®

HANDY REFERENCE CARD

valFORTH 1.1

tack i 3 puts are shown
5 the

; top of stack

nterest

jperand Xey: n,nl,... 16-bit signe
d,dl,... 32-bit signe

u 16-bit unsigned number

addr address

b 8-bit byte

£ 7-bit ascii character value
f boolean flag

fp floating point number

5 string

d numbers
d numbers

Stack Manipulation

n--nn)

M=)

nl n2 -- n2 nl)

nl n2 -- nl n2 nl)

(nln2n3--n2n3nl)

(nl n2 n3 -- n3 nl n2)
e

i ==)

==)
(==-m)

7

Number Bases

DECIMAL
HEX {
BASE =

addr)

Arithmetic and Logical

nl n2 -- sum)

(
D+ (dl d2 -- sum)
- (nln2-- diff)
= { nl n2 -- prod)
(nln2-- quot)
MOD { nl n2-- rem)
/MOD (nl n2 -- rem quot }
*/MOD (nl n2 n3 -- rem quot)
*/ (nl n2 n3 -- quot)
MAX (nln2-- max)
MIN (nln2-- min)
ABS (n-- absolute)
DABS (d-- absolute)
MINUS (“n ===) :
DMINUS (d-- -d) -
AND (nln2-- and)
OR (nl n2--or)
XOR (nl n2 -- xor)
NOT (n=--f)
Comparison
(nln2)
nl n2)
(nln2)
{ nl n2)
nl n2)
)

nl n2
n--
e

addr -- n)
n addr --)
addr -- b)
{ b addr --)
addr -~)
addr --)
addr --)
(n addr --)

i

from to u --)
from to u --)
(‘addr u b =-)

m
)
£
n
™

(addr u --)

BLANKS addr u ==)

Juplicate top of stack.

Throw away top of stack.
Reverse top two stack items.
Make copy of second item on top.
Rotate third item to top.
Rotate top item to third.
Duplicate only if non-zero.

Move top item to "return stack" for temporary

storage (use caution).
Retrieve item from return stack.
Copy top of return stack onto stack.

Set decimal pase.
Set hexadecimal base.
System variable containing number base.

Add.

Add double-precision numbers.

Subtract (nl-n2).

Multiply-

Divide {(nl/n2).

Modulo (i.e. remainder from division).
Divide, giving remainder and quotient.

Multiply, then divide (nl*n2/n3), with double-

precision intermediate.

Like */MOD, but give quotient only.
Maximum.

Minimum.

Absolute value.

Absolute value of double-precision number.

Change sign.

Change sign of double-precision number.
Logical AND (bitwise).

Logical OR (bitwise).

Logical exclusive OR (bitwise).

True if top number zero (i.e. reverses
truth value).

True if nl less than n2.

True if nl greater than n2.

True if nl Tess than or equal to n2.
True if nl greater than or equal to n2.
True jf top two numbers are equal.

True if nl does not equal n2.
True if top number negative.
True if top number positive.
True if top number zero (i.e.
truth value.

True if n does not equal zero.

reverses

Replace word address by contents.
Store second word at address on top.
Fetch one byte only.

Store one byte only.

Print contents of address.

Print byte at address.

Print unsigned contents of address.

Add second number on stack to contents of address

on top.

Move u bytes in memory from head to head.
Move ,u bytes in memory from tail to tail.
Fﬂg&u bytes in memory with b, beginning at
address

3

Fill u bytes 1
addrass.

Fil1 u bytes in memory with blanks, beginning at

address.

Control Structures

D0 ««-00P (end+l start --
1 index)

' -~ index)

J -- index

T R]
DO... +LOOP do: (end+l start --
+loop: (n ==)
00... /LOOP do: (end+l start --
/loop: ((u --)
IF...(true) if: (f --)
2+ < ENDIF
IF...{true)
SRIE LESE RS -GS A=
...(false)
.. .ENDIF
BEGIN. ..
UNTIL
BEGIN. ..
WHILE
.. .REPEAT

until: { f --)

while: (f --)

Terminal Input - Output

q in--
-R { n fieldwidth --)
D. (d==)

D.R { d fieldwidth --)
CR {aF =)

SPACE (-)

SPACES Qi

- L = I

oumMp (addr u ==)

TYPE (addr u --)

COUNT (addr -- addr+l u)
STERMINAL (—— £)

KEY (0= &)

EMIT (¢ ==

EXPECT { addrn ==)

WORD [e --.)

Input — Output Formating

NUMBER
<7

(addr -- d)
(

#S
SIGN

>
HOLD

{ screen --)
(screen --)
(block -- addr)
[== 13}
(-- addr)
(-- addr]
(--)

FLUSH (RS

EMPTY- (==)

BUFFERS

Defining Words
0 XXX o --)
; %--)
VARIABLE xxx (n --)
xxx: (--¢ addr)}
CONSTANT Xxx (n ==)

xxx: (== n)
CODE xxx (--)
;CODE (==L

<BUILDS... does: (
DOES>
LABEL xxx (-- addr)

-~ addr)

%

‘>
Set up loop, given ind®x range.
Place current index value on stack.
Used to retrieve index after a >R.
Place index of outer DO-LOOP on stack.
Terminate loop at next LOOP, +L00P, or /
LEAVE if ?TERMINAL is true (i.e. pressed).
Like DO...LCOP, but adds stack value (instead of
always '1') to index.
Like DO... +LOOP, but adds unsigned value to
index.

If top of stack true (non-zero), execute. (Note:
Forth 78 uses IF...THEN.)

Same, but if false, execute ELSE clause. (Note:
Forth 78 uses IF...ELSE...THEN.}

Loop back to BEGIN until true at UNTIL. (Note:

Forth 78 uses BEGIN...END.)

Loop while true at WHILE;REPEAT loops uncondition-
ally to BEGIN. {(Note: Forth 78 uses BEGIN...IF
.. AGAIN.)

Print number.

Print number, right-justified in field.

Print double-precision number

Print double-precision number, right-justified in
field.

Do a carriage return.

Type one space.

Type n spaces.

Print message (terminated by
Dump u words starting at address.

Type string of u characters starting at address.
Change length-byte string to TYPE form.

True if terminal break request present.

Read key, put ascii value on stack.

Type ascii value from stack.

Read n characters (or until carriage return) from
input to address. .

Read one word from input stream, using given
character (usually blank) as delimiter.

"y

Convert string at address to double-precision number.

Start output string.

Convert next digit of double-precision number and
add character to output string.

Convert all significant digits of double-precisicn
number to output string.

Insert sign of n into output string.

Terminate output string (ready for TYPE).

Insert ascii character into output string.

List a disk screen.

Load disk screen (compile or execute).

Read disk block to memory address.

System constant giving disk block size in bytes.
System variable containing current block number.
System variable containing current screen number.
Mark last buffer accessed as updated.

Write all updated buffers to disk.

Erase all buffers.

Begin colon definition of xxx.

End colon definition.

Create a variable named xxx with 1nitial value n;
returns address when executed.

Create a constant named xxx with value n; returns
value when executed. .
Begin definition of assembly-language primitive
operative named xxx.

Used to create a new defining word, with execution-
time “"code routine” for this data type in assembly.
Used to create a new defining word, with execution-

time routine for this data type in higher-level Forth.

Creates a header xxx which when executed returns its
PFA.

memory with zeroes, beginning at

Software and Documentation
©Copyright 1982
Valpar international

Vocabularies

(-- addr

CURRENT (= -2ddr. ¥

NIT

VOCABULARY (--
XXX
VLIST b s

{ ==

FORGET xxx { =--

ABORT He s

' XXX { -- addr
HERE -- addr
PAD -- addr
N { -- addr
SP@ -- addr
ALLOT {n--1

HANDY REFERENCE CARD

valFORTH 1.1

Returns address of pointer to context vocabulary
(searched first).
& il

of pointer ti
nition
0 cabulary (
T vocabulary).
Editor vocabulary; sets CONTEXT.
Assembler vocabulary; sets TEXTE
Sets CURRENT vocabulary to CONTEXT.
Create new vocabulary named xxx.

s address rrent vocabulary

1\ F FORTH sets

Print names of all words in CONTEXT vocabulary.

Begin comment, terminated by right paren on same
line; space after { .

Forget all definitions back to and including xxx.

Error termination of operation.

Find the address of xxx in the dictionary; if used

in definition, compiie address.
Returns address of next unused byte in the
dictionary.

Returns address of scratch area {usually 128 bytes
ERE

beyond *F

System variable containing offset into input buffer.

lised, e.g., by WORD.

Returns address of top stack item.

Leave a gap of n bytes in the dictionary.
Compile a number into the dictionary.

valFORTH Memory Map

STANDARD DISPLAY
MEMORY AREA

GENERAL BUFFER

|<_PAD

WORD BUFFER

] $0080 BYTES

DP —e
DICTIONARY
LIMIT ——y
DISK BUFFERS l=— USE
2112 BYTES DECIMAL
(RELOCATABLE
FIRST : S e
(TASK)
$0700 sl] 0 +ORIGIN
BOOT CO
$0600 i Lk
$O5FF :
l ATARI FLOATING POINT }
$057E
l USER AREA }
$0480 upP
$O1FF — RO
RETURN STACK __.---""
RP —-| _,_—"_‘ IN
--==="""" TERMINAL BUFFER
$0100 == TIB
$00FF
ATARI FLOATING POINT
$00D4
Z PAGE UPNIPW
SP IS X REGISTER
RP IS STACK POINTER
OF CPU
So
STACK $00BC-$0080
SP —e

Atariis a tragemark of Atari, Inc.. a division of Warner Communications.

Software and Documentation
©Copyright 1982
Valpar International

HANDY REFERENCE CARD

valFORTH 1.1

Graphics and Color

SETCOLOR Lenl n2 n3 -- Color register nl ..3 and 4 for background)
set to hue n2 (0 to 15) and luminance n3
(0-14, even).
nl n2 n3 --) Alias for SETCOLOR.

{n--) Identical to GR. in BASIC. Adding 16 will
suppress split display. Adding 32 will suppress
display 1reclear In addition, this GR. will
not disturb player/missiles.

POs. ("xy ==) C POSITION or POS. Positions the

.rmsm‘e cursor if in a split display mode,
and the text cursor if in O GR.

Koy o=) 3cs1t1ons and updates the cursor, similar to
, but without changing display data.

PLOT {xy--) Same as BASIC PLOT. PLOTs point of color in
register specified by last COLOR command, at
point x y.

DRAWTO (xy =) Same as BASIC DRAWTO. Draws line from last
PLOT'ted, DRAWTO'ed or PCSIT'ed point to x y,
sing color in register specified by last COLOR
mmand.

{ xy == Alias for DRAWTO
J F area uetweer last PLOT'ted, ORAWTO'ed or

POSIT'ed point to last rcsition set by POS.,
using the color in register b.

5 e Used in the form G" ccccc”. Sends text cccc to
text area in non-0 Graphics mode, starting at
current cursor position, in color of register
specified by last COLOR command prior to cccc
being output.

STYPE { addr count --) Starting at addr, output count characters to

text area in non-0 Graphics mode, starting at

current cursor position, in color of register
specified by last COLOR command.

Positions the cursor at x y and fetches the

jata from display at that position. Like

LOCATE and LOC. .

Run-time code compiled in by G".

Leaves the x and y coordinates of the cursor

on the stack. {

{b--) Outputs the data b to the current cursor

position.

CGET [-=b] Fetches the data b from the current cursor

position.

{cl--c2) Converts cl from ATASCII to its display screen

code, c2. Example: ASCII A >SCD 88 @ C!

will put an "A" into the upper left corner of

the display.

Converts cl from display screen code to ATASCII

c2. See >SCD.

addrl addr2 count -- } Moves count bytes from addrl to addr2,

translating from ATASCII to display screen
code on the way.

addrl addr2 count --) Moves count bytes from addrl to addr2,

transiating from display screen code to
ATASCII on the way.

(b--) Saves the value b in the variable CLRBYT.

Variaple that holds data from last COLOR

command.

GREY -~ 0 PINK -- 4 BLUE -~ 8 GREEN - 12

GOLD - 1 LVNDR - 5 LTBLUE -- 9 YLWGRN -~ 13

ORNG — 02 BLPRPL -~ 6 0 ORNGRN ~ -- 14

RDORNG -- 3 PRPLBL -~ 7 1 LTORNG -- 15

LoC. xy--b)

V.
7]
o
©

SCO> {iel -~ c2)
>BSCD

BSCD>

COLOR
CLRBYT

'
'
o
o
a
=

7
=
=
@
=

'

1
-

SOUND (chan freq dist vol -- } Sets up the sound channel "chan” as indicated.

Channel: 0

Frequence: 0-255, 0 is highest pitch.

istortion: 0-14, evens only.

Volume: 0-15,
Suggested mnemonic: CatFish Don't Vote

S0. (chan freq dist vol --)} Alias of N

FILTER! (n-- Stores n the audio control register and into
the valFORTH shadow register, AUDCTL. Use
AUDCTL when doing bit manipulation, then do
FILTER!

{ -- addr) A »amat]e containing the last value sent to the

audio control register by FILTER!.
XSND no--} Silences channel n.
XSND3 (==) Silences all channels.

Text Output and Disk Preparation

8= { flag --) If flag is true, enables handler that sends
text to text screen. If false, disables the
handler. (See PFLAG in main g]ossaryA)

Py { flag --) If flag is true, enables handler that sends

text to printer. [f false, disables the
handler. (See PFLAG in main glossary)
- Makes a raucous noise from the keyboard.
¢, =-- n {executing)) Converts next character in input stream to
¢, =-- ({compiling) } ATASCII code. If executing, leaves on stack.
If compiling, compiles as literal.
[== Causes a form feed on smart printers if the
printer handler has been enabled by ON P:.
May need adjustment for dumb or nonstandard

printers.
LISTS { start count --) From start, 1ists count screens. May be aborted
by CONSOLE button at the end of a screen.
{ scr --) Lists screen scr to the printer, then restores
former printer handler status.
{ start cnt --) From start, 1ists cnt screens to printer three

to a page, then restores former printer handler
status. May be aborted by CONSOLE button at
the end of a screen.

SORMAT =) With prompts, will format a disk in drive of
your choice.

i

Debugging Utilities

DECOMP

CDUMP

Floating
FCONSTANT

FVARIABLE

FDUP
FDROP
FOVER
FLOATING

EP
Fa

Fi

o

F*

F/
FLOAT
FIX
LOG
LOGLO

FLITERAL

XXX

addr n --)

{ addr n --)

|
flag --)

xxx (-- cfa (executing))
xxx (== (compiling))

Point
xxx (fp --)
LT -- fp)

xxx (fp --)
xxx: { addr --)

{

{
‘
\

xxx { -- fp)

(fpl -- fpl fpl)

£p e

fp2 fpl -- fp2 fpl fp2)

\

xxx (== fp)

!

{

(

‘
\

addr -- fp)
{ fp addr -~

fp =)

addr --)

fp2 fpl -- fp3)
fp2 fpl -- fp3)
fp2 fpl -- fp3)
fp2 fpl -- fp3)
n--fp)

fp (non-neg, Tess
than 32767.5) -- n)

fpl -= fp2)
fpliz= fp2)
fpl ~- fp2)
fpl -~ fp2)
fp -- flag)

fp2 fpl -- flag)
fp2 fpl -- flag)
fp2 fpl -- flag)

fp -)

Operating System

OPEN

GETREC
PUTREC

STATUS
DEVSTAT

SPECIAL

RS232

A

addr n0 nl n2 -- n3 }

y

n--j
bln -- b2)
n -- bl b2)

addr nl n2 -~ n3)
addr nl n2 -- n3)

n == 1b
n -- bl b2 b3 j

{ bl b2 b3 b4 b5 b6

b7 b8 -- b9)

Does a decompilation of the word xxx if it can
be found in the active vocabularies.

A character dump from addr for at least n
'hararmv‘s (Will always do a multiple of 16.)
M numerical dump in the current base for at

1 ast n characters. (Will always do a multiple

-eaves number of bytes between bottom of display
1ist and PAD.

Does (FREE) and then prints the stack and
"bytes".

Prints n in HEX, leaves BASE unchanged.

If flag is true, turns on visible stack.

If flag is false, turns off visible stack.
Does a signed, nondestructive stack printout,
TOS at right. Also sets visible stack to do
signed printout.

Does unsigned, nondestructive stack printout,

TOS at right. 1so sets visible stack to do
unsigned printout. .
Prints the current base, in decimal. Leaves

BASE undisturbed.

Gets the cfa (code field address) of xxx. If
executing, leaves it on the stack; if compiling,
compiles it as a literal.

The character string is assianed the constant
value fp. When xxx is executed, fp will be
put on the stack.

The character string xxx is assigned the
initial value fp. When xxx is executed, the
addr (two bytes) of the value of xxx will be
put on the stack.

Copies the fp number at top-of-stack.

Discards the fp number at top-of-stack.)
Copies the fp number at 2nd-on-stack to
top-of-stack.

Attempts to convert the following string, xxx,
to a fp number.

Alias for FLOATING.

Fetches the fp number whose address is at
top-of-stack.

Stores fp into addr. Remember that the
operation will take six bytes in memory.

Type out the fp number at top-of-stack.
Ignores the current value in BASE and uses
base 10.

Fetches a fp number from addr and types it out.
Replaces the two top-of-stack fp items, fp2 and
fol, with their fp sum, fp3.

Replaces the two top-of-stack fp items fp2 and
fpl, with their difference, fp3=fp2-fpl.
Replaces the two top-of-stack fp items fp2 and
fpl, with their product, fp3.

Replaces the two top-of-stack fp items fp2 and
fpl, with-their quotient, fp3=fp2/fp

Replaces number at top-of-stack with 1ts fp
equivalent.

Replaces fp number at top-of-stack, constrained
as indicated, with its integer equivalent.
Replaces fpl with its base e logarithm, fp2.
Not defined for fpl negative.

Replaces fpl with its base 10 decimal logarithm,
fp2. Not defined for fpl negative.

Replaces fpl with fp2, which equals e to the
power fpl.

Replaces fpl with fp2, which equals 10 to the
power fpl.

If fp is equal to floating-point 0, a true
flag is left. Otherwise, a false flag is left.
If fp2 is equal to fpl, a true flag is left.
Otherwise, a false flag is left.

If fp2 is greater than fpl, a true flag is
left. Otherwise, a false flag is left.

If fp2 is Tess than fpl, a true flag is left.
Otherwise, a false flag is left.

If compiling, then compile the fp stack value
as a fp literal.

This word opens the device whose name is at
addr. The device is opened on channel nQ with
AUX1 and AUX2 as nl and n2 respectively. The
device status byte is returned as n3.

Closes channel n.

OQutputs byte bl on channel n, returns status
byte b2.

Gets byte bl from channel n, returns status
byte b2.

Inputs record from channel n2 up to length nl.
Returns status byte n3.

Outputs nl characters starting at addr through
channel n2. Returns status byte n3.

Returns status byte b from channel n.

From channel nl gets device status bytes bl and
b2, and normal status byte b3.

Implements the Operating System "Special"
command. AUX1 through AUX6 are bl through b6
respectively, command byte is b7, channel number
is b8. Returns status byte b9.

Loads the Atari 850 drivers into the dictionary
(approx 1.8K).

Software and Documentation
© Copyright 1982
Valpar International

HANDY REFERENCE CARD N

valFORTH 1.1 | _

valFORTH 6502 Assembler

ASSEMBLER (---)

1 the assembler vocabulary for subsequent

sembly language programming.

ters the new word “xxx" into the dictionary
as mach Tanguage word and calls up the
assembler vocabulary for subsequent assembly
language programming.

(% ---) Terminates an assembly language definition by
performing a security check and setting the
CONTEXT vocabulary to the same as the CURRENT
vocabulary.

CODE xxx [

END-CODE {fe=r) A commonly used synonym for the word C: above.
The word C; is recommended over END-CODE.
SUBROUTINE xxx (---) Enters the new word "xxx" into the dictionary

as machine language subroutine and calls up

the assembler vocabulary for subsequent assembly

language programming. 4
;CODE (===} When the assembler is loaded, puts the system k

into the assembler vocabulary for subsequent

assembly languag rogramming. See main

glossary for further explanation.

Control Structures

i, { flag --- addr 2) Begins a machine language control structure

2 status flag on top of the
and a security check
NDIF, clauses below.
, VG, NS

w1 f=Fal'se... ENDIF, w1

addr 2 --- addr 3 } Used in an IF, clause to allow for execution
of code only if IF, clause is false. If the IF,
clause is true, this code is bypassed.

addr 2/3 ---) Used to terminate an IF, control structure
clause. Additionally, ENDIF, resolves all
forward references. See IF, above for command
form.

ElLSEs

ENDIF,

BEGIN, --- addr 1 Begins machine language control structures of

L

B

,..while-true..REP e

the 6502 statuses: s

, MI , and PL .

addr 1 flag ---) Used to terminate a post-testing BEGIN, clause .

thus allowing for conditional looping of a

program segment while "flag" is false.

Used to begin a pre-testing BEGIN, clause thus

allowing for conditional looping of a program

segment while “flag" is true.

addr 4 ---) Used to terminate a pre-testing BEGIN,..WHILE,
clause. Additionally, EAT, resolves all
forward addresses of the current WHILE, clause.

addr 1 ---) Used to terminate an unconditional BEGIN,
clause. Execution cannot exit this loop unless
a JMP, instruction is used.

Parameter Passing (These routines must be jumpec to.)

UNT
I

i
one of
Vs

T
s "LS TG,V

UNTIL,

WHILE, addr 1 flag --- addr 4

REPEAT,

AGAIN,

NEXT (--- addr) Transfers control to the next FORTH word to be
executed. The parameter stack is left unchanged.
PUSH { --- addr) Pushes a 16 bit value to the parameter stack

whose low byte is found on the 6502 return
stack and whose high byte is found in the
accumulator.

PUSHCA (--- addr) Pushes a 16 bit value to the parameter stack

whose low byte is found in the accumulator and

whose high byte is zero.

Replaces the value currently on top of the

parameter stack with the 16 bit value whose

Tow byte is found on the 6502 stack and whose

high byte is in the/accumulator.

PUTOA { --- addr) Replaces the value currently on top of the
parameter stack with the 16 bit value whose
Tow byte is in the accumulator and whose high
byte is set to zero.

PUT (=== addr

BINARY { --- addr) Drops the top value of the parameter stack
and then performs a PUT operation described
above.
POP and { --- addr) POP drops one value from the parameter stack.
POPTWO POPTWO drops two values from the parameter
stack.
{ --- addr) Moves one to four values to the N scratch area
in the zero page and drops all values moved
from the parameter stack. &
N (--- addr) Points to a nine-byte scratch area in the zero
page beginning at N-1 and going to N+7.
Opcodes (various --- various) ADC, AND, ASL, BIT, BRK, CLC, CLD, CLI,
Y. TCMP, 4CPX, CPY,- DECs. DEX, DEY, : EOR;
INC, INX, [INY, JSR, JMP, LDA, LDX, LDY,
LSR, NOP, ORA, PHA, PHP, PLA, PLP, ROL,
ROR, RTI,. RTS, SBC, SEC, . SED, SEI, STA,
STX, TAX, TAY, TSK, TXS, TYA,
Aliases N
NXT, = NEXT JMP, POPZ,
PSH, = PUSH JMP, XL 2
PUT, = PUT JMP,) =
PSHA, = PUSHOA JMP, = ENDIF,
PUTA, = PUTOA JMP, END, = UNTIL,
POP, = POP JMP,

Software and Documentation
©Copyright 1982
Valpar International

_/

HANDY REFERENCE CARD

valFORTH

SOFTWARE SYSTEM
EDiTGR 1.1 COMMAND SUMMARY

Below is a quick reference Tist of all the commands which the video editor
recognizes.

Entering the Edit Mode (executed outside of the edit mode)

\ (scre ---) % Enter the edit mode and view the specified screen.

L (=== % Re-view the current screen.

WHERE (- % Enter the edit mode and position the cursor over
the word that caused a compilation error.

LOCATE ccec { ---) Enter the edit mode and position the cursor over
the word "cccc" where it is defined.

LOCATOR { ON/OFF ---) When ON, allows all words compiled until the next
OFF to be locatable using the LOCATE command above.

=BUFS (zlines --) Sets the length (in lines) of the storage buffer.

The default is five.

Cursor Movement (issued within the edit mode)

cErl T % Move cursor up one line, wrapping to the bottom line
if moved off the top.

ctrl NA % Move cursor down one line, wrapping to the top line
if moved off the bottom.

etri &« % Move cursor left one character, wrapping to the
right edge if moved off the left.

ctrl > % Move cursor right one character, wrapping to the
left edge if moved off the right.

RETURN Position the cursor at the beginning of the next
Tine.

TAB Advance to next tabular column.

Editing Commands (issued within the edit mode)

ctrl INS Insert one blank at cursor location, losing the
last character on the line.

ctrl DEL Delete character under cursor, closing the line.

shift INS % Insert blank line above current line, losing the
last Tine on the screen.

shift DEL % Delete current cursor line, closing the screen.

ctri 1 Toggle insert-mode/replace-mode.
(see full description of ctrl-I).

BACKS * Delete last character typed, if on the same line
as the cursor.

ctrl H Erase to end of line (Hack).

Buffer Management (issued within the edit mode)

ctrl T Delete current cursor line sending
it to the edit buffer for later use.

ctrl F Take the current buffer line and insert it
above the current cursor line.

ctril K Copy current cursor line sending it to the
edit buffer for later use.

etrl] Take the current* buffer line and copy it
to the current cursor line.

ctrl R Rol11 the buffer making the topmost buffer
line current.

ctrl B Ro11 the buffer backwards making the fourth
buffer line on the screen current.

ctrl G Clear the current* buffer line and performs
a ctrl-B.

*Note: The current buffer line is bottommost on the video display.

Changing Screens (issued within the edit mode)

(= 7} P Display the previous screen saving all
changes made to the current screen.
ctrl N Display the next screen saving all changes

made to the current screen.

Save the changes made to the current screen

and end the edit session.

ctrl Q % Quit the edit session forgetting all chanaes
made to the current screen.

*

ctrl 5

Special Keys (issued within the edit mode)

ESC % Do not interpret the next key typed as any
of the commands above. Send it directly to
the screen instead.

el A Put the arrow "-->" ("next screen") in the
Tower-right-hand corner of the screen unless
it is already there, in which case remove it.

ctrl dJd Split the current line into two lines at the point
where the cursor is.
Gtk 0 Corrects any major editing blunders.

Screen Management (executed outside of the edit mode)

FLUSH (== % Save any updated FORTH screens to disk.

EMPTY- (== * Forget any changes made to any screens not yet
BUFFERS FLUSHed to disk.

COPY (from to --) % Copies screen #from to screen #to.

CLEAR (scré --) * Blank fills specified screen.

CLEARS (scr# #screens --) Blank fills the specified number of screens start-

ing with screen scr#.
SMOVE (from to #screens --) Duplicate the specified number of screens Starting

with screen number "from".

Software and Documentation
©Copyright 1982
* EDITOR 1.0 COMMAND Valpar International

