpose: To enter hexedecimal data.
Syntax: CODE hxnum [hxnum...]

Description
This command will enable you to enter hexedecimal data into memory at the current memory location (at compile
time). This command enables you to include machine language directly in the program. Values can be passed to and
from the routine using the PUSH & PULL commands.

Example
This places the code to change the screen colour to black in memory. The comments after give the assembler source
code (not required).
 CODE A9008DC602
 ; LDA #0

 ; STA $2C6

COLOUR
Purpose: To select a new colour
Syntax: COLOUR (exp)

Description
This command (note the ENGLISH spelling) is used to select a new colour register. The colour is used to select
what value will be stored on the screen. The graphics hardware will interpret this value differently from one graphics
mode to another. In text modes it will select a character, and in graphics mode it will select a colour for each screen
pixel. The pen colours may be changed by the SETCOLOUR command.

DO
Purpose: Repeat some code a given number of times
Syntax: DO var = exp1, exp2, exp3

Description
This command is used to repeat a loop a given number of times. The exp1 is the initial value, exp2 is the termination
number, and exp3 is the increment the control variable takes each time round the loop. Note that an increment of
65535 is equal to -1 allowing you to count down.

Example
This will cause the 'X' variable (control variable), to take the values 1 through 10, and write them to the screen.
 DO X=1,10,1
 WRITE (X)
 END DO

DPOKE
Purpose: To store values in memory
Syntax: DPOKE (adr,exp)

Description
This command will store a 16 bit number denoted by the values of exp, into the specified memory address. The 16
bit number will be stored low byte first and high byte at adr+1.

Example
This will store the address of reset at memory address 2 and then change memory address 9 to indicate cassette boot.
This will cause execution begining again at RESET when the reset key is pressed.
 POINTER RESET
 DPOKE (2,RESET)
 POKE (9,2)

DRAWTO
Purpose: To draw a line on the screen
Syntax: DRAWTO (exp1,exp2)

Description
This command will draw a line from the current graphics cursor position, using the last colour selected to the
location of exp1 and exp2. exp1 is the 'X' coordinate and exp2 is the 'Y' coordinate.

Example
This selects graphic mode 8 without a text window using colour 1. Then the program will fill the screen going from
left to right.
 GRAPHICS (8+16)
 COLOUR (1)
 DO X=0,319,1
 PLOT (X,0)
 DRAWTO (X,191)
 END DO

ELSE
This command is used within a conditional IF block, and will cause all the code after it up to the END IF statement,
to be executed, if the IF or all ELSE IF conditions evaluated to FALSE.

ELSE IF
This command is used within a conditional IF block, and will cause all the code following it, up to the next ELSE
IF, ELSE or END IF (at the same level of nesting) to be executed, if the expression evaluates to TRUE, and the
expression in the IF, and any preceding ELSE IF statements evaluated to FALSE. There must be a space between
ELSE and IF.

END
Purpose: To execute a cold start/Terminate Function
Syntax: END

Description
This command is used to terminate a block of instructions. If it terminates a function, the function returns to the
calling statement. If it is used outside a function (terminating the BEGIN statement) it will perform a coldstart.

END DO
Purpose: To define end of DO loop.
Syntax: END DO

Description
This command terminates the current DO loop. It must always be lower down the source program than its associated
DO command. There must be a space between END and DO.

Example
This will loop round and take the values of X from 1 up to and including 10. Note that the loop will not be
terminated until the X variable has had the value of ten when the END DO is reached. If the X increment was 2, the
X variable would never reach 10 & therefore the loop would NEVER terminate.
 DO X=1,10,1
 WRITE (X)
 END DO

END IF
This command is used to terminate a conditional IF block. There must be a space between END and IF.

END WHILE
This command is used to terminate a WHILE exp DO block. When the expression in the WHILE command
evaluates to FALSE the program continue after the END WHILE command. There must be a space between END
and WHILE.

ERROR
Purpose: To force a runtime error
Syntax: ERROR exp

Description
This command will allow a your programs to generate a runtime error. This error is trapable in the normal way.

EVERY
Purpose: Every time period gosub address
Syntax: EVERY (exp, adr)

Description
This command is identical to the AFTER command exept that the interupt will occur every x/50ths of a second. The
interrupt can be disabled by issuing the command with a time of zero.

FAST
Purpose: To increase the execution speed
Syntax: FAST

Description
This command will increase the execution speed of the program. It does this by disabling all interupts and by
switching the screen display off. This should be used while the screen display is not required, and then by executing
a SLOW command at the end.

Example
This program first switches the screen and interupts off. Sets the 'Y' variable to 0, and then adds 1 to 'Y' 5000 times.
The screen and interupts are then re-enabled and the value of 'Y' is displayed on the screen.
 FAST
 Y=0
 DO X=1,5000,1
 Y=Y+1
 END DO
 SLOW
 WRITE (Y)

FILL
Purpose: Fill an area of memory with a value.
Syntax: FILL (adr, exp1, exp2)

Description
This command fills an area of memory from memory location adr for exp1 consecutive locations with the low byte
value of exp2.

Example
This fills page 6 (memory locations 1536 to 1791 inclusive) with a value of zero.
 FILL (1636,256,0)

FLOAT
Purpose: To place a floating point number into memory
Syntax: FLOAT const [,const ...]

Description
Allow you to place a floating point number into memory at the current memory address. The number can be located
by placing a pointer variable directly before the FLOAT command. Although the compiler does not support floating
point numbers, they can be implemented through the use of procedures and functions (see section on floating point
procedures), but they cannot be used in expressions. ie. you could define an add command (ADD
(destination,source)) which could add the floating point number at the address pointed to by source to the number
pointed to by destination, with the result stored at destination.

FUNCTION
Purpose: User defined functions with arguments
Syntax: FUNCTION lblnm (var1 [,var2....])

Description
Since their are no inbuilt functions in the language, this command enable you to define your own. The function will
be called lblnm and a variable of the same name will also be automaticaly set up to contain the result. The
arguments will be given values when the routine is called. The result of the function is passed back to the calling
routine by assigning the value to the functions name. The function is terminated by executing an END command.

Example
This will cause the value of 10 to be printed on the screen.
 VARIABLE X
 FUNCTION TEST (X)
 TEST=X*2
 END
 ;
 VARIABLE Y
 BEGIN
 Y=TEST(5)
 WRITE (Y)
 END

GET
Purpose: To get recieve some data from an IOCB
Syntax: GET (exp1, adr, exp2)

Description
This command is used to receive some data from the IOCB specified by exp1, this may be in the range of 0-7 but
will be truncated if required. The command will recieve exp2 bytes from the IOCB and store them in consecutive
memory locations starting with adr.

Example
This program inputs 5 characters from the keyboard, and store them at 'KEYPRESS'. The characters will then be
printed out via the screen editor.
 POINTER KEYBRD
 ASCII "K:"
 POINTER KEYPRESS
 RESERVE 5
 ;
 BEGIN
 OPEN (1,KEYBRD,4,0)
 GET (1,KEYPRESS,5)
 PRINT (0,KEYPRESS,5)
 CLOSE (1)
 END

GOSUB
Purpose: To call a subroutine.
Syntax: GOSUB lblnm

Description
Argh not GOSUB. I wouldn't even it in a language today! Anyway it enable you to call a label number directly. To
return from the subroutine a RETURN command must be executed. This command can be useful to save rewriting
similar pieces of code more than once.

Example
This program will first write out the value 1 followed by the value 2. In this case the END has the same effect as a
return statement.
 VARIABLE X
 BEGIN
 X=1
 GOSUB 10
 X=2
 10 WRITE ("X = ",X)
 END

GOTO
Purpose: To change flow of program
Syntax: GOTO lbl

Description
Oh no! another one! This command executes in the same way as the GOSUB command, exept that it does not expect
a RETURN command.

Example
This program loops until X is equal to 5, and then it goes to label 20 and write out the current value of 'X' (5) before
returning control to DOS.
 VARIABLE X
 BEGIN
 X=0
 10 IF X<>5 THEN
 X=X+1

 GOTO 10
 END IF
 WRITE (X)
 END

GRAPHICS
Purpose: To change screen mode
Syntax: GRAPHICS (exp)

Description
This command will call the operating system to set up the required graphics mode using IOCB 6. Normaly the
screen will be set up in a split screen mode, but by adding 16 to exp, the screen will be set up without a split screen.
Adding 32 to the exp will cause the screen to be set up without clearing the screen memory.

Example
This command will set up the high resolution one colour mode (320 by 192) without a text window using IOCB 6.
 GRAPHICS (8+16)

IF
Purpose: To make decisions
Syntax: IF exp THEN (or DO)

Description
This command starts a conditional block of code. The first block will be executed if the expression is TRUE (non
zero low byte value), otherwise the program will resume after the ELSE, ELSE IF (if exp true) or END IF

Example
 VARIABLE X
 BEGIN
 X=0
 WHILE X<3 DO
 X=X+1
 IF (X=1) THEN
 WRITE ("ONE")
 ELSE IF X=2 THEN
 WRITE ("TWO")
 ELSE
 WRITE ("THREE")
 END IF
 END WHILE
 END

INCLUDE
Purpose: To include source programs from a file
Syntax: INCLUDE #filespec

Description
This command will INCLUDE the specified file name in with the code as it is being compiled. This can be used to
bring in library routines, or it may be used to build large programs, where it is not all resident at the same time.

Example
This program includes the file D:PEEK.FUN into the main program at compile time (if it exists on the disk).
 VARIABLE X
 INCLUDE #D:PEEK.FUN
 BEGIN
 X=PEEK (20)
 WRITE (X)
 END

INPUT
Purpose: To input records terminated with an end of file.
Syntax: INPUT (exp1, adr, exp2)

Description
This command is used to input records terminated with an end of file marker. exp1 is the IOCB to use, adr is the
address where the recieved data is to be stored and exp2 is the maximum number of bytes that can be in the record.
Any extra bytes will be ignored.

Example
This program enters up to ten bytes from IOCB 0 (screen editor) and store them at TEXT. The program then
PRINTs it out.
 POINTER TEXT
 RESERVE 10
 BEGIN
 INPUT (0,TEXT,10)
 PRINT (0,TEXT,10)
 END

IRQ OFF
Purpose: Disable interupt requests
Syntax: IRQ OFF

Description
This command ensures that no interrupts can occur. It disable both the EVERY and the AFTER interrupts. The non
maskable interupts are not be affected.

IRQ ON
Purpose: Enable interput requests
Syntax: IRQ ON

Description
This command enables all the interrupt requests again.

LOCAL
Purpose: Define a new local variable region
Syntax: LOCAL

Description
This command defines the start of a new local variable region. A variable defined as being local is only available for
use in the local region it was defined in. Up to 250 local regions may be used. Local variables are defined by
preceding the variable name with a '?' character.

Example
This program defines two local regions both with the variable 'X' defined. In the first it is set to 2, and in the second
it is set to 6. While the program is executing in the first local region 'X' will have the value of 2. Therefore the
number 2 will be written to the screen by the WRITE statement.
 LOCAL
 VARIABLE ?X
 BEGIN
 ?X=2
 GOSUB 10
 WRITE (?X)
 END

 LOCAL
 VARIABLE ?X
 10 ?X=6
 RETURN

MOVE
Purpose: To move blocks of memory around
Syntax: MOVE (adr1, adr2, exp)

Description
This command moves exp bytes from adr1 to adr2. Care must be taken so that an overlap of adr1 and adr2 does not
occur.

Example
This command will move all of page 6 into page 7, leaving page 6 un-change.
 MOVE (1536,1792,256)

OPEN
Purpose: Open a input / output file
Syntax: OPEN (exp1, adr, exp2, exp3)

Description
This commands opens an input or output file. exp1 is the IOCB to use, adr is an address that contains the name of
the file to open, exp2 holds the input/output operation and exp3 holds a device dependent auxiliary code.
Valid values for exp2 are:-
 4 = Input operation
 6 = Disk directory operation
 8 = Output operation
 9 = End of file append (output)
 12 = Input and output operations (together)

Example
This procedure displays the disk directory on the screen using the supplied IOCB.
 LOCAL

 VARIABLE ?IOCHAN
 POINTER ?FSPEC
 ASCII "D:*.*"
 POINTER ?TEXT
 RESERVE 20
 PROCEDURE DIR (?IOCHAN)
 CLOSE (?IOCHAN)
 OPEN (?IOCHAN,?FSPEC,6,0)
 TRAP 65532
 65530 INPUT (?IOCHAN,?TEXT,20)
 PRINT (0,?TEXT,20)
 GOTO 65530
 65532 CLOSE (?IOCHAN)
 POP
 TRAP -1
 END

PLOT
Purpose: To plot a single point on the screen
Syntax: PLOT (exp1, exp2)

Description
This plots a single point on the screen using the last selected colour. exp1 holds the 'X' coordinates and exp2 holds
the 'Y' coordinates.

Example
This program set up graphics mode 16 and then draw bands of colour going from the top to the bottom of the screen.
 VARIABLE X
 BEGIN
 GRAPHICS (11)
 DO X=0,79,1
 COLOUR (X MOD 16)
 PLOT (X,0)
 DRAWTO (X,191)
 END DO
 10 GOTO 10
 END

POINTER
Purpose: To locate a section of the compiled code.
Syntax: POINTER lblnm

Description
This command defines a variable, but instead of the variable being initialised to zero, it is initialised to the value of
the next address. This allows you to locate parts of the compiled code (text, data and buffers etc).

Example
This program will open a file called D:FILE.DAT, and then continue and execute the rest of program.
 POINTER Filename
 ASCII "D:FILE.DAT"
 BEGIN
 OPEN (1,Filename,4,0)

 Rest of program

 CLOSE (1)
 END

POKE
Purpose: To store values in memory
Syntax: POKE (adr,exp)

Description
This command stores an 8 bit number denoted by the low byte of exp at memory address adr.

Example
This stores a zero at memory address 710, which in this case turns the screen black.
 POKE (710,0)

POP
Purpose: To clear values off stack
Syntax: POP

Description
This command pops a 16 bit number off the stack. This can be used to remove unwanted return addresses or
parameters from stack.

Example
In this case the POP command has the effect of turning the GOSUB 10 into a GOTO 10 (ie. once it has been POPed
off the stack you cannot return).
 GOSUB 10

 rest of program

 10 IF (EXIT) THEN
 RETURN
 END IF
 POP

 continue program here

PRINT
Purpose: To print out a buffer
Syntax: PRINT (exp1, adr, exp2)

Description
This command prints a buffer to a given device. The buffer is considered to be empty when either an end of file is
found in the data or when the maximum number of bytes has been sent. exp1 holds the number of the IOCB to use,
adr holds the address of the data buffer, and exp2 holds the maximum number of bytes in the buffer.

Example
This program enters up to 10 characters from the screen editor, and output up to 10 characters to the screen editor.
 POINTER BUFFER
 RESERVE 10

 BEGIN
 INPUT (0,BUFFER,10)
 PRINT (0,BUFFER,10)
 END

PROCEDURE
Purpose: To add new commands to the language
Syntax: PROCEDURE lblnm (var1 [,var2...])

Description
Defines the start of a new command. The new command may be called just like any of the resident commands (ie.
by typing its name followed by correct number of arguments). A procedure is terminated by an END statement.

Example
This procedure allows you to directly write an expression to the screen. Normally you would have to calculate the
value in a tempoary variable before writing it out.
 LOCAL
 VARIABLE ?EXP
 PROCEDURE WriteEXP (?EXP)
 WRITE (?EXP)
 END
 ;
 BEGIN
 WriteEXP (5+6*7*100/2)
 END

PULL
Purpose: To obtain values off the stack
Syntax: PULL (var1 [,var2...])

Description
This command causes a number of 16 bit values to be pulled off the stack (one for each variable specified). The first
number pulled off the stack will be used as the high byte and the second byte as the low byte.

Example
This has the effect of swapping the values of 'A' and 'B'. (since 'A' is pushed on First and 'B' is pushed on second, 'B'
is the first one pulled off, and it is stored in 'A')
 PUSH (A,B)
 PULL (A,B)

PUSH
Purpose: To place 16 bit values on stack
Syntax: PUSH (exp1 [,exp2...])

Description
This command will allow you to be able to push values onto the 6502 stack for use by your machine language
routines etc. The low byte will be stored on the stack first followed by the high byte of the expression. For an
example see the previous command (PULL).

PUT
Purpose: To send some data to a file
Syntax: PUT (exp1, adr, exp2)*

Description
This command will put the data starting at memory address adr for exp2 consecutive memory locations to the IOCB
specified by exp1.

Example
This will send an EOL (End of line) character to the editor.
 POINTER Return
 CODE 9B
 BEGIN
 PUT (0,Return,1)
 END

REPEAT
Purpose: Repeats a loop until a condition is met.
Syntax: REPEAT

Description
This command is used in conjunction with the UNTIL command, and allows you to repeat all the lines between the
'REPEAT' command and the 'UNTIL' command until a given condition evaluates to true (1).

Example
This causes the loop to be repeated until the 'X' variable has a value of 10.
 REPEAT
 X=X+1
 WRITE (X)
 UNTIL X=10

RESERVE
Purpose: To reserve some memory
Syntax: RESERVE dcnum

Description
This reserves a specified number of bytes within the compiled program for use as buffers etc.

Example
This will reserve 10 bytes in memory, there are no restrictions as to what this space is to be used for, but the
program must never execute this statement, unless you know there is a machine langauge file stored there. Usually
this command will be preceded with a POINTER definition so that you can locate the reserved memory.
 RESERVE 10

RETURN
Purpose: Return from a routine
Syntax: RETURN

Description
From inside the main program (not in a subroutine etc) this command will return you to DOS. This command is also
used to return from a GOSUB.

SETCOLOUR
Purpose: Change a colour registers value
Syntax: SETCOLOUR (exp1, exp2, exp3)

Description
This command is used to define a new colour for the specified colour register. exp1 holds the colour register (0 to
8) where register 0 is address 704, 1 is address 705 etc. exp2 holds the new colour and exp3 holds the luminance of
the colour. Only the lower 4 bits of both exp2 and exp3 have any significace.

SLOW
Purpose: Enables screen display and interupts
Syntax: SLOW

Description
This command is used to bring the computer out of fast mode. (ie. switch the display and interupts on again). For an
example see the FAST command.

SOUND
Purpose: Control sound voices
Syntax: SOUND (exp1, exp2, exp3, exp4)

Description
This enables you to use the ATARI's sound registers. exp1 holds the voice number (0 to 4), exp2 holds the
frequency (0 to 255), exp3 holds the distortion level (0 to 15) and exp4 holds the volume (0 to 15)

TRAP
Purpose: To trap input / output errors
Syntax: TRAP (lno)

Description
This command re-direct the program to your error handling routine should an error be detected. The error code will
be stored at location 195 (as in basic). If the supplied label number is invalid or missing, the default error routine is
used. This default handler outputs a message giving the error number and the approximate address where the error
occured. With reference to the compilation address map you should be able to identify the approximatly line in
error. A user defined error handler may return to the source line after the error by executing a RETURN command.
If the program should continue without returning to the line after the error, you must execute a POP command to
clear the stack (as in the definition of the DIR procedure). The only statement that you can't return to is after it has
happend in a WRITE statement.

UNTIL
Purpose: Terminate REPEAT UNTIL loop
Syntax: UNTIL exp

Description
This command is used to terminate a REPEAT UNTIL loop structure, and can be used so that a loop will REPEAT,
UNTIL a condition is true (1).

Example
This loop will be repeated until the low byte value of CONSOL is equal to 6 (ie. the start key has been pressed)
 VARIABLE 53279=CONSOL
 BEGIN
 REPEAT
 rest of loop
 UNTIL (CONSOL .AND. 255)=6
 END

VARIABLE
Purpose: To manipulate numeric data.
Syntax: VARIABLE [dcnum=]lblnm [,[dcnum=]lblnm...]

Description
This command is used to define some variables. A variable is a name that represents a numeric value. This numeric
value may be changed by an assignment statement. If the lblnm (label name) is preceded by 'dcnum=' then this
dcnum will be taken as the address of the variable. If dcnum is not specified, then the compiler will select its own
memory address. Defining your own memory locations for the variable will give you the ability to manipulate these
locations. Care must be taken when using these variables as you must take into consideration the other half of the
word (if you are only using a byte). A local variable is defined by the first character of the variable name being a '?'
character.

Example
 VARIABLE 53279=CONSOL, 53248=HPOSP0
To access low byte of CONSOL you must mask out the high byte with a bitwise '.AND.'opperation:
 VALUE = CONSOL .AND. 255
To access the high of CONSOL you must divide divide by 256:
 VALUE = CONSOL / 256
To change the low byte (only) of HPOSP0 (53248), their is a special character that you place in from of the variable
that is about to be assigned:
 <HPOSP0=25 PRE <>

the high byte is change in the same way but with a different character
preceding the variable name. In this case address 53249:

 >HPOSP0=25
In addition, the result of the expression may be stored at the addressxi
pointed to by the value of the variable by preceding the variable name with an
'@' character, you may still use the '<' or '>' character as well, to change
only the low byte or high byte of the address pointed to by the variable.

Example
to fill a block of memory without the fill command you may use any of the
following examples.
 VARIABLE ADR
 BEGIN
 DO ADR=1536,1791,1

 <@ADR=0
 END DO

 DO ADR=1536,1790,2
 @ADR=0
 END
 END

WHILE
Purpose: Execute a block of code while the expression is TRUE
Syntax: WHILE exp DO

Description
This commad will first evaluate the expression, if the result is TRUE (low byte of result is non zero) the following
code up to the END WHILE at the same nesting level will be executed, the program will then loop round and test
the expression again. If the expression is FALSE, the program will continue on te line following the END WHILE
command.

Example
 VARIABLE 53279=CONSOL
 BEGIN
 WHILE (CONSOL.AND.255)=7 DO
 WRITE ("PRESS OPTION, SELECT OR START")
 END WHILE
 END

WRITE
Purpose: Write data and variables to device
Syntax: WRITE [dcnum,] (string/var/const[,string/var/const...]) [;]

Description
This command will write out the data to the IOCB specified by dcnum. If dcnum is not given the default IOCB is
zero (screen editor). All items to be printed must be seperated by commas. If there is a ';' character following the
close bracket, no end of line will be written to the device. Normally when writting the value of a variable, the value
will be integer but by preceding the write statement with a F (FWRITE) all the following variables will be taken as
pointers to floating point numbers, and the floating point number will be printed out instead.

Example
This short program will write out 'The value of 'A' is 25' twice to the default device (screen editor). Note the use of
the ';' for the second WRITE command. Then the program then prints 3.142.
 VARIABLE A
 POINTER PI
 FLOAT 3.142
 BEGIN
 A=25
 WRITE ("The value of 'A' is ",A)
 WRITE ("The value of 'A' is ");
 WRITE (A)
 FWRITE ("PI = ",PI)
 END

Introduction to Assembler Commands
There are several assembler instructions defined within the compiler to make it easier to interface with machine code
routines. For example:
 JSR $E456 (in decimal)
 TYA
 PHA
 PHA
 PULL (STATUS)
 IF (STATUS .AND. 255)<>136 THEN
 RETURN
 END IF
 ERROR 136
This example calls address $E456 and pushes the status onto the stack. The pull command then places it in the
variable 'STATUS' and test the low byte for being 136 (end of file). If the end of file has been reached a runtime
error will be generated. These commands are exactly the same as the assembler commands of the same names.
Reference 6502 manual for further details.
NOTE: Since it will not be clear where in memory your machine code will go, any machine code must be re-
locatable. It is possible to locate the code by preceding it with a pointer definition, the defined variable will contain
the address of the code.

JMP
Purpose: Jump to a machine language routine
Syntax: JMP dcnum

JSR
Purpose: Jumps to a machine language subroutine
Syntax: JSR dcnum

PHA
Purpose: Pushes accumulator onto stack
Syntax: PHA

PHP
Purpose: Pushes status register onto stack
Syntax: PHP

PLA
Purpose: Pulls accumulator off stack
Syntax: PLA

PLP
Purpose: Pulls status register off stack
Syntax: PLP

RTI
Purpose: Return from non-maskable interupt
Syntax: RTI

TAX
Purpose: Transfers 'A' into 'X'
Syntax: TAX

TAY
Purpose: Transfers 'A' into 'Y'
Syntax: TAY

TSX
Purpose: Transfers stack pointer into 'X'
Syntax: TSX

TXA
Purpose: Transfers 'X' into 'A'
Syntax: TXA

TXS
Purpose: Transfers 'X' into stack pointer
Syntax: TXS

TYA
Purpose: Transfers 'Y' into 'A'
Syntax: TYA

Operators
An expression is a valid combination of operands and operators which the compiled object code will evaluate to a 16
bit unsigned integer number. No error detection is made for an overflow. Since each variable is a 2 byte word (16
bits) each variable can hold a number from 0 to 65535 inclusive.

Operator: ()
These operators will force everything inside the brackets to be evaluated before anything outside them. This will
enable you to force the expressions into being evaluated in a different order.

Operator: []
These operators will force everything in the brackets to be executed in the order they are given. The brackets may
not be nested, and there may only be the '+' and '-' operator's included in the brackets, along with constants and
variables, in addition there are no function calls allowed. These operators where added to provide a facility for very
fast addition and subtraction of numbers. The stack is not used at all resulting in very fast code.

Operators: * / MOD + -
These operators are the normal arithmetic operators.
 '*' Multiplication
 '/' Division
 'MOD' Returns remainder
 '+' Addition
 '-' Subtraction)
They perform 16-bit unsigned integer arithmetic, and will ignore overflows.

Operators: = =< < <> > >=
These operators are used for comparisons and will return one if the result is true, and zero if the result is false.
 '=' .EQ. is equal to.
 '=<' '<=' .LE. is less than or equal to
 '<' .LT. is less than
 '<>' .NE. is not equal to
 '>' .GT. is greater than
 '>=' '=>' .GE. is greater than or equal to

Operators: AND OR EOR
 AND will return a value of 1 if both operators are not equal to zero.
 OR will return a value of 1 if either of the operators is not zero.
 EOR will return a value of 1 if only one of the operators is not zero.

Example:
 0 AND 0 0
 0 AND 1 0
 1 AND 0 0
 1 AND 1 1

 0 OR 0 0
 0 OR 1 1
 1 OR 1 1
 1 OR 1 1

 0 EOR 0 0
 0 EOR 1 1
 1 EOR 0 1
 1 EOR 1 0

Operators: .AND. .OR. .EOR.
These operators work in the same way as AND OR & EOR but they work on each bit in the operands.
Example:
 %0011 AND %0101 %0001
 %0011 OR %0101 %0111
 %0011 EOR %0101 %0110
Note that the % means that the numbers following are in binary. The compiler does NOT support binary.

Operator Precedence
The following are the precedence levels of each of the opperators. These are used to decide which operator should
be executed first.

4. () []
5. * / MOD
6. + -
7. = =< < <> >= > etc.

8. AND OR EOR
9. .AND. .OR. .EOR.

DPEEK
Purpose: To look at a word address (2 bytes)
External: PEEK Function
Syntax: var = DPEEK (adr)

Description
This function will return the value of the memory address. The value will be the 16 bits found in the specified
address and the following address. Address holds low byte and address+1 holds high byte.
 LOCAL
 VARIABLE ?ADR
 FUNCTION DPEEK (?ADR)
 DPEEK = PEEK(?ADR)+256*PEEK(?ADR+1)
 RETURN

LOCATE
Purpose: To return contents of screen location
External: None
Syntax: var = LOCATE (exp1,exp2)

Description
This function will return the contents of the screen location specified by exp1 and exp2. Exp1 is the 'X' position and
exp2 is the 'Y' position
 LOCAL
 VARIABLE ?XPOS,?YPOS
 FUNCTION LOCATE (?XPOS,?YPOS)
 PUSH (?XPOS,?YPOS)
 CODE 686885546885
 CODE 56688555A260
 CODE A9009D48039D
 CODE 4903A9079D42
 CODE 032056E448A9
 CODE 0048
 PULL (LOCATE)
 END

NOT
Purpose: To return the logical NOT of an expression.
Syntax: var = NOT (exp)

Description
This function returns the logical NOT of exp, (ie. non zero returns TRUE (1) and zero returns FALSE (0)).
 LOCAL
 VARIABLE ?NUM
 FUNCTION NOT (?NUM)
 NOT=1*(?NUM<>0)
 END

PADDLE
Purpose: To return the position of a paddle
External: PEEK Function
Syntax: var = PADDLE (exp)

Description
This function will return the value of one of the paddles specified by the lowest 3 bits of exp.
 LOCAL
 VARIABLE ?NUM
 FUNCTION PADDLE (?NUM)
 PADDLE = PEEK(624+(?NUM .AND. 7))
 END

PEEK
Purpose: To look at a byte address
External: None
Syntax: var = PEEK (adr)

Description
This function will return the 8 bit value that is stored at memory location specified by adr.
 LOCAL
 FUNCTION PEEK (?ADR)
 CODE AD
 VARIABLE ?ADR
 PHA
 CODE A900
 PHA
 PULL (PEEK)
 END
Note the trick used by defining the variable after the LDA opcode. The variable is assigned before the LDA
instruction which then loads the value from the address specified by the variable.

PTRIG
Purpose: To return the status of a paddle trigger
External: PEEK Function
Syntax: var = PTRIG (exp)

Description
This function will return a 0 if the specified trigger is pressed and a 1 if it is not pressed. The required trigger is
specified by the lower 3 bits of exp.
 LOCAL
 VARIABLE ?NUM
 FUNCTION PTRIG (?NUM)
 PTRIG = PEEK(636+(?NUM .AND. 7))
 END

RND
Purpose: To generate a random number
External: None
Syntax: var = RND (exp)

Description
This function will return a random number between 0 and the value of exp-1.
 LOCAL
 VARIABLE ?NUM,53770=?RANDOM
 FUNCTION RND (?NUM)
 RND=(?RANDOM*256+(?RANDOM .AND. 255)) MOD ?NUM
 END

STICK
Purpose: Return joystick position
External: PEEK Function
Syntax: var = STICK (exp)

Description
This function will read the position of one of the joysticks. The joystick to be read is specified by the lowest 2 bits of
exp.
 LOCAL
 VARIABLE ?NUM
 FUNCTION STICK (?NUM)
 STICK = PEEK(632+(?NUM .AND. 3))
 END

STRIG
Purpose: To return the status of a joystick trigger
External: PEEK Function
Syntax: var = STRIG (exp)

Description
This function will return the status of the specified joystick trigger, 0 means trigger is pressed and 1 means trigger is
not pressed. The trigger number is specified by the lower 2 bits of exp.
 LOCAL
 VARIABLE ?NUM
 FUNCTION STRIG (?NUM)
 STRIG = PEEK(644+(?NUM .AND. 3))
 END

VAL
Purpose: Returns numeric value of text data
External: None
Syntax: var = VAL (adr)

Description
This function returns the numeric value of the characters pointed to by adr.
 LOCAL

 VARIABLE ?ADR
 FUNCTION VAL (?ADR)
 PUSH (?ADR)
 CODE 6885F46885F3
 CODE A90085F22000
 CODE D8B00520D2D9
 CODE 9006A90085D4
 CODE 85D5A5D448A5
 CODE D548
 PULL (VAL)
 END

Example
This would set the variable 'A' equal to 45 and then write it out onto the screen.
 POINTER NUMBER
 ASCII "45"
 CODE 9B
 VARIABLE A
 BEGIN
 A=VAL(NUMBER)
 WRITE (A)
 RETURN

Floating point support procedures
Since the language does not have any inbuilt floating point procedures, here is a short program that will allow you to
do limited calculations with floating point numbers. The number can only be operated on by one opperation at a
time using the following procedures. If an error is detected by the floating point routines then an error number of 1
will be issued.
Note that FR1 & FR2 are both pointers to a floating point numbers, these numbers are printed out by using the
'FWRITE' command.

ADD
Purpose: To add 2 floating point numbers together
Syntax: ADD (FR1,FR2)

Description
This procedure will add FR2 to FR1 and store the result in FR1.

DIV
Purpose: To divide 2 floating point numbers
Syntax: DIV (FR1,FR2)

Description
This procedure will divide FR1 by FR2 and store the result in FR1.

EQUALS
Purpose: To set a floating point number equal to another
Syntax: EQUALS (FR1,FR2)

Description
This procedure will set FR1 equal to the value of FR2.

EXP
Purpose: To return the base 10 exponential
Syntax: EXP (FR1)

Description
This procedure will return the base 10 exponential and store the result in FR1.

EXPe
Purpose: To return the natural exponential
Syntax: EXPe (FR1)

Description
This procedure will return the natural exponential and store the result in FR1.

LOG
Purpose: To return the base 10 logarithm
Syntax: LOG (FR1)

Description
This procedure will take the base 10 logarithm of FR1 and store the result back into FR1.

LOGe
Purpose: To return the natural logarithm.
Syntax: LOGe (FR1)

Description
This procedure will take the natural logarithm of FR1 and store the result back into FR1.

MULT
Purpose: To multiply 2 floating point numbers together
Syntax: MULT (FR1,FR2)

Description
This procedure will multiply FR1 by FR2 and store the result in FR1.

SUB
Purpose: To subtract 2 floating point numbers
Syntax: SUB (FR1,FR2)

Description
This procedure will subtract FR2 from FR1 and store the result in FR1.

Listing of floating point support package
 ;
 ; ================
 ; Floating point
 ; support routines
 ; (c) 8th May 1986
 ; ================

 ;
 LOCAL
 VARIABLE ?FP1,?FP2,2=?ADR,?NUM,?STATUS
 ;
 ; =======================
 ; Floating point addition
 ; =======================
 ;
 PROCEDURE ADD (?FP1,?FP2)
 FP (2,55910)
 END
 ;
 ; ==========================
 ; Floating point subtraction
 ; ==========================
 ;
 PROCEDURE SUB (?FP1,?FP2)
 FP (2,55904)
 END
 ;
 ; =============================
 ; Floating point multiplication
 ; =============================
 ;
 PROCEDURE MULT (?FP1,?FP2)
 FP (2,56027)
 END
 ;
 ; =======================
 ; Floating point division
 ; =======================
 ;
 PROCEDURE DIV (?FP1,?FP2)
 FP (2,56104)
 END
 ;
 ; =========
 ; FP1 = FP2
 ; =========
 ;
 PROCEDURE EQUALS (?FP1,?FP2)
 MOVE (?FP2,?FP1,6)
 END
 ;
 ; ===================
 ; Floating point LOGe
 ; ===================
 ;
 PROCEDURE LOGe (?FP1)
 FP (1,57037)
 END
 ;
 ; ==================
 ; Floating point LOG
 ; ==================
 ;
 PROCEDURE LOG (?FP1)

 FP (1,57041)
 END
 ;
 ; ===================
 ; Floating point EXPe
 ; ===================
 ;
 PROCEDURE EXPe (?FP1)
 FP (1,56768)
 END
 ;
 ; ===================
 ; Floating point EXPe
 ; ===================
 ;
 PROCEDURE EXP (?FP1)
 FP (1,56780)
 END
 ;
 ; ===========================
 ; Call floating point package
 ; ===========================
 ;
 PROCEDURE FP (?NUM,?ADR)
 MOVE (?FP1,212,6)
 IF (?NUM<>1) THEN
 MOVE (?FP2,224,6)
 END IF
 GOSUB 65020
 PHP
 PHP
 PULL (?STATUS)
 IF (?STATUS .AND. 1)<>0 THEN
 ERROR 1
 END IF
 MOVE (212,?FP1,6)
 END
 65020 CODE 6C0200

Compiler Directives

;
Purpose: To place comments within the program
Syntax: ; Any characters

Description
This directive will enable you to place comments within your source program. These comments will be ignored
when the program is compiled, and will not be included in the object code.

.LIST
Purpose: To enable listing during compilation
Syntax: .LIST

Description
This directive tells the compiler to generate a listing. If a list device is specified in the COMPILE statement. This is
the default condition.

.NOLIST
Purpose: To stop a listing from being produced.
Syntax: .NOLIST

Description
This directive stops the listing from being produced. It can be turned back on by using the .LIST directive.

.MAP
Purpose: To produce a memory map of program
Syntax: .MAP

Description
This directive tells the compiler to produce a memory map. A memory map will list the names of global variables,
functions, procedures and line labels together with the address in memory. The labels will be listed in the order they
where defined.

.NOMAP
Purpose: To stop the memory map from being produced.
Syntax: .NOMAP

Description
This command will stop the memory map from being produced at the end of the compilation. The option can be
switched back on by a .MAP instruction anywhere else up to the end of the program.

Memory Usage
The compiler generates a non relocatable object file, the code is also generated in a way where the variables are
embeded within the object program, therefore it is not possible to place the code into a ROM or EPROM. The first
thing the compiler does is write a 1.8K run time package to the output file prior to generating the object code. The
following tables gives a description of memory usage at run time.
 Page Zero:

 $0000 to $007F Used by Operating system
 $0080 to $0097 Used by Compiled program
 $0098 to $00AF Used if Every or After is used
 $00BO to $00C2 Free memory (COMPILE MODE)
 $00C0 to $00C2 Free memory (RUN MODE)
 $00C3 Last error number
 $00C4 to $00FF Free memory

 $0100 to $01FF Stack for everything (Return addresses &
arguments etc)
 $0200 to $05FF Used by Operating system
 $0600 to $06FF Free memory (COMPILE MODE)
 $0680 to $06FF Free memory (RUN MODE)
 $0700 to APPMHI DOS & Compiled program
 APPMHI to MEMTOP Screen displays
Note that if you use the resident floating point package, some extra page zero addresses will be used (See Atari's
Operating System manuals for more details).

Appendix A - Limitations
Depth of Stack

Since this program uses the 6502 hardware stack for virtualy all data movements and control
transfers, it is advisable not to nest procedures and functions to deep as the stack will quickly
fill up. If the stack does overflow, the program cannot detect it. Therefore it is VERY
important that if you jump out of a subroutine you pop off the return address or addresses.

The stack is used for evaluation of expressions, passing parameters to procedures or
functions & holding return addresses, as well as any data you may have PUSHed on. In
general if you don't jump out of a subroutine, procedure or function you should not have any
problems.

WRITE command

In this command the arguments may not be an expression. They may only be constants or
variables.

AFTER & EVERY commands

Although you may use any of the predefined procedures in this language within the portion
of code called by the EVERY and AFTER commands, you should not use any that are not
resident, unless you can be sure that the called function or procedure was not in use when the
interrupt occured.

If you use a FUNCTION in both the main code and in the EVERY or AFTER routine, then
the FUNCTION will probably return incorrect results. This is because the functions use
statically allocated variables. When the interrupt routine calls the FUNCTION, the
FUNCTION will lose all its previous values that it was in the middle of calculating.

Appendix B - Error Codes
10. Start of program (BEGIN) not defined
11. Out of memory
12. Number out of range (less than 0 or greater than 65535)
13. Label not defined
14. Variable not defined
15. Incorrect number of parameters
16. Quatation marks missing

17. Error in expression
18. Invalid expression
19. Invalid character
20. Constant expected
21. Requested line number missing
22. Syntax error in line
23. Procedure not defined
24. Duplicate label
25. Construct nested to deep
26. To many local regions (greater than 250)
27. Nested INCLUDE requested
28. Begin already defined
29. Duplicate label number
30. Function not defined
31. Operators expected
32. Variable or Constant expected
33. Invalid nesting of IF and WHILE commands. eg IF exp THEN ... END WHILE

Appendix C - Known Bugs
34. No checking is made for running out of memory when building symbol tables, if characters start to appear

on screen this has probably occured. In this case save the source program to disk and write a small routine
to INCLUDE it in. This will give more memory for use as a symbol table.

35. No checking is made for passing the correct number of arguments to a function or procedure, and if these
are incorrect it could crash the program from either filling the stack up or pulling the return address off
stack.

Appendix D – Breakout Program
1000 ;
1010 ; **********************
1020 ; * *
1030 ; * Break Out *
1040 ; * ========== *
1050 ; * *
1060 ; * (c) Copyright 1986 *
1070 ; * by David Firth *
1080 ; * *
1090 ; * 6th April 1986 *
1100 ; * *
1110 ; **********************
1120 ;
1130 ;
1140 ; =======================
1150 ; Define system variables
1160 ; =======================
1170 ;
1180 VARIABLE 77=ATRACT
1190 VARIABLE 88=SCREENADR
1200 VARIABLE 106=RAMTOP
1210 VARIABLE 512=VDSLST
1220 VARIABLE 559=DMACTL
1230 VARIABLE 560=DLIST
1240 VARIABLE 624=PADDLE
1250 VARIABLE 636=PTRIG
1260 VARIABLE 751=CURSOR

1270 VARIABLE 756=CHBASE
1280 VARIABLE 53248=HPOSP0
1290 VARIABLE 53249=HPOSP1
1300 VARIABLE 53250=HPOSP2
1310 VARIABLE 53251=HPOSP3
1320 VARIABLE 53252=HPOSM0
1330 VARIABLE 53253=HPOSM1
1340 VARIABLE 53254=HPOSM2
1350 VARIABLE 53255=HPOSM3
1360 VARIABLE 53270=COLPF0
1370 VARIABLE 53277=GRACTL
1380 VARIABLE 53278=HITCLR
1390 VARIABLE 53279=CONSOL
1400 VARIABLE 53770=RANDOM
1410 VARIABLE 54279=PMBASE
1420 VARIABLE 54282=WSYNC
1430 VARIABLE 54283=VCOUNT
1440 VARIABLE 54286=NMIEN
1450 ;
1460 ; =======================
1470 ; Define Global variables
1480 ; =======================
1490 ;
1500 VARIABLE Pmbase,MISSILES
1510 VARIABLE PLAYER0,PLAYER1
1520 VARIABLE PLAYER2,Dummy
1530 VARIABLE XPOS,YPOS
1540 VARIABLE XDIR,YDIR
1550 VARIABLE XTIME,YTIME
1560 VARIABLE TEMP,BATPOS
1570 VARIABLE SCORE,HIGH
1580 VARIABLE HITLAST,Bricks
1590 POINTER HIGHDATA
1600 CODE 10101010
1610 ;
1620 ; =====================
1630 ; Include library files
1640 ; =====================
1650 ;
1660 INCLUDE #H:PEEK.FUN
1670 INCLUDE #H:DPEEK.FUN
1680 ;
1690 ; =============
1700 ; Plot the Ball
1710 ; =============
1720 ;
1730 LOCAL
1740 VARIABLE ?X,?Y
1750 ;
1760 PROCEDURE BALL (?X,?Y)
1770 MOVE (BALL,[MISSILES+?Y],4)
1780 <HPOSM1=?X
1790 END
1800 ;
1810 ; =================
1820 ; Add ?VAL to score
1830 ; =================

1840 ;
1850 LOCAL
1860 VARIABLE ?VAL,?OFFSET,?COUNT,?TEMP
1870 PROCEDURE ADD (?VAL,?OFFSET)
1880 ?COUNT=4
1890 REPEAT
1900 ?TEMP=PEEK([SCREENADR+?OFFSET])+?VAL
1910 ?VAL=0
1920 IF ?TEMP=26 THEN
1930 ?TEMP=[?TEMP-10]
1940 ?VAL=1
1950 END IF
1960 POKE ([SCREENADR+?OFFSET],?TEMP)
1970 ?OFFSET=[?OFFSET-1]
1980 ?COUNT=[?COUNT-1]
1990 UNTIL ?COUNT=0 OR ?VAL=0
2000 END
2010 ;
2020 ; ====================
2030 ; Switch the sound off
2040 ; ====================
2050 ;
2060 POINTER SOUNDOFF
2070 SOUND (0,0,0,0)
2080 RETURN
2090 ;
2100 ; =================
2110 ; Data for the ball
2120 ; =================
2130 ;
2140 POINTER BALL
2150 CODE 000C0C00
2160 ;
2170 ; ===================
2180 ; Change Display List
2190 ; and start VBI & DLI
2200 ; New character set.
2210 ; ===================
2220 ;
2230 PROCEDURE GRAPHMOD (Dummy)
2240 MOVE (NEWDLIST,DLIST+7,22)
2250 TEMP=((RAMTOP.AND.255)-12)*256
2260 MOVE ((CHBASE.AND.255)*256,TEMP,1024)
2270 FILL (TEMP+8,7,85)
2280 POKE (TEMP+15,0)
2290 <CHBASE=TEMP/256
2300 <NMIEN=0
2310 VDSLST=DLI
2320 <NMIEN=192
2330 END
2340 ;
2350 ; =================
2360 ; Data for modified
2370 ; Display list.
2380 ; =================
2390 ;
2400 POINTER NEWDLIST

2410 CODE 040484848484
2420 CODE 848404040404
2430 CODE 040404040404
2440 CODE 04040404
2450 ;
2460 ; =====================
2470 ; Display List Interupt
2480 ; =====================
2490 ;
2500 POINTER DLI
2510 PHA
2520 <COLPF0=VCOUNT
2530 PLA
2540 RTI
2550 ;
2560 ; =================
2570 ; Display the Title
2580 ; =================
2590 ;
2600 PROCEDURE TITLE (Dummy)
2610 GRAPHICS (18)
2620 FILL (53248,8,0)
2630 SETCOLOUR (4,5,10)
2640 SETCOLOUR (5,7,10)
2650 SETCOLOUR (6,9,10)
2660 SETCOLOUR (7,12,10)
2670 SETCOLOUR (8,0,0)
2680 WRITE 6,(" BREAK OUT")
2690 WRITE 6,(" ")
2700 WRITE 6,(" tcl demonstration")
2710 WRITE 6,(" ")
2720 WRITE 6,(" ¶ÔÈ ÁÐÒÉÌ ±¹¸¶")
2730 WRITE 6,(" ")
2740 WRITE 6,(" INSERT PADDLES")
2750 WRITE 6,(" ")
2760 WRITE 6,("ðòåóó óôáòô ôï âåçéî")
2770 REPEAT
2780 UNTIL ((CONSOL.AND.255)=6) OR ((PTRIG.AND.255)=0)
2790 END
2800 ;
2810 ; ==================
2820 ; Initialize program
2830 ; ==================
2840 ;
2850 PROCEDURE INIT (Dummy)
2860 POKE (82,0)
2870 GRAPHICS (0)
2880 GRAPHMOD (0)
2890 <CURSOR=1
2900 WRITE ("SCORE 0000 HIGH SCORE 0000 BALLS 3");
2910 WRITE ("__")
2920 Pmbase=(RAMTOP.AND.255)-8
2930 MOVE (HIGHDATA,SCREENADR+25,4)
2940 <PMBASE=Pmbase
2950 Pmbase=Pmbase*256
2960 FILL (Pmbase,1024,0)
2970 SETCOLOUR (0,7,10)

2980 SETCOLOUR (1,0,10)
2990 SETCOLOUR (2,0,10)
3000 SETCOLOUR (4,5,8)
3010 SETCOLOUR (6,0,0)
3020 MISSILES=Pmbase+384
3030 PLAYER0=Pmbase+624
3040 PLAYER1=Pmbase+663
3050 PLAYER2=Pmbase+791
3060 FILL (PLAYER1,93,3)
3070 FILL (PLAYER2,93,192)
3080 FILL (PLAYER0,4,255)
3090 <HPOSP1=40
3100 <HPOSP2=208
3110 <DMACTL=46
3120 <GRACTL=3
3130 END
3140 ;
3150 ; ==================
3160 ; Re-Draw the Bricks
3170 ; ==================
3180 ;
3190 PROCEDURE BRICKS (Dummy)
3200 FILL (SCREENADR+200,240,1)
3210 FILL(MISSILES+YPOS,4,0)
3220 SETBALL (0)
3230 <HITCLR=0
3240 Bricks=120
3250 END
3260 ;
3270 ; ========================
3280 ; Set balls start position
3290 ; ========================
3300 ;
3310 PROCEDURE SETBALL (Dummy)
3320 XPOS=128
3330 YPOS=75
3340 XDIR=1-2*((RANDOM.AND.255)<128)
3350 YDIR=1
3360 XTIME=((RANDOM.AND.255) MOD 3)+3
3370 YTIME=10
3380 END
3390 ;
3400 ; =====================
3410 ; Move the Bat, this is
3420 ; an Interrupt task.
3430 ; =====================
3440 ;
3450 POINTER MOVEBAT
3460 BATPOS=255-(PADDLE.AND.255)
3470 IF (BATPOS<48) THEN
3480 BATPOS=48
3490 ELSE IF (BATPOS200) THEN
3500 BATPOS=200
3510 END IF
3520 <HPOSP0=BATPOS
3530 <ATRACT=100
3540 RETURN

3550 ;
3560 ; =====================
3570 ; Remove a Brick at the
3580 ; coordinates of ball.
3590 ; =====================
3600 ;
3610 LOCAL
3620 VARIABLE ?X,?Y,?TEMP
3630 PROCEDURE REMOVE (?X,?Y)
3640 ?X=[?X-48]/4
3650 ?Y=[?Y-36]/4
3660 ?TEMP=([SCREENADR+200+?X]+?Y*40).AND.65534
3670 IF (DPEEK(?TEMP)<>0) THEN
3680 DPOKE (?TEMP,0)
3690 ADD ([6-?Y],9)
3700 SCORE=[SCORE+6-?Y]
3710 SOUND (0,[?Y+1]*30,10,10)
3720 AFTER (3,SOUNDOFF)
3730 IF (HITLAST=0) THEN
3740 YDIR=1
3750 ELSE
3760 YDIR=65535
3770 END IF
3780 Bricks=[Bricks-1]
3790 IF (Bricks=0) THEN
3800 BRICKS (0)
3810 ELSE IF ([?Y+2]<YTIME) THEN
3820 YTIME=[?Y+2]
3830 END IF
3840 END IF
3850 END
3860 ;
3870 ; ========================
3880 ; Move the Ball and return
3890 ; 0 if you missed the ball
3900 ; 2 Normal condition
3910 ; ========================
3920 ;
3930 LOCAL
3940 VARIABLE ?Xtime,?Ytime
3950 ;
3960 FUNCTION MOVEBALL (Dummy)
3970 MOVEBALL=2
3980 IF PEEK(53249) THEN
3990 REMOVE (XPOS,YPOS)
4000 <HITCLR=0
4010 END IF
4020 IF PEEK(53257) THEN
4030 SOUND (0,50,10,10)
4040 AFTER (3,SOUNDOFF)
4050 YDIR=65535
4060 HITLAST=0
4070 <HITCLR=0
4080 IF (XPOS[BATPOS+3]) THEN
4090 XDIR=65535
4100 ELSE IF (XPOS>[BATPOS+3]) THEN
4110 XDIR=1

4120 ELSE
4130 XDIR=((RANDOM.AND.255) MOD 3)-1
4140 END IF
4150 XTIME=(RANDOM.AND.7)+2
4160 END IF
4170 IF (YPOS=116) THEN
4180 MOVEBALL=0
4190 ELSE IF (YPOS=<23) THEN
4200 YDIR=1
4210 YTIME=1
4220 HITLAST=1
4230 SOUND (0,75,10,10)
4240 AFTER (3,SOUNDOFF)
4250 END IF
4260 IF (XPOS<49) THEN
4270 XDIR=1
4280 SOUND (0,25,10,10)
4290 AFTER (2,SOUNDOFF)
4300 ELSE IF (XPOS205) THEN
4310 XDIR=65535
4320 SOUND (0,25,10,10)
4330 AFTER (2,SOUNDOFF)
4340 END IF
4350 ?Xtime=[?Xtime-1]
4360 IF (?Xtime=65535) THEN
4370 ?Xtime=XTIME
4380 XPOS=[XPOS+XDIR]
4390 END IF
4400 ?Ytime=[?Ytime-1]
4410 IF (?Ytime=65535) THEN
4420 ?Ytime=YTIME
4430 YPOS=[YPOS+YDIR]
4440 END IF
4450 BALL (XPOS,YPOS)
4460 END
4470 ;
4480 ; ======================
4490 ; Begin the Main Routine
4500 ; ======================
4510 ;
4520 LOCAL
4530 VARIABLE ?BALL
4540 ;
4550 BEGIN
4560 REPEAT
4570 TITLE (0)
4580 INIT (0)
4590 BRICKS (0)
4600 EVERY (1,MOVEBAT)
4610 ?BALL=3
4620 SCORE=0
4630 REPEAT
4640 REPEAT
4650 UNTIL (PTRIG.AND.255)=0
4660 SETBALL (0)
4670 REPEAT
4680 UNTIL MOVEBALL(0)=0

4690 FILL (MISSILES+YPOS,4,0)
4700 ?BALL=?BALL-1
4710 POKE (SCREENADR+39,?BALL+16)
4720 UNTIL ?BALL=0
4730 IF (SCOREHIGH) THEN
4740 HIGH=SCORE
4750 MOVE (SCREENADR+6,HIGHDATA,4)
4760 MOVE (HIGHDATA,SCREENADR+25,4)
4770 END IF
4780 EVERY (0,MOVEBAT)
4790 POKE (20,0)
4800 REPEAT
4810 UNTIL PEEK(20)=200
4820 UNTIL 0
4830 END

Appendix E - Background Music Program
1000 ;
1010 ; ==============
1020 ; TCL Music Demo
1030 ; ==============
1040 ;
1050 INCLUDE #H1:PEEK.FUN
1060 INCLUDE #H1:DPEEK.FUN
1070 VARIABLE 20=RTCLOCK
1080 VARIABLE 53274=COLBK
1090 VARIABLE 54282=WSYNC
1100 VARIABLE 54283=VCOUNT
1110 VARIABLE TMP
1120 BEGIN
1130 POKE (TIMER,1)
1140 POKE (TIMER+1,1)
1150 POKE (TIMER+2,1)
1160 POKE (TIMER+3,1)
1170 DPOKE (TABLE,DATA1)
1180 DPOKE (TABLE+2,DATA2)
1190 DPOKE (TABLE+4,DATA3)
1200 DPOKE (TABLE+6,DATA4)
1210 POKE (53768,0)
1220 POKE (562,3)
1230 POKE (53775,3)
1240 EVERY (1,MUSIC)
1250 REPEAT
1260 TMP=[VCOUNT+RTCLOCK]
1270 <WSYNC=0
1280 <COLBK=TMP
1290 UNTIL 0
1300 END
1310 ;
1320 ; =======================
1330 ; Music Interrupt handler
1340 ; =======================
1350 ;
1360 POINTER TIMER

1370 RESERVE 4
1380 VARIABLE CHANNEL,TIME,BASE
1390 POINTER MUSIC
1400 DO CHANNEL=0,3,1
1410 TIME=PEEK([TIMER+CHANNEL])
1420 IF TIME0 THEN
1430 TIME=[TIME-1]
1440 IF TIME=0 THEN
1450 BASE=DPEEK([TABLE+CHANNEL+CHANNEL])
1460 SOUND (CHANNEL,PEEK(BASE),10,10)
1470 TIME=PEEK([BASE+1])
1480 DPOKE ([TABLE+CHANNEL+CHANNEL],[BASE+2])
1490 END IF
1500 POKE ([TIMER+CHANNEL],TIME)
1510 END IF
1520 END DO
1530 RETURN
1540 POINTER TABLE
1550 RESERVE 8
1560 POINTER DATA1
1570 CODE 3506400648065106
1580 CODE 3506400648065106
1590 CODE 5524000C35063C06
1600 CODE 4006480635063C06
1610 CODE 40064806510C350B
1620 CODE 0002350B000C3506
1630 CODE 2F062A0628063506
1640 CODE 2F062A0628062A0C
1650 CODE 3C18000C3C063506
1660 CODE 2F062A063C063506
1670 CODE 2F062A062F0C4018
1680 CODE 000C350640064806
1690 CODE 51063506400648065106
1700 CODE 5524000C35063C06
1710 CODE 4006480635063C06
1720 CODE 40064806510C350B
1730 CODE 0002350B000C3506
1740 CODE 2F062A0628063506
1750 CODE 2F062A0628062F06
1760 CODE 2A06280623062F06
1770 CODE 2A06280623062808
1780 CODE 2A082D082A081F08
1790 CODE 23082824000C
1800 CODE 0000
1810 POINTER DATA2
1820 CODE 0030000C350B0002
1830 CODE 350B000C0030000C
1840 CODE 4018000C00300030
1850 CODE 003000300030000C
1860 CODE 350B0002350B000C
1870 CODE 0030000C4018000C
1880 CODE 0030003000300030
1890 CODE 0000
1900 POINTER DATA3
1910 CODE A20C6C060006A20C6C060006
1920 CODE 900C6C0C900C6C0C
1930 CODE AD0C6C060006AD0C6C060006

1940 CODE A20C6C0CA20C6C0C
1950 CODE A20C6C060006A20C6C060006
1960 CODE D90C790CD90C790C
1970 CODE D90C79060006D90C79060006
1980 CODE A20C6C0CA20C6C0C
1990 CODE A20C6C060006A20C6C060006
2000 CODE 900C6C0C900C6C0C
2010 CODE AD0C6C060006AD0C6C060006
2020 CODE A20C6C0CA20C6C0C
2030 CODE A20C6C060006A20C6C060006
2040 CODE F30C90060006F30C90060006
2050 CODE D91079080008D9087908
2060 CODE A20C6C0B00026C0B000C
2070 CODE 0000
2080 POINTER DATA4
2090 CODE 000C8006001280060006
2100 CODE 000C790C000C790C
2110 CODE 000C79060012790C
2120 CODE 000C800C000C800C
2130 CODE 000C8006001280060006
2140 CODE 000CAD0C000CAD0C
2150 CODE 000CAD060012AD060006
2160 CODE 000C800C000C800C
2170 CODE 000C8006001280060006
2180 CODE 000C790C000C790C
2190 CODE 000C79060012790C
2200 CODE 000C800C000C800C
2210 CODE 000C8006001280060006
2220 CODE 000CC1060012C1060006
2230 CODE 0010AD080010AD08
2240 CODE 000C8018000C
2250 CODE 0000

Appendix F – Eight Way Scrolling Program
1000 VARIABLE 54276=HSCROL
1010 VARIABLE 54277=VSCROL
1020 VARIABLE 560=DLIST
1030 VARIABLE 632=STICK0
1040 VARIABLE 548=VVBLKD
1050 VARIABLE 106=RAMTOP
1060 VARIABLE SCREENMEM
1070 VARIABLE I,K,L
1080 POINTER LINEADR
1090 RESERVE 136
1100 BEGIN
1110 <RAMTOP=(RAMTOP.AND.255)-44
1120 SCREENMEM=(RAMTOP.AND.255)*256
1130 L=SCREENMEM
1140 DO I=0,67,1
1150 K=GETLINE(L)
1160 FILL (K,160,0)
1170 DPOKE (LINEADR+I*2,K)
1180 L=[K+160]
1190 END DO

1200 SCROLL (0,0)
1210 DLIST=MYDLIST
1220 DO I=0,67,1
1230 XPLOT (I,I,I)
1240 XPLOT (159-I,67-I,I)
1250 END DO
1260 VVBLKD=VBI
1265 10 GOTO 10
1270 END
1280 VARIABLE XC,YC
1290 VARIABLE XF,YF
1300 VARIABLE CSFLAG
1310 POINTER VBI
1320 CSFLAG=0
1330 IF (STICK0.AND.1)=0 THEN
1340 YF=[YF-1]
1350 ELSE IF (STICK0.AND.2)=0 THEN
1360 YF=[YF+1]
1370 END IF
1380 IF (STICK0.AND.4)=0 THEN
1390 XF=[XF+1]
1400 ELSE IF (STICK0.AND.8)=0 THEN
1410 XF=[XF-1]
1420 END IF
1430 IF (XF=65535) THEN
1440 IF XC<116 THEN
1450 XC=[XC+4]
1460 XF=15
1470 <CSFLAG=1
1480 ELSE
1490 XF=0
1500 END IF
1510 ELSE IF (XF=16) THEN
1520 IF XC0 THEN
1530 XC=[XC-4]
1540 XF=0
1550 <CSFLAG=1
1560 ELSE
1570 XF=15
1580 END IF
1590 END IF
1600 IF (YF=65535) THEN
1610 IF YC0 THEN
1620 YC=[YC-1]
1630 YF=7
1640 <CSFLAG=1
1650 ELSE
1660 YF=0
1670 END IF
1680 ELSE IF (YF=8) THEN
1690 IF YC<50 THEN
1700 YC=[YC+1]
1710 YF=0
1720 <CSFLAG=1
1730 ELSE
1740 YF=7
1750 END IF

1760 END IF
1770 IF (CSFLAG) THEN
1780 SCROLL (XC,YC)
1790 END IF
1800 <HSCROL=XF
1810 <VSCROL=YF
1820 CODE 4C62E4
1830 ;
1840 ; ===================
1850 ; Adjust Display List
1860 ; to Compensate for
1870 ; the Course Scroll.
1880 ; ===================
1890 ;
1900 LOCAL
1910 VARIABLE ?XPOS,?YPOS
1920 VARIABLE ?ADR,?I,?J
1930 VARIABLE ?ARRAY
1940 PROCEDURE SCROLL (?XPOS,?YPOS)
1950 ?ARRAY=[?YPOS+?YPOS+LINEADR]
1960 ?I=[MYDLIST+4]
1970 DO ?J=1,17,1
1980 ?ADR=DPEEK(?ARRAY)
1990 @?I=[?ADR+?XPOS]
2000 ?I=[?I+3]
2010 ?ARRAY=[?ARRAY+2]
2020 END DO
2030 @?I=MYDLIST
2040 END
2050 ;
2060 ; ==================
2070 ; Plot a Character
2080 ; at X,Y within the
2090 ; Scrollable Screen.
2100 ; ==================
2110 ;
2120 LOCAL
2130 VARIABLE ?XPOS,?YPOS
2140 VARIABLE ?CHAR,?ARRAY
2150 VARIABLE ?ADR,?I
2160 PROCEDURE XPLOT (?XPOS,?YPOS,?CHAR)
2170 ?ARRAY=[?YPOS+?YPOS+LINEADR]
2180 ?ADR=DPEEK(?ARRAY)
2190 ?ADR=[?ADR+?XPOS]
2200 <@?ADR=?CHAR
2210 END
2220 ;
2230 ; ===================
2240 ; Allocate a 160 Byte
2250 ; Block of Memory
2260 ; that does not cross
2270 ; Antics 4KB Boundary
2280 ; ===================
2290 ;
2300 LOCAL
2310 VARIABLE ?ADR1,?ADR2
2320 FUNCTION GETLINE(?ADR1)

2330 ?ADR2=?ADR1+159
2340 IF (?ADR1 .AND. 4096)<>(?ADR2 .AND. 4096) THEN
2350 ?ADR1=(?ADR2 .AND. 63488)
2360 END IF
2370 GETLINE=?ADR1
2380 END
2390 ;
2400 ; =======================
2410 ; Implement PEEK Function
2420 ; syntax: var=PEEK(adr)
2430 ; =======================
2440 ;
2450 LOCAL
2460 FUNCTION PEEK (?address)
2470 CODE AD
2480 VARIABLE ?address
2490 PHA
2500 CODE A900
2510 PHA
2520 PULL (PEEK)
2530 END
2540 ;
2550 ; ========================
2560 ; Implement DPEEK Function
2570 ; syntax: var=DPEEK(adr)
2580 ; ========================
2590 ;
2600 LOCAL
2610 FUNCTION DPEEK (?address1)
2620 ?address2=[?address1+1]
2630 CODE AD
2640 VARIABLE ?address1
2650 PHA
2660 CODE AD
2670 VARIABLE ?address2
2680 PHA
2690 PULL (DPEEK)
2700 END
2710 ;
2720 ; ==================
2730 ; Display List for a
2740 ; Scrollable Display
2750 ; which uses Mode 4.
2760 ; ==================
2770 ;
2780 POINTER MYDLIST
2790 CODE 707070
2800 CODE 740000
2810 CODE 740000
2820 CODE 740000
2830 CODE 740000
2840 CODE 740000
2850 CODE 740000
2860 CODE 740000
2870 CODE 740000
2880 CODE 740000
2890 CODE 740000

2900 CODE 740000
2910 CODE 740000
2920 CODE 740000
2930 CODE 740000
2940 CODE 740000
2950 CODE 740000
2960 CODE 540000
2970 CODE 410000

	Introduction
	System Requirements
	Syntax Conventions
	1. Capital letters designate the names of the procedures or functions and must be typed in exactly as shown (eg. LIST, COMPILE, AND, GOTO etc).
	2. Lower case letters specify the type of argument to the commands :-
	lno
	A label number between 1 and 65535, inclusive.
	hxnum
	A string of hexedecimal numbers.
	dcnum
	A positive decimal number.
	exp
	Any valid expression.
	string
	A string of ASCII characters enclosed in double quotes (eg. "String of Characters").
	adr
	The address of some data, adr may be an expression.
	3. Items enclosed within square brackets denote an optional part of the syntax (eg. exp [,exp...]). When an optional item is followed by ... the item may be repeated as many times as needed.
	BOOT
	Description

	COMPILE
	Description

	DOS
	Description

	ENTER
	LIST
	Description
	Example

	LOAD
	Description

	NEW
	Description

	RENUMBER
	Description
	Example

	RUN
	Description

	SAVE
	Description

	SIZE
	Description

	AFTER
	Description
	Example

	ASCII
	Description
	Example

	BEGIN
	Description

	CLOSE
	Description
	Example

	CODE
	Description
	Example

	COLOUR
	Description

	DO
	Description
	Example

	DPOKE
	Description
	Example

	DRAWTO
	Description
	Example

	ELSE
	ELSE IF
	END
	Description

	END DO
	Description
	Example

	END IF
	END WHILE
	ERROR
	Description

	EVERY
	Description

	FAST
	Description
	Example

	FILL
	Description
	Example

	FLOAT
	Description

	FUNCTION
	Description
	Example

	GET
	Description
	Example

	GOSUB
	Description
	Example

	GOTO
	Description
	Example

	GRAPHICS
	Description
	Example

	IF
	Description
	Example

	INCLUDE
	Description
	Example

	INPUT
	Description
	Example

	IRQ OFF
	Description

	IRQ ON
	Description

	LOCAL
	Description
	Example

	MOVE
	Description
	Example

	OPEN
	Description
	Example

	PLOT
	Description
	Example

	POINTER
	Description
	Example

	POKE
	Description
	Example

	POP
	Description
	Example

	PRINT
	Description
	Example

	PROCEDURE
	Description
	Example

	PULL
	Description
	Example

	PUSH
	Description

	PUT
	Description
	Example

	REPEAT
	Description
	Example

	RESERVE
	Description
	Example

	RETURN
	Description

	SETCOLOUR
	Description

	SLOW
	Description

	SOUND
	Description

	TRAP
	Description

	UNTIL
	Description
	Example

	VARIABLE
	Description
	Example
	Example

	WHILE
	Description
	Example

	WRITE
	Description
	Example

	Introduction to Assembler Commands
	JMP
	JSR
	PHA
	PHP
	PLA
	PLP
	RTI
	TAX
	TAY
	TSX
	TXA
	TXS
	TYA
	Operators
	Operator: ()
	Operator: []
	Operators: * / MOD + -
	Operators: = =< < <> > >=
	Operators: AND OR EOR
	Operators: .AND. .OR. .EOR.

	Operator Precedence

	4. () []
	5. * / MOD
	6. + -
	7. = =< < <> >= > etc.
	8. AND OR EOR
	9. .AND. .OR. .EOR.
	DPEEK
	Description

	LOCATE
	Description

	NOT
	Description

	PADDLE
	Description

	PEEK
	Description

	PTRIG
	Description

	RND
	Description

	STICK
	Description

	STRIG
	Description

	VAL
	Description
	Example

	Floating point support procedures
	ADD
	Description

	DIV
	Description

	EQUALS
	Description

	EXP
	Description

	EXPe
	Description

	LOG
	Description

	LOGe
	Description

	MULT
	Description

	SUB
	Description

	Listing of floating point support package

	Compiler Directives
	;
	Description

	.LIST
	Description

	.NOLIST
	Description

	.MAP
	Description

	.NOMAP
	Description

	Memory Usage
	Appendix A - Limitations
	Appendix B - Error Codes

	10. Start of program (BEGIN) not defined
	11. Out of memory
	12. Number out of range (less than 0 or greater than 65535)
	13. Label not defined
	14. Variable not defined
	15. Incorrect number of parameters
	16. Quatation marks missing
	17. Error in expression
	18. Invalid expression
	19. Invalid character
	20. Constant expected
	21. Requested line number missing
	22. Syntax error in line
	23. Procedure not defined
	24. Duplicate label
	25. Construct nested to deep
	26. To many local regions (greater than 250)
	27. Nested INCLUDE requested
	28. Begin already defined
	29. Duplicate label number
	30. Function not defined
	31. Operators expected
	32. Variable or Constant expected
	33. Invalid nesting of IF and WHILE commands. eg IF exp THEN ... END WHILE
	Appendix C - Known Bugs

	34. No checking is made for running out of memory when building symbol tables, if characters start to appear on screen this has probably occured. In this case save the source program to disk and write a small routine to INCLUDE it in. This will give more memory for use as a symbol table.
	35. No checking is made for passing the correct number of arguments to a function or procedure, and if these are incorrect it could crash the program from either filling the stack up or pulling the return address off stack.
	Appendix D – Breakout Program
	Appendix E - Background Music Program
	Appendix F – Eight Way Scrolling Program

