
Apple Assembly Line - How to Add and Subtract One#

General Information

Author: Bob Sander-Cederlof
Assembler: generic
Published: October 1980, Issue 1
Download: http://www.txbobsc.com/aal/

I suppose there are as many ways to do it as there are programmers. Some are short and fast, some
long and slow, some neat, some sloppy.

Adding one to a number is called "incrementing", and subtracting one is called "decrementing". The
6502 has two instructions for these two functions: INC and DEC. (For the moment I will overlook the
four instructions for doing the same to the X and Y registers: INX, INY, DEX, and DEY.) It is easy to
see how to use them on single-byte values; with a little more trouble we can also use them for values
of two or more bytes.

Single-Byte Values:#

Here are five different ways to increment a single byte:

Methods 1 and 2: Add 1

 CLC SEC
 LDA VALUE LDA VALUE
 ADC #1 ADC #0
 STA VALUE STA VALUE

Method 3 and 4: Subtract (-1)

 SEC CLC
 LDA VALUE LDA VALUE
 SBC #$FF SBC #$FE
 STA VALUE STA VALUE

Method 5: Use the INC instruction

 INC VALUE

Here are five similar ways to decrement a value:

Method 1 and 2: Subtract 1

 SEC CLC
 LDA VALUE LDA VALUE
 SBC #1 SBC #0
 STA VALUE STA VALUE

Method 3 and 4: Add (-1)

 CLC SEC
 LDA VALUE LDA VALUE
 ADC #$FF ADC #$FE
 STA VALUE STA VALUE

http://[fd00::119]:8080/wiki/#section-Apple+Assembly+Line+-+How+to+Add+and+Subtract+One-AppleAssemblyLineHowToAddAndSubtractOne
http://www.txbobsc.com/aal/
http://[fd00::119]:8080/wiki/#section-Apple+Assembly+Line+-+How+to+Add+and+Subtract+One-SingleByteValues

Method 5: Use the DEC instruction

 DEC VALUE

There are times when any of the above may be justified, depending on the state of the A-register and
the Carry Status bit.

Multi-Byte Values:#

Incrementing a two-byte value is a very common practice in 6502 programs. Here are two methods:

Method 1: Add 1

 CLC
 LDA VALL LOW BYTE
 ADC #1
 STA VALL
 LDA VALH HIGH BYTE
 ADC #0
 STA VALH

Method 2: Use the INC instruction

 INC VALL INCREMENT LOW BYTE
 BNE .1 IF NOT ZERO, THEN NO CARRY
 INC VALH INCREMENT HIGH BYTE
.1

Of course, there are many variations on these methods. It is easy to see how to extend these two
methods to more than two bytes. Here is a three-byte version of Method 2:

 INC VALL INCREMENT LOW BYTE
 BNE .1 UNLESS ZERO, NO CARRY
 INC VALM INCREMENT MIDDLE BYTE
 BNE .1 UNLESS ZERO, NO FURTHER CARRY
 INC VALH INCREMENT HIGH BYTE
.1

Believe it or not, there is one disadvantage to using Method 2, in some circumstances. Sometimes
code is required to have a constant running time; then, Method 1 is the one to use. But most of the
time, Method 2 is the best.

How about subtracting one? Here are two ways to do it to a two-byte value:

Method 1: Subtract 1

 SEC
 LDA VALL
 SBC #1
 STA VALL
 LDA VALH
 SBC #0
 STA VALH

Method 2: Use the DEC instruction

 LDA VALL SEE IF NEED TO BORROW

http://[fd00::119]:8080/wiki/#section-Apple+Assembly+Line+-+How+to+Add+and+Subtract+One-MultiByteValues

 BNE .1 NO
 DEC VALH YES
.1 DEC VALL

Which one do you like better? It is still a matter of taste, unless the amount of memory used or time
consumed is very important. There are also different side effects, such as the final state of the carry
status. INC and DEC do not change the carry status, while of course ADC and SBC do. You may
wish to preserve carry through the process, making the INC/DEC code preferable. Or, you may wish
to know the resulting carry status after incrementing or decrementing for some reasong; then you
should use the ADC/SBC code.

Back to subtracting one...how about doing it to a three-byte value? We just add three more lines:

 LDA VALL SEE IF NEED TO BORROW
 BNE .2 NO
 LDA VALM SEE IF NEED TO BORROW AGAIN
 BNE .1 NO
 DEC VALH BORROW FROM HIGH BYTE
.1 DEC VALM BORROW FROM MIDDLE BYTE
.2 DEC VALL

Easier than you though, right? You would not believe the many strange ways I have seen this
operation coded in commercial software (even some released by Apple themselves!). Yet it seems
to me that this method is the same way we would do it with pencil and paper in decimal arithmetic.
Think how you would do this:

123040
 -1

xxxxxx

If you think of each digit as though it were a byte...isn't the algorithm the same?

Now it is time for all of us to go back over the programs we wrote during the past three years for the
Apple, and replace a lot of old code!

Bob Sander-Cederlof

Bob Sander-Cederlof | 19.11.2007 at 03:57 PM

Thank you for republishing my article. The Apple Assembly Line newsletter was published
from monthly October 1980 through May 1988. All the issues are available online at http://
www.txbobsc.com/aal/

http://www.txbobsc.com/aal/
http://www.txbobsc.com/aal/

